A Stand-Alone Interactive Physics Showcase
ERIC Educational Resources Information Center
Pfaff, Daniel; Hagelgans, Anja; Weidemuller, Matthias; Bretzer, Klaus
2012-01-01
We present a showcase with interactive exhibits of basic physical experiments that constitutes a complementary method for teaching physics and interesting students in physical phenomena. Our interactive physics showcase, shown in Fig. 1, stimulates interest for science by letting the students experience, firsthand, surprising phenomena and…
NASA Technical Reports Server (NTRS)
Wright, K. H., Jr.; Stone, N. H.; Samir, U.
1983-01-01
In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.
University Students' Understanding of Electromagnetic Induction
ERIC Educational Resources Information Center
Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina
2013-01-01
This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…
Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro
2013-07-01
There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.
REVIEWS OF TOPICAL PROBLEMS: Physical aspects of cryobiology
NASA Astrophysics Data System (ADS)
Zhmakin, A. I.
2008-03-01
Physical phenomena during biological freezing and thawing processes at the molecular, cellular, tissue, and organ levels are examined. The basics of cryosurgery and cryopreservation of cells and tissues are presented. Existing cryobiological models, including numerical ones, are reviewed.
NASA Astrophysics Data System (ADS)
Vilão, Rui C.; Melo, Santino L. S.
2014-12-01
We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.
ERIC Educational Resources Information Center
Sengoren, Serap Kaya; Tanel, Rabia; Kavcar, Nevzat
2006-01-01
The superposition principle is used to explain many phenomena in physics. Incomplete knowledge about this topic at a basic level leads to physics students having problems in the future. As long as prospective physics teachers have difficulties in the subject, it is inevitable that high school students will have the same difficulties. The aim of…
Optics education in an optometric setting
NASA Astrophysics Data System (ADS)
Lakshminarayanan, Vasudevan; Raghuram, Aparna
2003-10-01
We discuss optics education within the context of an Optometric professional program leading to a degree of Doctor of Optometry (O.D.). Basic course work in Geometric, Physical, Ophthalmic and Visual Optics will be described and we will discuss how basic optical phenomena can be made relevant to the Optometric student with different academic backgrounds.
Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation
NASA Astrophysics Data System (ADS)
Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano
2011-01-01
Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.
NASA Technical Reports Server (NTRS)
Mcgarrity, J. M.
1980-01-01
The conference covered the radiation effects on devices, circuits, and systems, physics and basic radiation effects in materials, dosimetry and radiation transport, spacecraft charging, and space radiation effects. Other subjects included single particle upset phenomena, systems-generated electromagnetic pulse phenomena, fabrication of hardened components, testing techniques, and hardness assurance.
Skjaerven, L H; Mattsson, M; Catalan-Matamoros, D; Parker, A; Gard, G; Gyllensten, A Lundvik
2018-02-26
Physiotherapists are facing complex health challenges in the treatment of persons suffering from long-lasting musculoskeletal disorders and mental health problems. Basic Body Awareness Therapy (BBAT) is a physiotherapy approach within the movement awareness domain developed to bridge physical, mental, and relational health challenges. The purpose of this study was to reach a consensus on core phenomena and statements describing BBAT. A consensus-building process was conducted using the nominal group technique (NGT). Twenty-one BBAT experts from 10 European countries participated in a concentrated weekend workshop of 20 hours. All participants signed informed consent. Participants reached a consensus on 138 core phenomena, clustered in three overarching categories: clinical core, historical roots, and research and evaluation phenomena. Of the 106 clinical core phenomena, the participants agreed on three categories of phenomena: movement quality, movement awareness practice, and movement awareness therapy and pedagogy. Furthermore, the participants reached 100 percent consensus on 16 of 30 statements describing BBAT. This study provides a consensus on core phenomena and statements describing BBAT. The data reveal phenomena implemented when promoting movement quality through movement awareness. Data provide clarity in some aspects of the vocabulary as fundamental theory. Further reearch will be developed.
Mechanics Simulations in Second Life
ERIC Educational Resources Information Center
Black, Kelly
2010-01-01
This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…
If You Understand Leaky Buckets, You Understand a Lot of Physics.
ERIC Educational Resources Information Center
Ruby, Lawrence
1991-01-01
Applications of this model to problems associated with basic phenomena in radioactivity, heat transfer, neutron chain reactions, RC circuits and vacuum pumping are presented. Example computations for each situation are included. (CW)
A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.
ERIC Educational Resources Information Center
Eshel, Amram
1997-01-01
Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)
Interacting Dark Resonances with Plasmonic Meta-Molecules
2014-09-17
different K-subsystems, as seen in Fig. 1(b). Within the transparency window, of the K-configuration atomic electromagnetic induced transparency ( EIT ...exhibits EIT -type phenomena as seen by a reduction in absorbance at x 264 THz. The basic physical mechanism behind this EIT -type phenomena can be...radiative plasmonic atom.5 However, in the presence of a second dark plasmonic atom, the EIT -type transparency at FIG. 1. (a) Atomic four-level system
Charged dust phenomena in the near-Earth space environment.
Scales, W A; Mahmoudian, A
2016-10-01
Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Teaching Astrophysics to Upper Level Undergraduates
NASA Astrophysics Data System (ADS)
Van Dorn Bradt, Hale
2010-03-01
A Socratic peer-instruction method for teaching upper level undergraduates is presented. Basically, the instructor sits with the students and guides their presentations of the material. My two textbooks* (on display) as well as many others are amenable to this type of teaching. *Astronomy Methods - A Physical Approach to Astronomical Observations (CUP 2004) *Astrophysics Processes-The Physics of Astronomical Phenomena (CUP 2008)
``Physics with a Smile''-Explaining Phenomena with a Qualitative Problem-Solving Strategy
NASA Astrophysics Data System (ADS)
Mualem, Roni; Eylon, Bat-Sheva
2007-03-01
Various studies indicate that high school physics students and even college students majoring in physics have difficulties in qualitative understanding of basic concepts and principles of physics.1-5 For example, studies carried out with the Force Concept Inventory (FCI)1,6 illustrate that qualitative tasks are not easy to solve even at the college level. Consequently, "conceptual physics" courses have been designed to foster qualitative understanding, and advanced high school physics courses as well as introductory college-level courses strive to develop qualitative understanding. Many physics education researchers emphasize the importance of acquiring some qualitative understanding of basic concepts in physics as early as middle school or in the context of courses that offer "Physics First" in the ninth grade before biology or chemistry.7 This trend is consistent with the call to focus the science curriculum on a small number of basic concepts and ideas, and to instruct students in a more "meaningful way" leading to better understanding. Studies7-10 suggest that familiar everyday contexts (see Fig. 1) are useful in fostering qualitative understanding.
Physical phenomena and the microgravity response
NASA Technical Reports Server (NTRS)
Todd, Paul
1989-01-01
The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.
NASA Astrophysics Data System (ADS)
Shibata, K.; Kurokawa, H.
The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction
Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, T.; Takahashi, Y.
1998-08-20
Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
NASA Astrophysics Data System (ADS)
Roberts, Craig
2015-04-01
With discovery of the Higgs boson, the Standard Model of Particle Physics became complete. Its formulation and verification are a remarkable story. However, the most important chapter is the least understood. Quantum Chromodynamics (QCD) is that part of the Standard Model which is supposed to describe all of nuclear physics and yet, almost fifty years after the discovery of quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: pions, neutrons, protons. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB), whose implications are truly extraordinary. This presentation will reveal how DCSB, not the Higgs boson, generates more than 98% of the visible mass in the Universe, explain why confinement guarantees that condensates, those quantities that were commonly viewed as constant mass-scales that fill all spacetime, are instead wholly contained within hadrons; and, with particular focus on the pion, elucidate a range of observable consequences of these phenomena whose measurement is the focus of a vast international experimental programme. This research was supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357.
Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S
2011-02-01
Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.
The Structure of Language. The Bobbs-Merrill Series in Composition and Rhetoric.
ERIC Educational Resources Information Center
Thomas, Owen, Ed.
Articles represent four schools of thought in the field of linguistics: structural, behavioral, transformational, and tagmemic. Summarizing structural linguistics before 1956, John Lotz emphasizes the importance of spoken language and the "internal order" imposed upon "physical and behavioral phenomena," and indicates some of the basic beliefs of…
ERIC Educational Resources Information Center
Roberts-Pittman, Bridget; Slavens, Julie; Balch, Bradley V.
2012-01-01
Bullying is not simply the same act of misbehavior taking place electronically. While the two phenomena share common characteristics (use of power, harmful intent), distinct and important differences exist. The first is the concept of power. Power in cyberspace is not measured by physical size or family income. Instead, power lies in the anonymity…
Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena
NASA Astrophysics Data System (ADS)
Ryutov, Livermore, Ca 94550, Usa, D. D.
2017-10-01
The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.
Ten years of the project Chain Experiment
NASA Astrophysics Data System (ADS)
Susman, Katarina; Ziherl, Saša; Bajc, Jurij
2017-05-01
In this paper the project Chain Experiment is presented. It can be viewed as a competition or as a popularization activity for science, technology, and physics in particular. We present the basic idea of a toppling-domino-like chain of contraptions that are operated one after another, and each demonstrates different physical phenomena. The evolution into its current form with three different types of activities is briefly described. The emphasis of the paper is on the impact of the project on physics education. The ways in which physics students, physics teachers, and participating pupils profit from the different project activities are presented in detail.
A broad look at solar physics adapted from the solar physics study of August 1975
NASA Technical Reports Server (NTRS)
Parker, E.; Timothy, A.; Beckers, J.; Hundhausen, A.; Kundu, M. R.; Leith, C. E.; Lin, R.; Linsky, J.; Macdonald, F. B.; Noyes, R.
1979-01-01
The current status of our knowledge of the basic mechanisms involved in fundamental solar phenomena is reviewed. These include mechanisms responsible for heating the corona, the generation of the solar wind, the particle acceleration in flares, and the dissipation of magnetic energy in field reversal regions, known as current sheets. The discussion covers solar flares and high-energy phenomena, solar active regions; solar interior, convection, and activity; the structure and energetics of the quiet solar atmosphere; the structure of the corona; the solar composition; and solar terrestrial interactions. It also covers a program of solar research, including the special observational requirements for spectral and angular resolution, sensitivity, time resolution, and duration of the techniques employed.
Devices and Systems for Nonlinear Optical Information Processing
1988-11-01
in the VLSI literature [7, 8, 9], in which basic physical principles have been invoked to both understand current VLSI performance and to project...the first time, that in fact accounts for a very wide range of observed but previously unexplained phenomena [Appendix 4; AFOSR Jour. Publ. 7, AFOSR...the variable grating mode liquid crystal device A. R. Tongay. Jr. Abstract. The physical principles of operation of the variable grating mode C. S. Wu
Uher, Jana
2015-09-01
Scientists exploring individuals, as such scientists are individuals themselves and thus not independent from their objects of research, encounter profound challenges; in particular, high risks for anthropo-, ethno- and ego-centric biases and various fallacies in reasoning. The Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) aims to tackle these challenges by exploring and making explicit the philosophical presuppositions that are being made and the metatheories and methodologies that are used in the field. This article introduces basic fundamentals of the TPS-Paradigm including the epistemological principle of complementarity and metatheoretical concepts for exploring individuals as living organisms. Centrally, the TPS-Paradigm considers three metatheoretical properties (spatial location in relation to individuals' bodies, temporal extension, and physicality versus "non-physicality") that can be conceived in different forms for various kinds of phenomena explored in individuals (morphology, physiology, behaviour, the psyche, semiotic representations, artificially modified outer appearances and contexts). These properties, as they determine the phenomena's accessibility in everyday life and research, are used to elaborate philosophy-of-science foundations and to derive general methodological implications for the elementary problem of phenomenon-methodology matching and for scientific quantification of the various kinds of phenomena studied. On the basis of these foundations, the article explores the metatheories and methodologies that are used or needed to empirically study each given kind of phenomenon in individuals in general. Building on these general implications, the article derives special implications for exploring individuals' "personality", which the TPS-Paradigm conceives of as individual-specificity in all of the various kinds of phenomena studied in individuals.
NASA Astrophysics Data System (ADS)
Corni, Federico; Michelini, Marisa
2018-01-01
Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.
The problem of the Grand Unification Theory
NASA Astrophysics Data System (ADS)
Treder, H.-J.
The evolution and fundamental questions of physical theories unifying the gravitational, electromagnetic, and quantum-mechanical interactions are explored, taking Pauli's aphorism as a motto: 'Let no man join what God has cast asunder.' The contributions of Faraday and Riemann, Lorentz, Einstein, and others are discussed, and the criterion of Pauli is applied to Grand Unification Theories (GUT) in general and to those seeking to link gravitation and electromagnetism in particular. Formal mathematical symmetry principles must be shown to have real physical relevance by predicting measurable phenomena not explainable without a GUT; these phenomena must be macroscopic because gravitational effects are to weak to be measured on the microscopic level. It is shown that empirical and theoretical studies of 'gravomagnetism', 'gravoelectricity', or possible links between gravoelectrity and the cosmic baryon assymmetry eventually lead back to basic questions which appear philosophical or purely mathematical but actually challenge physics to seek verifiable answers.
NASA Astrophysics Data System (ADS)
Brutsaert, Wilfried
2005-08-01
Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment
NASA Technical Reports Server (NTRS)
Larson, V. H.
1982-01-01
The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.
Estimation of the temporary service life of DC arc plasmatron cathode
NASA Astrophysics Data System (ADS)
Kulygin, V. M.; Pereslavtsev, A. V.; Tresvyatskii, S. S.
2017-09-01
The service life of the cathode of a DC arc plasmatron continuously working with tubular electrodes that operate in the air has been considered using the semi-phenomenological approach. The thermal emission, that ensures the necessary flow of electrons, and the evaporation of the cathode material, which determines its erosion, have been taken as the basic physical phenomena that constitute the workflow. The relationships that enable the estimation of the cathode's operating time have been obtained using the known regularities of these phenomena and experimental data available in the literature. The resulting evaluations coincide satisfactorily with the endurance test results.
ERIC Educational Resources Information Center
White, Barbara Y.; Frederiksen, John R.
This report discusses the importance of presenting qualitative, causally consistent models in the initial stages of learning so that students can gain an understanding of basic electrical circuit concepts and principles that builds on their preexisting ways of reasoning about physical phenomena, and it argues that tutoring environments must help…
Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario
Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrectmore » for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.« less
Investigation of possible observable e ects in a proposed theory of physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freidan, Daniel
2015-03-31
The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying tomore » do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.« less
Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction
Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario
2005-01-01
Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524
Teaching Emergence and Collective Behavior in Physics and Biology to Non-majors
NASA Astrophysics Data System (ADS)
Manhart, Michael
2014-03-01
Emergence and collective behavior form one of the most fertile intersections of physics and biology in current research. Unfortunately, modern and interdisciplinary concepts such as these are often neglected in physics courses for non-majors. A team of four graduate students and a faculty advisor recently redesigned our department's course for non-majors (Concepts of Physics for Humanities and Social Science Students) to focus on emergence and collective behavior along with three other major themes in modern physics. In the course we developed basic concepts of statistical physics and thermodynamics to understand a variety of emergent phenomena in physics and biology, including bird flocking, superconductivity, and protein folding. We discussed the notion of life itself as an inherently emergent phenomenon arising from the collective behavior of molecules. The students also wrote their own blog posts on emergent phenomena and interactively explored emergence through workshops on Foldit (the protein folding game) and Conway's Game of Life. We believe our course demonstrates some possibilities and challenges for teaching non-majors at the intersection of physics and biology. I gratefully acknowledge my collaboration with Aatish Bhatia, Deepak Iyer, Simon Knapen, and Saurabh Jha.
Towards physics of neural processes and behavior
Latash, Mark L.
2016-01-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. PMID:27497717
Physics of magnetic materials: A scientific school of E. A. Turov
NASA Astrophysics Data System (ADS)
Ustinov, V. V.; Kurkin, M. I.; Tankeyev, A. P.
2014-11-01
This article is dedicated to Evgenii Akimovich Turov, a well-known scientist in the field of physics of magnetic phenomena and Corresponding Member of the Russian Academy of Sciences. The article includes an analysis of the key problems of the physics of magnetism in the early 21st century, as well as E.A. Turov's and his school's contributions to the science of magnetism. In 2014, we commemorate the 90th anniversary of the birthday of Evgenii Akimovich, and this article is timed to this memorable date. The article also contains a list of the basic works of the scientist.
Observable phase factors and symmetry of electric and magnetic charges
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1978-01-01
The observable phase factor is taken as a basic concept for the description of electromagnetism. Generalization of this concept to SU(2) and SU(2) x U(1) groups is carried out in such a way that the monopoles with quantized charges appear naturally and that the symmetry between the electric and magnetic phenomena is preserved. Some physical implications are discussed.
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, Egidio
This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14). Finally, the third part (Sects. 15-19) is devoted to give a sketch of the theory of the generation and transfer of polarized radiation in spectral lines. After a general introduction to the argument (Sect. 15), the concepts of density-matrix and of atomic polarization are illustrated in Sect. 16. In Sect. 17, a parallelism is established, within the framework of the theory of stellar atmospheres, between the usual formalism, which neglects polarization phenomena, and the more involved formalism needed for the interpretation of spectro-polarimetric observations. Some consequences of the radiative transfer equations for polarized radiation, pointing to the importance of dichroism phenomena in establishing the amplification condition via stimulated emission, are discussed in Sect. 18. The last section (Sect. 19) is devoted to introduce the problem of finding a self-consistent solution of the radiative transfer equations for polarized radiation and of the statistical equilibrium equations for the density matrix (non-LTE of the 2nd kind).
Basic dynamics from a pulse-coupled network of autonomous integrate-and-fire chaotic circuits.
Nakano, H; Saito, T
2002-01-01
This paper studies basic dynamics from a novel pulse-coupled network (PCN). The unit element of the PCN is an integrate-and-fire circuit (IFC) that exhibits chaos. We an give an iff condition for the chaos generation. Using two IFC, we construct a master-slave PCN. It exhibits interesting chaos synchronous phenomena and their breakdown phenomena. We give basic classification of the phenomena and their existence regions can be elucidated in the parameter space. We then construct a ring-type PCN and elucidate that the PCN exhibits interesting grouping phenomena based on the chaos synchronization patterns. Using a simple test circuit, some of typical phenomena can be verified in the laboratory.
TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview
NASA Astrophysics Data System (ADS)
Bradley, J. W.; Welzel, T.
2009-05-01
This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.
Basic physics of nuclear magnetic resonance.
Patz, S
1986-01-01
This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.
Nuclear Reactions in Micro/Nano-Scale Metal Particles
NASA Astrophysics Data System (ADS)
Kim, Y. E.
2013-03-01
Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.
Containerless experiments in fluid physics in microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1990-01-01
The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.
An introduction to the physics of high energy accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.A.; Syphers, J.J.
1993-01-01
This book is an outgrowth of a course given by the authors at various universities and particle accelerator schools. It starts from the basic physics principles governing particle motion inside an accelerator, and leads to a full description of the complicated phenomena and analytical tools encountered in the design and operation of a working accelerator. The book covers acceleration and longitudinal beam dynamics, transverse motion and nonlinear perturbations, intensity dependent effects, emittance preservation methods and synchrotron radiation. These subjects encompass the core concerns of a high energy synchrotron. The authors apparently do not assume the reader has much previous knowledgemore » about accelerator physics. Hence, they take great care to introduce the physical phenomena encountered and the concepts used to describe them. The mathematical formulae and derivations are deliberately kept at a level suitable for beginners. After mastering this course, any interested reader will not find it difficult to follow subjects of more current interests. Useful homework problems are provided at the end of each chapter. Many of the problems are based on actual activities associated with the design and operation of existing accelerators.« less
Preface: cardiac control pathways: signaling and transport phenomena.
Sideman, Samuel
2008-03-01
Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.
Forward hadron calorimeter at MPD/NICA
NASA Astrophysics Data System (ADS)
Golubeva, M.; Guber, F.; Ivashkin, A.; Izvestnyy, A.; Kurepin, A.; Morozov, S.; Parfenov, P.; Petukhov, O.; Taranenko, A.; Selyuzhenkov, I.; Svintsov, I.
2017-01-01
Forward hadron calorimeter (FHCAL) at MPD/NICA experimental setup is described. The main purpose of the FHCAL is to provide an experimental measurement of a heavy-ion collision centrality (impact parameter) and orientation of its reaction plane. Precise event-by-event estimate of these basic observables is crucial for many physics phenomena studies to be performed by the MPD experiment. The simulation results of FHCAL performance are presented.
Fugitive Dust Emissions: Development of a Real-time Monitor
2011-10-01
the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.
Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package
NASA Astrophysics Data System (ADS)
Blandón, J. S.; Grisales, J. P.; Riascos, H.
2017-06-01
Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.
Introduction to High-Energy Astrophysics
NASA Astrophysics Data System (ADS)
Rosswog, Stephan; Bruggen, Marcus
2003-04-01
High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject
Towards physics of neural processes and behavior.
Latash, Mark L
2016-10-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. Copyright © 2016 Elsevier Ltd. All rights reserved.
The paraphysical principles of natural philosophy
NASA Astrophysics Data System (ADS)
Beichler, James Edward
The word `paraphysics' has never been precisely defined. To establish paraphysics as a true science, the word is first defined and its scope and limits identified. The natural phenomena which are studied in paraphysics, psi phenomena, are distinguished by their common physical properties. The historical roots of paraphysics are also discussed. Paraphysics can be defined, represented by a specific body of natural phenomena and it has a historical basis. Therefore, paraphysics is a distinguishable science. It only needs a theoretical foundation. Rather than using a quantum approach, a new theory of physical reality can be based upon a field theoretical point of view. This approach dispels philosophical questions regarding the continuity/discrete debate and the wave/particle paradox. Starting from a basic Einstein-Kaluza geometrical structure and assuming a real fifth dimension, a comprehensive and complete theory emerges. The four forces of nature are unified as are the quantum and relativity. Life, mind, consciousness and psi emerge as natural consequences of the physics. The scientific concept of consciousness, ambiguous at best, has become an increasingly important factor in modern physics. No one has ever defined consciousness in an acceptable manner let alone develop a workable theory of consciousness while no viable physical theories of life and mind are even being considered even though they are prerequisites of consciousness. In the five-dimensional model, life, mind and consciousness are explained as increasingly complex `entanglements' or patterns of density variation within the single unified field. Psi is intimately connected to consciousness, giving the science of paranormal phenomena a theoretical basis in the physics of hyperspace. Psi results from different modes of consciousness interacting non-locally via the fifth dimension. Several distinct areas of future research are suggested which will lead to falsification of the theory. A new theory of the atomic nucleus is clearly indicated as is a simple theory of the predominant spiral shape of galaxies. A quantifiable theory of life is also suggested. And finally, this model strongly implies a direct correspondence between emotional states and psi phenomena which should render the existence of psi verifiable.
Sedvall, Göran
2007-09-10
The exploration of physiological and molecular actions of psychoactive drugs in the brain represents a fundamental approach to the understanding of emerging psychological phenomena. The author gives a personal account of his medical training and research career at Karolinska Institutet over the past 50 years. The paper aims at illustrating how a broad medical education and the integration of basic and clinical neuroscience research is a fruitful ground for the development of new methods and knowledge in this complicated field. Important aspects for an optimal research environment are recruitment of well-educated students, a high intellectual identity of teachers and active researchers, international input and collaboration in addition to good physical resources. In depth exploration of specific signaling pathways as well as an integrative analysis of genes, molecules and systems using multivariate modeling, and bioinformatics, brain mechanisms behind mental phenomena may be understood at a basic level and will ultimately be used for the alleviation and treatment of mental disorders.
Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems
NASA Technical Reports Server (NTRS)
Lvovich, Vadim F.; Green, Robert; Jakupca, Ian
2015-01-01
NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.
Emulating weak localization using a solid-state quantum circuit.
Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M
2014-10-14
Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.
NASA Astrophysics Data System (ADS)
Benzi, Roberto; Ching, Emily S. C.
2018-03-01
The interaction of flexible polymers with fluid flows leads to a number of intriguing phenomena observed in laboratory experiments, namely drag reduction, elastic turbulence, and heat transport modification in natural convection, and is one of the most challenging subjects in soft matter physics. In this review, we examine our present knowledge on the subject. Our present knowledge is mostly based on direct numerical simulations performed in the last twenty years, which have successfully explained, at least qualitatively, most of the experimental results. Our goal is to disentangle as much as possible the basic mechanisms acting in the system in order to capture the basic features underlying different theoretical approaches and explanations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.; Diaz de la Rubia, T.; Gibala, R.
2006-10-01
The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less
NASA Astrophysics Data System (ADS)
Grupen, Claus; Shwartz, Boris
2011-09-01
Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.
39 Questionable Assumptions in Modern Physics
NASA Astrophysics Data System (ADS)
Volk, Greg
2009-03-01
The growing body of anomalies in new energy, low energy nuclear reactions, astrophysics, atomic physics, and entanglement, combined with the failure of the Standard Model and string theory to predict many of the most basic fundamental phenomena, all point to a need for major new paradigms. Not Band-Aids, but revolutionary new ways of conceptualizing physics, in the spirit of Thomas Kuhn's The Structure of Scientific Revolutions. This paper identifies a number of long-held, but unproven assumptions currently being challenged by an increasing number of alternative scientists. Two common themes, both with venerable histories, keep recurring in the many alternative theories being proposed: (1) Mach's Principle, and (2) toroidal, vortex particles. Matter-based Mach's Principle differs from both space-based universal frames and observer-based Einsteinian relativity. Toroidal particles, in addition to explaining electron spin and the fundamental constants, satisfy the basic requirement of Gauss's misunderstood B Law, that motion itself circulates. Though a comprehensive theory is beyond the scope of this paper, it will suggest alternatives to the long list of assumptions in context.
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.
Radar cross section fundamentals for the aircraft designer
NASA Technical Reports Server (NTRS)
Stadmore, H. A.
1979-01-01
Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.
Influence of Additives on Masonry and Protective Paints’ Quality
NASA Astrophysics Data System (ADS)
Kostiunina, I. L.; Vyboishchik, A. V.
2017-11-01
The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.
AWARE - The Automated EUV Wave Analysis and REduction algorithm
NASA Astrophysics Data System (ADS)
Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.
2016-10-01
Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.
International Linear Collider Reference Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, James,; Okada, Yasuhiro,; Walker, Nicholas J.,
2007-08-13
{lg_bullet} What is the universe? How did it begin? {lg_bullet} What are matter and energy? What are space and time? These basic questions have been the subject of scientific theories and experiments throughout human history. The answers have revolutionized the enlightened view of the world, transforming society and advancing civilization. Universal laws and principles govern everyday phenomena, some of them manifesting themselves only at scales of time and distance far beyond everyday experience. Particle physics experiments using particle accelerators transform matter and energy, to reveal the basic workings of the universe. Other experiments exploit naturally occurring particles, such as solarmore » neutrinos or cosmic rays, and astrophysical observations, to provide additional insights.« less
Boundary layer transition: A review of theory, experiment and related phenomena
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1971-01-01
The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.
1985-01-01
The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.
NASA physics and chemistry experiments in-space program
NASA Technical Reports Server (NTRS)
Gabris, E. A.
1981-01-01
The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.
Terrella for Advanced Undergraduate Physics Laboratory
NASA Astrophysics Data System (ADS)
Reardon, Jim; Endrizzi, Douglass; Forest, Cary; Oliva, Steven
2017-10-01
A terrella has been in use in the Advanced Laboratory for undergraduates in the Physics Department at the University of Wisconsin-Madison since spring 2016. Our terrella is a permanent magnet on a pedestal which may be biased in various ways. In the vacuum region B <= 200 gauss; for typical operation p10-4 Torr. Plasma may be created by thermionic emission from a filament or by an S-band magnetron. Students are guided through diagnosis of the terrella plasma using spectroscopy and swept Langmuir probes. A suite of supporting experiments has been developed to introduce basic plasma phenomena, such as the Child-Langmuir law. University of Wisconsin-Madison.
Physics of SrTiO3-based heterostructures and nanostructures: a review.
Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy
2018-02-09
This review provides a summary of the rich physics expressed within SrTiO 3 -based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO 3 itself, we will then discuss the basics of SrTiO 3 -based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Planetary rings and astrophysical discs
NASA Astrophysics Data System (ADS)
Latter, Henrik
2016-05-01
Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.
Basic approaches to and tasks of space technology
NASA Technical Reports Server (NTRS)
Okhotin, A. S.
1978-01-01
The high vacuum and weightlessness of outer space offer great possibilities for the new field of space technology. To take advantage of this, it is necessary to study such physical and chemical phenomena as diffusion, surface tension, heat exchange, and crystallization. The research shows the possibility of obtaining materials with a more perfect structure. Methods of treating materials can be used in space which are impossible on earth. Achievements in material science in outer space will have a large impact on the national economy.
Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.
1993-01-01
Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.
Implementation of interactive virtual simulation of physical systems
NASA Astrophysics Data System (ADS)
Sanchez, H.; Escobar, J. J.; Gonzalez, J. D.; Beltran, J.
2014-03-01
Considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students in Santa Marta Colombia, we have developed software in order to generate greater student interaction with the phenomena physical and improve their understanding. Thereby, this system has been proposed in an architecture Model/View- View- Model (MVVM), sharing the benefits of MVC. Basically, this pattern consists of 3 parts: The Model, that is responsible for business logic related. The View, which is the part with which we are most familiar and the user sees. Its role is to display data to the user and allowing manipulation of the data of the application. The ViewModel, which is the middle part of the Model and the View (analogous to the Controller in the MVC pattern), as well as being responsible for implementing the behavior of the view to respond to user actions and expose data model in a way that is easy to use links to data in the view. .NET Framework 4.0 and editing package Silverlight 4 and 5 are the main requirements needed for the deployment of physical simulations that are hosted in the web application and a web browser (Internet Explorer, Mozilla Firefox or Chrome). The implementation of this innovative application in educational institutions has shown that students improved their contextualization of physical phenomena.
The Optimizer Topology Characteristics in Seismic Hazards
NASA Astrophysics Data System (ADS)
Sengor, T.
2015-12-01
The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.
An analysis of the DuPage County Regional Office of Education physics exam
NASA Astrophysics Data System (ADS)
Muehsler, Hans
In 2009, the DuPage County Regional Office of Education (ROE) tasked volunteer physics teachers with creating a basic skills physics exam reflecting what the participants valued and shared in common across curricula. Mechanics, electricity & magnetism (E&M), and wave phenomena emerged as the primary constructs. The resulting exam was intended for first-exposure physics students. The most recently completed version was psychometrically assessed for unidimensionality within the constructs using a robust WLS structural equation model and for reliability. An item analysis using a 3-PL IRT model was performed on the mechanics items and a 2-PL IRT model was performed on the E&M and waves items; a distractor analysis was also performed on all items. Lastly, differential item functioning (DIF) and differential test functioning (DTF) analyses, using the Mantel-Haenszel procedure, were performed using gender, ethnicity, year in school, ELL, physics level, and math level as groupings.
NASA Astrophysics Data System (ADS)
Wang, Aaron; Chien, TeYu
2018-03-01
Complex oxide heterostructure interfaces have shown novel physical phenomena which do not exist in bulk materials. These heterostructures can be used in the potential applications in the next generation devices and served as the playgrounds for the fundamental physics research. The direct measurements of the interfaces with excellent spatial resolution and physical property information is rather difficult to achieve with the existing tools. Recently developed cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) for complex oxide interfaces have proven to be capable of providing local electronic density of states (LDOS) information at the interface with spatial resolution down to nanometer scale. In this perspective, we will briefly introduce the basic idea and some recent achievements in using XSTM/S to study complex oxide interfaces. We will also discuss the future of this technique and the field of the interfacial physics.
Concept confusion and concept discernment in basic magnetism using analogical reasoning
NASA Astrophysics Data System (ADS)
Lemmer, Miriam; Nicodimus Morabe, Olebogeng
2017-07-01
Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
Laws, causation, and explanation in the special sciences.
Kim, Jaegwon
2005-01-01
There is the general philosophical question concerning the relationship between physics, which is often taken to be our fundamental and all-encompassing science, on one hand and the special sciences, such as biology and psychology, each of which deals with phenomena in some specially restricted domain, on the other. This paper deals with a narrower question: Are there laws in the special sciences, laws like those we find, or expect to find, in basic physics? Three arguments that are intended to show that there are no such laws are presented and examined. The paper ends with brief remarks concerning the implications of these arguments for explanation and causation in the special sciences.
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
An investigation of bleed configurations and their effect on shock wave/boundary layer interactions
NASA Technical Reports Server (NTRS)
Hamed, Awatef
1995-01-01
The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.
Sechopoulos, I
2012-06-01
To improve the radiology residents' understanding of medical physics concepts through visualization of physical phenomena. Several medical physics concepts in x-ray transmission imaging are relevant to many radiographic modalities, not only to planar radiography. Therefore, it is important that the diagnostic radiology residents obtain a good understanding of these concepts. However, standard PowerPoint slides or blackboard-based graphical representations are not always effective ways to communicate these novel concepts to the residents. To improve upon the understanding of these concepts, the computer, projector and screen in the lecture room are used as surrogates of an x-ray imaging system. The projector is the source of light (x-rays) with PowerPoint slides defining the pattern emitted (x-ray field) on to the projector screen (detector/monitor). Several different transparencies and acrylic objects are used to demonstrate varied medical physics phenomena relevant to transmission imaging, such as: straight-line travel of electromagnetic radiation; tissue superimposition; object, subject, image and display contrast; linear systems; point spread functions; frequency domain; contrast and modulation transfer functions; quantum and image noise; noise frequency and noise power spectrum; anatomical noise; magnification and geometric unsharpness; inverse square distance relationship; sampling and aliasing; and x-ray scatter. The residents' comprehension and ability to explain these concepts has substantially improved, in addition to their interest in these topics. This was reflected on improved test scores and on anonymous feedback surveys post- lectures. The use of demonstrations that mimic the conditions and physical phenomena found in transmission imaging by taking advantage of the projector and screen together with transparencies and other objects improves the residents' grasp of basic radiographic concepts and promotes live interactions between the residents and the medical physicist. Additional concepts that can be demonstrated in this manner are being sought. © 2012 American Association of Physicists in Medicine.
Organohalide Perovskites for Solar Energy Conversion.
Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul
2016-03-15
Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency, fill factor, and ultimately the all-important power conversion efficiency. Finally, we address the key challenges pertinent to actually delivering a new and viable solar cell technology. These include long-term cell stability, scaling to the module level, and the toxicity associated with lead. Organohalide perovskites not only offer exciting possibilities for next generation optoelectronics and photovoltaics, but are an intriguing class of material crossing the boundaries of molecular solids and banded inorganic semiconductors. This is a potential area of rich new chemistry, materials science, and physics.
On the quantum mechanics of consciousness, with application to anomalous phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahn, R.G.; Dunne, B.J.
1986-08-01
Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts andmore » formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrodinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition.« less
Statistics and Discoveries at the LHC (1/4)
Cowan, Glen
2018-02-09
The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.
Statistics and Discoveries at the LHC (3/4)
Cowan, Glen
2018-02-19
The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.
Statistics and Discoveries at the LHC (4/4)
Cowan, Glen
2018-05-22
The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).
Statistics and Discoveries at the LHC (2/4)
Cowan, Glen
2018-04-26
The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.
Kirlian Photography as a Teaching Tool of Physics
NASA Astrophysics Data System (ADS)
Terrel, Andy; Thacker, Beth Ann, , Dr.
2002-10-01
There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
Rogue events in the group velocity horizon.
Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter
2012-01-01
The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.
Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).
Abramson, Charles I; Aquino, Italo S
2002-01-01
Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed. Copyright 2002 S. Karger AG, Basel
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dean, W. C., II
1975-01-01
The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.
Electronic system for the complex measurement of a Wilberforce pendulum
NASA Astrophysics Data System (ADS)
Kos, B.; Grodzicki, M.; Wasielewski, R.
2018-05-01
The authors present a novel application of a micro-electro-mechanical measurement system to the description of basic physical phenomena in a model Wilberforce pendulum. The composition of the kit includes a tripod with a mounted spring with freely hanging bob, a module GY-521 on the MPU 6050 coupled with an Arduino Uno, which in conjunction with a PC acts as measuring set. The system allows one to observe the swing of the pendulum in real time. Obtained data stays in good agreement with both theoretical predictions and previous works. The aim of this article is to introduce the study of a Wilberforce pendulum to the canon of physical laboratory exercises due to its interesting properties and multifaceted method of measurement.
Mechanics of biological networks: from the cell cytoskeleton to connective tissue.
Pritchard, Robyn H; Huang, Yan Yan Shery; Terentjev, Eugene M
2014-03-28
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Disciplinary Knots and Learning Problems in Waves Physics
NASA Astrophysics Data System (ADS)
Di Renzone, Simone; Frati, Serena; Montalbano, Vera
An investigation on student understanding of waves is performed during an optional laboratory realized in informal extracurricular way with few, interested and talented pupils. The background and smart intuitions of students rendered the learning path very dynamic and ambitious. The activities started by investigating the basic properties of waves by means of a Shive wave machine. In order to make quantitative observed phenomena, the students used a camcorder and series of measures were obtained from the captured images. By checking the resulting data, it arose some learning difficulties especially in activities related to the laboratory. This experience was the starting point for a further analysis on disciplinary knots and learning problems in the physics of waves in order to elaborate a teaching-learning proposal on this topic.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Technical Reports Server (NTRS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.;
2016-01-01
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.
Comets: Data, problems, and objectives
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1977-01-01
A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.
Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically
Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro
2015-01-01
Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
Solar Coronal Jets: Observations, Theory, and Modeling
NASA Technical Reports Server (NTRS)
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.;
2016-01-01
Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.
Active particles in complex and crowded environments
Bechinger, Clemens; Di Leonardo, Roberto; Löwen, Hartmut; ...
2016-11-23
Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachinesmore » hold a great potential as autonomous agents for health care, sustainability, and security applications. Finally, with a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.« less
The Role of Theory and Modeling in the International Living with a Star Program
NASA Technical Reports Server (NTRS)
Hesse, M.
2004-01-01
Today, theory and modeling play a critical role in our quest to understand the connection between solar eruptive phenomena, and their impacts in interplanetary space and in the near-Earth space environment. This new role is based on two developments, one related to the goal of basic physical understanding, and the other to space weather-related applications. When targeting physical our focus is shifting away from investigations aiming at basic discoveries, to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical explanations that need to be verified or falsified by empirical evidence. Within this paradigm, a much more tight integration between theory modeling, and space flight mission design and execution is not only beneficial, but essential. One of the prime objectives of space weather research, on the other hand, is the prediction of space environmental conditions for the benefit of humans and their assets in near-Earth space and on the ground, as well as on solar system bodies like Mars that are of interest to exploration by humans. By its very nature, prediction requires modeling, which, in turn, requires understanding. We will present an overview of the role of theory and modeling within the International Living With a Star program. Specifically, we will focus on an assessment of present-day and future capabilities, as well as on strategies for tight integration of theory and modeling in space science investigations.
Experimental characterization of a small custom-built double-acting gamma-type stirling engine
NASA Astrophysics Data System (ADS)
Intsiful, Peter; Mensah, Francis; Thorpe, Arthur
This paper investigates characterization of a small custom-built double-acting gamma-type stirling engine. Stirling-cycle engine is a reciprocating energy conversion machine with working spaces operating under conditions of oscillating pressure and flow. These conditions may be due to compressibility as wells as pressure and temperature fluctuations. In standard literature, research indicates that there is lack of basic physics to account for the transport phenomena that manifest themselves in the working spaces of reciprocating engines. Previous techniques involve governing equations: mass, momentum and energy. Some authors use engineering thermodynamics. None of these approaches addresses this particular engine. A technique for observing and analyzing the behavior of this engine via parametric spectral profiles has been developed, using laser beams. These profiles enabled the generation of pv-curves and other trajectories for investigating the thermos-physical and thermos-hydrodynamic phenomena that manifest in the exchangers. The engine's performance was examined. The results indicate that with current load of 35.78A, electric power of 0.505 kW was generated at a speed of 240 rpm and 29.50 percent efficiency was obtained. Nasa grants to Howard University NASA/HBCU-NHRETU & CSTEA.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
Rogue events in the group velocity horizon
Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter
2012-01-01
The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems. PMID:23152941
Oliveira, Marcos Aurélio Barboza de; Alves, Fernanda Tomé; Silva, Marcos Vinícius Pinto e; Croti, Ulisses Alexandre; Godoy, Moacir Fernandes de; Braile, Domingo Marcolino
2010-01-01
The professional activity that the cardiovascular surgeon performs is much more than a simple gesture to mechanically operate the patient's heart. There is in every act of intraoperative most notions of physiology and physics than we generally realize. This paper discusses, in the light of mathematics, on the dynamics of fluids, ie blood, focused on invasive measurements of blood pressure, the effect of vessel size on its internal resistance and the flow passing through it in conversion of various units of measurements of pressure and resistance, blood viscosity and its relationship to the vessel, hemodilution, differences in laminar and turbulent flow, velocity and blood pressure and wall tension after a stenosis and the origin of poststenotic aneurysm. This study is not to enable the reader to the knowledge of all physics, but to show it as a useful tool in explaining phenomena known in the routine of cardiovascular surgery.
ONR Ocean Wave Dynamics Workshop
NASA Astrophysics Data System (ADS)
In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.
NASA Technical Reports Server (NTRS)
Del Basso, Steve
2000-01-01
The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.
Analyzing Oscillations of a Rolling Cart Using Smartphones and Tablets
NASA Astrophysics Data System (ADS)
Egri, Sándor; Szabó, Lóránt
2015-03-01
It is well known that "interactive engagement" helps students to understand basic concepts in physics.1 Performing experiments and analyzing measured data are effective ways to realize interactive engagement, in our view. Some experiments need special equipment, measuring instruments, or laboratories, but in this activity we advocate student use of mobile phones or tablets to take experimental data. Applying their own devices and measuring simple phenomena from everyday life can improve student interest, while still allowing precise analysis of data, which can give deeper insight into scientific thinking and provide a good opportunity for inquiry-based learning.2
Planning for Materials Processing in Space
NASA Technical Reports Server (NTRS)
1977-01-01
A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.
3D Simulations of Convection: From the Sun Toward Evolved Stars
NASA Astrophysics Data System (ADS)
Höfner, Susanne
2018-04-01
Basic physical considerations and detailed numerical simulations predict a dramatic increase in the sizes of convection cells during late phases of stellar evolution. The recent progress in high-angular-resolution techniques has made it possible to observe surface structures on several nearby giants and supergiants for a wide range of wavelengths. Such observations provide much-needed checkpoints for convection theory, in addition to the detailed comparisons of models and observations for the sun. In this talk I will give an overview of current 3D convection models for different types of stars and discuss related observable phenomena.
Kelty-Stephen, Damian; Dixon, James A
2012-01-01
The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.
Plasma Flow Past Cometary and Planetary Satellite Atmospheres
NASA Technical Reports Server (NTRS)
Combi, Michael R.; Gombosi, Tamas I.; Kabin, Konstantin
2000-01-01
The tenuous atmospheres and ionospheres of comets and outer planet satellites share many common properties and features. Such similarities include a strong interaction with their outer radiation, fields and particles environs. For comets the interaction is with the magnetized solar wind plasma, whereas for satellites the interaction is with the strongly magnetized and corotating planetary magnetospheric plasma. For this reason there are many common or analogous physical regimes, and many of the same modeling techniques are used to interpret remote sensing and in situ measurements in order to study the important underlying physical phenomena responsible for their appearances. We present here a review of various modeling approaches which are used to elucidate the basic properties and processes shaping the energetics and dynamics of these systems which are similar in many respects.
Physics Structure Analysis of Parallel Waves Concept of Physics Teacher Candidate
NASA Astrophysics Data System (ADS)
Sarwi, S.; Supardi, K. I.; Linuwih, S.
2017-04-01
The aim of this research was to find a parallel structure concept of wave physics and the factors that influence on the formation of parallel conceptions of physics teacher candidates. The method used qualitative research which types of cross-sectional design. These subjects were five of the third semester of basic physics and six of the fifth semester of wave course students. Data collection techniques used think aloud and written tests. Quantitative data were analysed with descriptive technique-percentage. The data analysis technique for belief and be aware of answers uses an explanatory analysis. Results of the research include: 1) the structure of the concept can be displayed through the illustration of a map containing the theoretical core, supplements the theory and phenomena that occur daily; 2) the trend of parallel conception of wave physics have been identified on the stationary waves, resonance of the sound and the propagation of transverse electromagnetic waves; 3) the influence on the parallel conception that reading textbooks less comprehensive and knowledge is partial understanding as forming the structure of the theory.
FOREWORD: Focus on Magneto-Science
NASA Astrophysics Data System (ADS)
Tanimoto, Yoshifumi; Beaugnon, Eric; Kimura, Tsunehisa; Ozeki, Sumio
2008-06-01
Magnetite, a natural magnetic material, was discovered in China several thousand years ago. Since then, many ancient people have been fascinated by the interesting properties of magnetite. Similarly, many scientists have dreamed of manipulating chemical, physical and biological phenomena using magnetic fields. Despite the long time that has passed since the discovery of magnetite, this dream has only recently been accomplished. Magnetism, an important physical property of materials, is of three types: diamagnetism, paramagnetism and ferromagnetism. The magnetic susceptibilities of diamagnetic, paramagnetic and ferromagnetic materials are in the order of -10-10, +10-8 and +10-2 m3 mol-1, respectively. Note that most commonly used materials such as water and benzene are diamagnetic; air is paramagnetic. The magnetic energy of diamagnetic and paramagnetic (magnetically weak) materials under a magnetic field of 1 T, which is the maximum field generated by a tabletop electromagnet, is very small compared with the thermal energy at room temperature. Therefore, it is difficult to believe that a magnetic field less than 1 T markedly affects the chemical and physical phenomena of magnetically weak materials. Recently, the progress of superconducting magnet manufacturing technology has enabled us to freely use strong magnetic fields of 10 T or more in our laboratories. Because magnetic energy is proportional to the square of the magnetic flux density, the magnetic energy at 10 T, for example, is 100 times greater than that at 1 T, indicating that the effect of a 10 T magnetic field on magnetically weak materials becomes so great that magnetic phenomena, which cannot be observed in a 1 T field, are very clear in a 10 T field. Consequently, many interesting phenomena have been observed. For example, it was demonstrated that water in a vessel could be separated into two parts by applying strong horizontal magnetic fields to create the so-called Moses effect. Reportedly, diamagnetic materials such as water and wood can be levitated by applying vertical magnetic fields: magnetic levitation. These phenomena are interpreted in terms of magnetic force. Although the effect of a magnetic force has been well investigated both theoretically and experimentally, before these reports it was difficult to imagine that water could be separated or levitated using magnetic fields, simply because the magnetic force generated by a tabletop electromagnet is not strong enough to demonstrate these phenomena clearly. The magnetic phenomena occurring under a 10 T field markedly differ from those under a 1 T field: strong magnetic fields of approximately 10 T present researchers with a new interdisciplinary field of science, encompassing physics, chemistry and biology, which will also be useful for technological development. Taking these benefits into account, we adopted the term 'magneto-science' (basic and applied), to refer to the investigation of magnetic field effects (MFEs) on physical, chemical and biological phenomena in order to differentiate this new interdisciplinary field from traditional ones. In consideration of the important role of magneto-science in the 21st century, this focus issue contains 16 articles selected from the International Conference on Magneto-Science (ICMS2007), which was held in Hiroshima, Japan in November 2007. The selected papers describe various studies of MFEs (≤ 16 T) in hard, soft and biological materials. Topics such as the magnetic processing of alloys or hard materials, spin chemistry and spin dynamics, magneto-electrochemistry, the magnetic processing of soft materials, the applications of magnetic fields to analysis, and magneto-biology are addressed to delineate the frontiers of magneto-science. We hope that this focus issue will help readers to understand several aspects of the frontiers of magneto-science.
Turbulence in laboratory and natural plasmas: Connecting the dots
NASA Astrophysics Data System (ADS)
Jenko, Frank
2015-11-01
It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.
NASA Astrophysics Data System (ADS)
Cannata, Andrea; Di Grazia, Giuseppe; Giuffrida, Marisa; Gresta, Stefano; Palano, Mimmo; Sciotto, Mariangela; Viccaro, Marco; Zuccarello, Francesco
2018-02-01
The eruptions of December 2015 and May 2016 at Voragine crater were among the most explosive recorded during the last two decades at Mt. Etna volcano. Here we present data coming from geophysics (infrasound, LP, VLP, volcanic tremor, VT earthquakes, and ground deformations) and petrology (textural and microanalytical data on plagioclase and olivine crystals) to investigate the preeruptive magma storage and transfer dynamics leading to these exceptional explosive eruptions. Integration of all the available data has led us to constrain chemically, physically, and kinetically the environments where magmas were stored before the eruption, and how they have interacted during the transfer en-route to the surface. Although the evolution and behavior of volcanic phenomena at the surface was rather similar, some differences in storage and transfer dynamics were observed for 2015 and 2016 eruptions. Specifically, the 2015 eruptions have been fed by magmas stored at shallow levels that were pushed upward as a response of magma injections from deeper environments, whereas evidence of chemical interaction between shallow and deep magmatic environments becomes more prominent during the 2016 eruptions. Main findings evidence the activation of magmatic environments deeper than those generally observed for other recent Etnean eruptions, with involvement of deep basic magmas that were brought to shallow crustal levels in very short time scales (˜1 month). The fast transfer from the deepest levels of the plumbing system of basic, undegassed magmas might be viewed as the crucial triggering factor leading to development of exceptionally violent volcanic phenomena even with only basic magma involved.
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.
Radio techniques for probing the terrestrial ionosphere.
NASA Astrophysics Data System (ADS)
Hunsucker, R. D.
The subject of the book is a description of the basic principles of operation, plus the capabilities and limitations of all generic radio techniques employed to investigate the terrestrial ionosphere. The purpose of this book is to present to the reader a balanced treatment of each technique so they can understand how to interpret ionospheric data and decide which techniques are most effective for studying specific phenomena. The first two chapters outline the basic theory underlying the techniques, and each following chapter discusses a separate technique. This monograph is entirely devoted to techniques in aeronomy and space physics. The approach is unique in its presentation of the principles, capabilities and limitations of the most important presently used radio techniques. Typical examples of data are shown for the various techniques, and a brief historical account of the technique development is presented. An extended annotated bibliography of the salient papers in the field is included.
Ribaric, Samo; Kordas, Marjan
2011-06-01
Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
NASA Technical Reports Server (NTRS)
Lopez, Ramon E.
1996-01-01
Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.
Quantum theory as the most robust description of reproducible experiments
NASA Astrophysics Data System (ADS)
De Raedt, Hans; Katsnelson, Mikhail I.; Michielsen, Kristel
2014-08-01
It is shown that the basic equations of quantum theory can be obtained from a straightforward application of logical inference to experiments for which there is uncertainty about individual events and for which the frequencies of the observed events are robust with respect to small changes in the conditions under which the experiments are carried out. There is no quantum world. There is only an abstract physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature [45]. Physics is to be regarded not so much as the study of something a priori given, but rather as the development of methods of ordering and surveying human experience. In this respect our task must be to account for such experience in a manner independent of individual subjective judgment and therefore objective in the sense that it can be unambiguously communicated in ordinary human language [46]. The physical content of quantum mechanics is exhausted by its power to formulate statistical laws governing observations under conditions specified in plain language [46]. The first two sentences of the first quote may be read as a suggestion to dispose of, in Mermin's words [47], the "bad habit" to take mathematical abstractions as the reality of the events (in the everyday sense of the word) that we experience through our senses. Although widely circulated, these sentences are reported by Petersen [45] and there is doubt that Bohr actually used this wording [48]. The last two sentences of the first quote and the second quote suggest that we should try to describe human experiences (confined to the realm of scientific inquiry) in a manner and language which is unambiguous and independent of the individual subjective judgment. Of course, the latter should not be construed to imply that the observed phenomena are independent of the choices made by the individual(s) in performing the scientific experiment [49].The third quote suggests that quantum theory is a powerful language to describe a certain class of statistical experiments but remains vague about the properties of the class. Similar views were expressed by other fathers of quantum mechanics, e.g., Max Born and Wolfgang Pauli [50]. They can be summarized as "Quantum theory describes our knowledge of the atomic phenomena rather than the atomic phenomena themselves". Our aim is, in a sense, to replace the philosophical components of these statements by well-defined mathematical concepts and to carefully study their relevance for physical phenomena. Specifically, by applying the general formalism of logical inference to a well-defined class of statistical experiments, the present paper shows that quantum theory is indeed the kind of language envisaged by Bohr.Theories such as Newtonian mechanics, Maxwell's electrodynamics, and Einstein's (general) relativity are deductive in character. Starting from a few axioms, abstracted from experimental observations and additional assumptions about the irrelevance of a large number of factors for the description of the phenomena of interest, deductive reasoning is used to prove or disprove unambiguous statements, propositions, about the mathematical objects which appear in the theory.The method of deductive reasoning conforms to the Boolean algebra of propositions. The deductive, reductionist methodology has the appealing feature that one can be sure that the propositions are either right or wrong, and disregarding the possibility that some of the premises on which the deduction is built may not apply, there is no doubt that the conclusions are correct. Clearly, these theories successfully describe a wide range of physical phenomena in a manner and language which is unambiguous and independent of the individual.At the same time, the construction of a physical theory, and a scientific theory in general, from "first principles" is, for sure, not something self-evident, and not even safe. Our basic knowledge always starts from the middle, that is, from the world of macroscopic objects. According to Bohr, the quantum theoretical description crucially depends on the existence of macroscopic objects which can be used as measuring devices. For an extensive analysis of the quantum measurement process from a dynamical point of view see Ref. [51]. Most importantly, the description of the macroscopic level is robust, that is, essentially independent of the underlying "more fundamental" picture [2]. As will be seen later, formalizing the notion of "robustness" is key to derive the basic equations of quantum theory from the general framework of logical inference.Key assumptions of the deductive approach are that the mathematical description is a complete description of the experiment under consideration and that there is no uncertainty about the conditions under which the experiment is carried out. If the theory does not fully account for all the relevant aspects of the phenomenon that we wish to describe, the general rules by which we deduce whether a proposition is true or false can no longer be used. However, in these circumstances, we can still resort to logical inference [37-41] to find useful answers to unambiguous questions. Of course, in general it will no longer be possible to say whether a proposition is true or false, hence there will always remain a residue of doubt. However, as will be shown, the description obtained through logical inference may also be unambiguous and independent of the individual.In the present paper, we demonstrate that the basic equations of quantum theory directly follow from logical inference applied to experiments in which there is uncertainty about individual events, the stringent condition that certain properties of the collection of events are reproducible, meaning that they are robust with respect to small changes in the conditions under which the experiments are carried out.
Physics, mathematics and numerics of particle adsorption on fluid interfaces
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim
2012-11-01
We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.
Manufacture of Sparse-Spectrum Optical Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Kossakovski, Dimitri
2006-01-01
An alternative design for dielectric optical microresonators and a relatively simple process to fabricate them have been proposed. The proposed microresonators would exploit the same basic physical phenomena as those of microtorus optical resonators and of the microsphere optical resonators described elsewhere. The resonances in such devices are associated with the propagation of electromagnetic waves along circumferential paths in "whispering-gallery" modes. The main advantage afforded by the proposal is that the design and the fabrication process are expected to be amenable to production of multiple microresonators having reproducible spectral parameters -- including, most notably, high values of the resonance quality factor (Q) and reproducible resonance frequencies.
Summer School on Interstellar Processes: Abstracts of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)
1986-01-01
The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and
Irvine, S E; Dombi, P; Farkas, Gy; Elezzabi, A Y
2006-10-06
Control over basic processes through the electric field of a light wave can lead to new knowledge of fundamental light-matter interaction phenomena. We demonstrate, for the first time, that surface-plasmon (SP) electron acceleration can be coherently controlled through the carrier-envelope phase (CEP) of an excitation optical pulse. Analysis indicates that the physical origin of the CEP sensitivity arises from the electron's ponderomotive interaction with the oscillating electromagnetic field of the SP wave. The ponderomotive electron acceleration mechanism provides sensitive (nJ energies), high-contrast, single-shot CEP measurement capability of few-cycle laser pulses.
Extreme events as foundation of Lévy walks with varying velocity
NASA Astrophysics Data System (ADS)
Kutner, Ryszard
2002-11-01
In this work we study the role of extreme events [E.W. Montroll, B.J. West, in: J.L. Lebowitz, E.W. Montrell (Eds.), Fluctuation Phenomena, SSM, vol. VII, North-Holland, Amsterdam, 1979, p. 63; J.-P. Bouchaud, M. Potters, Theory of Financial Risks from Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2001; D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin, 2000] in determining the scaling properties of Lévy walks with varying velocity. This model is an extension of the well-known Lévy walks one [J. Klafter, G. Zumofen, M.F. Shlesinger, in M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Eds.), Lévy Flights and Related Topics ion Physics, Lecture Notes in Physics, vol. 450, Springer, Berlin, 1995, p. 196; G. Zumofen, J. Klafter, M.F. Shlesinger, in: R. Kutner, A. Pȩkalski, K. Sznajd-Weron (Eds.), Anomalous Diffusion. From Basics to Applications, Lecture Note in Physics, vol. 519, Springer, Berlin, 1999, p. 15] introduced in the context of chaotic dynamics where a fixed value of the walker velocity is assumed for simplicity. Such an extension seems to be necessary when the open and/or complex system is studied. The model of Lévy walks with varying velocity is spanned on two coupled velocity-temporal hierarchies: the first one consisting of velocities and the second of corresponding time intervals which the walker spends between the successive turning points. Both these hierarchical structures are characterized by their own self-similar dimensions. The extreme event, which can appear within a given time interval, is defined as a single random step of the walker having largest length. By finding power-laws which describe the time-dependence of this displacement and its statistics we obtained two independent diffusion exponents, which are related to the above-mentioned dimensions and which characterize the extreme event kinetics. In this work we show the principal influence of extreme events on the basic quantities (one-step distributions and moments as well as two-step correlation functions) of the continuous-time random walk formalism. Besides, we construct both the waiting-time distribution and sojourn probability density directly in a real space and time in the scaling form by proper component analysis which takes into account all possible fluctuations of the walker steps in contrast to the extreme event analysis. In this work we pay our attention to the basic quantities, since the summarized multi-step ones were already discussed earlier [Physica A 264 (1999) 107; Comp. Phys. Commun. 147 (2002) 565]. Moreover, we study not only the scaling phenomena but also, assuming a finite number of hierarchy levels, the breaking of scaling and its dependence on control parameters. This seems to be important for studying empirical systems the more so as there are still no closed formulae describing this phenomenon except the one for truncated Lévy flights [Phys. Rev. Lett. 73 (1994) 2946]. Our formulation of the model made possible to develop an efficient Monte Carlo algorithm [Physica A 264 (1999) 107; Comp. Phys. Commun. 147 (2002) 565] where no MC step is lost.
Music Theory and the Harmony Method in J. Kepler's Work " The harmony of the Universe"
NASA Astrophysics Data System (ADS)
Smirnov, V. A.
In Kepler's book The Harmony of the Universe, edited in 1619, the theory of music as a science of that time is presented. Also the investigation of the correspondence between musical proportion and orbital parameters of the planets is presented. Kepler's book The Harmony of the Universe is a work that discloses the basic physical regularities of the developing Universe, which so far had not been definitively formulated. To explain the development process, Kepler introduced the concept of a "productive force" or "forming force" that directs the development of natural phenomena with the principles of world harmony, described by him. In addition to the four known natural interactions is a fifth one, that had never been studied fully. In this way we can explain the development of natural phenomena as alive and nonalive. Arising from the "productive force" that directs the flow of processes with the laws of harmony is an explanation of the existence of "anti-entropy" processes, a contradiction to the second law of thermodynamics, but playing a fundamental part in nature. The "golden section" apparatus defines space and time frames of process flow. The contents of the book give a notion about the way or "program" of development. Which basic law of nature is hiden in the contents of book is yet to be resolved (Kepler, 1939).
Resolving polarized stellar features thanks to polarimetric interferometry
NASA Astrophysics Data System (ADS)
Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel
2003-02-01
Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.
Perceptual and affective mechanisms in facial expression recognition: An integrative review.
Calvo, Manuel G; Nummenmaa, Lauri
2016-09-01
Facial expressions of emotion involve a physical component of morphological changes in a face and an affective component conveying information about the expresser's internal feelings. It remains unresolved how much recognition and discrimination of expressions rely on the perception of morphological patterns or the processing of affective content. This review of research on the role of visual and emotional factors in expression recognition reached three major conclusions. First, behavioral, neurophysiological, and computational measures indicate that basic expressions are reliably recognized and discriminated from one another, albeit the effect may be inflated by the use of prototypical expression stimuli and forced-choice responses. Second, affective content along the dimensions of valence and arousal is extracted early from facial expressions, although this coarse affective representation contributes minimally to categorical recognition of specific expressions. Third, the physical configuration and visual saliency of facial features contribute significantly to expression recognition, with "emotionless" computational models being able to reproduce some of the basic phenomena demonstrated in human observers. We conclude that facial expression recognition, as it has been investigated in conventional laboratory tasks, depends to a greater extent on perceptual than affective information and mechanisms.
Teaching energy using an integrated science approach
NASA Astrophysics Data System (ADS)
Poggi, Valeria; Miceli, Cristina; Testa, Italo
2017-01-01
Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.
The physics of lipid droplet nucleation, growth and budding.
Thiam, Abdou Rachid; Forêt, Lionel
2016-08-01
Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Spontaneous ultraweak photon emission from biological systems and the endogenous light field.
Schwabl, Herbert; Klima, Herbert
2005-04-01
Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?
ERIC Educational Resources Information Center
Mäntylä, Terhi; Hämäläinen, Ari
2015-01-01
The language of physics is mathematics, and physics ideas, laws and models describing phenomena are usually represented in mathematical form. Therefore, an understanding of how to navigate between phenomena and the models representing them in mathematical form is important for a physics teacher so that the teacher can make physics understandable…
Understanding ‘human’ waves: exploiting the physics in a viral video
NASA Astrophysics Data System (ADS)
Ferrer-Roca, Chantal
2018-01-01
Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called ‘human’ waves, choreographed by people, have proved to be an advisable way to understand basic wave concepts. Videos are widely used as a teaching resource and can be of considerable help in order to watch and discuss ‘human’ waves provided their quality is reasonably good. In this paper we propose and analyse a video that went viral online and has been revealed to be a useful teaching resource for introductory physics students. It shows a unique and very complete series of wave propagations, including pulses with different polarizations and periodic waves that can hardly be found elsewhere. After a proposal on how to discuss the video qualitatively, a quantitative analysis is carried out (no video-tracker needed), including a determination of the main wave magnitudes such as period, wavelength and propagation speed.
Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code
NASA Astrophysics Data System (ADS)
Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.
2015-08-01
MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.
NASA Technical Reports Server (NTRS)
Winokur, P. S. (Editor)
1984-01-01
Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.
Wind-US User's Guide, Version 2.0
NASA Technical Reports Server (NTRS)
Towne, Charles E.
2009-01-01
Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options.
NASA Astrophysics Data System (ADS)
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
Nutation and precession control of the High Energy Solar Physics (HESP) satellite
NASA Technical Reports Server (NTRS)
Jayaraman, C. P.; Robertson, B. P.
1993-01-01
The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.
Using the Quirk-Schofield Diagram to Explain Environmental Colloid Dispersion Phenomena
ERIC Educational Resources Information Center
Mays, David C.
2007-01-01
Colloid dispersion, through its role in soil science, hydrology, and contaminant transport, is a basic component of many natural resources and environmental education programs. However, comprehension of colloid dispersion phenomena is limited by the numerous variables involved. This article demonstrates how the Quirk-Schofield diagram can be used…
Psychophysical correlations, synchronicity and meaning.
Atmanspacher, Harald
2014-04-01
The dual-aspect framework which Jung developed with Wolfgang Pauli implies that psychophysical phenomena are neither reducible to physical processes nor to conscious mental activity. Rather, they constitute a radically novel kind of phenomena, deriving from correlations between the physical and the mental. In synchronistic events, a particular subclass of psychophysical phenomena, these correlations are explicated as experienced meaning. © 2014, The Society of Analytical Psychology.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Research in space physics at the University of Iowa, 1982
NASA Technical Reports Server (NTRS)
Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.
1983-01-01
The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
Discharge in Long Air Gaps; Modelling and applications
NASA Astrophysics Data System (ADS)
Beroual, A.; Fofana, I.
2016-06-01
Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena.
Loading relativistic Maxwell distributions in particle simulations
NASA Astrophysics Data System (ADS)
Zenitani, S.
2015-12-01
In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
NASA Astrophysics Data System (ADS)
Eftimie, Raluca
2015-03-01
One of the main unsolved problems of modern physics is finding a "theory of everything" - a theory that can explain, with the help of mathematics, all physical aspects of the universe. While the laws of physics could explain some aspects of the biology of living systems (e.g., the phenomenological interpretation of movement of cells and animals), there are other aspects specific to biology that cannot be captured by physics models. For example, it is generally accepted that the evolution of a cell-based system is influenced by the activation state of cells (e.g., only activated and functional immune cells can fight diseases); on the other hand, the evolution of an animal-based system can be influenced by the psychological state (e.g., distress) of animals. Therefore, the last 10-20 years have seen also a quest for a "theory of everything"-approach extended to biology, with researchers trying to propose mathematical modelling frameworks that can explain various biological phenomena ranging from ecology to developmental biology and medicine [1,2,6]. The basic idea behind this approach can be found in a few reviews on ecology and cell biology [6,7,9-11], where researchers suggested that due to the parallel between the micro-scale dynamics and the emerging macro-scale phenomena in both cell biology and in ecology, many mathematical methods used for ecological processes could be adapted to cancer modelling [7,9] or to modelling in immunology [11]. However, this approach generally involved the use of different models to describe different biological aspects (e.g., models for cell and animal movement, models for competition between cells or animals, etc.).
"Optics 4 every1", the hands-on optics outreach program of the Universidad Autonoma de Nuevo Leon
NASA Astrophysics Data System (ADS)
Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.
2016-09-01
The Fisica Pato2 (Physics 4 every1) outreach group started as a need of hands-on activities and active Science demonstrations in the education for kids, teenagers and basic education teachers in Nuevo Leffon maintaining a main objective of spread the word about the importance of Optics and Photonics; for accomplish this objective, since November 2013 several outreach events are organized every year by the group. The program Optics 4 every1 is supported by the Facultad de Ciencias Fisico Matematicas of the Universidad Autonoma de Nuevo Leon and the International Society for Optics and Photonics and consist in quick hands-on activities and Optics demonstrations designed for teach basic optical phenomena related with light and its application in everyday life. During 2015, with the purpose of celebrate the International Year of Light 2015, the outreach group was involved in 13 different events and reached more than 8,000 people. The present work explains the activities done and the outcome obtained with this program.
An Experimental Study of Applied Ground Loads in Landing
NASA Technical Reports Server (NTRS)
Milwitzky, Benjamin; Lindquist, Dean C; Potter, Dexter M
1955-01-01
Results are presented of an experimental investigation made of the applied ground loads and the coefficient of friction between the tire and the ground during the wheel spin-up process in impacts of a small landing gear under controlled conditions on a concrete landing strip in the Langley impact basin. The basic investigation included three major phases: impacts with forward speed at horizontal velocities up to approximately 86 feet per second, impacts with forward speed and reverse wheel rotation to simulate horizontal velocities up to about 273 feet per second, and spin-up drop tests for comparison with the other tests. In addition to the basic investigation, supplementary tests were made to evaluate the drag-load alleviating effects of prerotating the wheel before impact so as to reduce the relative velocity between the tire and ground. In the presentation of the results, an attempt has been made to interpret the experimental data so as to obtain some insight into the physical phenomena involved in the wheel spin-up process.
Berry phase effect on electronic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Di; Chang, Ming-Che; Niu, Qian
2010-01-01
Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A commonmore » thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.« less
Biological effects of exposure to magnetic resonance imaging: an overview
Formica, Domenico; Silvestri, Sergio
2004-01-01
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797
Nonlinear structural crack growth monitoring
Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.
2002-01-01
A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.
Capsules with highly active pores and interiors: versatile platforms at the nanoscale.
Müller, Achim; Gouzerh, Pierre
2014-04-22
Spherical porous capsules offer new exciting approaches in chemistry, materials sciences, and in context of physical and biological phenomena. The underlying concepts are reported with particular emphasis on metal oxide based capsules of the {M132 } Keplerate type which display-due to their exceptional structural features and easy variation/derivatization as well as exchange of building units-an unmatched range of properties and offer unique opportunities for investigating a variety of basic aspects of nanoscience, including the discovery of some new phenomena, especially those related to hydrophobicity issues that are of significance for everyday life. This relies in particular on the existence of a large number of flexible crown ether type pores/channels and the possibility of changing the interior from completely hydrophilic to completely hydrophobic due to the presence of numerous easily exchangeable internal ligands/functionalities; the capsules can even be constructed so that they enclose a large number of highly active Lewis and Brønsted acid sites. The manifold of possible applications/uses are outlined as subtitles with reference to results as well as possible future studies. There are, among many others, options to control passing cations under different internal frames allowing also their separations, to conduct studies about hydrophobic recognitions and clustering of biological interest in water, controlled internal ion transport, nanoscale dewetting, and to carry out basic as well as new types of reactions under confined conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
Singh, Bhim S. (Editor)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).
Astronomy: Social Representations of the Integrated High School Students and Graduates in Physics
NASA Astrophysics Data System (ADS)
Barbosa, J. I. L.
The topics related to Astronomy are spread through almost all levels of basic education in Brazil and are also disseminated through the mass media, activities that do not always occur in the proper way. However, their students form their explanations about the phenomena studied by Astronomy, that is, they begin to construct their opinions, their beliefs and their attitudes regarding this object or this situation. In this sense, this work was divided in two fronts, which have the following objectives: (1) To identify the social representations of Astronomy elaborated by students of Integrated secondary education and undergraduate students in Physics; (2) To verify to what extent the social representations developed by the investigated students are equivalent; (3) To Investigate if the social representations designed per undergraduate students in Physics about Astronomy undergo changes after these participate in a course on basic subjects of Astronomy, in comparison with those exposed before the mentioned event. On the first front there is a research of a basic nature, where the data were obtained through of survey, and analysed in accordance with the methodologies pertinent to Central Nucleus Theory, the second front deals with an investigation of an applied nature, and the data obtained were explored through statistical analyses. The results indicate that the researchers have been involved in social representations of the object Astronomy, which are based on elements of the formal education space, and also disclosed in the media, in addition, demonstrate that the students have information about Astronomy and a valuation position in relation to this Science. On the second front, the results indicate that there were changes in the social representations of the undergraduate students in Physics about the term inductor Astronomy, after the course, that is, several elements evoked before the course were replaced by others, which were worked during the event.
Representation and Feedback in the Formation of a Physical Science Concept.
ERIC Educational Resources Information Center
Iuele, Patricia
The main purposes of this study were to determine: (1) how high school students represent the physical phenomena of phase changes; (2) how they modify their representation of these physical phenomena to accommodate new observation; (3) what factors lead to student difficulty in modifying representations; and (4) how the…
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Torri, Dino; Santi, Elisa; Bacaro, Giovanni; Marchesini, Ivan
2014-05-01
Landslide phenomena and erosion processes are widespread and cause every year extensive damages to the environment and sensible reduction of ecosystem services. These processes are in competition among them, and their complex interaction control the landscapes evolution. Landslide phenomena and erosion processes can be strongly influenced by land use, vegetation, soil characteristics and anthropic actions. Such type of phenomena are mainly model separately using empirical and physically based approaches. The former rely upon the identification of simple empirical laws correlating/relating the occurrence of instability processes to some of their potential causes. The latter are based on physical descriptions of the processes, and depending on the degree of complexity they can integrate different variables characterizing the process and their trigger. Those model often couple an hydrological model with an erosion or a landslide model. The spatial modeling schemas are heterogeneous, but mostly the raster (i.e. matrices of data) or the conceptual (i.e. cascading planes and channels) description of the terrain are used. The two model types are generally designed and applied at different scales. Empirical models, less demanding in terms of input data cannot consider explicitly the real process triggering mechanisms and commonly they are exploited to assess the potential occurrence of instability phenomena over large areas (small scale assessment). Physically-based models are high-demanding in term of input data, difficult to obtain over large areas if not with large uncertainty, and their applicability is often limited to small catchments or single slopes (large scale assessment). More those models, even if physically-based, are simplified description of the instability processes and can neglect significant issues of the real triggering mechanisms. For instance the influence of vegetation has been considered just partially. Although in the literature a variety of model approaches have been proposed to model separately landslide and erosion processes, only few attempts were made to model both jointly, mostly integrating pre-existing models. To overcome this limitation we develop a new model called LANDPLANER (LANDscape, Plants, LANdslide and ERosion), specifically design to describe the dynamic response of slopes (or basins) under different changing scenarios including: (i) changes of meteorological factors, (ii) changes of vegetation or land-use, (iii) and changes of slope morphology. The was applied in different study area in order to check its basic assumptions, and to test its general operability and applicability. Results show a reasonable model behaviors and confirm its easy applicability in real cases.
Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Li, Yan; Shi, Shuai; Wang, Xi-Shi; Shi, Bao-Sen
2014-08-25
Light with helical phase structures, carrying quantized orbital angular momentum (OAM), has many applications in both classical and quantum optics, such as high-capacity optical communications and quantum information processing. Frequency conversion is a basic technique to expand the frequency range of the fundamental light. The frequency conversion of OAM-carrying light gives rise to new physics and applications such as up-conversion detection of images and generation of high dimensional OAM entanglements. Quasi-phase matching (QPM) nonlinear crystals are good candidates for frequency conversion, particularly due to their high-valued effective nonlinear coefficients and no walk-off effect. Here we report the first experimental second-harmonic generation (SHG) of an OAM-carried light with a QPM crystal, where a UV light with OAM of 100 ℏ is generated. OAM conservation is verified using a specially designed interferometer. With a pump beam carrying an OAM superposition of opposite sign, we observe interesting interference phenomena in the SHG light; specifically, a photonics gear-like structure is obtained that gives direct evidence of OAM conservation, which will be very useful for ultra-sensitive angular measurements. Besides, we also develop a theory to reveal the underlying physics of the phenomena. The methods and theoretical analysis shown here are also applicable to other frequency conversion processes, such as sum frequency generation and difference-frequency generation, and may also be generalized to the quantum regime for single photons.
Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander
2017-10-01
The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.
A spring-block analogy for the dynamics of stock indexes
NASA Astrophysics Data System (ADS)
Sándor, Bulcsú; Néda, Zoltán
2015-06-01
A spring-block chain placed on a running conveyor belt is considered for modeling stylized facts observed in the dynamics of stock indexes. Individual stocks are modeled by the blocks, while the stock-stock correlations are introduced via simple elastic forces acting in the springs. The dragging effect of the moving belt corresponds to the expected economic growth. The spring-block system produces collective behavior and avalanche like phenomena, similar to the ones observed in stock markets. An artificial index is defined for the spring-block chain, and its dynamics is compared with the one measured for the Dow Jones Industrial Average. For certain parameter regions the model reproduces qualitatively well the dynamics of the logarithmic index, the logarithmic returns, the distribution of the logarithmic returns, the avalanche-size distribution and the distribution of the investment horizons. A noticeable success of the model is that it is able to account for the gain-loss asymmetry observed in the inverse statistics. Our approach has mainly a pedagogical value, bridging between a complex socio-economic phenomena and a basic (mechanical) model in physics.
Deionization shocks in microstructures
NASA Astrophysics Data System (ADS)
Mani, Ali; Bazant, Martin Z.
2011-12-01
Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations (deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving electrolytes in microstructures.
Developing the Use of Visual Representations to Explain Basic Astronomy Phenomena
ERIC Educational Resources Information Center
Galano, Silvia; Colantonio, Arturo; Leccia, Silvio; Marzoli, Irene; Puddu, Emanuella; Testa, Italo
2018-01-01
[This paper is part of the Focused Collection on Astronomy Education Research.] Several decades of research have contributed to our understanding of students' reasoning about astronomical phenomena. Some authors have pointed out the difficulty in reading and interpreting images used in school textbooks as factors that may justify the persistence…
Key Characteristics of Successful Science Learning: The Promise of Learning by Modelling
ERIC Educational Resources Information Center
Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton
2015-01-01
The basic premise underlying this research is that scientific phenomena are best learned by creating an external representation that complies with the complex and dynamic nature of such phenomena. Effective representations are assumed to incorporate three key characteristics: they are graphical, dynamic, and provide a pre-specified outline of the…
Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope
ERIC Educational Resources Information Center
Lumetta, Gregg J.; Arcia, Edgar
2016-01-01
A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…
Observe, simplify, titrate, model, and synthesize: A paradigm for analyzing behavior
Alberts, Jeffrey R.
2013-01-01
Phenomena in behavior and their underlying neural mechanisms are exquisitely complex problems. Infrequently do we reflect on our basic strategies of investigation and analysis, or formally confront the actual challenges of achieving an understanding of the phenomena that inspire research. Philip Teitelbaum is distinct in his elegant approaches to understanding behavioral phenomena and their associated neural processes. He also articulated his views on effective approaches to scientific analyses of brain and behavior, his vision of how behavior and the nervous system are patterned, and what constitutes basic understanding. His rubrics involve careful observation and description of behavior, simplification of the complexity, analysis of elements, and re-integration through different forms of synthesis. Research on the development of huddling behavior by individual and groups of rats is reviewed in a context of Teitelbaum’s rubrics of research, with the goal of appreciating his broad and positive influence on the scientific community. PMID:22481081
Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics
NASA Astrophysics Data System (ADS)
Vasyliūnas, V. M.
2008-12-01
Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.
Physics of the inner heliosphere: Mechanisms, models and observational signatures
NASA Technical Reports Server (NTRS)
Withbroe, George L.
1987-01-01
Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.
"Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm.
Reinert, Anna E; Simon, James A
2017-07-01
The study of the human orgasm has shown a core set of physiologic and psychological symptoms experienced by most individuals. The study of normal sheds light on the abnormal and has spotlighted rare physical and psychological symptoms experienced by some individuals in association with orgasm. These phenomena are rare and, as is typical of rare phenomena, their documentation in the medical literature is largely confined to case studies. To identify peri-orgasmic phenomena, defined as unusual physical or psychological symptoms subjectively experienced by some individuals as part of the orgasm response, distinct from the usual or normal orgasm response. A list of peri-orgasmic phenomena was made with help from sexual health colleagues and, using this list as a foundation, a literature search was performed of articles published in English. Publications included in this review report on physical or psychological phenomena at the time of orgasm that are distinct from psychological, whole-body, and genito-pelvic sensations commonly experienced at the time of orgasm. Cases of physical symptoms related to the physiology of sexual intercourse and not specifically to orgasm were excluded. Case studies of peri-orgasmic phenomena were reviewed, including cases describing cataplexy (weakness), crying, dysorgasmia, dysphoria, facial and/or ear pain, foot pain, headache, pruritus, laughter, panic attack, post-orgasm illness syndrome, seizures, and sneezing. The literature review confirms the existence of diverse and frequently replicated peri-orgasmic phenomena. The value of case studies is in the collection and recording of observations so that hypotheses can be formed about the observed phenomena. Accordingly, this review could inspire further research on the neurophysiologic mechanisms of orgasm. Reinert AE, Simon JA. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm. Sex Med Rev 2017;5:275-281. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Nonequilibrium radiative hypersonic flow simulation
NASA Astrophysics Data System (ADS)
Shang, J. S.; Surzhikov, S. T.
2012-08-01
Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange, computational algorithms, and the aerodynamic-electromagnetic interaction are summarized and delineated. The critical basic research areas for physic-based hypersonic flow simulation should become self-evident through the present discussion. Nevertheless intensive basic research efforts must be sustained in these areas for fundamental knowledge and future technology advancement.
ERIC Educational Resources Information Center
Redfors, Andreas; Ryder, Jim
2001-01-01
Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)
Polyelectrolyte scaling laws for microgel yielding near jamming.
Bhattacharjee, Tapomoy; Kabb, Christopher P; O'Bryan, Christopher S; Urueña, Juan M; Sumerlin, Brent S; Sawyer, W Gregory; Angelini, Thomas E
2018-02-28
Micro-scale hydrogel particles, known as microgels, are used in industry to control the rheology of numerous different products, and are also used in experimental research to study the origins of jamming and glassy behavior in soft-sphere model systems. At the macro-scale, the rheological behaviour of densely packed microgels has been thoroughly characterized; at the particle-scale, careful investigations of jamming, yielding, and glassy-dynamics have been performed through experiment, theory, and simulation. However, at low packing fractions near jamming, the connection between microgel yielding phenomena and the physics of their constituent polymer chains has not been made. Here we investigate whether basic polymer physics scaling laws predict macroscopic yielding behaviours in packed microgels. We measure the yield stress and cross-over shear-rate in several different anionic microgel systems prepared at packing fractions just above the jamming transition, and show that our data can be predicted from classic polyelectrolyte physics scaling laws. We find that diffusive relaxations of microgel deformation during particle re-arrangements can predict the shear-rate at which microgels yield, and the elastic stress associated with these particle deformations predict the yield stress.
Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-09-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.
Displaying Computer Simulations Of Physical Phenomena
NASA Technical Reports Server (NTRS)
Watson, Val
1991-01-01
Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.
Low-gravity fluid physics: A program overview
NASA Technical Reports Server (NTRS)
1990-01-01
An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.
Motions of Celestial Bodies; Computer simulations
NASA Astrophysics Data System (ADS)
Butikov, Eugene
2014-10-01
This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.
Brancaccio, Maria Teresa
2014-12-01
This paper traces Enrico Morselli's intellectual trajectory from the 1870s to the early 1900s. His interest in phenomena of physical mediumship is considered against the backdrop of the theoretical developments in Italian psychiatry and psychology. A leading positivist psychiatrist and a prolific academic, Morselli was actively involved in the making of Italian experimental psychology. Initially sceptical of psychical research and opposed to its association with the 'new psychology', Morselli subsequently conducted a study of the physical phenomena produced by the medium Eusapia Palladino. He concluded that her phenomena were genuine and represented them as the effects of an unknown bio-psychic force present in all human beings. By contextualizing Morselli's study of physical mediumship within contemporary theoretical and disciplinary discourse, this study elaborates shifts in the interpretations of 'supernormal' phenomena put forward by leading Italian psychiatrists and physiologists. It demonstrates that Morselli's interest in psychical research stems from his efforts to comprehend the determinants of complex psychological phenomena at a time when the dynamic theory of matter in physics, and the emergence of neo-vitalist theories influenced the theoretical debates in psychiatry, psychology and physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Duque performs VIDEO-2 (VID-01) experiment
2003-10-23
ISS007-E-17848 (23 October 2003) --- Cosmonaut Alexander Y. Kaleri (right), Expedition 8 flight engineer, uses a camera to film a scientific experiment performed by European Space Agency (ESA) astronaut Pedro Duque of Spain in the Zvezda Service Module on the International Space Station (ISS). Kaleri represents Rosaviakosmos. Duque and Kaleri performed the European educational VIDEO-2 (VID-01) experiment, which uses the Russian DSR PD-150P digital video camcorder for recording demos of several basic physical phenomena, viz., Isaac Newton's three motion laws, with narration. [The demo made use of a sealed bag containing coffee and a syringe to fill one of two hollow balls with the brown liquid (to provide "mass", as opposed to the other, "mass-less" ball).
Duque and Kaleri in Zvezda Service module with video camera
2003-10-23
ISS007-E-17842 (23 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque (left) of Spain and cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer representing Rosaviakosmos, work with a scientific experiment in the Zvezda Service Module on the International Space Station (ISS). Duque and Kaleri performed the European educational VIDEO-2 (VID-01) experiment, which uses the Russian DSR PD-150P digital video camcorder for recording demos of several basic physical phenomena, viz., Isaac Newton's three motion laws, with narration. [The demo made use of a sealed bag containing coffee and a syringe to fill one of two hollow balls with the brown liquid (to provide "mass", as opposed to the other, "mass-less" ball).
An experimental approach to the fundamental principles of hemodynamics.
Pontiga, Francisco; Gaytán, Susana P
2005-09-01
An experimental model has been developed to give students hands-on experience with the fundamental laws of hemodynamics. The proposed experimental setup is of simple construction but permits the precise measurements of physical variables involved in the experience. The model consists in a series of experiments where different basic phenomena are quantitatively investigated, such as the pressure drop in a long straight vessel and in an obstructed vessel, the transition from laminar to turbulent flow, the association of vessels in vascular networks, or the generation of a critical stenosis. Through these experiments, students acquire a direct appreciation of the importance of the parameters involved in the relationship between pressure and flow rate, thus facilitating the comprehension of more complex problems in hemodynamics.
Avalanches and plastic flow in crystal plasticity: an overview
NASA Astrophysics Data System (ADS)
Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr
2018-01-01
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
Eastwood, Jonathan P
2008-12-13
The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.
NASA Astrophysics Data System (ADS)
Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.
2017-12-01
The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
Report on the solar physics-plasma physics workshop
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.
1976-01-01
The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.
Modeling of Economy Considering Crisis
NASA Astrophysics Data System (ADS)
Petrov, Lev F.
2009-09-01
We discuss main modeling's problems of economy dynamic processes and the reason forecast's absence of economic crisis. We present a structure of complexity level of system and models and discuss expected results concerning crisis phenomena. We formulate the basic perspective directions of the mathematical modeling of economy, including possibility of the analysis of the pre crisis, crisis and post crisis phenomena in economic systems.
Emerging Conceptual Understanding of Complex Astronomical Phenomena by Using a Virtual Solar System
ERIC Educational Resources Information Center
Gazit, Elhanan; Yair, Yoav; Chen, David
2005-01-01
This study describes high school students' conceptual development of the basic astronomical phenomena during real-time interactions with a Virtual Solar System (VSS). The VSS is a non-immersive virtual environment which has a dynamic frame of reference that can be altered by the user. Ten 10th grade students were given tasks containing a set of…
Dazzling Physics Gallery Opens in Dallas Art Deco Building.
ERIC Educational Resources Information Center
Gifted Child Today (GCT), 1989
1989-01-01
The Dallas Science Place contains 55 interactive displays on observable phenomena, organized into 7 topic areas: motion, waves, matter, electromagnetism, energy, change, and entropy. Attempts were made to keep the exhibits' forms elemental, so that the underlying physical phenomena could be readily observed and experienced. (JDD)
Elements of Warfare in the Sixth- and Seventh-Grade Physics Course
ERIC Educational Resources Information Center
Enokhovich, A. S.
1973-01-01
Mechanical movement, pressure, floating bodies, heat phenomena, electrical phenomena, when applied to military problems "for the patriotic edification and military instruction of the children" excite interest and place theory on concrete foundations. Examples of applied physical concepts follow in this article. (Author/JH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyes, H. Pierre
In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.
Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS
NASA Technical Reports Server (NTRS)
Urban, David L.; Singh, Bhim S.; Kohl, Fred J.
2007-01-01
Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.
The Role of Thermal Properties in Periodic Time-Varying Phenomena
ERIC Educational Resources Information Center
Marin, E.
2007-01-01
The role played by physical parameters governing the transport of heat in periodical time-varying phenomena within solids is discussed. Starting with a brief look at the conduction heat transport mechanism, the equations governing heat conduction under static, stationary and non-stationary conditions, and the physical parameters involved, are…
Using LabVIEW for Applying Mathematical Models in Representing Phenomena
ERIC Educational Resources Information Center
Faraco, G.; Gabriele, L.
2007-01-01
Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…
Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.
Theory of Stellar Oscillations
NASA Astrophysics Data System (ADS)
Cunha, Margarida S.
In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.
Optimized Materials From First Principles Simulations: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, G; Gygi, F
2005-07-26
In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less
Initiating Young Children into Basic Astronomical Concepts and Phenomena
NASA Astrophysics Data System (ADS)
Kallery, M.
2010-07-01
In the present study we developed and implemented three units of activities aiming at acquainting very young children with basic astronomical concepts and phenomena such as the sphericity of the earth, the earth’s movements and the day/night cycle. The activities were developed by a group composed of a researcher/facilitator and six early-years teachers. In the activities children were presented with appropriate for their age scientific information along with conceptual tools such as a globe and an instructional video. Action research processes were used to optimize classroom practices and to gather useful information for the final shaping of the activities and the instruction materials. In these activities the adopted approach to learning can be characterized as socially constructed. The results indicated awareness of concepts and phenomena that the activities dealt with in high percentages of children, storage of the new knowledge in the long term memory and easy retrieval of it, and children’s enthusiasm for the subject.
Wind-US Users Guide Version 3.0
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.
2016-01-01
Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Complex (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options. For current information about Wind-US and the NPARC Alliance, please see the Wind-US home page at http://www.grc.nasa.gov/WWW/winddocs/ and the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/. This manual describes the operation and use of Wind-US, a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Wind-US represents a merger of the capabilities of four CFD codes - NASTD (a structured grid flow solver developed at McDonnell Douglas, now part of Boeing), NPARC (the original NPARC Alliance structured grid flow solver), NXAIR (an AEDC structured grid code used primarily for store separation analysis), and ICAT (an unstructured grid flow solver developed at the Rockwell Science Center and Boeing).
Education for All: Status and Trends, 1994. Basic Education Population and Development.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Education for All Forum Secretariat.
This second issue of "Education for All: Status and Trends" focuses on the interactions between basic education and certain demographic and socioeconomic phenomena. It examines significant correlations between selected indicators and the trends in those indicators over a decade or more. It also presents projections of certain indicators to the…
TEACHING PHYSICS: The quantum understanding of pre-university physics students
NASA Astrophysics Data System (ADS)
Ireson, Gren
2000-01-01
Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.
In the Footsteps of Irving Langmuir: Physical Chemistry in Service of Society
NASA Astrophysics Data System (ADS)
Carter, Emily
The approach that Irving Langmuir took during his scientific career in industry at General Electric exemplifies the best that we chemical physicists/physical chemists can offer the world. His name is associated with very fundamental concepts and phenomena (e.g., the Langmuir isotherm, Langmuir-Blodgett films) along with practical inventions (e.g., the Langmuir probe, Langmuir trough). He worked at the interface of physics, chemistry, and engineering, with much of his important work devoted to understanding surface and interface phenomena. I have - unintentionally - followed in his footsteps, trained as a physical chemist who now leads the engineering school at Princeton. In this talk, I will give examples from my research as to how fundamental physical chemistry techniques and concepts - based largely on quantum mechanics - can be harnessed to help the world transition to a sustainable energy future. In the footsteps of Irving, surface and interfacial phenomena will figure prominently in the examples chosen.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." The conference publication consists of the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference. Ninety papers are presented in 21 technical sessions, and a special exposition session presents 32 posters describing the work of principal investigators new to NASA's program in this discipline. Eighty-eight papers and 25 posters are presented in their entirety on the CD-ROM.
NASA Astrophysics Data System (ADS)
Brenner, Howard
2011-10-01
Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.
NASA Astrophysics Data System (ADS)
Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah
2015-11-01
Macrosegregations, namely compositional inhomogeneities at a scale much larger than the microstructure, are typically classified according to their metallurgical appearance. In ingot castings, they are known as `A' and `V' segregation, negative cone segregation, and positive secondary pipe segregation. There exists `inverse' segregation at casting surfaces and `centerline' segregation in continuously cast slabs and blooms. Macrosegregation forms if a relative motion between the solute-enriched or -depleted melt and dendritic solid structures occurs. It is known that there are four basic mechanisms for the occurrence of macrosegregation. In the recent years, the numerical description of the combination of these mechanisms has become possible and so a tool has emerged which can be effectively used to get a deeper understanding into the process details which are responsible for the formation of the above-mentioned different macrosegregation appearances. Based on the most sophisticated numerical models, we consequently associate the four basic formation mechanisms with the physical phenomena happening during (i) DC-casting of copper-based alloys, (ii) DC-casting of aluminum-based alloys, (iii) continuous casting of steel, and (iv) ingot casting of steel.
NASA Astrophysics Data System (ADS)
Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.
2013-06-01
In a previous paper that focused on the transmission of periodic waves at the boundary between two media, we documented difficulties with the basic concepts of wavelength, frequency, and propagation speed, and with the relationship v=fλ. In this paper, we report on student attempts to apply this relationship in problems involving two-source and thin-film interference. In both cases, interference arises from differences in the path lengths traveled by two waves. We found that some students (up to 40% on certain questions) had difficulty with a task that is fundamental to understanding these phenomena: expressing a physical distance, such as the separation between two sources, in terms of the wavelength of a periodic wave. We administered a series of questions to try to identify factors that influence student performance. We concluded that most incorrect responses stemmed from erroneous judgment about the type of reasoning required, not an inability to do said reasoning. A number of students do not seem to treat the spacing of moving wave fronts as analogous to immutable measurement tools (e.g., rulers).
An update of engine system research at the Army Propulsion Directorate
NASA Technical Reports Server (NTRS)
Bobula, George A.
1990-01-01
The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.
NASA Astrophysics Data System (ADS)
Gruska, Jozef
2012-06-01
One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.
Physics education students’ cognitive and affective domains toward ecological phenomena
NASA Astrophysics Data System (ADS)
Napitupulu, N. D.; Munandar, A.; Redjeki, S.; Tjasyono, B.
2018-05-01
Environmental education is become prominent in dealing with natural phenomena that occur nowadays. Studying environmental physics will lead students to have conceptual understanding which are importent in enhancing attitudes toward ecological phenomena that link directry to cognitive and affective domains. This research focused on the the relationship of cognitive and affective domains toward ecological phenomena. Thirty-seven Physics Education students participated in this study and validated sources of data were collected to eksplore students’ conceptual understanding as cognitive domain and to investigate students’ attitudes as affective domain. The percentage of cognitive outcome and affective outcome are explore. The features of such approaches to environmental learning are discussion through analysis of contribution of cognitive to develop the attitude ecological as affective outcome. The result shows that cognitive domains do not contribute significantly to affective domain toward ecological henomena as an issue trend in Central Sulawesi although students had passed Environmental Physics instruction for two semester. In fact, inferior knowledge in a way actually contributes to the attitude domain caused by the prior knowledge that students have as ombo as a Kaili local wisdom.
The Mathematics of High School Physics
NASA Astrophysics Data System (ADS)
Kanderakis, Nikos
2016-10-01
In the seventeenth and eighteenth centuries, mathematicians and physical philosophers managed to study, via mathematics, various physical systems of the sublunar world through idealized and simplified models of these systems, constructed with the help of geometry. By analyzing these models, they were able to formulate new concepts, laws and theories of physics and then through models again, to apply these concepts and theories to new physical phenomena and check the results by means of experiment. Students' difficulties with the mathematics of high school physics are well known. Science education research attributes them to inadequately deep understanding of mathematics and mainly to inadequate understanding of the meaning of symbolic mathematical expressions. There seem to be, however, more causes of these difficulties. One of them, not independent from the previous ones, is the complex meaning of the algebraic concepts used in school physics (e.g. variables, parameters, functions), as well as the complexities added by physics itself (e.g. that equations' symbols represent magnitudes with empirical meaning and units instead of pure numbers). Another source of difficulties is that the theories and laws of physics are often applied, via mathematics, to simplified, and idealized physical models of the world and not to the world itself. This concerns not only the applications of basic theories but also all authentic end-of-the-chapter problems. Hence, students have to understand and participate in a complex interplay between physics concepts and theories, physical and mathematical models, and the real world, often without being aware that they are working with models and not directly with the real world.
Basic research in solar physics
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.
1991-01-01
This grant, dating back more than 20 years has supported a variety of investigations of the chromospheres and coronae of the Sun and related cool stars by the Principal Investigator, his postdocs and graduate students, and colleagues at other institutions. This work involved studies of radiative transfer and spectral line formation theory, and the application of these techniques to the analysis of spectra obtained from space and ground-based observatories in the optical, ultraviolet, x-ray and radio portions of the spectrum. Space observations have included the analysis of spectra from OSO-7, Skylab, SMM, and the HRTS rocket experiments. Recent work has concentrated on the interaction of magnetic fields, plasma and radiation in the outer atmospheres of the Sun and other magnetically active stars with different fundamental parameters. Our study of phenomena common to the Sun and stars, the 'solar-stellar connection', can elucidate the fundamental physics, because spatially-resolved observations of the Sun provide us with the 'groundtruth,' while interpretation of stellar data permit us to isolate those parameters critical to stellar activity. Recently, we have studied the differences in physical properties between solar regions of high magnetic flux density and the surrounding plasma. High-resolution CN and CO spectroheliograms have been used to model the thermal inhomogeneities driven by unstable CO cooling, and we have analyzed spatially resolved UV spectra from HRTS to model the thermal structure and energy balance of small-scale structures. The study of nonlinear relations between atmospheric radiative losses and the photospheric magnetic flux density has been continued. We have also proposed a new model for the decay of plages by random walk diffusion of magnetic flux. Our analysis of phenomena common to the Sun and stars included the application of available spectroscopic diagnostics, establishing evidence that the atmospheres of the least active stars are heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.
Retrocausation Or Extant Indefinite Reality?
NASA Astrophysics Data System (ADS)
Houtkooper, Joop M.
2006-10-01
The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.
NASA Astrophysics Data System (ADS)
Latry, O.; Divay, A.; Fadil, D.; Dherbécourt, P.
2017-01-01
Electrical characterization analyses are proposed in this work using the Lambert function on Schottky junctions in GaN wide band gap semiconductor devices for extraction of physical parameters. The Lambert function is used to give an explicit expression of the current in the Schottky junction. This function is applied with defined conduction phenomena, whereas other work presented arbitrary (or undefined) conduction mechanisms in such parameters’ extractions. Based upon AlGaN/GaN HEMT structures, extractions of parameters are undergone in order to provide physical characteristics. This work highlights a new expression of current with defined conduction phenomena in order to quantify the physical properties of Schottky contacts in AlGaN/GaN HEMT transistors. Project supported by the French Department of Defense (DGA).
NASA Astrophysics Data System (ADS)
Silva, J. N.; Voelzke, M. R.; Araújo, M. S. T.
2018-03-01
Although Astronomy is part of everyday life of the people, peculiarities are little-known for an observer on the equator, as residents in Macapá-AP, located at Latitude Zero. So, this work aims to support physics teaching focusing on the correct diffusion of some physical phenomena which have an intrinsic relationship with Astronomy from the sight of an observer at latitude zero, highlighting the celestial sphere visualization and emphasizing which constellations are visible during an earth year, being proposed the elaboration of a planisphere to this latitude. It's also discussed about the Solstices and, more specifically, about the Equinoxes and their particularities for an observer in latitude zero. The offered approach can help teachers of Physics and Science who work in regular education schools to explore these important astronomical phenomena.
On the quantum mechanics of consciousness, with application to anomalous phenomena
NASA Astrophysics Data System (ADS)
Jahn, Robert G.; Dunne, Brenda J.
1986-08-01
Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrödinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition. With these established, a number of the generic features of quantum mechanics, such as the wave/particle duality, and the uncertainty, indistinguishability, and exclusion principles, display metaphoric relevance to familiar individual and collective experiences. Similarly, such traditional quantum theoretic exercises as the central force field and atomic structure, covalent molecular bonds, barrier penetration, and quantum statistical collective behavior become useful analogies for representation of a variety of consciousness experiences, both normal and anomalous, and for the design of experiments to study these systematically.
Spiral-syllabus course in wave phenomena to introduce majors and nonmajors to physics
NASA Astrophysics Data System (ADS)
Touger, Jerold S.
1981-09-01
A single course to introduce physics to both nonscience and physics majors has been developed, dealing with light, sound, and signal, transmission and reception, and emphasizing wave aspects of these phenomena. Themes such as the observational basis of physics, the progression from qualitative observation to measurement, physical models, mathematical modeling, and the utility of models in developing technology are stressed. Modes of presentation, consistent with the notion of a spiral syllabus, are explained with reference to the cognitive and educational theories of Bruner and Piaget. Reasons are discussed for choosing this subject matter in preference to Newtonian mechanics as a starting point for physics majors.
NASA Technical Reports Server (NTRS)
Lathrop, J. W.
1984-01-01
Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.
Molecular Force Spectroscopy on Cells
NASA Astrophysics Data System (ADS)
Liu, Baoyu; Chen, Wei; Zhu, Cheng
2015-04-01
Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.
Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction
NASA Astrophysics Data System (ADS)
Asakawa, Masayuki; Kitazawa, Masakiyo
2016-09-01
Bulk fluctuations of conserved charges measured by event-by-event analysis in relativistic heavy ion collisions are observables which are believed to carry significant amount of information on the hot medium created by the collisions. Active studies have been done recently experimentally, theoretically, and on the lattice. In particular, non-Gaussianity of the fluctuations has acquired much attention recently. In this review, we give a pedagogical introduction to these issues, and survey recent developments in this field of research. Starting from the definition of cumulants, basic concepts in fluctuation physics, such as thermal fluctuations in statistical mechanics and time evolution of fluctuations in diffusive systems, are described. Phenomena which are expected to occur in finite temperature and/or density QCD matter and their measurement by event-by-event analyses are also elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Paul G.
A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less
Crystal Growth and Other Materials Physical Researches in Space Environment
NASA Astrophysics Data System (ADS)
Pan, Mingxiang
Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.
Grouping and Emergent Features in Vision: Toward a Theory of Basic Gestalts
ERIC Educational Resources Information Center
Pomerantz, James R.; Portillo, Mary C.
2011-01-01
Gestalt phenomena are often so powerful that mere demonstrations can confirm their existence, but Gestalts have proven hard to define and measure. Here we outline a theory of basic Gestalts (TBG) that defines Gestalts as emergent features (EFs). The logic relies on discovering wholes that are more discriminable than are the parts from which they…
It's Not Your Grandmother's Genetics Anymore!
ERIC Educational Resources Information Center
Smith, Mike U.
2014-01-01
Genetics is perhaps the most rapidly growing field of science today. Recent findings such as those of the Human Genome Project have led to new understandings of basic genetic phenomena and even to increased confusion about some basic genetic ideas, such as the nature of the gene. These developments directly influence how we should teach genetics.…
NASA Astrophysics Data System (ADS)
Takada, Tohru; Nakamura, Jin; Suzuki, Masaru
All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.
The Second National Chinese Conference on Permafrost, Lanzhou, China, 12-18 October 1981.
1982-03-01
discuss questions of Quaternary glaciers and periglacial phenomena. It is our understanding that Professor Cui Zhijul of Peking University is...frost heaving (4) Remote sensing (a) snow distribution and water yield over frozen terrain (b) indicators of frozen ground (c) glacier sedimentation ...Li Shude and Zhang TingJun, Basic features of periglacial 41 phenomena, Altai Shan, China (missed presentation) 15 OCTOBER 1981, MORNING Wang Chunhe
NASA Technical Reports Server (NTRS)
Ochoa, Agustin, Jr. (Editor)
1989-01-01
Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.
Statistical physics of human beings in games: Controlled experiments
NASA Astrophysics Data System (ADS)
Liang, Yuan; Huang, Ji-Ping
2014-07-01
It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.
Resistive switching phenomena: A review of statistical physics approaches
Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won
2015-08-31
Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2015-04-01
The undamental advantage of a Cellular automaton construction foris that it can be viewed as an undetectable absolute frame o reference, in accordance with Lorentz-Poincare's interpretation.. The cellular automaton model for physical poblems comes upon two basic hurdles: (1) How to find the Elemental Rule that, and how to get non-locality from local transformations. Both problems are resolved considering the transfomation rule of mutual distributed synchronization Actually any information proessing device starts with a clocking system. and it turns out that ``All physical phenomena are different aspects of the high-level description of distributed mutual synchronization in a network of digital clocks''. Non-locality comes from two hugely different time-scales of signaling.. The universe is acombinines information and matter processes, These fast spreading diffusion wave solutions create the mechanism of the Holographic Universe. And thirdly Disengaged from synchronization, circular counters can perform memory functions by retaining phases of their oscillations, an idea of Von Neumann'. Thus, the suggested model generates the necessary constructs for the physical world as an Internet of Things. Life emerges due to the specifics of macromolecules that serve as communication means, with the holographic memory...
NASA Astrophysics Data System (ADS)
2015-04-01
The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.
NASA Astrophysics Data System (ADS)
2016-02-01
The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.
NASA Astrophysics Data System (ADS)
Snyder
1998-04-01
It has been shown by Einstein, Podolsky, and Rosen that in quantum mechanics two different wave functions can simultaneously characterize the same physical existent. This result means that one can make predictions regarding simultaneous, mutually exclusive features of a physical existent. It is important to ask whether people have the capacity to make observations of mutually exclusive phenomena simultaneously? Our everyday experience informs us that a human observer is capable of observing only one set of physical circumstances at a time. Evidence from psychology, though, indicates that people indeed have the capacity to make observations of mutually exclusive phenomena simultaneously, even though this capacity is not generally recognized. Working independently, Sigmund Freud and William James provided some of this evidence. How the nature of the quantum mechanical wave function is associated with the problem posed by Einstein, Podolsky, and Rosen, is addressed at the end of the paper.
Tuning the physical properties in strontium iridate heterostructures
NASA Astrophysics Data System (ADS)
Nichols, John; Meyer, Tricia; Lee, Ho Nyung
2015-03-01
Strontium iridate (Srn+1IrnO3n+1) has received lots of attention recently for its potential to reveal novel physical phenomena due to strong spin-orbital coupling with an interaction energy comparable to that of the on-site Coulomb interaction and crystal field splitting. The coexistence of fundamental interactions has created an exotic Jeff = 1/2 antiferromagnetic insulating ground state in Sr2IrO4. In particular, it is known that this system can be driven into a metallic state with the simultaneous increase in dimensionality (n) and strain. We have investigated the effects of electron confinement by interfacing strontium iridates with other perovskite oxides. We have synthesized thin film heterostructures, SrIrO3/AMO3 (A = Sr, La; B = Ti, Mn, Rh), layer-by-layer with pulsed laser deposition equipped with reflection high-energy electron diffraction. Based on investigations with x-ray diffraction, dc transport, SQUID magnetometry, and various spectroscopic measurements, we will present that the physical properties of the heterostructures are strongly dependent on spatial confinement and epitaxial strain. *This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.
Joseph J. Charney; Brian E. Potter
2017-01-01
Convection and downbursts are connected meteorological phenomena with the potential to affect fire behavior and thereby alter the evolution of a wildland fire. Meteorological phenomena related to convection and downbursts are often discussed in the context of fire behavior and smoke. The physical mechanisms that contribute to these phenomena are interrelated, but the...
How can laboratory plasma experiments contribute to space and &astrophysics?
NASA Astrophysics Data System (ADS)
Yamada, M.
Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)
Bio-Physics Manifesto -- for the Future of Physics and Biology
NASA Astrophysics Data System (ADS)
Oono, Y.
2008-04-01
The Newtonian revolution taught us how to dissect phenomena into contingencies (e.g., initial conditions) and fundamental laws (e.g., equations of motion). Since then, `fundamental physics' has been pursuing purer and leaner fundamental laws. Consequently, to explain real phenomena a lot of auxiliary conditions become required. Isn't it now the time to start studying `auxiliary conditions' seriously? The study of biological systems has a possibility of shedding light on this neglected side of phenomena in physics, because we organisms were constructed by our parents who supplied indispensable auxiliary conditions; we never self-organize. Thus, studying the systems lacking self-organizing capability (such as complex systems) may indicate new directions to physics and biology (biophysics). There have been attempts to construct a `general theoretical framework' of biology, but most of them never seriously looked at the actual biological world. Every serious natural science must start with establishing a phenomenological framework. Therefore, this must be the main part of bio-physics. However, this article is addressed mainly to theoretical physicists and discusses only certain theoretical aspects (with real illustrative examples).
Wave Interactions and Fluid Flows
NASA Astrophysics Data System (ADS)
Craik, Alex D. D.
1988-07-01
This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei
Ferroelectricity on the nanoscale has remained a subject of much fascination in condensed matter physics for the last several decades. It is well-recognized that stability of the ferroelectric state necessitates effective polarization screening, and hence screening mechanism and screening charge dynamics become strongly coupled to ferroelectric phase stability and domain behavior. Previously, the role of the screening charge in macroscopic ferroelectrics was observed in phenomena such as potential retention above Curie temperature, back switching of ferroelectric domains, and chaos and intermittency during domain switching. In the last several years, multiple reports claiming ferroelectricity in ultrathin ferroelectrics based on formation of remanent polarization states, local hysteresis loops, and pressure induced switching were made. However, similar phenomena were reported for traditionally non-ferroelectric materials, creating significant level of uncertainty in the field. We pose that in the nanoscale systems, the ferroelectric state is fundamentally inseparable from electrochemical state of the surface, leading to emergence of coupled electrochemical-ferroelectric states. I will present the results of experimental and theoretical work exploring the basic mechanisms of emergence of these coupled states including the basic theory and phase-field formulation for domain evolution. I further discuss the thermodynamics and thickness evolution of this state, and demonstrate the experimental pathway to establish its presence based on spectroscopic version of piezoresponse force microscopy. Finally, the role of chemical screening on domain dynamics is explored using phase-field modelling. This analysis reconciles multiple prior studies, and set forward the predictive pathways for new generations of ferroelectric devices and applications. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE, and was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division.
ERIC Educational Resources Information Center
Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael
2010-01-01
This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…
DOE R&D Accomplishments Database
Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.
1988-04-01
Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry.
Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Arcia, Edgar
A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.
EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space
NASA Astrophysics Data System (ADS)
Koepke, Mark
2008-07-01
The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.
Electron cyclotron emission imaging and applications in magnetic fusion energy
NASA Astrophysics Data System (ADS)
Tobias, Benjamin John
Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and magnetic field line displacement during precursor oscillations associated with the sawtooth crash, a disruptive instability observed both in tokamak plasmas with high core current and in the magnetized plasmas of solar flares and other interstellar plasmas. Understanding both of these phenomena is essential for the future of magnetic fusion energy, and important new observations described herein underscore the advantages of imaging techniques in experimental physics.
32 CFR 272.3 - Definition of basic research.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...
32 CFR 272.3 - Definition of basic research.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...
32 CFR 272.3 - Definition of basic research.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...
Collective phenomena in photonic, plasmonic and hybrid structures.
Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A
2011-10-24
Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America
Development of Matlab GUI educational software to assist a laboratory of physical optics
NASA Astrophysics Data System (ADS)
Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada
2014-07-01
Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.
Seeing in a different light—using an infrared camera to teach heat transfer and optical phenomena
NASA Astrophysics Data System (ADS)
Pei Wong, Choun; Subramaniam, R.
2018-05-01
The infrared camera is a useful tool in physics education to ‘see’ in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.
Coronal Mass Ejections (CMEs) and Associated Phenomena
NASA Astrophysics Data System (ADS)
Manoharan, P. K.
2008-10-01
The Sun is the most powerful radio waves emitting object in the sky. The first documented recognition of the reception of radio waves from the Sun was made in 1942 by Hey.15 Since then solar radio observations, from ground-based and space-based instruments, have played a major role in understanding the physics of the Sun and fundamental physical processes of the solar radio emitting phenomena...
ERIC Educational Resources Information Center
Ogan-Bekiroglu, Feral
2007-01-01
The purpose of this study was twofold. First, it was aimed to identify Turkish pre-service physics teachers' knowledge and understanding of the Moon, Moon phases, and other lunar phenomena. Second, the effects of model-based teaching on pre-service teachers' conceptions were examined. Conceptions were proposed as mental models in this study. Four…
Seeing in a Different Light--Using an Infrared Camera to Teach Heat Transfer and Optical Phenomena
ERIC Educational Resources Information Center
Wong, Choun Pei; Subramaniam, R.
2018-01-01
The infrared camera is a useful tool in physics education to 'see' in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
Properties and relative measure for quantifying quantum synchronization
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan
2017-07-01
Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.
The Interstellar Medium in External Galaxies: Summaries of contributed papers
NASA Technical Reports Server (NTRS)
Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)
1990-01-01
The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Green, Lawrence L.
1999-01-01
A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.
Digital reconstruction of Young's fringes using Fresnel transformation
NASA Astrophysics Data System (ADS)
Kulenovic, Rudi; Song, Yaozu; Renninger, P.; Groll, Manfred
1997-11-01
This paper deals with the digital numerical reconstruction of Young's fringes from laser speckle photography by means of the Fresnel-transformation. The physical model of the optical reconstruction of a specklegram is a near-field Fresnel-diffraction phenomenon which can be mathematically described by the Fresnel-transformation. Therefore, the interference phenomena can be directly calculated by a microcomputer.If additional a CCD-camera is used for specklegram recording the measurement procedure and evaluation process can be completely carried out in a digital way. Compared with conventional laser speckle photography no holographic plates, no wet development process and no optical specklegram reconstruction are needed. These advantages reveal a wide future in scientific and engineering applications. The basic principle of the numerical reconstruction is described, the effects of experimental parameters of Young's fringes are analyzed and representative results are presented.
A methodology for the rigorous verification of plasma simulation codes
NASA Astrophysics Data System (ADS)
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; ...
2016-04-20
The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time developmentmore » of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.« less
Dressed photons from the viewpoint of photon localization: the entrance to the off-shell science
NASA Astrophysics Data System (ADS)
Saigo, Hayato; Ojima, Izumi; Ohtsu, Motoichi
2017-12-01
In the present paper, a new aspect of the interplay is examined between mathematical-physical arguments and light-matter fusion technologies in terms of the concept of "effective mass", starting from a question: Who has seen a free photon? Owing to the general results due to Newton-Wigner and to Wightman, a position operator is absent for massless free particles with non-zero finite spins, and hence, we cannot observe free photons in any local space regions. To solve this paradox of "photon localization", the effective mass of a photon needs to be generated through the couplings of photons with matter. Here "polaritons" picture as a basic notion in optical and solid physics is shown to verify this viewpoint, which is seen to apply also to more general settings . Focusing on the role played by nanoparticles, we reach a new look at the notion of "dressed photons" as off-shell particles. The perspective above shows that essential mathematical structure of quantum field theory for the so-called elementary particles in subatomic scale can also be applied to certain phenomena in the nano-scale.
A review of astrophysical reconnection
NASA Astrophysics Data System (ADS)
Uzdensky, Dmitri
Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.
Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurfil, Pini
2007-02-07
Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
NASA Astrophysics Data System (ADS)
Frauendorf, S.
2018-04-01
The key elements of the Unified Model are reviewed. The microscopic derivation of the Bohr Hamiltonian by means of adiabatic time-dependent mean field theory is presented. By checking against experimental data the limitations of the Unified Model are delineated. The description of the strong coupling between the rotational and intrinsic degrees of freedom in framework of the rotating mean field is presented from a conceptual point of view. The classification of rotational bands as configurations of rotating quasiparticles is introduced. The occurrence of uniform rotation about an axis that differs from the principle axes of the nuclear density distribution is discussed. The physics behind this tilted-axis rotation, unknown in molecular physics, is explained on a basic level. The new symmetries of the rotating mean field that arise from the various orientations of the angular momentum vector with respect to the triaxial nuclear density distribution and their manifestation by the level sequence of rotational bands are discussed. Resulting phenomena, as transverse wobbling, rotational chirality, magnetic rotation and band termination are discussed. Using the concept of spontaneous symmetry breaking the microscopic underpinning of the rotational degrees is refined.
An integrated strategy for the planetary sciences: 1995 - 2010
NASA Technical Reports Server (NTRS)
1994-01-01
In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.
Pernu, Tuomas K.
2017-01-01
The mental realm seems different to the physical realm; the mental is thought to be dependent on, yet distinct from the physical. But how, exactly, are the two realms supposed to be different, and what, exactly, creates the seemingly insurmountable juxtaposition between the mental and the physical? This review identifies and discusses five marks of the mental, features that set characteristically mental phenomena apart from the characteristically physical phenomena. These five marks (intentionality, consciousness, free will, teleology, and normativity) are not presented as a set of features that define mentality. Rather, each of them is something we seem to associate with phenomena we consider mental, and each of them seems to be in tension with the physical view of reality in its own particular way. It is thus suggested how there is no single mind-body problem, but a set of distinct but interconnected problems. Each of these separate problems is analyzed, and their differences, similarities and connections are identified. This provides a useful basis for future theoretical work on psychology and philosophy of mind, that until now has too often suffered from unclarities, inadequacies, and conflations. PMID:28736537
The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.
Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G
2012-03-01
An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.
Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
NASA Technical Reports Server (NTRS)
Gloersen, Per (Inventor)
2004-01-01
An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.
CFD methodology and validation for turbomachinery flows
NASA Astrophysics Data System (ADS)
Hirsch, Ch.
1994-05-01
The essential problem today, in the application of 3D Navier-Stokes simulations to the design and analysis of turbomachinery components, is the validation of the numerical approximation and of the physical models, in particular the turbulence modelling. Although most of the complex 3D flow phenomena occurring in turbomachinery bladings can be captured with relatively coarse meshes, many detailed flow features are dependent on mesh size, on the turbulence and transition models. A brief review of the present state of the art of CFD methodology is given with emphasis on quality and accuracy of numerical approximations related to viscous flow computations. Considerations related to the mesh influence on solution accuracy are stressed. The basic problems of turbulence and transition modelling are discussed next, with a short summary of the main turbulence models and their applications to representative turbomachinery flows. Validations of present turbulence models indicate that none of the available turbulence models is able to predict all the detailed flow behavior in complex flow interactions. In order to identify the phenomena that can be captured on coarser meshes a detailed understanding of the complex 3D flow in compressor and turbines is necessary. Examples of global validations for different flow configurations, representative of compressor and turbine aerodynamics are presented, including secondary and tip clearance flows.
An update of engine system research at the Army Propulsion Directorate
NASA Technical Reports Server (NTRS)
Bobula, George A.
1990-01-01
The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.
NASA Astrophysics Data System (ADS)
Hong, Xia
2016-03-01
Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.
Evaluation of XHVRB for Capturing Explosive Shock Desensitization
NASA Astrophysics Data System (ADS)
Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric
2017-06-01
Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A fashion model with social interaction
NASA Astrophysics Data System (ADS)
Nakayama, Shoichiro; Nakamura, Yasuyuki
2004-06-01
In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.
An experimental system for controlled exposure of biological samples to electrostatic discharges.
Marjanovič, Igor; Kotnik, Tadej
2013-12-01
Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry. © 2013.
NASA Astrophysics Data System (ADS)
Klein, Stanley A.; Cochran, Christopher
2017-05-01
This paper explores the role of the mind in the physical world. We begin with a brief introduction to distinct types of retrocausal phenomena connected with parapsychology and physics. We provide an introduction to laws of quantum mechanics (QM) that lead some to surmise connections between QM and psychic phenomena (psi). Next, we present our argument that verification of psi will require changes to QM. As a possible placeholder for these changes we introduce "Mind", from Cartesian dualism. This area of research points the way to connections between two fundamental issues in science: the mind-matter hard problem and the measurement problem of QM. Positive outcomes of carefully executed experiments could demonstrate a close relationship between these two problems, including the possibility that sentience plays an important role in the fundamental laws of physics. We focus on a version of Daryl Bem's seeing the future experiments, which should allow for discrimination between various interpretations of QM. Finally, although the authors are psi skeptics, we suggest methodologies that may enable psi phenomena to be acceptable to mainstream science.
Baseball Physics: A New Mechanics Lab
NASA Astrophysics Data System (ADS)
Wagoner, Kasey; Flanagan, Daniel
2018-05-01
The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.; Boody, April; Cox, David (Technical Monitor)
2002-01-01
The BioTube/Magnetic Field Apparatus (MFA) research is designed to provide insight into the organization and operation of the gravity sensing systems of plants and other small organisms. This experiment on STS-107 uses magnetic fields to manipulate sensory cells in plant roots, thus using magnetic fields as a tool to study gravity-related phenomena. The experiment will be located in the SPACEHAB module and is about the size of a household microwave oven. The goal of the experiment is to improve our understanding of the basic phenomenon of how plants respond to gravity. The BioTube/MFA experiment specifically examines how gravitational forces serve as a directional signal for growth in the low-gravity environment of space. As with all basic research, this study will contribute to an improved understanding of how plants grow and will have important implications for improving plant growth and productivity on Earth. In BioTube/MFA, magnetic fields will be used to determine whether the distribution of subcellular starch grains, called amyloplasts, within plant cells predicts the direction in which roots will grow and curve in microgravity.
The bead on a rotating hoop revisited: an unexpected resonance
NASA Astrophysics Data System (ADS)
Raviola, Lisandro A.; Véliz, Maximiliano E.; Salomone, Horacio D.; Olivieri, Néstor A.; Rodríguez, Eduardo E.
2017-01-01
The bead on a rotating hoop is a typical problem in mechanics, frequently posed to junior science and engineering students in basic physics courses. Although this system has a rich dynamics, it is usually not analysed beyond the point particle approximation in undergraduate textbooks, nor empirically investigated. Advanced textbooks show the existence of bifurcations owing to the system's nonlinear nature, and some papers demonstrate, from a theoretical standpoint, its points of contact with phase transition phenomena. However, scarce experimental research has been conducted to better understand its behaviour. We show in this paper that a minor modification to the problem leads to appealing consequences that can be studied both theoretically and empirically with the basic conceptual tools and experimental skills available to junior students. In particular, we go beyond the point particle approximation by treating the bead as a rigid spherical body, and explore the effect of a slightly non-vertical hoop's rotation axis that gives rise to a resonant behaviour not considered in previous works. This study can be accomplished by means of digital video and open source software. The experience can motivate an engaging laboratory project by integrating standard curriculum topics, data analysis and experimental exploration.
The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.
NASA Technical Reports Server (NTRS)
1987-01-01
Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.
NASA Astrophysics Data System (ADS)
Kobayashi, Takayoshi; Okada, Tadashi; Kobayashi, Tetsuro; Nelson, Keith A.; de Silvestri, Sandro
Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology, and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics . This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.
Subsurface And Surface Water Flow Interactions
In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...
NASA Astrophysics Data System (ADS)
Krehl, Peter O. K.
2011-07-01
In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.
Interface Physics in Complex Oxide Heterostructures
NASA Astrophysics Data System (ADS)
Zubko, Pavlo; Gariglio, Stefano; Gabay, Marc; Ghosez, Philippe; Triscone, Jean-Marc
2011-03-01
Complex transition metal oxides span a wide range of crystalline structures and play host to an incredible variety of physical phenomena. High dielectric permittivities, piezo-, pyro-, and ferroelectricity are just a few of the functionalities offered by this class of materials, while the potential for applications of the more exotic properties like high temperature superconductivity and colossal magnetoresistance is still waiting to be fully exploited. With recent advances in deposition techniques, the structural quality of oxide heterostructures now rivals that of the best conventional semiconductors, taking oxide electronics to a new level. Such heterostructures have enabled the fabrication of artificial multifunctional materials. At the same time they have exposed a wealth of phenomena at the boundaries where compounds with different structural instabilities and electronic properties meet, giving unprecedented access to new physics emerging at oxide interfaces. Here we highlight some of these exciting new interface phenomena.
Simple Models for Nanocrystal Growth
NASA Astrophysics Data System (ADS)
Jensen, Pablo
Growth of new materials with tailored properties is one of the most active research directions for physicists. As pointed out by Silvan Schweber in his brilliant analysis of the evolution of physics after World War II [1] "An important transformation has taken place in physics: As had previously happened in chemistry, an ever larger fraction of the efforts in the field were being devoted to the study of novelty rather than to the elucidation of fundamental laws and interactions […] The successes of quantum mechanics at the atomic level immediately made it clear to the more perspicacious physicists that the laws behind the phenomena had been apprehended, that they could therefore control the behavior of simple macroscopic systems and, more importantly, that they could create new structures, new objects and new phenomena […] Condensed matter physics has indeed become the study of systems that have never before existed. Phenomena such as superconductivity are genuine novelties in the universe."
Physics of the inner heliosphere: Mechanisms, models and observational signatures
NASA Technical Reports Server (NTRS)
Withbroe, G. L.
1985-01-01
The physics of the solar wind acceleration phenomena (e.g. effect of transient momentum deposition on the temporal and spatial variation of the temperature, density and flow speed of the solar wind, formation of shocks, etc.) and the resultant effects on observational signatures, particularly spectroscopic signature are studied. Phenomena under study include: (1) wave motions, particularly spectroscopic signatures are studied. Phenomena under study include:(1) wave motions, particularly Alfven and fast mode waves, (2) the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind and (3) coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejections. Also included are the theoretical investigation of spectroscopic plasma diagnostics for the inner heliosphere and the analysis of existing Skylab and other relevant data.
PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)
NASA Astrophysics Data System (ADS)
Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.
2014-03-01
Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
High-altitude electrical discharges associated with thunderstorms and lightning
NASA Astrophysics Data System (ADS)
Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.
2015-12-01
The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.
Observational constraints on black hole accretion disks
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1994-01-01
We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.
Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction
NASA Technical Reports Server (NTRS)
Pike, C. P.; Stevens, N. J.
1980-01-01
A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.
Concept of coherence of learning physical optics
NASA Astrophysics Data System (ADS)
Colombo, Elisa M.; Jaen, Mirta; de Cudmani, Leonor C.
1995-10-01
The aim of the actual paper is to enhance achievements of the text 'Optica Fisica Basica: estructurada alrededor del concepto de coherencia luminosa' (in English 'Basic Physical Optics centered in the concept of coherence'). We consider that this book is a very worth tool when one has to learn or to teach some fundamental concepts of physical optics. It is well known that the topics of physical optics present not easy understanding for students. Even more they also present some difficulties for the teachers when they have to introduce them to the class. First, we think that different phenomena like diffraction and polarization could be well understood if the starting point is a deep comprehension of the concept of interference of light and, associated with this, the fundamental and nothing intuitive concept of coherence of the light. In the reference text the authors propose the use of expression 'stable interference pattern of no uniform intensity' instead of 'pattern of interference' and 'average pattern of uniform untested' instead of 'lack of interference' to make reference that light always interfere but just under restrictive conditions it can be got temporal and spatial stability of the pattern. Another idea we want to stand out is that the ability to observe a 'stable interference pattern of no uniform intensity' is associated not only with the coherence of the source but also with the dimensions of the experimental system and with the temporal and spatial characteristics of the detector used - human eye, photographic film, etc. The proposal is well support by quantitative relations. With an alternate model: a train of waves with a finite length of coherence, it is possible to get range of validity of models, to decide when a source could be considered a 'point' or 'monochromatic' or 'remote', an 'infinite' wave or a train of waves, etc. Using this concept it is possible to achieve a better understanding of phenomena like the polarization of light. Here, it is easier to recognize limitations of the model of light. For example, in the interpretation of the effect of retarding plates on polarizated light. When the plate is wider than the coherence length of the wavetrain of light, the effect disappears.
NASA Astrophysics Data System (ADS)
Suzuki, Masuo
2013-10-01
The mechanism of entropy production in transport phenomena is discussed again by emphasizing the role of symmetry of non-equilibrium states and also by reformulating Einstein’s theory of Brownian motion to derive entropy production from it. This yields conceptual reviews of the previous papers [M. Suzuki, Physica A 390 (2011) 1904; 391 (2012) 1074; 392 (2013) 314]. Separated variational principles of steady states for multi external fields {Xi} and induced currents {Ji} are proposed by extending the principle of minimum integrated entropy production found by the present author for a single external field. The basic strategy of our theory on steady states is to take in all the intermediate processes from the equilibrium state to the final possible steady states in order to study the irreversible physics even in the steady states. As an application of this principle, Gransdorff-Prigogine’s evolution criterion inequality (or stability condition) dXP≡∫dr∑iJidXi≤0 is derived in the stronger form dQi≡∫drJidXi≤0 for individual force Xi and current Ji even in nonlinear responses which depend on all the external forces {Xk} nonlinearly. This is called “separated evolution criterion”. Some explicit demonstrations of the present general theory to simple electric circuits with multi external fields are given in order to clarify the physical essence of our new theory and to realize the condition of its validity concerning the existence of the solutions of the simultaneous equations obtained by the separated variational principles. It is also instructive to compare the two results obtained by the new variational theory and by the old scheme based on the instantaneous entropy production. This seems to be suggestive even to the energy problem in the world.
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Helicity and singular structures in fluid dynamics
Moffatt, H. Keith
2014-01-01
Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175
Optical aurora detectors: using natural optics to motivate education and outreach
NASA Astrophysics Data System (ADS)
Shaw, Joseph A.; Way, Jesse M.; Pust, Nathan J.; Nugent, Paul W.; Coate, Hans; Balster, Daniel
2009-06-01
Natural optical phenomena enjoy a level of interest sufficiently high among a wide array of people to provide ideal education and outreach opportunities. The aurora promotes particularly high interest, perhaps because of its relative rarity in the areas of the world where most people live. A project is being conducted at Montana State University to use common interest and curiosity about auroras to motivate learning and outreach through the design and deployment of optical sensor systems that detect the presence of an auroral display and send cell phone messages to alert interested people. Project participants learn about the physics and optics of the aurora, basic principles of optical system design, radiometric calculations and calibrations, electro-optical detectors, electronics, embedded computer systems, and computer software. The project is moving into a stage where it will provide greatly expanded outreach and education opportunities as optical aurora detector kits are created and disbursed to colleges around our region.
Phase Transitions and Scaling in Systems Far from Equilibrium
NASA Astrophysics Data System (ADS)
Täuber, Uwe C.
2017-03-01
Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.
NASA Astrophysics Data System (ADS)
Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref
2017-11-01
This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.
NASA Technical Reports Server (NTRS)
Lathrop, J. W.
1983-01-01
Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.
Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S
2015-01-01
Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.
Final Technical Report for Riedo Georgia Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedo, Elisa
Nanosheets, nanotubes, nanowires, and nanoparticles are gaining a large interest in the scientific community for their exciting properties, and they hold the potential to become building blocks in integrated nano-electronic and photonic circuits, nano-sensors, batteries electrodes, energy harvesting nano-systems, and nano-electro-mechanical systems (NEMS). While several experiments and theoretical calculations have revealed exciting novel phenomena in these nanostructures, many scientific and technological questions remain open. A fundamental objective guiding the study of nanoscale materials is understanding what are the new rules governing nanoscale properties and at what extent well-known physical macroscopic laws still apply in the nano-world. The vision of thismore » DoE research program is to understand the mechanical properties of nanoscale materials by exploring new experimental methods and theoretical models at the boundaries between continuum mechanics and atomistic models, with the overarching goal of defining the basic laws of mechanics at the nanoscale.« less
Dynamic fluctuation of proteins watched in real time
Ormos, Pál
2008-01-01
The dynamic nature of protein function is a fundamental concept in the physics of proteins. Although the basic general ideas are well accepted most experimental evidence has an indirect nature. The detailed characterization of the dynamics is necessary for the understanding in detail. The dynamic fluctuations thought crucial for the function span an extremely broad time, starting from the picosecond regime. Recently, a few new experimental techniques emerged that permit the observation of dynamical phenomena directly. Notably, pulsed infrared (IR) spectroscopy has been applied with great success to observe structural changes with picosecond time resolution. Using two-dimensional-IR vibrational echo chemical exchange spectroscopy Ishikawa and co-workers [Ishikawa et al. (2008), Proc. Natl. Acad. Sci. U.S.A. 101, 14402–14407] managed to observe the transition between well defined conformational substrates of carbonmonoxy myoglobin directly. This is an important step in improving our insight into the details of protein function. PMID:19436491
Scaling in geology: landforms and earthquakes.
Turcotte, D L
1995-01-01
Landforms and earthquakes appear to be extremely complex; yet, there is order in the complexity. Both satisfy fractal statistics in a variety of ways. A basic question is whether the fractal behavior is due to scale invariance or is the signature of a broadly applicable class of physical processes. Both landscape evolution and regional seismicity appear to be examples of self-organized critical phenomena. A variety of statistical models have been proposed to model landforms, including diffusion-limited aggregation, self-avoiding percolation, and cellular automata. Many authors have studied the behavior of multiple slider-block models, both in terms of the rupture of a fault to generate an earthquake and in terms of the interactions between faults associated with regional seismicity. The slider-block models exhibit a remarkably rich spectrum of behavior; two slider blocks can exhibit low-order chaotic behavior. Large numbers of slider blocks clearly exhibit self-organized critical behavior. Images Fig. 6 PMID:11607562
... Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Physical Activity Basics Recommend on Facebook Tweet Share Compartir How much physical activity do you need? Regular physical activity helps improve ...
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Seventeen experiments in physics are described to demonstrate various physical phenomena. These include the areas of velocity of sound, damped oscillations, plastic deformation of wires, materials, testing, air resistance, spectrum optical filtering, and some new improvised apparatus. (PS)
Emergent Phenomena at Oxide Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H.Y.
2012-02-16
Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burstmore » of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.« less
Development of resource shed delineation in aquatic ecosystems
Environmental issues in aquatic ecosystems of high management priority involve spatially explicit phenomena that occur over vast areas. A "landscape" perspective is thus necessary, including an understanding of how ecological phenomena at a local scale are affected by physical fo...
Solar and Space Physics: A Science for a Technological Society
NASA Technical Reports Server (NTRS)
2013-01-01
From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.
Mass action at the single-molecule level.
Shon, Min Ju; Cohen, Adam E
2012-09-05
We developed a system to reversibly encapsulate small numbers of molecules in an array of nanofabricated "dimples". This system enables highly parallel, long-term, and attachment-free studies of molecular dynamics via single-molecule fluorescence. In studies of bimolecular reactions of small numbers of confined molecules, we see phenomena that, while expected from basic statistical mechanics, are not observed in bulk chemistry. Statistical fluctuations in the occupancy of sealed reaction chambers lead to steady-state fluctuations in reaction equilibria and rates. These phenomena are likely to be important whenever reactions happen in confined geometries.
NASA Technical Reports Server (NTRS)
Coakley, Peter G. (Editor)
1988-01-01
The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.
Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review
NASA Astrophysics Data System (ADS)
Kumamoto, Shin-Ichiro; Kamihigashi, Takashi
2018-03-01
Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.
1991-04-01
week and two years (subchronic GMRL studies versus chronic ITRI and Fh-ITA studies ); exposure concentrations were changed by a factor of 40 (Fh-ITA...a forum for the publication of studies involving inhalation of particles and gases in the respiratory tract, covering the use of aerosols as tools to... study basic physiologic phenomena, their use as selective delivery systems for medication, and the toxic effects of inhaled agents. JOURNAL OF AEROSOL
Structure for identifying, locating and quantifying physical phenomena
Richardson, John G.
2006-10-24
A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.
Richardson, John G.
2006-01-24
A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.
Advanced instrumentation for aeronautical propulsion research
NASA Technical Reports Server (NTRS)
Hartmann, M. J.
1986-01-01
The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Infrared Thermal Imaging as a Tool in University Physics Education
ERIC Educational Resources Information Center
Mollmann, Klaus-Peter; Vollmer, Michael
2007-01-01
Infrared thermal imaging is a valuable tool in physics education at the university level. It can help to visualize and thereby enhance understanding of physical phenomena from mechanics, thermal physics, electromagnetism, optics and radiation physics, qualitatively as well as quantitatively. We report on its use as lecture demonstrations, student…
NASA Astrophysics Data System (ADS)
2014-10-01
Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16-17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.
NASA Astrophysics Data System (ADS)
Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir
2016-01-01
Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.
Electromechanical phenomena in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Lew Yan Voon, L. C.; Willatzen, M.
2011-02-01
Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the measurements and calculations of the bulk electromechanical coefficients remain challenging. Much of the literature has focused on InGaN/GaN, AlGaN/GaN, ZnMgO/ZnO, and ZnCdO/ZnO quantum wells, and InAs/GaAs and AlGaN/AlN quantum dots for their optoelectronic properties; and work on the bending of nanowires have been mostly for GaN and ZnO nanowires. We hope the present review article will stimulate further research into the field of electromechanical phenomena and help in the development of applications.
NASA Technical Reports Server (NTRS)
Weaver, David
2008-01-01
Effectively communicate qualitative and quantitative information orally and in writing. Explain the application of fundamental physical principles to various physical phenomena. Apply appropriate problem-solving techniques to practical and meaningful problems using graphical, mathematical, and written modeling tools. Work effectively in collaborative groups.
Physical Processes in the MAGO/MFT Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garanin, Sergey F; Reinovsky, Robert E.
2015-03-23
The Monograph is devoted to theoretical discussion of the physical effects, which are most significant for the alternative approach to the problem of controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book includes the description of the approach, its difference from the major CTF systems—magnetic confinement and inertial confinement systems. General physical methods of the processes simulation in this approach are considered, including plasma transport phenomena and radiation, and the theory of transverse collisionless shock waves, the surface discharges theory, important for such kind of research. Different flows and magneto-hydrodynamic plasma instabilities occurring in the frames of this approach aremore » also considered. In virtue of the general physical essence of the considered phenomena the presented results are applicable to a wide range of plasma physics and hydrodynamics processes. The book is intended for the plasma physics and hydrodynamics specialists, post-graduate students, and senior students-physicists.« less
Baseball Physics: A New Mechanics Lab
ERIC Educational Resources Information Center
Wagoner, Kasey; Flanagan, Daniel
2018-01-01
The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in "The Physics Teacher," available on Professor Alan Nathan's website, and discussed in "Physics of Baseball & Softball"). We have developed a lab, for an introductory-level physics course, that…
Chlamydomonas: A Model Green Plant.
ERIC Educational Resources Information Center
Sheffield, E.
1985-01-01
Discusses the instructional potential of Chlamydomonas in providing a basis for a range of experimental investigations to illustrate basic biological phenomena. Describes the use of this algae genus in studies of population growth, photosynthesis, and mating behavior. Procedures for laboratory exercises are included. (ML)
The use of lidar for stratospheric measurements
NASA Technical Reports Server (NTRS)
Mccormick, M. P.
1977-01-01
Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.
Millisecond Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.
The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations, and kilohertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin and orbital motion close around the neutron star, and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and some possibly related phenomena in black-hole candidates, and describe the attempts to use these observations to perform measurements of fundamental physical interest in these systems.
Earthquake prediction: the interaction of public policy and science.
Jones, L M
1996-01-01
Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake. PMID:11607656
Physics of atmospheric luminous anomalies: a sieve for SETI?
NASA Astrophysics Data System (ADS)
Teodorani, M.
2004-06-01
Anomalous atmospheric light phenomena reoccur in many locations of Earth, some of which have become a laboratory area for a rigorous instrumented study of the involved physics. Three Italian missions to Hessdalen (Norway) furnished crucial multi-wavelength data, the analysis of which has recently permitted us to establish that the very most part of light phenomena are caused by a geophysical mechanism producing light balls whose structure and radiant characteristics are very similar to the ones of ball lightning. While most of light phenomena in Hessdalen and elsewhere can now be successfully explained within the framework of a natural mechanism, a residual of "locally overlapping data" remains presently unexplained. To investigate them also the ETV (Extraterrestrial Visitation) working hypothesis is taken into account. It is shown how the search for ETV (SETV), consistent with the assumption of interstellar and galactic diffusion, can be carried out only from a rigorous data screening coming originally from the study of natural phenomena.
EDITORIAL: Tribocorrosion: fundamentals, materials and applications
NASA Astrophysics Data System (ADS)
MORE ADDRESSES--> Alfons Fischer,
Refined Characterization of Student Perspectives on Quantum Physics
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2010-01-01
The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…
The Formalization of Cultural Psychology. Reasons and Functions.
Salvatore, Sergio
2017-03-01
In this paper I discuss two basic theses about the formalization of cultural psychology. First, I claim that formalization is a relevant, even necessary stage of development of this domain of science. This is so because formalization allows the scientific language to achieve a much needed autonomy from the commonsensical language of the phenomena that this science deals with. Second, I envisage the two main functions that formalization has to perform in the field of cultural psychology: on the one hand, it has to provide formal rules grounding and constraining the deductive construction of the general theory; on the other hand, it has to provide the devices for supporting the interpretation of local phenomena, in terms of the abductive reconstruction of the network of linkages among empirical occurrences comprising the local phenomena.
Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography
NASA Astrophysics Data System (ADS)
Anderson, Donald M.
1995-07-01
The debate over the relative value of practical or applied versus fundamental research has heated up considerably in recent years, and oceanography has not been spared this re-evaluation of science funding policy. Some federal agencies with marine interests have always focused their resources on practical problems, but those with a traditional commitment to basic research such as the National Science Foundation have increasingly had to fight to maintain their freedom to fund quality science without regard to practical or commercial applications. Within this context, it is instructive to highlight the extent to which certain scientific programs can satisfy both sides of this policy dilemma—i.e. address important societal issues through advances in fundamental or basic research. One clear oceanographic example of such a program involves the phenomena called "red tides" or "harmful algal blooms". This paper describes the nature and extent of the problems caused by these outbreaks, emphasizing the alarming expansion in their incidence and their impacts in recent years, both in the U.S. and worldwide. The objective is to highlight fundamental physical, biological, and chemical oceanographic question that must be addressed if we are to achieve the practical goal of scientifically based management of fisheries resources, public health, and ecosystem health in regions threatened by toxic and harmful algae.
NASA Technical Reports Server (NTRS)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
Nonlinear waves in earth crust faults: application to regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Bambakidis, Gust
2015-04-01
The genesis, development and cessation of regular earthquakes continue to be major problems of modern geophysics. How are earthquakes initiated? What factors determine the rapture velocity, slip velocity, rise time and geometry of rupture? How do accumulated stresses relax after the main shock? These and other questions still need to be answered. In addition, slow slip events have attracted much attention as an additional source for monitoring fault dynamics. Recently discovered phenomena such as deep non-volcanic tremor (NVT), low frequency earthquakes (LFE), very low frequency earthquakes (VLF), and episodic tremor and slip (ETS) have enhanced and complemented our knowledge of fault dynamic. At the same time, these phenomena give rise to new questions about their genesis, properties and relation to regular earthquakes. We have developed a model of macroscopic dry friction which efficiently describes laboratory frictional experiments [1], basic properties of regular earthquakes including post-seismic stress relaxation [3], the occurrence of ambient and triggered NVT [4], and ETS events [5, 6]. Here we will discuss the basics of the model and its geophysical applications. References [1] Gershenzon N.I. & G. Bambakidis (2013) Tribology International, 61, 11-18, http://dx.doi.org/10.1016/j.triboint.2012.11.025 [2] Gershenzon, N.I., G. Bambakidis and T. Skinner (2014) Lubricants 2014, 2, 1-x manuscripts; doi:10.3390/lubricants20x000x; arXiv:1411.1030v2 [3] Gershenzon N.I., Bykov V. G. and Bambakidis G., (2009) Physical Review E 79, 056601 [4] Gershenzon, N. I, G. Bambakidis, (2014a), Bull. Seismol. Soc. Am., 104, 4, doi: 10.1785/0120130234 [5] Gershenzon, N. I.,G. Bambakidis, E. Hauser, A. Ghosh, and K. C. Creager (2011), Geophys. Res. Lett., 38, L01309, doi:10.1029/2010GL045225. [6] Gershenzon, N.I. and G. Bambakidis (2014) Bull. Seismol. Soc. Am., (in press); arXiv:1411.1020
Nuclear Physics of neutron stars
NASA Astrophysics Data System (ADS)
Piekarewicz, Jorge
2015-04-01
One of the overarching questions posed by the recent community report entitled ``Nuclear Physics: Exploring the Heart of Matter'' asks How Does Subatomic Matter Organize Itself and What Phenomena Emerge? With their enormous dynamic range in both density and neutron-proton asymmetry, neutron stars provide ideal laboratories to answer this critical challenge. Indeed, a neutron star is a gold mine for the study of physical phenomena that cut across a variety of disciplines, from particle physics to general relativity. In this presentation--targeted at non-experts--I will focus on the essential role that nuclear physics plays in constraining the dynamics, structure, and composition of neutron stars. In particular, I will discuss some of the many exotic states of matter that are speculated to exist in a neutron star and the impact of nuclear-physics experiments on elucidating their fascinating nature. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FD05-92ER40750.
Sensory Narratives: Capturing Embodiment in Narratives of Movement, Sport, Leisure and Health
ERIC Educational Resources Information Center
Hunter, Lisa; Emerald, Elke
2016-01-01
Narrative research has been employed by many researchers in the field of physical culture (including movement, play, dance, sport, leisure, physical pursuits, physical activity, physical education and health). From our storied worlds, narrative research reveals complex embodied and emplaced social phenomena within this field. However, there are…
Proceedings of the workshop on physics at current accelerators and supercolliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewett, J L; White, A R; Zeppenfeld, D
1993-06-02
This report contains papers from the workshop on SSC physics. The topics of these papers include: electroweak physics; electroweak symmetry breaking; heavy flavors; searches for new phenomena; strong interactions and full acceptance physics; and event simulation. These paper have been cataloged separately on the data base.
Making Visual Illustrations of Physics Accessible to Blind Students
ERIC Educational Resources Information Center
Pereira Torres, Josiane; Gonçalves Mendes, Enicéia
2017-01-01
The teaching of physics often involves the use of illustrations that complement and assist the understanding of a particular situation or physical phenomenon. Overall, the proper use of illustrations can maximize the learning and understanding of concepts and phenomena related to the teaching of science (physics, chemistry, biology) and…
Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model
NASA Astrophysics Data System (ADS)
O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.
2015-12-01
Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.
NASA Astrophysics Data System (ADS)
Vespignani, Alessandro
From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...
The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.
Hendrick, R E
1994-07-01
This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.
Probing Year 11 Physics Students' Understandings of Gravitation
ERIC Educational Resources Information Center
Moore, Simon; Dawson, Vaille
2015-01-01
Science education involves students learning explanations of natural phenomena which are neither obvious nor intuitive. Generally, they have been arrived at and refined by years of dedicated inquiry on the part of large scientific communities. At the same time, these phenomena often concern the objects of everyday experience regarding which…
A Mind/Brain/Matter Model Consistent with Quantum Physics and UFO phenomena
1979-01-01
precognitive nightmares indicating the horror of the Armageddon to come, and these nightmarish paranormal mutilations reveal the true nature of our times...strange, precognitive dreams that were foisted upon a king, nor was it foolish to interpret strange aerial phenomena in terms oi serious threats looming
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X
BOOK REVIEW: The Physics of Fluids and Plasmas: An Introduction for Astrophysicists
NASA Astrophysics Data System (ADS)
Kulsrud, R. M.
1999-08-01
This is the only book with which I am familiar that attempts to cover both fluids and plasmas. It is true that these subjects are closely related, but the logic of attempting to survey both fields, each of which is very broad, in a single volume is not really clear. References between the two subjects are not so frequent and there are excellent readily available texts in fluid mechanics. I would have preferred to see a more extensive coverage of the plasma physics of interest and usefulness to astrophysical students. The book is well written, covering quite a large number of topics in a clear and pleasant style which makes enjoyable reading. It familiarizes the student with a considerable number of interesting and important subjects. The student who reads this book will successfully gain a very good understanding of many, often referred to, astrophysical topics such as accretion discs, dynamos, astrophysical jets and magnetic reconnection. As is clear from the title, the author first treats fluids or neutral gases in this broad survey. He starts from the microscopic point of view, deriving the Boltzmann equation and the H theorem. He then arrives at the ideal and Navier-Stokes fluid equations in a systematic manner by expanding in the small mean free path, a technique also applied in plasma physics. He then discusses the basic properties of fluids that every physics student should know, such as Bernoulli's law, the conservation of circulation, the steepening of waves to form shocks and the jump conditions in a shock. He intersperses his derivations of these relations with helpful illustrations, such as aerodynamic lift and supernova blast waves. He then takes up convection in a compressible medium, and Raleigh-Bernard convection in sufficient detail to give the reader a sound appreciation of these important phenomena. At the end of the fluid section of the book he presents Kolmogoroff turbulence, and in a very useful chapter the physics of fluids in rotating systems. I found this last chapter very helpful, as well as entertaining. The first part of the book is valuable, helping students to find their way through more formal fluid dynamics texts such as those of Landau and Lifshitz, Lamb and even Shu. On the other hand, the second part of the book, on the more complicated field of plasmas, is actually shorter than the first part, 183 pages versus 200 pages devoted to fluids, and is not so well balanced. In this part the author first treats the orbits of individual particles (Chapter 10). He then turns to collections of particles, starting with the rather difficult BBGKY formalism. This is in line with his goal of developing each subject from basic principles. However, only the Vlasov equation emerges from this chapter, and there is no really deep explanation of the more basic kinetic theory being presented. The author then presents the collisionless theory of plasma waves, including Landau damping. He does not go into Landau damping in any great physical detail, contenting himself with describing how one must modify the velocity contour to surround any poles, referring the student to other texts for the true explanation. Only a hazy idea of the significance of this process is given. Chapter 14 concerns magnetohydrodynamics, and again the treatment is sketchy, but some quite interesting examples of magnetohydrodynamics in astrophysics are provided. Chapter 15 takes up magnetic reconnection and Taylor relaxation, while Chapter 16 sketches classical dynamo theory giving the famous Cowling theorem to motivate this theory. Chapter 17 is an epilogue, which touches on a number of topics not covered earlier. In summary, the author is quite successful in bringing many interesting and important plasma astrophysical phenomena to the attention of students, but only in a semiquantitative way. Thus, the more able graduate student cannot really master the subject from this text without also supplementing it with more technical books such as those of Shu, Krall and Trivelpiece and Montgomery and Tidman. In this sense the plasma physics section is more appropriate to an undergraduate course than to a graduate course as the author recommends. Furthermore, there are a number of quite important topics not covered in the book that are essential to any really basic understanding of plasma astrophysics. Examples of such topics are: the fact that thermal conductivity is strongly suppressed across even a weak magnetic field, the interaction caused by plasma instabilities of energetic particles, such as cosmic rays, with the background plasma, the buildup of a small scale magnetic field in turbulence by field line stretching, the Biermann battery mechanism, the Braginski equations for a two fluid plasma with transport coefficients, runaway electrons and the shock acceleration of cosmic rays. It is true there is an attempt to cover some of these topics through the excellent sets of problems for the student at the end of each chapter. However, I am not sure that the student will be able to gain any real understanding in this way, or even be able to solve some of them. In summary, the author has done a really excellent job in qualitatively imparting knowledge of an impressive number of phenomena to the student in an effective and pleasant manner. However, because of the self-imposed constraint to cover two large topics, fluids and plasmas, he has not succeeded in rigorously training the student in the practice of plasma astrophysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, S.R.
1999-01-01
There are many complex phenomena that are so familiar to us that we forget to ask whether or not they are understood. In this lecture, I will discuss several familiar cases of effects that are so ubiquitous that we hardly realize that they defy our normal intuition about why they happen. The examples of poorly understood classical physics that I will choose can all be viewed at a breakfast table. I will mention the long tendrils left behind by honey spooned from one dish to another, the anomalous flow behavior of granular material, and the annoying rings deposited by spilledmore » coffee on a table after the liquid evaporates. These are all nonlinear hydrodynamic phenomena which not only are of technological importance but can also lead the inquisitive into new realms of physics. {copyright} {ital 1999 American Association of Physics Teachers.}« less
Physics of Cell Adhesion Failure and Human Diseases
NASA Astrophysics Data System (ADS)
Family, Fereydoon
Emergent phenomena in living systems, including your ability to read these lines, do not obviously follow as a consequence of the fundamental laws of physics. Understanding the physics of living systems clearly falls outside the conventional boundaries of scientific disciplines and requires a collaborative, multidisciplinary approach. Here I will discuss how theoretical and computational techniques from statistical physics can be used to make progress in explaining the physical mechanisms that underlie complex biological phenomena, including major diseases. In the specific cases of macular degeneration and cancer that we have studied recently, we find that the breakdown of the mechanical stability in the local tissue structure caused by weakening of the cell-cell adhesion plays a key role in the initiation and progression of the disease. This finding can help in the development of new therapies that would prevent or halt the initiation and progression of these diseases.
The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stagg, Elizabeth
2004-01-01
In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.
Bilingualism: Beyond Basic Principles. Multilingual Matters.
ERIC Educational Resources Information Center
Dewaele, Jean-Marc, Ed.; Housen, Alex, Ed.; Wei, Li, Ed.
This collection of papers focuses on individual bilingualism and societal and educational phenomena. After "Introduction and Overview" (Jean-Marc Dewaele, Alex Housen, and Li Wei), 12 papers include: (1) "Who is Afraid of Bilingualism?" (Hugo Baetens Beardsmore); (2) "The Importance of being Bilingual" (John Edwards);…
NASA Astrophysics Data System (ADS)
Maksimov, German A.; Radchenko, Aleksei V.
2006-05-01
Acoustical stimulation (AS) of oil production rate from a well is perspective technology for oil industry but physical mechanisms of acoustical action are not understood clear due to complex character of the phenomena. In practice the role of these mechanisms is appeared non-directly in the form of additional oil output. Thus the validity examination of any physical model has to be carried out as with account of mechanism of acoustic action by itself as well with account of previous and consequent stages dealt with fluid filtration into a well. The advanced model of physical processes taking place at acoustical stimulation is considered in the framework of heating mechanism of acoustical action, but for two-component fluid in porous permeable media. The porous fluid is considered as consisted of light and heavy hydrocarbonaceous phases, which are in a thermodynamic equilibrium. Filtration or acoustical stimulation can change equilibrium balance between phases so the heavy phase can be precipitated on pores walls or dissolved. The set of acoustical, heat and filtration tasks were solved numerically to describe oil output from a well — the final result of acoustical action, which can be compared with experimental data. It is shown that the suggested numerical model allows us to reproduce the basic features of fluid filtration in a well before during and after acoustical stimulation.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won
Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less
Topical Meeting on Picosecond Electronics and Optoelectronics
1987-10-10
Gee, G. D Thurmond, H. W 8-00 AM (Invited Paper) Yen, Hughes Research Laboratories Design and fabrica- FA1 High-Speed Phenomena In GaAs Quantum Wells...D.H. Auston, P.R. Smith, J.C. Bean, J.P. Harbison, and D. Kaplan , "Picosecond Photoconciuctivity in Amorphous Silicon," in Picosecond Phenomena 1980... FA1 -4 QUANTUM-WELL PHYSICS AND DEVICES C. Weisbuch, Thomson CSF, Presider IA 155 , ,Ii : Al-1 High-Speed Phenomena in GaAs Multiple-Quantum-Wells A
Energy and the Confused Student I: Work
ERIC Educational Resources Information Center
Jewett, John W., Jr.
2008-01-01
Energy is a critical concept that is used in analyzing physical phenomena and is often an essential starting point in physics problem-solving. It is a global concept that appears throughout the physics curriculum in mechanics, thermodynamics, electromagnetism, and modern physics. Energy is also at the heart of descriptions of processes in biology,…
"Quod Erat Demonstrandum": Understanding and Explaining Equations in Physics Teacher Education
ERIC Educational Resources Information Center
Karam, Ricardo; Krey, Olaf
2015-01-01
In physics education, equations are commonly seen as calculation tools to solve problems or as concise descriptions of experimental regularities. In physical science, however, equations often play a much more important role associated with the formulation of theories to provide explanations for physical phenomena. In order to overcome this…
Physics Meets Art in the General Education Core
ERIC Educational Resources Information Center
Dark, Marta L.; Hylton, Derrick J.
2018-01-01
This article describes a general education course offering, Physics and the Arts. During the development of this course, physics and arts faculty collaborated closely. We cover the usual physics phenomena for such a course--light, color, and sound--in addition to gravity, equilibrium, and spacetime. Goals of the course are to increase students'…
Notions of Physical Laws in Childhood.
ERIC Educational Resources Information Center
Von Pfuhl Rodrigues, Dulce Madalena Autran
1980-01-01
Presented is an experiment investigating children's awareness of regularities in physical phenomena and their capacity for expressing these regularities. Hypothesized and confirmed is that children can use statements with the form and purpose of a physical law. Cartoons related to Archimedes' principle (and connected gravitation and fluid…
Activation of motility and chemotaxis in the spermatozoa: From invertebrates to humans
YOSHIDA, MANABU
2005-01-01
Activation of the sperm motility and chemotactic behavior of sperm toward eggs are the first communication between spermatozoa and eggs at fertilization, and understanding of the phenomena is a prerequisite for progress of not only basic biology, but also clinical aspects. The nature of molecules derived from eggs by which sperm are activated and attracted towards the eggs and the molecular mechanisms underlying the sperm activation and chemotaxis have been investigated in only a few invertebrate species, sea urchins, ascidians and herring fish. However, knowledge on this phenomena has been ignored in mammalian species including humans. The current review first introduces the studies on the activation and chemotaxis of sperm in marine invertebrates, and the same phenomena in mammals including humans, are described. (Reprod Med Biol 2005; 4: 101–115) PMID:29699215
Transport Phenomena During Equiaxed Solidification of Alloys
NASA Technical Reports Server (NTRS)
Beckermann, C.; deGroh, H. C., III
1997-01-01
Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.
Basic physics of ultrasound imaging.
Aldrich, John E
2007-05-01
The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.
Issues of Long-Term Cryogenic Propellant Storage in Microgravity
NASA Technical Reports Server (NTRS)
Muratov, C. B.; Osipov, Viatcheslav V.; Smelyanskiy, Vadim N.
2011-01-01
Modern multi-layer insulation (MLI) allows to sharply reduce the heat leak into cryogenic propellant storage tanks through the tank surface and, as a consequence, significantly extend the storage duration. In this situation the MLI penetrations, such as support struts, feed lines, etc., become one of the most significant challenges of the tanks heat management. This problem is especially acute for liquid hydrogen (LH2) storage, since currently no efficient cryocoolers exist that operate at very low LH2 temperatures (20K). Even small heat leaks under microgravity conditions and over the period of many months give rise to a complex slowly-developing, large-scale spatiotemporal physical phenomena in a multi-phase liquid-vapor mixture. These phenomena are not well-understood nor can be easily controlled. They can be of a potentially hazardous nature for long-term on-orbital cryogenic torage, propellant loading, tank chilldown, engine restart, and other in-space cryogenic fluid management operations. To support the engineering design solutions that would mitigate these effects a detailed physics-based analysis of heat transfer, vapor bubble formation, growth, motion, coalescence and collapse is required in the presence of stirring jets of different configurations and passive cooling devices such as MLI, thermodynamic vent system, and vapor-cooled shield. To develop physics-based models and correlations reliable for microgravity conditions and long-time scales there is a need for new fundamental data to be collected from on-orbit cryogenic storage experiments. Our report discusses some of these physical phenomena and the design requirements and future studies necessary for their mitigation. Special attention is payed to the phenomena occurring near MLI penetrations.
Teaching nuclear science: A cosmological approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viola, V.E.
1994-10-01
Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, asmore » well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.« less
What Undergraduates Think about Clouds and Fog
ERIC Educational Resources Information Center
Rappaport, Elliot D.
2009-01-01
Weather events are part of every student's experience, and are controlled by basic principles involving the behavior of matter and energy. Despite this, many students have difficulty explaining simple atmospheric phenomena, even after exposure to primary and secondary science curricula. This study investigated the level to which undergraduates…
Prospective Science Teachers' Conceptions about Astronomical Subjects
ERIC Educational Resources Information Center
Küçüközer, Hüseyin
2007-01-01
The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…
Pattern formation and self-organization in plasmas interacting with surfaces
NASA Astrophysics Data System (ADS)
Trelles, Juan Pablo
2016-10-01
Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse emerging applications ranging from nanomaterial synthesis to medicine, show marked sensitivity to pattern formation and a broadened range of controlling parameters. The results related to the characteristics of the patterns, such as their geometric configuration and static or dynamic nature; as well as their controlling factors, including gas composition, driving voltage and current, electrode cooling, and imposed gas flow, are summarized and discussed. The article finalizes with an outlook of the research area, including theoretical, computational, and experimental needs to advance the field.
Are Atoms and Molecules Too Difficult for Primary Children?
ERIC Educational Resources Information Center
Skamp, Keith
1999-01-01
Presents evidence that suggests that upper elementary students can be taught about the particulate nature of matter in a meaningful way. Investigated the effects of lesson sequences on children's ability to apply a particulate understanding to chemical and physical phenomena and found conceptual gains on lesson specific phenomena. (Contains 15…
Basic Instruction in Physical Education.
ERIC Educational Resources Information Center
Priest, Laurie, Ed.
Chapter 1 of this monograph dealing with basic physical education instruction programs traces the history of physical education in colleges and universities from 1885 to 1985. Physical education programs became strongly entrenched within the higher education curriculum with the sanction of college administrators who recognized a responsibility to…
Quantum-like Modeling of Cognition
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2015-09-01
This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James), besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology. In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists) to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making. In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes (solution of the ``inverse Born's problem'') based on a quantum-like representation algorithm (QLRA).
Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976
NASA Technical Reports Server (NTRS)
Runcorn, S. K.; Oreilly, W.; Srnka, L. J.
1977-01-01
The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.
Comparison of the light-flash phenomena observed in space and in laboratory experiments.
McNulty, P J; Pease, V P; Bond, V P
1977-01-01
Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes are in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alpha particles, pions and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if that subject was exposed to cosmic rays in space.
STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.
Slow speed—fast motion: time-lapse recordings in physics education
NASA Astrophysics Data System (ADS)
Vollmer, Michael; Möllmann, Klaus-Peter
2018-05-01
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s-1, allowing us to study transient physics phenomena happening too fast for the naked eye. Here we want to extend the range of phenomena which may be studied by video analysis in the opposite direction by focusing on much longer time scales ranging from minutes, hours to many days or even months. We discuss this time-lapse method, needed equipment and give a few hints of how to produce respective recordings for two specific experiments.
Children's Exploration of Physical Phenomena during Object Play
ERIC Educational Resources Information Center
Solis, S. Lynneth; Curtis, Kaley N.; Hayes-Messinger, Amani
2017-01-01
Researchers propose that experiencing and manipulating physical principles through objects allows young children to formulate scientific intuitions that may serve as precursors to learning in STEM subjects. This may be especially true when children discover these physical principles through object affordances during play. The present study…
Anomalous Light Phenomena vs. Bioelectric Brain Activity
NASA Astrophysics Data System (ADS)
Teodorani, M.; Nobili, G.
We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.
1976-06-01
rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
Optics Demonstrations Using Cylindrical Lenses
ERIC Educational Resources Information Center
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
ERIC Educational Resources Information Center
Pool, Ithiel de Sola, Ed.; And Others
Each of the 31 chapters which comprise this volume reviews the state of the art in a specific area of communications research. The chapters are grouped into three sections, the first of which focuses upon the basic communication process. An introduction to the concept of a communication system and to the phenomena of language and nonverbal…
NASA Technical Reports Server (NTRS)
Sherman, J. W., III
1975-01-01
The papers presented in the marine session may be broadly grouped into several classes: microwave region instruments compared to infrared and visible region sensors, satellite techniques compared to aircraft techniques, open ocean applications compared to coastal region applications, and basic research and understanding of ocean phenomena compared to research techniques that offer immediate applications.
Comparison of Two Analysis Approaches for Measuring Externalized Mental Models
ERIC Educational Resources Information Center
Al-Diban, Sabine; Ifenthaler, Dirk
2011-01-01
Mental models are basic cognitive constructs that are central for understanding phenomena of the world and predicting future events. Our comparison of two analysis approaches, SMD and QFCA, for measuring externalized mental models reveals different levels of abstraction and different perspectives. The advantages of the SMD include possibilities…
Rain rate measurement capabilities using a Seasat type radar altimeter
NASA Technical Reports Server (NTRS)
Goldhirsh, J.; Walsh, E. J.
1981-01-01
The combined use of a space-based radar and a radiometer for measurement of precipitation is discussed. Phenomena to exploit or overcome is surveyed. Basic measurement problems are discussed. Several active systems are proposed, including three ocean systems and two land-sea systems. Recommendations for future research are given.
Bridging Some Intercultural Gaps: Methodological Reflections from Afar
ERIC Educational Resources Information Center
Kama, Amit
2006-01-01
Identity formation and self construction are inherently cultural phenomena. Although it may seem that human psychology--e.g., basic traits, tendencies, "characteristics," or even the definition of self--are universal and ahistorical, this essentialist view is quite erroneous and needs to be recognized and avoided. The task of studying one's…
Information Architecture without Internal Theory: An Inductive Design Process.
ERIC Educational Resources Information Center
Haverty, Marsha
2002-01-01
Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…
On complex adaptive systems and terrorism [rapid communication
NASA Astrophysics Data System (ADS)
Ahmed, E.; Elgazzar, A. S.; Hegazi, A. S.
2005-03-01
Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly “wise” decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed.
Climate Solutions based on advanced scientific discoveries of Allatra physics
NASA Astrophysics Data System (ADS)
Vershigora, Valery
2016-01-01
Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE group) allatra-science.org, last accessed 10 April 2016. offers increased opportunities for advanced fundamental and applied research in climatic engineering.
Quantum Talk: How Small-Group Discussions May Enhance Students' Understanding in Quantum Physics
ERIC Educational Resources Information Center
Bungum, Berit; Bøe, Maria Vetleseter; Henriksen, Ellen Karoline
2018-01-01
Quantum physics challenges our views of the physical world and describes phenomena that cannot be directly observed. The use of language is hence essential in the teaching of quantum physics. With a sociocultural view of learning, we investigate characteristics of preuniversity students' small-group discussions and their potential for enhancing…
The World in Slow Motion: Using a High-Speed Camera in a Physics Workshop
ERIC Educational Resources Information Center
Dewanto, Andreas; Lim, Geok Quee; Kuang, Jianhong; Zhang, Jinfeng; Yeo, Ye
2012-01-01
We present a physics workshop for college students to investigate various physical phenomena using high-speed cameras. The technical specifications required, the step-by-step instructions, as well as the practical limitations of the workshop, are discussed. This workshop is also intended to be a novel way to promote physics to Generation-Y…
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device
NASA Astrophysics Data System (ADS)
Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.
2014-03-01
A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.
The art of spacecraft design: A multidisciplinary challenge
NASA Technical Reports Server (NTRS)
Abdi, F.; Ide, H.; Levine, M.; Austel, L.
1989-01-01
Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
CFD Analysis of Hypersonic Flowfields With Surface Thermochemistry and Ablation
NASA Technical Reports Server (NTRS)
Henline, W. D.
1997-01-01
In the past forty years much progress has been made in computational methods applied to the solution of problems in spacecraft hypervelocity flow and heat transfer. Although the basic thermochemical and physical modeling techniques have changed little in this time, several orders of magnitude increase in the speed of numerically solving the Navier-Stokes and associated energy equations have been achieved. The extent to which this computational power can be applied to the design of spacecraft heat shields is dependent on the proper coupling of the external flow equations to the boundary conditions and governing equations representing the thermal protection system in-depth conduction, pyrolysis and surface ablation phenomena. A discussion of the techniques used to do this in past problems as well as the current state-of-art is provided. Specific examples, including past missions such as Galileo, together with the more recent case studies of ESA/Rosetta Sample Comet Return, Mars Pathfinder and X-33 will be discussed. Modeling assumptions, design approach and computational methods and results are presented.
Theory for plasticity of face-centered cubic metals.
Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun
2014-05-06
The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.
Theory for plasticity of face-centered cubic metals
Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun
2014-01-01
The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control. PMID:24753563
MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, G.; Novascone, S. R.; Williamson, R. L.
2015-09-01
This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less
Contact engineering for 2D materials and devices.
Schulman, Daniel S; Arnold, Andrew J; Das, Saptarshi
2018-05-08
Over the past decade, the field of two-dimensional (2D) layered materials has surged, promising a new platform for studying diverse physical phenomena that are scientifically intriguing and technologically relevant. Contacts are the communication links between these 2D materials and the three-dimensional world for probing and harnessing their exquisite electronic properties. However, fundamental challenges related to contacts often limit the ultimate performance and potential of 2D materials and devices. This article provides a comprehensive overview of the basic understanding and importance of contacts to 2D materials and various strategies for engineering and improving them. In particular, we elucidate the phenomenon of Fermi level pinning at the metal/2D contact interface, the Schottky versus Ohmic nature of the contacts and various contact engineering approaches including interlayer contacts, phase engineered contacts, and basal versus edge plane contacts, among others. Finally, we also discuss some of the relatively under-addressed and unresolved issues, such as contact scaling, and conclude with a future outlook.
NASA Astrophysics Data System (ADS)
Jiménez-Muñoz, J. C.; Sobrino, J. A.; Sòria, G.; Delegido, J.; Bañauls, S.
2017-01-01
Mechanisms of heat transfer and Newton’s law of cooling are introduced in the first physics and biophysics courses for a number of university science majors. Several papers have commented on the derivation of the exponential decay and validity of this law. However, the description of the phenomena is traditionally described without consideration of basic factors that contribute to the cooling rate of a body. One of these key factors is the emissivity of the body, which requires specific instrumentation to be measured. In particular, we present in this paper an experiment to record the cooling temperatures of an avian egg by means of a thermal camera. The objective is to comment on the dependence of the cooling process on emissivity, and then propose a methodology for estimating the emissivity of the cooling object. The method can be applied a priori to other bodies and is suitable for a biophysics laboratory classroom in higher education.
Manuel Stein's Five Decades of Structural Mechanics Contributions (1944-1988)
NASA Technical Reports Server (NTRS)
Mikulas, Martin M.; Card, Michael F.; Peterson, Jim P.; Starnes, James H., Jr.
1998-01-01
Manuel Stein went to work for NACA (National Advisory Committee for Aeronautics) in 1944 and left in 1988. His research contributions spanned five decades of extremely defining times for the aerospace industry. Problems arising from the analysis and design of efficient thin plate and shell aerospace structures have stimulated research over the past half century. The primary structural technology drivers during Dr. Stein's career included 1940's aluminum aircraft, 1950's jet aircraft, 1960's launch vehicles and advanced spacecraft, 1970's reusable launch vehicles and commercial aircraft, and 1980's composite aircraft. Dr. Stein's research was driven by these areas and he made lasting contributions for each. Dr. Stein's research can be characterized by a judicious mixture of physical insight into the problem, understanding of the basic mechanisms, mathematical modeling of the observed phenomena, and extraordinary analytical and numerical solution methodologies of the resulting mathematical models. This paper summarizes Dr. Stein's life and his contributions to the technical community.
Phase transition solutions in geometrically constrained magnetic domain wall models
NASA Astrophysics Data System (ADS)
Chen, Shouxin; Yang, Yisong
2010-02-01
Recent work on magnetic phase transition in nanoscale systems indicates that new physical phenomena, in particular, the Bloch wall width narrowing, arise as a consequence of geometrical confinement of magnetization and leads to the introduction of geometrically constrained domain wall models. In this paper, we present a systematic mathematical analysis on the existence of the solutions of the basic governing equations in such domain wall models. We show that, when the cross section of the geometric constriction is a simple step function, the solutions may be obtained by minimizing the domain wall energy over the constriction and solving the Bogomol'nyi equation outside the constriction. When the cross section and potential density are both even, we establish the existence of an odd domain wall solution realizing the phase transition process between two adjacent domain phases. When the cross section satisfies a certain integrability condition, we prove that a domain wall solution always exists which links two arbitrarily designated domain phases.
Coupling of Carbon Nanotubes to Metallic Contacts
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Datta, S.; Xue, Yong-Xiang; Govindan, T. R. (Technical Monitor)
1999-01-01
The modeling of carbon nanotube-metal contacts is important from both basic and applied view points. For many applications, it is important to design contacts such that the transmission is dictated by intrinsic properties of the nanotube rather than by details of the contact. In this paper, we calculate the electron transmission probability from a nanotube to a free electron metal, which is side-contacted. If the metal-nanotube interface is sufficiently ordered, we find that k-vector conservation plays an important role in determining the coupling, with the physics depending on the area of contact, tube diameter, and chirality. The main results of this paper are: (1) conductance scales with contact length, a phenomena that has been observed in experiments and (2) in the case of uniform coupling between metal and nanotube, the threshold value of the metal Fermi wave vector (below which coupling is insignificant) depends on chirality. Disorder and small phase coherence length relax the need for k-vector conservation, thereby making the coupling stronger.
Understanding the Electrical Interplay Between a Firing Set and Exploding Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Malley, Patrick D.; Garasi, Christopher J.
There is a significant body of work going back centuries that describes in detail the workings of metals that are rapidly transitioned from a solid to a vapor and beyond. These are known as exploding metals and have a variety of applications. A common way to cause metals to explode is through the use of a capacitive discharge circuit (CDC). In the past, methods have been used to simplify the complex, non-linear interaction between the CDC and the metal but in the process some important physics has been lost. This report provides insight into the complex interplay of the metalmore » and the various elements of the CDC. In explaining the basic phenomena in greater detail than has been done before, other interesting cases such as "dwell" are understood in a new light. The net result is a detailed look at the mechanisms which shape the current pulses that scientists and engineers have observed for many decades.« less
Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.
2010-01-01
Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan; Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed outmore » in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.« less
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation
NASA Astrophysics Data System (ADS)
Hansen, Lee D.; McCarlie, V. Wallace
2004-11-01
Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.
Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model
ERIC Educational Resources Information Center
Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert
2015-01-01
The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…
The Unexpected Vista: A Physicist's View of Nature.
ERIC Educational Resources Information Center
Trefil, James S.
This 12-chapter book examines different phenomena as viewed by those trained in physics. These views (or vistas) are promulgated to demonstrate that the infinite variety of things seen in the material world can be reduced to a handful of general laws and to share with the public the richness of the scientist's world view. The phenomena examined…
Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?
ERIC Educational Resources Information Center
Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L
2012-01-01
We present results from our ongoing investigation of student understanding of periodic waves and interference phenomena at the introductory physics level. We have found that many students experience significant difficulties when they attempt to express a distance of interest in terms of the wavelength of a periodic wave. We argue that for these…
Negative Numbers in the 18th and 19th Centuries: Phenomenology and Representations
ERIC Educational Resources Information Center
Maz-Machado, Alexander; Rico-Romero, Luis
2009-01-01
This article presents a categorization of the phenomena and representations used to introduce negative numbers in mathematics books published in Spain during the 18th and 19th centuries. Through a content analysis of fourteen texts which were selected for the study, we distinguished four phenomena typologies: physical, accounting, temporal and…
NASA Technical Reports Server (NTRS)
Li, Chunsheng; Jiang, Shuying; Li, Hongwei; Fu, Qi-Jun
1986-01-01
A tentative model is proposed to account for some features of the microwave millisecond spike emission and its links with the physical processes of associated phenomena during the impulsive phase of large flares by comparing the optical, radio, and X-ray observations on May 16, 1981 to those on October 12, 1981.
Causal Systems Categories: Differences in Novice and Expert Categorization of Causal Phenomena
ERIC Educational Resources Information Center
Rottman, Benjamin M.; Gentner, Dedre; Goldwater, Micah B.
2012-01-01
We investigated the understanding of causal systems categories--categories defined by common causal structure rather than by common domain content--among college students. We asked students who were either novices or experts in the physical sciences to sort descriptions of real-world phenomena that varied in their causal structure (e.g., negative…
ERIC Educational Resources Information Center
Allaire-Duquette, Geneviève; Charland, Patrick; Riopel, Martin
2014-01-01
In physics, women find contexts concerning human biology, medical applications, or natural phenomena highly relevant (Hoffmann, 2002), and the rareness or absence of these in physics curricula may make it more difficult for women to develop and maintain their interest in physics. To date, research in physics education addressing student's…
On the multifractal effects generated by monofractal signals
NASA Astrophysics Data System (ADS)
Grech, Dariusz; Pamuła, Grzegorz
2013-12-01
We study quantitatively the level of false multifractal signal one may encounter while analyzing multifractal phenomena in time series within multifractal detrended fluctuation analysis (MF-DFA). The investigated effect appears as a result of finite length of used data series and is additionally amplified by the long-term memory the data eventually may contain. We provide the detailed quantitative description of such apparent multifractal background signal as a threshold in spread of generalized Hurst exponent values Δh or a threshold in the width of multifractal spectrum Δα below which multifractal properties of the system are only apparent, i.e. do not exist, despite Δα≠0 or Δh≠0. We find this effect quite important for shorter or persistent series and we argue it is linear with respect to autocorrelation exponent γ. Its strength decays according to power law with respect to the length of time series. The influence of basic linear and nonlinear transformations applied to initial data in finite time series with various levels of long memory is also investigated. This provides additional set of semi-analytical results. The obtained formulas are significant in any interdisciplinary application of multifractality, including physics, financial data analysis or physiology, because they allow to separate the ‘true’ multifractal phenomena from the apparent (artificial) multifractal effects. They should be a helpful tool of the first choice to decide whether we do in particular case with the signal with real multiscaling properties or not.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-01-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806
NASA Astrophysics Data System (ADS)
Rodríguez, Nancy
2015-03-01
The use of mathematical tools has long proved to be useful in gaining understanding of complex systems in physics [1]. Recently, many researchers have realized that there is an analogy between emerging phenomena in complex social systems and complex physical or biological systems [4,5,12]. This realization has particularly benefited the modeling and understanding of crime, a ubiquitous phenomena that is far from being understood. In fact, when one is interested in the bulk behavior of patterns that emerge from small and seemingly unrelated interactions as well as decisions that occur at the individual level, the mathematical tools that have been developed in statistical physics, game theory, network theory, dynamical systems, and partial differential equations can be useful in shedding light into the dynamics of these patterns [2-4,6,12].
Quantum physics meets biology.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-12-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.
A new asymptotic method for jump phenomena
NASA Technical Reports Server (NTRS)
Reiss, E. L.
1980-01-01
Physical phenomena involving rapid and sudden transitions, such as snap buckling of elastic shells, explosions, and earthquakes, are characterized mathematically as a small disturbance causing a large-amplitude response. Because of this, standard asymptotic and perturbation methods are ill-suited to these problems. In the present paper, a new method of analyzing jump phenomena is proposed. The principal feature of the method is the representation of the response in terms of rational functions. For illustration, the method is applied to the snap buckling of an elastic arch and to a simple combustion problem.
The X-Ray View of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2007-08-01
X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.
NASA Technical Reports Server (NTRS)
Chung, S.
1973-01-01
Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.
20 CFR 220.102 - Non-severe impairment(s), defined.
Code of Federal Regulations, 2010 CFR
2010-04-01
... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of these include— (1) Physical functions such as walking, standing, sitting, lifting, pushing, pulling...
The Development of Bimodal Bilingualism: Implications for Linguistic Theory.
Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen
2016-01-01
A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.
Dissociative Experience and Cultural Neuroscience: Narrative, Metaphor and Mechanism
Kirmayer, Laurence J.
2016-01-01
Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical “either/or” arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context. PMID:18213511
Dissociative experience and cultural neuroscience: narrative, metaphor and mechanism.
Seligman, Rebecca; Kirmayer, Laurence J
2008-03-01
Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical "either/or" arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context.
The Development of Bimodal Bilingualism: Implications for Linguistic Theory
Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen
2017-01-01
A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and ‘transfer’ as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair. PMID:28603576
Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry
Jaworska, Katarzyna; Lages, Martin
2014-01-01
Binocular rivalry (BR) and motion-induced blindness (MIB) are two phenomena of visual awareness where perception alternates between multiple states despite constant retinal input. Both phenomena have been extensively studied, but the underlying processing remains unclear. It has been suggested that BR and MIB involve the same neural mechanism, but how the two phenomena compete for visual awareness in the same stimulus has not been systematically investigated. Here we introduce BR in a dichoptic stimulus display that can also elicit MIB and examine fluctuations of visual awareness over the course of each trial. Exploiting this paradigm we manipulated stimulus characteristics that are known to influence MIB and BR. In two experiments we found that effects on multistable percepts were incompatible with the idea of a common oscillator. The results suggest instead that local and global stimulus attributes can affect the dynamics of each percept differently. We conclude that the two phenomena of visual awareness share basic temporal characteristics but are most likely influenced by processing at different stages within the visual system. PMID:25240063
Establishment of the New Ecuadorian Solar Physics Phenomena Division
NASA Astrophysics Data System (ADS)
Lopez, E. D.
2014-02-01
Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center
Validation of the Military Entrance Physical Strength Capacity Test. Technical Report 610.
ERIC Educational Resources Information Center
Myers, David C.; And Others
A battery of physical ability tests was validated using a predictive, criterion-related strategy. The battery was given to 1,003 female soldiers and 980 male soldiers before they had begun Army Basic Training. Criterion measures which represented physical competency in Basic Training (physical proficiency tests, sick call, profiles, and separation…
Physical Fitness: A Way of Life. Second Edition.
ERIC Educational Resources Information Center
Getchell, Bud
The basics of physical fitness and information for developing a systematic program of exercise and physical activity for the individual are outlined. This book is divided into three major areas. Part one contains chapters dealing with basic physical fitness, understanding the human body and its needs, and methods of appraising individual fitness.…
Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications
NASA Technical Reports Server (NTRS)
Gavert, R.
2000-01-01
Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2017-05-01
GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.
Physics of vascular brachytherapy.
Jani, S K
1999-08-01
Basic physics plays an important role in understanding the clinical utility of radioisotopes in brachytherapy. Vascular brachytherapy is a very unique application of localized radiation in that dose levels very close to the source are employed to treat tissues within the arterial wall. This article covers basic physics of radioactivity and differentiates between beta and gamma radiations. Physical parameters such as activity, half-life, exposure and absorbed dose have been explained. Finally, the dose distribution around a point source and a linear source is described. The principles of basic physics are likely to play an important role in shaping the emerging technology and its application in vascular brachytherapy.
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
Information physics fundamentals of nanophotonics.
Naruse, Makoto; Tate, Naoya; Aono, Masashi; Ohtsu, Motoichi
2013-05-01
Nanophotonics has been extensively studied with the aim of unveiling and exploiting light-matter interactions that occur at a scale below the diffraction limit of light, and recent progress made in experimental technologies--both in nanomaterial fabrication and characterization--is driving further advancements in the field. From the viewpoint of information, on the other hand, novel architectures, design and analysis principles, and even novel computing paradigms should be considered so that we can fully benefit from the potential of nanophotonics. This paper examines the information physics aspects of nanophotonics. More specifically, we present some fundamental and emergent information properties that stem from optical excitation transfer mediated by optical near-field interactions and the hierarchical properties inherent in optical near-fields. We theoretically and experimentally investigate aspects such as unidirectional signal transfer, energy efficiency and networking effects, among others, and we present their basic theoretical formalisms and describe demonstrations of practical applications. A stochastic analysis of light-assisted material formation is also presented, where an information-based approach provides a deeper understanding of the phenomena involved, such as self-organization. Furthermore, the spatio-temporal dynamics of optical excitation transfer and its inherent stochastic attributes are utilized for solution searching, paving the way to a novel computing paradigm that exploits coherent and dissipative processes in nanophotonics.
Probing the Active Galactic Nuclei using optical spectroscopy
NASA Astrophysics Data System (ADS)
Vivek, M.
Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.
The Joint European Torus (JET)
NASA Astrophysics Data System (ADS)
Rebut, Paul-Henri
2017-02-01
This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.
Limitations of demand- and pressure-driven modeling for large deficient networks
NASA Astrophysics Data System (ADS)
Braun, Mathias; Piller, Olivier; Deuerlein, Jochen; Mortazavi, Iraj
2017-10-01
The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Evolution, Physics, and Cancer: Disrupting Traditional Approache
NASA Astrophysics Data System (ADS)
Austin, Robert
Physicists who were recruited to try and assist with the stubbornly constant mortality rates of cancer world-wide over the past 100 years have basically had the invitation withdrawn by the oncology community. The oncologists became annoyed with the independence of thought and the skepticism of some physicists with continuation of the present paradigm of the cancer genome as the rosette stone as the key to cancer. To quote a recent letter in Physics Today: ``Curing cancer is a complex biological problem to be solved by biologists''. Apparently our mission as minions is is to be high-level technicians. But I think that is wrong and will lead to continuation of the string of failures and deceptions foisted on the public at large by the Medical Industrial Complex, I think we really need to re-think cancer as a phenomena which is driven by evolution and may be desired by the organism and be a product of both the aging of the proteome and the genome. Further, searching for mutations (The Cancer Genome) may be completely the wrong direction, searching for protected genes may be as important as looking for mutated genes. I'll try to present the case that physicists should not have been kicked out of the Medical Industrial Complex that keeps the cancer business humming and profitable.
Nonlinear theory of diffusive acceleration of particles by shock waves
NASA Astrophysics Data System (ADS)
Malkov, M. A.; Drury, L. O'C.
2001-04-01
Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.
2016-06-01
> These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.
The Physics of Life: A Biophysics Course for Non-science Major Undergraduates
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2014-03-01
Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.
Alfred P. Gage and the Introductory Physics Laboratory
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
2016-01-01
This article is about a late 19th-century teacher of secondary school physics. I was originally interested in the apparatus that he sold. This led me to the physics books that he wrote, and these took me to his unusual ideas about ways to use laboratory time to introduce students to the phenomena of physics. More than 100 years later educational…
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2017-06-01
The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The necessity of using such models may change the nature of mathematical modeling in science and, thus, the nature of science, as it happened in the case of Q-models, which not only led to a revolutionary transformation of physics but also opened new possibilities for scientific thinking and mathematical modeling beyond physics.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.
2018-03-01
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomenamore » in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.« less
Is There Any Physics After the End of the Nineteenth Century?
ERIC Educational Resources Information Center
Aubrecht, Gordon J., II
The twentieth century has witnessed a burst of discovery in physics unparalleled in human history. Despite the fact that general relativity and quantum mechanics are well over half a century old, introductory physics classes in high schools, colleges, and universities essentially ignore them. These two seminal ideas, the phenomena of…
The Challenge of Teaching Introductory Physics to Premedical Students
ERIC Educational Resources Information Center
Kortemeyer, Gerd
2007-01-01
Most physics instructors are motivated by a genuine interest in their subject area and in using physics to understand real-world phenomena. While many premedical students may share these interests, most are motivated by fulfilling their degree requirements and gaining admittance into medical school. To achieve this latter goal, they need excellent…
Debunking a Video on Youtube as an Authentic Research Experience
ERIC Educational Resources Information Center
Davidowsky, Philip; Rogers, Michael
2015-01-01
Students are exposed to a variety of unrealistic physical experiences seen in movies, video games, and short online videos. A popular classroom activity has students examine footage to identify what aspects of physics are correctly and incorrectly represented. Some of the physical phenomena pictured might be tricks or illusions made easier to…
BOOK REVIEW: Soft Condensed Matter
NASA Astrophysics Data System (ADS)
Jones, Richard A. L.
2002-11-01
The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. i) The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. ii) The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented phenomenologically and formulated through the current percolation model and the Flory-Stockmayer model. The next two chapters consider the molecular order in soft condensed matter. The rich complexity of liquid crystals is emphasized and the Frederiks transition is described in relation to liquid crystal displays. The crystallinity in polymers is discussed and its usual semi-crystallinity presented as a consequence of entanglement and timescales. The next chapter describes the self-assembly of phases and the great importance of the self-assembly phenomenon in solutions of amphiphilic molecules is largely discussed in several specific phenomena. The book ends with a chapter devoted to the description of soft matter realizations in nature. Special attention is paid to the components and structure of life: nucleic acids, proteins, polysaccharides and membranes. There are two appendixes recalling the basic concepts of thermodynamics and statistical mechanics. In each chapter, several problems are included, and solutions to a selection of them are given. The bibliography proposed is pertinent and each chapter gives details of further reading, mostly addressed to known books on the topic. iii) The presentation of the book is good. Throughout the book, the relevant, basic or new concepts of each topic are typed in bold characters and succinctly defined. The figures are abundant and adequately illustrate the text either by plots of experimental data or by computed predictions from models. Many schematic representations of structures, molecular distributions or arrangements are also included. In summary, the author has succeeded in producing a scientifically rigorous book of affordable size (around 200 pages) that is well illustrated (about 120 figures) and written in a fluent style that describes the many different physical phenomena involved in soft condensed matter. N Clavaguera
The Bio-Logic and machinery of plant morphogenesis.
Niklas, Karl J
2003-04-01
Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.
ERIC Educational Resources Information Center
Ng, Wan; Nguyen, Van Thanh
2006-01-01
Making science relevant in students' learning is an important aspect of science education. This involves the ability to draw in examples from daily contexts to begin with the learning or to apply concepts learnt into familiar everyday phenomena that students observe and experience around them. Another important aspect of science education is the…
Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.
1979-05-01
techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Tai
Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.
Didactic Model--Bridging a Concept with Phenomena
ERIC Educational Resources Information Center
Shternberg, Beba; Yerushalmy, Michal
2004-01-01
The article focuses on a specific method of constructing the concept of function. The core of this method is a didactic model that plays two roles together--on the one hand a role of a model of the concept of function and on the other hand a role of a model of physical phenomena that functions can represent. This synergy of modeling situations and…
ERIC Educational Resources Information Center
Parnafes, Orit
2010-01-01
Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get…
Kepner, Gordon R
2014-08-27
This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
Construction Morphology and the Parallel Architecture of Grammar
ERIC Educational Resources Information Center
Booij, Geert; Audring, Jenny
2017-01-01
This article presents a systematic exposition of how the basic ideas of Construction Grammar (CxG) (Goldberg, 2006) and the Parallel Architecture (PA) of grammar (Jackendoff, 2002]) provide the framework for a proper account of morphological phenomena, in particular word formation. This framework is referred to as Construction Morphology (CxM). As…
A New Computerized Approach for Teaching the Nature of Membrane Potentials.
ERIC Educational Resources Information Center
Vazquez, Jesus
1991-01-01
Presents a BASIC program that can be useful in explaining physicochemical phenomena underlying the generation of membrane potential in excitable cells. Its simplicity allows students to understand the nature of these processes through a direct, hands-on approach. Also, the simulated voltage and concentration kinetics agree well with those…
Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules
NASA Astrophysics Data System (ADS)
Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.
1981-01-01
The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.
ERIC Educational Resources Information Center
Efklides, Anastasia
2012-01-01
The commentary discusses phenomena highlighted in the studies of the special issue such as the hypercorrection effect, overconfidence, and the efficiency of interventions designed to increase monitoring accuracy. The discussion is based on a broader theoretical framework of self-regulation of learning that stresses the inferential character of…
Learning the Psychology of the Tip-of-the-Tongue Phenomenon through On-Line Practice
ERIC Educational Resources Information Center
Ruiz, Marcos; Contreras, María José
2017-01-01
Psychology undergraduates can benefit from direct experiences with laboratory procedures of psychological phenomena. However, they are not always available for students within a distance education program. The present study included students from the Spanish National Distance Education University (UNED) that were to take part in a Basic Psychology…
Atoms and Molecules: Do They Have a Place in Primary Science?
ERIC Educational Resources Information Center
Lee, Kam-Wah Lucille; Tan, Swee-Ngin
2004-01-01
In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…
Video-Taping Dialogs, with Commentary to Teach Cultural Elements.
ERIC Educational Resources Information Center
Taylor, Harvey M.
Description of a project involving the use of the video-tape recorder in a beginning course in Japanese focuses on cultural implications of basic unit dialogues. Instant replay, close-up, and other camera techniques allow students to concentrate on cross-cultural phenomena which are normally not perceived without the use of media. General…
Violent Florida Weather, Science (Experimental): 5343.05.
ERIC Educational Resources Information Center
Espy, J. A., Jr.
This is a basic weather course describing Florida's weather and is designed to give the student the opportunity to study the phenomena which cause the more destructive disturbances in the atmosphere. The study includes the detection, growth, effects and possible alternation of storms. It is suggested that a student enrolled in this course would…
How Can We Improve School Safety Research?
ERIC Educational Resources Information Center
Astor, Ron Avi; Guerra, Nancy; Van Acker, Richard
2010-01-01
The authors of this article consider how education researchers can improve school violence and school safety research by (a) examining gaps in theoretical, conceptual, and basic research on the phenomena of school violence; (b) reviewing key issues in the design and evaluation of evidence-based practices to prevent school violence; and (c)…
Ciencias 2 (Science 2). [Student's Workbook].
ERIC Educational Resources Information Center
Raposo, Lucilia
Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…
A Threshold Theory of the Humor Response
ERIC Educational Resources Information Center
Epstein, Robert; Joker, Veronica R.
2007-01-01
The humor response has long been considered mysterious, and it is given relatively little attention in modern experimental psychology, in spite of the fact that numerous studies suggest that it has substantial benefits for mood and health. Existing theories of humor fail to account for some of the most basic humor phenomena. On most occasions when…
Transient hypothyroidism after withdrawal of thyroxin therapy
Distiller, L. A.; Joffe, B. I.
1975-01-01
Continued administration of large doses of thyroid may not produce hyperthyroidism in euthyroid individuals. Cessation of prolonged high-dosage thyroid replacement can cause transient clinical and biochemical hypothyroidism owing to pituitary suppression. A case is recorded in which both these phenomena are well demonstrated. This case highlights these basic endocrinological principles. PMID:1197170
The Arts as a Venue for Developmental Science: Realizing a Latent Opportunity
ERIC Educational Resources Information Center
Goldstein, Thalia R.; Lerner, Matthew D.; Winner, Ellen
2017-01-01
Children in all cultures readily engage in artistic activities, yet the arts (dance, drama, drawing, and music) have traditionally been marginal topics in the discipline of developmental science. We argue that developmental psychologists cannot afford to ignore such naturalistic activities that involve so many basic phenomena--attention,…