Sample records for basic physical processes

  1. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

    ERIC Educational Resources Information Center

    Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

    2016-01-01

    The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

  2. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    NASA Astrophysics Data System (ADS)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  3. Fluid Dynamics Applied to Streams. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…

  4. Framework and Implementation for Improving Physics Essential Skills via Computer-Based Practice: Vector Math

    ERIC Educational Resources Information Center

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-01-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…

  5. The use of quizStar application for online examination in basic physics course

    NASA Astrophysics Data System (ADS)

    Kustijono, R.; Budiningarti, H.

    2018-03-01

    The purpose of the study is to produce an online Basic Physics exam system using the QuizStar application. This is a research and development with ADDIE model. The steps are: 1) analysis; 2) design; 3) development; 4) implementation; 5) evaluation. System feasibility is reviewed for its validity, practicality, and effectiveness. The subjects of research are 60 Physics Department students of Universitas Negeri Surabaya. The data analysis used is a descriptive statistic. The validity, practicality, and effectiveness scores are measured using a Likert scale. Criteria feasible if the total score of all aspects obtained is ≥ 61%. The results obtained from the online test system by using QuizStar developed are 1) conceptually feasible to use; 2) the system can be implemented in the Basic Physics assessment process, and the existing constraints can be overcome; 3) student's response to system usage is in a good category. The results conclude that QuizStar application is eligible to be used for online Basic Physics exam system.

  6. Maintaining physical activity over time: the importance of basic psychological need satisfaction in developing the physically active self.

    PubMed

    Springer, Judy B; Lamborn, Susie D; Pollard, Diane M

    2013-01-01

    Drawing from self-determination theory, this study investigated adults' perceptions of the process of long-term maintenance of physical activity and how it may relate to their self-identity. Qualitative study included 22 in-depth interviews and participants' recorded personal reflective journals. Health/fitness facility in a Midwestern city. Purposeful sample of 12 adult (age range 29-73 years) members who had engaged in regular physical activity for at least 3 years. Data were collected on participants' perceptions of processes associated with physical activity maintenance. Grounded theory data analysis techniques were used to develop an understanding of participants' long-term physical activity adherence. RESULTS. Analysis revealed three themes organized around basic psychological need satisfaction: (1) Relatedness included receiving and giving support. (2) Competence included challenge and competition, managing weight, and strategies for health management. (3) Autonomy included confidence in the established routine, valuing fitness status, and feeling self-directed. The final theme of physically active self included the personal fit of an active lifestyle, identity as an active person, and attachment to physical activity as life enhancing. Our results suggest that long-term physical activity adherence may be strengthened by promotion of the individual's basic psychological need satisfaction. Adherence is most likely to occur when the value of participation becomes internalized over time as a component of the physically active self.

  7. Childhood & Adolescence: A Psychology of the Growing Person.

    ERIC Educational Resources Information Center

    Stone, L. Joseph; Church, Joseph

    This textbook on the physical and psychological development of children and adolescents is organized as follows: (1) the birth of the baby--physical appearance, basic life processes, behavioral capacities, prenatal development, prenatal environmental influences, biological inheritance, the birth process; (2) the infant--landmarks in the infant's…

  8. Microscopic Virtual Media (MVM) in Physics Learning: Case Study on Students Understanding of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.

    2016-08-01

    A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.

  9. GPU computing in medical physics: a review.

    PubMed

    Pratx, Guillem; Xing, Lei

    2011-05-01

    The graphics processing unit (GPU) has emerged as a competitive platform for computing massively parallel problems. Many computing applications in medical physics can be formulated as data-parallel tasks that exploit the capabilities of the GPU for reducing processing times. The authors review the basic principles of GPU computing as well as the main performance optimization techniques, and survey existing applications in three areas of medical physics, namely image reconstruction, dose calculation and treatment plan optimization, and image processing.

  10. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  11. Extending the trans-contextual model in physical education and leisure-time contexts: examining the role of basic psychological need satisfaction.

    PubMed

    Barkoukis, Vassilis; Hagger, Martin S; Lambropoulos, George; Tsorbatzoudis, Haralambos

    2010-12-01

    The trans-contextual model (TCM) is an integrated model of motivation that aims to explain the processes by which agentic support for autonomous motivation in physical education promotes autonomous motivation and physical activity in a leisure-time context. It is proposed that perceived support for autonomous motivation in physical education is related to autonomous motivation in physical education and leisure-time contexts. Furthermore, relations between autonomous motivation and the immediate antecedents of intentions to engage in physical activity behaviour and actual behaviour are hypothesized. The purpose of the present study was to incorporate the constructs of basic psychological need satisfaction in the TCM to provide a more comprehensive explanation of motivation and demonstrate the robustness of the findings of previous tests of the model that have not incorporated these constructs. Students (N=274) from Greek secondary schools. Participants completed self-report measures of perceived autonomy support, autonomous motivation, and basic psychological need satisfaction in physical education. Follow-up measures of these variables were taken in a leisure-time context along with measures of attitudes, subjective norms, perceived behavioural control (PBC), and intentions from the theory of planned behaviour 1 week later. Self-reported physical activity behaviour was measured 4 weeks later. Results supported TCM hypotheses. Basic psychological need satisfaction variables uniquely predicted autonomous motivation in physical education and leisure time as well as the antecedents of intention, namely, attitudes, and PBC. The basic psychological need satisfaction variables also mediated the effects of perceived autonomy support on autonomous motivation in physical education. Findings support the TCM and provide further information of the mechanisms in the model and integrated theories of motivation in physical education and leisure time.

  12. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  13. Tangent linear super-parameterization: attributable, decomposable moist processes for tropical variability studies

    NASA Astrophysics Data System (ADS)

    Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.

    2015-12-01

    An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.

  14. The Learners' Experience of Variation: Following Students' Threads of Learning Physics in Computer Simulation Sessions

    ERIC Educational Resources Information Center

    Ingerman, Ake; Linder, Cedric; Marshall, Delia

    2009-01-01

    This article attempts to describe students' process of learning physics using the notion of experiencing variation as the basic mechanism for learning, and thus explores what variation, with respect to a particular object of learning, that students experience in their process of constituting understanding. Theoretically, the analysis relies on…

  15. REVIEWS OF TOPICAL PROBLEMS: Physical aspects of cryobiology

    NASA Astrophysics Data System (ADS)

    Zhmakin, A. I.

    2008-03-01

    Physical phenomena during biological freezing and thawing processes at the molecular, cellular, tissue, and organ levels are examined. The basics of cryosurgery and cryopreservation of cells and tissues are presented. Existing cryobiological models, including numerical ones, are reviewed.

  16. Informatics and physics intersubject communications in the 7th and 8th grades of the basics level by means of computer modeling

    NASA Astrophysics Data System (ADS)

    Vasina, A. V.

    2017-01-01

    The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.

  17. Composing Models of Geographic Physical Processes

    NASA Astrophysics Data System (ADS)

    Hofer, Barbara; Frank, Andrew U.

    Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.

  18. A Survey of Basic Instructional Program Graduate Teaching Assistant Development and Support Processes

    ERIC Educational Resources Information Center

    Russell, Jared A.

    2009-01-01

    For over 100 years, basic instructional programs (BIP) have played a pivotal role in providing undergraduates with opportunities to acquire sport-related skills and conceptual knowledge relevant to promoting their involvement in lifelong physical activity and establishing healthy lifestyle habits. Critical to delivering this instructional content…

  19. The Due-Able Process Could Happen to You! Physical Educators, Handicapped Students, and the Law.

    ERIC Educational Resources Information Center

    Kennedy, Susan O.; And Others

    1989-01-01

    This article presents basic information for regular and special physical educators to help them better understand the procedural rights of parents as well as the schools, and to help them make appropriate judgments for the physical education placement and programing of students with handicaps. (IAH)

  20. Multi-scale mechanics from molecules to morphogenesis

    PubMed Central

    Davidson, Lance; von Dassow, Michelangelo; Zhou, Jian

    2009-01-01

    Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis. PMID:19394436

  1. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  2. Plasma physics of extreme astrophysical environments.

    PubMed

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.

  3. The Complementary Teaching of Physics and Music Acoustics - The Science of Sound

    NASA Astrophysics Data System (ADS)

    Milicevic, D.; Markusev, D.; Nesic, Lj.; Djordjevic, G.

    2007-04-01

    The results of some up-to-date solutions referring to teaching physics as a part of educational reform in Serbia, can be negative in a great deal to content and scope of teaching process which has existed so far. Basic course and characteristics of those solutions mean decreasing the number of classes of full-time physics teaching. Such tendencies are unjustified for many reasons, and the basic one is that physics is the foundation of understanding not only natural science, but also art and music (optics and acoustics respectively) and physical education (statics and dynamics). As a result of all this, there is necessity to have natural lessons of physics with the teachers of subjects such as music, art and physical education. The main objective of it is to conclude one good quality teaching cycle, and make student acquire new as well as revise their knowledge in different subjects.

  4. Quantum physics in neuroscience and psychology: A neurophysicalmodel o f mind/brain interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.; Schwartz, Jeffrey M.; Beauregard, Mario

    Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human beings about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual structure for describing neural processes.

  5. The physical basis of explosion and blast injury processes.

    PubMed

    Proud, W G

    2013-03-01

    Energetic materials are widely used in civilian and military applications, such as quarrying and mining, flares, and in munitions. Recent conflicts have involved the widespread use of improvised explosive devices to attack military, civilians and infrastructure. This article gives a basic overview of explosive technology and the underlying physical processes that produce the injuries encountered. In particular aspects relevant to primary and secondary injuries are discussed.

  6. Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  7. An Interdisciplinary Teaching Program in Geriatrics for Physician's Assistants.

    ERIC Educational Resources Information Center

    Stark, Ruth; And Others

    1984-01-01

    Describes a beginning course in clinical geriatrics for medical students and student physician's assistants, physical therapists and nurse practitioners. The course will increase students' ability to identify basic physical, psychological, and social characteristics of the normal aging process; and to recognize prevalent myths and negative…

  8. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  9. Extending the Trans-Contextual Model in Physical Education and Leisure-Time Contexts: Examining the Role of Basic Psychological Need Satisfaction

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Hagger, Martin S.; Lambropoulos, George; Tsorbatzoudis, Haralambos

    2010-01-01

    Background: The trans-contextual model (TCM) is an integrated model of motivation that aims to explain the processes by which agentic support for autonomous motivation in physical education promotes autonomous motivation and physical activity in a leisure-time context. It is proposed that perceived support for autonomous motivation in physical…

  10. Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes

    DTIC Science & Technology

    2015-09-30

    goal is to improve ocean physical state and acoustic state predictive capabilities. The goal fitting the scope of this project is the creation of... Project -scale objectives are to complete targeted studies of oceanographic processes in a few regimes, accompanied by studies of acoustic propagation...by the basic research efforts of this project . An additional objective is to develop improved computational tools for acoustics and for the

  11. The Use of Classroom Assessment to Explore Problem Solving Skills Based on Pre-Service Teachers’ Cognitive Style Dimension in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Rahmawati; Rustaman, Nuryani Y.; Hamidah, Ida; Rusdiana, Dadi

    2017-02-01

    The aim of this study was to explore the use of assessment strategy which can measure problem solving skills of pre-service teachers based on their cognitive style in basic physics course. The sample consisted of 95 persons (male = 15, female = 75). This study used an exploratory research with observation techniques by interview, questionnaire, and test. The results indicated that the lecturer only used paper-pencil test assessment strategy to measure pre-service teachers’ achievement and also used conventional learning strategy. It means that the lecturer did not measure pre-services’ thinking process in learning, like problem solving skills. One of the factors which can influence student problem solving skills is cognitive style as an internal factor. Field Dependent (FD) and Field Independent (FI) are two cognitive styles which were measured with using Group Embedded Figure Test (GEFT) test. The result showed that 82% of pre-service teachers were FD cognitive style and only 18% of pre-service teachers had FI cognitive style. Furthermore, these findings became the fundamental design to develop a problem solving assessment model to measure pre-service teachers’ problem solving skills and process in basic physics course.

  12. Basic materials physics of transparent conducting oxides.

    PubMed

    Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M

    2004-10-07

    Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.

  13. Evaluation of quality of routine physical examination in urban public basic schools in Khartoum State, Sudan.

    PubMed

    Alfadeel, Mona A; Hamid, Yassin H M; El Fadeel, Ogail Ata; Salih, Karimeldin M A

    2015-01-01

    The objectives of this study are to identify the availability of the service logistics in basic public schools (structure as quality concept), to assess steps of physical examination according to the ministry of health guidelines (process as quality concept) and to measure satisfaction of service consumers (pupils) and service providers (teacher and doctors). The study involved seven localities in Sudan using questionnaires and observations. The structure in form of material and human resources was not well maintained, equally the process and procedure of medical examination did not well fit with rules of quality, however, the satisfaction level was within the accepted level. As far as structure, process and outcome were concerned, we are still below the standards in developed countries for many reasons but the level of satisfaction in the present study is more or less similar as in else studies.

  14. Secondary Students' Understanding of Basic Ideas of Special Relativity

    ERIC Educational Resources Information Center

    Dimitriadi, Kyriaki; Halkia, Krystallia

    2012-01-01

    A major topic that has marked "modern physics" is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the…

  15. Cosmic secrets

    NASA Astrophysics Data System (ADS)

    Schommers, W.

    1. The absolute truth. 1.1. Final truth. 1.2. Two important questions. 1.3. Why does the cosmos exist? 1.4. Are the laws of nature independent of the observer's own nature? 1.5. Self0indulgence was dominant. 1.6. Newton's mechanics and its overestimation. 1.7. Scientific realism. 1.8. An important principle: as little outside world as possible. 1.9. Inside world and outside world. 1.10. Principal questions. 1.11. How does science progress? 1.12. Final remarks -- 2. The projection principle. 2.1. The elements of space and time. 2.2. Relationship between matter and space-time. 2.3. Two relevant features. 2.4. Two kinds of "objects". 2.5. Perception processes. 2.6. Inside world and outside world. 2.7. The influence of evolution. 2.8. Information in the picture versus information in basic reality (outside reality). 2.9. Other biological systems. 2.10. How many (geometrical) objects can be in space-time? 2.11. Two types of space-time? 2.12. Summary -- 3. Fictitious realities. 3.1. Conventional quantum theory: critical remarks. 3.2. The projection principle in connection with fictitious realities. 3.3. Distribution of information. 3.4. Basic transformation effects. 3.5. Pictures within projection theory. 3.6. Auxiliary construction. 3.7. Basic laws. 3.8. Extension of conventional quantum theory. 3.9. Only processes are relevant! 3.10. Interactions. 3.11. Distance-independent interactions. 3.12. Arbitrary jumps within (r, t)-space. 3.13.Mach's principle: preliminary remarks. 3.14. Can a lone, elementary object exist in the cosmos? 3.15. The meaning of the potential functions. 3.16. Time. 3.17. Time travel in physics. 3.18. Summary -- 4. Basic reality and levels of reality. 4.1. Hard objects. 4.2. General physical laws. 4.3. States of mind. 4.4. Outside world and basic reality. 4.5. Objective processes. 4.6. Observations. 4.7. No interactions within (r, t)-space. 4.8. The general cannot be deduced from the particular. 4.9. Remarks on the notion "world equation". 4.10. On the anthropic principle. 4.11. Summary -- 5. Cosmological constant and physical reality. 5.1. Introductory remarks. 5.2. The cosmological constant. 5.3. Critical remarks on basic quantum theory. 5.4. Projection theory and the emptying. 5.5. Artificial vacuum effects!? 5.6. On the observation of physically real process. 5.7. Curved spaces. 5.8. Flatness and horizon problem. 5.8. Summary -- 6. Final remarks.

  16. Space Particle Hazard Measurement and Modeling

    DTIC Science & Technology

    2016-09-01

    understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations...Hudson, and B. T. Kress (2013), Direct observation of the CRAND proton radiation belt source, J. Geophys. Res. Space Physics , 118, doi:10.1002...anticritical temperature for spacecraft charging, J. Geophys Res.: Space Physics , 113, 2156-2202, doi: 10.1029/2008JA013161 2010 – Tested basic

  17. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  18. Mechanics Simulations in Second Life

    ERIC Educational Resources Information Center

    Black, Kelly

    2010-01-01

    This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…

  19. Improving Students' Predisposition towards Physical Education by Optimizing Their Motivational Processes in an Acrosport Unit

    ERIC Educational Resources Information Center

    Abós, Ángel; Sevil, Javier; Julián, José Antonio; Abarca-Sos, Alberto; García-González, Luis

    2017-01-01

    Grounded in self-determination theory and achievement goal theory, this quasi-experimental study evaluated the effectiveness of a teaching intervention programme to improve predisposition towards physical education based on developing a task-oriented motivational climate and supporting basic psychological needs. The final sample consisted of 35…

  20. Process depending morphology and resulting physical properties of TPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less

  1. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  2. Students' Use of the Interactive Whiteboard during Physics Group Work

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm; Bungum, Berit

    2015-01-01

    This paper presents a case study of how the interactive whiteboard (IWB) may facilitate collective meaning-making processes in group work in engineering education. In the case, first-year students attended group-work sessions as an organised part of a basic physics course at a Norwegian university college. Each student group was equipped with an…

  3. Creating Interactive Web-Based Environments to Scaffold Creative Reasoning and Meaningful Learning: From Physics to Products

    ERIC Educational Resources Information Center

    Jou, Min; Chuang, Chien-Pen; Wu, Yu-Shiang

    2010-01-01

    With the evolution of the surrounding world market, engineers have to propose innovations in products and processes. Industrial innovation frequently results from an improved understanding of basic physics. In this paper, an approach to accelerate inventive preliminary design is presented. This method combines the main advantages of CBR (Case…

  4. Gender Approach at Physical Culture Lessons at the Second Stage of Basic High Education

    ERIC Educational Resources Information Center

    Vorotilkin?, Irina M.; Anokhina, Olga V.; Galitsyn, Sergey V.; Byankina, Larisa V.; Chiligin, Dmitriy V.

    2016-01-01

    Gender approach in education is a specific impact on the development of boys and girls by the set of factors of education and training process. The objective of this research is the reasoning of applying gender approach at physical culture lessons and creating comfortable environment taking into account the psychophysiological differences of the…

  5. Using Google Earth and Satellite Imagery to Foster Place-Based Teaching in an Introductory Physical Geology Course

    ERIC Educational Resources Information Center

    Monet, Julie; Greene, Todd

    2012-01-01

    Students in an introductory physical geology course often have difficulty making connections between basic course topics and assembling key concepts (beyond textbook examples) to interpret how geologic processes shape the characteristics of the local and regional natural environment. As an approach to address these issues, we designed and…

  6. Money Is Essential: Ownership Intuitions Are Linked to Physical Currency

    ERIC Educational Resources Information Center

    Uhlmann, Eric Luis; Zhu, Luke

    2013-01-01

    Due to basic processes of psychological essentialism and contagion, one particular token of monetary currency is not always interchangeable with another piece of currency of equal economic value. When money loses its physical form it is perceived as "not quite the same" money (i.e., to have partly lost the original essence that distinguished it…

  7. Selection of basic data for numerical modeling of rock mass stress state at Mirny Mining and Processing Works, Alrosa Group of Companies

    NASA Astrophysics Data System (ADS)

    Bokiy, IB; Zoteev, OV; Pul, VV; Pul, EK

    2018-03-01

    The influence of structural features on the strength and elasticity modulus is studied in rock mass in the area of Mirny Mining and Processing Works. The authors make recommendations on the values of physical properties of rocks.

  8. Myths and Concerns Re: The Marathon.

    ERIC Educational Resources Information Center

    Betz, Robert, L.

    The marathon is a specific form of the psycho-process cluster which has its own identifiable characteristics, the basic one being intensity. The primary objective in structuring the marathon is to intensify physical and emotional contact in order to precipitate, encourage, and accelerate the process of behavior change. Myths which have evolved…

  9. Redesign of students’ worksheet on basic physics experiment based on students’ scientific process skills analysis in Melde’s law

    NASA Astrophysics Data System (ADS)

    Nugraha, M. G.; Utari, S.; Saepuzaman, D.; Nugraha, F.

    2018-05-01

    Scientific process skills (SPS) are an intellectual skill to build knowledge, solve problems scientifically, train thinking skills as well as a very important part of the inquiry process and contribute to scientific literacy. Therefore, SPS is very important to be developed. This study aims to develop Student Worksheets (SW) that can trace SPS through basic physics experiments (BPE) on Melde’s law. This research uses R&D method involving 18 physics education department students who take the BPE course as a sample. The research instrument uses an SW designed with a SPS approach that have been reviewed and judged by expert, which includes observing, communicating, classifying, measuring, inferring, predicting, identifying variable, constructing hypothesis, defining variable operationally, designing experiment, acquiring and processing data to conclusions. The result of the research shows that the student’s SPS has not been trained optimally, the students’ answers are not derived from the observations and experiments conducted but derived from the initial knowledge of the students, as well as in the determination of experimental variables, inferring and hypothesis. This result is also supported by a low increase of conceptual content on Melde’s law with n-gain of 0.40. The research findings are used as the basis for the redesign of SW.

  10. Towards physics of neural processes and behavior

    PubMed Central

    Latash, Mark L.

    2016-01-01

    Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. PMID:27497717

  11. Teaching Astrophysics to Upper Level Undergraduates

    NASA Astrophysics Data System (ADS)

    Van Dorn Bradt, Hale

    2010-03-01

    A Socratic peer-instruction method for teaching upper level undergraduates is presented. Basically, the instructor sits with the students and guides their presentations of the material. My two textbooks* (on display) as well as many others are amenable to this type of teaching. *Astronomy Methods - A Physical Approach to Astronomical Observations (CUP 2004) *Astrophysics Processes-The Physics of Astronomical Phenomena (CUP 2008)

  12. Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos

    NASA Astrophysics Data System (ADS)

    Parsons, D. Kent

    2017-09-01

    Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.

  13. Curricular Transformation of Education in the Field of Physical and Sport Education in Slovakia

    ERIC Educational Resources Information Center

    Bendíková, Elena

    2016-01-01

    The study presents basic information on the curricular transformation of physical and sport education in Slovakia after the year 1989, which is related to the education process in the 21st century. What is more, it points to the basis for modern transformation in relation to sports as well as to insufficient undergraduate teacher training and its…

  14. Thermodynamical detection of entanglement by Maxwell's demons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Koji; Vedral, Vlatko; Morikoshi, Fumiaki

    2005-01-01

    Quantum correlation, or entanglement, is now believed to be an indispensable physical resource for certain tasks in quantum information processing, for which classically correlated states cannot be useful. Besides information processing, what kind of physical processes can exploit entanglement? In this paper, we show that there is indeed a more basic relationship between entanglement and its usefulness in thermodynamics. We derive an inequality showing that we can extract more work out of a heat bath via entangled systems than via classically correlated ones. We also analyze the work balance of the process as a heat engine, in connection with themore » second law of thermodynamics.« less

  15. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  16. EduGATE - basic examples for educative purpose using the GATE simulation platform.

    PubMed

    Pietrzyk, Uwe; Zakhnini, Abdelhamid; Axer, Markus; Sauerzapf, Sophie; Benoit, Didier; Gaens, Michaela

    2013-02-01

    EduGATE is a collection of basic examples to introduce students to the fundamental physical aspects of medical imaging devices. It is based on the GATE platform, which has received a wide acceptance in the field of simulating medical imaging devices including SPECT, PET, CT and also applications in radiation therapy. GATE can be configured by commands, which are, for the sake of simplicity, listed in a collection of one or more macro files to set up phantoms, multiple types of sources, detection device, and acquisition parameters. The aim of the EduGATE is to use all these helpful features of GATE to provide insights into the physics of medical imaging by means of a collection of very basic and simple GATE macros in connection with analysis programs based on ROOT, a framework for data processing. A graphical user interface to define a configuration is also included. Copyright © 2012. Published by Elsevier GmbH.

  17. The physics of proton therapy.

    PubMed

    Newhauser, Wayne D; Zhang, Rui

    2015-04-21

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  18. The physics of proton therapy

    PubMed Central

    Newhauser, Wayne D; Zhang, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097

  19. 1976 annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.

  20. Physics of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Caballero, Rodrigo

    2014-11-01

    With the increasing attention paid to climate change, there is ever-growing interest in atmospheric physics and the processes by which the atmosphere affects Earth's energy balance. This self-contained text, written for advanced undergraduate and graduate students in physics or meteorology, assumes no prior knowledge apart from basic mechanics and calculus and contains material for a complete course. Augmented with worked examples, the text considers all aspects of atmospheric physics except dynamics, including moist thermodynamics, cloud microphysics, atmospheric radiation and remote sensing, and will be an invaluable resource for students and researchers.

  1. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  2. Violation of the 2nd Law of Thermodynamics in the Quantum Microworld

    NASA Astrophysics Data System (ADS)

    Čápek, V.; Frege, O.

    2002-05-01

    For one open quantum system recently reported to work as a perpetuum mobile of the second kind, basic equations providing basis for discussion of physics beyond the system activity are rederived in an appreciably simpler manner. The equations become exact in one specific scaling limit corresponding to the physical regime where internal processes (relaxations) in the system are commensurable or even slower than relaxation processes induced by bath. In the high-temperature (i.e. classical) limit, the system ceases to work, i.e., validity of the second law is reestablished.

  3. Basic Processes and Instructional Practices in Teaching Reading. Reading Education Report No. 7.

    ERIC Educational Resources Information Center

    Pearson, P. David; Kamil, Michael L.

    Informal reading models, although more like metaphors than truly scientific models, may be just as useful in making instructional decisions as formal models are in physical science. Models are a vital part of the instructional process even when teachers are not consciously aware of their presence. Three classes of reading models are bottom-up…

  4. AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: basic concepts and new technology.

    PubMed

    Hangiandreou, Nicholas J

    2003-01-01

    Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon. Copyright RSNA, 2003

  5. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  6. Physical Activity Basics

    MedlinePlus

    ... Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Physical Activity Basics Recommend on Facebook Tweet Share Compartir How much physical activity do you need? Regular physical activity helps improve ...

  7. Basic and Advanced Numerical Performances Relate to Mathematical Expertise but Are Fully Mediated by Visuospatial Skills

    PubMed Central

    2016-01-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. PMID:26913930

  8. Software "Socrative" and Smartphones as Tools for Implementation of Basic Processes of Active Physics Learning in Classroom: An Initial Feasibility Study with Prospective Teachers

    ERIC Educational Resources Information Center

    Méndez Coca, David; Slisko, Josip

    2013-01-01

    Many physics professors have difficulties to know and assess in real time the learning of the students in their courses. Nevertheless, today, with Internet and the new technology devices that the students use every day, like smartphones, such tasks can be carried out relatively easy. The professor pose a few questions in "Socrative," the…

  9. Towards physics of neural processes and behavior.

    PubMed

    Latash, Mark L

    2016-10-01

    Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of Civic Engagement: Theoretical and Methodological Issues

    ERIC Educational Resources Information Center

    Lerner, Richard M.; Wang, Jun; Champine, Robey B.; Warren, Daniel J. A.; Erickson, Karl

    2014-01-01

    Within contemporary developmental science, models derived from relational developmental systems (RDS) metatheory emphasize that the basic process of human development involves mutually-influential relations, termed developmental regulations, between the developing individual and his or her complex and changing physical, social, and cultural…

  11. Physical methods for genetic transformation of fungi and yeast

    NASA Astrophysics Data System (ADS)

    Rivera, Ana Leonor; Magaña-Ortíz, Denis; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.

    2014-06-01

    The production of transgenic fungi is a routine process. Currently, it is possible to insert genes from other fungi, viruses, bacteria and even animals, albeit with low efficiency, into the genomes of a number of fungal species. Genetic transformation requires the penetration of the transgene through the fungal cell wall, a process that can be facilitated by biological or physical methods. Novel methodologies for the efficient introduction of specific genes and stronger promoters are needed to increase production levels. A possible solution to this problem is the recently discovered shock-wave-mediated transformation. The objective of this article is to review the state of the art of the physical methods used for genetic fungi transformation and to describe some of the basic physics and molecular biology behind them.

  12. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Transducers of physical fields based on two-channel coaxial optical fibres

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Brazhnikova, T. Yu; Korobkov, V. V.; Prokhorov, N. I.

    1995-10-01

    An analysis is made of a general basic configuration and of the transfer function of a fibre-optic transducer based on controlled coupling in a multilayer two-channel coaxial optical fibre. The influence of the structure parameters and of external factors on the errors of a sensitive element in such a transducer is considered. The results are given of an investigation of the characteristics of a number of transducers constructed in accordance with the basic configuration.

  13. USU Center of Excellence in Theory and Analysis of the Geo-Plasma Environment

    DTIC Science & Technology

    1992-05-25

    AFM CN AOR9002 B. ADORE=S ICRYi. Stei md ZIP Codej 10. SOURCE OF FUNOING NOS. BuildPng 410 PROGRAM PROJECT TASK WORK UNIT.- Buling 410D..203 ELEMENT ...OTH radars, communications, and orbiting space structures. The overall goal of the research is to obtain a better understanding of the basic chemical...and orbiting space structures. The overall goal of the research is to obtain a better understanding of the basic chemical and physical processes

  14. Evaluation of clinically significant adverse events in patients discharged from a tertiary-care emergency department in Taiwan

    PubMed Central

    Wang, Lee-Min; How, Chorng-Kuang; Yang, Ming-Chin; Su, Syi

    2013-01-01

    Objective To investigate the reasons for the occurrence of clinically significant adverse events (CSAEs) in emergency department-discharged patients through emergency physicians' (EPs) subjective reasoning and senior EPs' objective evaluation. Design This was a combined prospective follow-up and retrospective review of cases of consecutive adult non-traumatic patients who presented to a tertiary-care emergency department in Taiwan between 1 September 2005 and 31 July 2006. Data were extracted from ‘on-duty EPs' subjective reasoning for discharging patients with CSAEs (study group) and without CSAEs (control group)’ and ‘objective evaluation of CSAEs by senior EPs, using clinical evidences such as recording history, physical examinations, laboratory/radiological examinations and observation of inadequacies in the basic management process (such as recording history, physical examinations, laboratory/radiological examinations and observation) as the guide’. Subjective reasons for discharging patients’ improvement of symptoms, and the certainty of safety of the discharge were compared in the two groups using χ2 statistics or t test. Results Of the 20 512 discharged cases, there were 1370 return visits (6.7%, 95% CI 6.3% to 7%) and 165 CSAEs due to physicians' factors (0.82%, 95% CI 0.75% to 0.95%). In comparisons between the study group and the control group, only some components of discharge reasoning showed a significant difference (p<0.001). Inadequacies in the basic management process were the main cause of CSAEs (164/165). Conclusion The authors recommended that EP follow-up of the basic management processes (including history record, physical examination, laboratory and radiological examinations, clinical symptoms/signs and treatment) using clinical evidence as a guideline should be made mandatory. PMID:22433586

  15. Predictors of Physical Altercation among Adolescents in Residential Substance Abuse Treatment

    PubMed Central

    Crawley, Rachel D.; Becan, Jennifer Edwards; Knight, Danica Kalling; Joe, George W.; Flynn, Patrick M.

    2014-01-01

    This study tested the hypothesis that basic social information-processing components represented by family conflict, peer aggression, and pro-aggression cognitive scripts are related to aggression and social problems among adolescents in substance abuse treatment. The sample consisted of 547 adolescents in two community-based residential facilities. Correlation results indicated that more peer aggression is related to more pro-aggression scripts; scripts, peer aggression, and family conflict are associated with social problems; and in-treatment physical altercation involvement is predicted by higher peer aggression. Findings suggest that social information-processing components are valuable for treatment research. PMID:26622072

  16. Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems

    NASA Astrophysics Data System (ADS)

    Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.

    2017-02-01

    Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.

  17. Phloem physics: mechanisms, constraints, and perspectives.

    PubMed

    Jensen, Kaare H

    2018-04-13

    Plants have evolved specialized vascular tissues for the distribution of energy, water, nutrients, and for communication. The phloem transports sugars from photosynthetic source regions (e.g. mature leaves) to sugar sinks (e.g. developing tissues such as buds, flowers, roots). Moreover, chemical signals such as hormones, RNAs and proteins also move in the phloem. Basic physical processes strongly limit phloem anatomy and function. This paper provides an overview of recent research and perspectives on phloem biomechanics and the physical constraints relevant to sugar transport in plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. “Using Statistical Comparisons between SPartICus Cirrus Microphysical Measurements, Detailed Cloud Models, and GCM Cloud Parameterizations to Understand Physical Processes Controlling Cirrus Properties and to Improve the Cloud Parameterizations”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Sarah

    2015-12-01

    The dual objectives of this project were improving our basic understanding of processes that control cirrus microphysical properties and improvement of the representation of these processes in the parameterizations. A major effort in the proposed research was to integrate, calibrate, and better understand the uncertainties in all of these measurements.

  19. Basic Studies in Plasma Physics

    DTIC Science & Technology

    1998-01-31

    Process in One Dimension, (with B. Derrida and E. Speer), Jour. Stat. Phys., 1997, to appear. [16] Comment on "Phase Separation in Two-Dimensional Fluids...Short version to appear in January 1997 in Physics Today ; the long version is to appear in Jour. Stat. Phys., 87, 463-468, 1997. [25] Microscopic...SIAM J. Math. Anal. 27, 110-134, 1996. [31] Microscopic-Shock Profiles: Exact Solution of a Non-Equilibrium System, (with B. Derrida , S. Janowsky and

  20. Devices and Systems for Nonlinear Optical Information Processing

    DTIC Science & Technology

    1988-11-01

    in the VLSI literature [7, 8, 9], in which basic physical principles have been invoked to both understand current VLSI performance and to project...the first time, that in fact accounts for a very wide range of observed but previously unexplained phenomena [Appendix 4; AFOSR Jour. Publ. 7, AFOSR...the variable grating mode liquid crystal device A. R. Tongay. Jr. Abstract. The physical principles of operation of the variable grating mode C. S. Wu

  1. Experimental and Computational Modeling of Rarefaction Wave Eliminators Suitable for the BRL 2.44 m Shock Tube

    DTIC Science & Technology

    1983-06-01

    made directly from the oscilloscope. Finai data processing was completed with the computer, printer , and plotter. Tables and plots of pressure-time...BASIC DATA ACQUISITION PRINTER FINAL DATA REDUCTION TEKTRONIX 4641 HARD COPY[ TEKTRONIX 4631 PLOTTER COMPUTER TEKTRONIX TEKTRONIX I 4662 4052 DIGITAL...79409 Columbus, OH 43201 1 University of Arkansas 1 Director Department of Physics Applied Physics Laboratory ATTN: Prof 0. Zinke The Johns Hopkins

  2. Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario

    Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrectmore » for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.« less

  3. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction

    PubMed Central

    Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario

    2005-01-01

    Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524

  4. Concept confusion and concept discernment in basic magnetism using analogical reasoning

    NASA Astrophysics Data System (ADS)

    Lemmer, Miriam; Nicodimus Morabe, Olebogeng

    2017-07-01

    Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.

  5. Papers presented to the Conference on the Processes of Planetary Rifting

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The basic problems of processes of planetary rifting are addressed from the following viewpoints: (1) speculation as to the origin and development of rifts; (2) rifts on other planets; (3) tectonics; (4) geology; (5) chemistry of the lithosphere; (6) physics of the lithosphere; and (7) resources associated with rifting. The state of ignorance on the subject and its remedy is debated.

  6. Using the hydrologic model mike she to assess disturbance impacts on watershed process and responses across the Southeastern U.S.

    Treesearch

    Ge Sun; Jianbiao Lu; Steven G. McNulty; James M. Vose; Devendra M. Amayta

    2006-01-01

    A clear understanding of the basic hydrologic processes is needed to restore and manage watersheds across the diverse physiologic gradients in the Southeastern U.S. We evaluated a physically based, spatially distributed watershed hydrologic model called MIKE SHE/MIKE 11 to evaluate disturbance impacts on water use and yield across the region. Long-term forest...

  7. Preliminary investigation of the relationship between capillary pore pressure and early shrinkage cracking of concrete.

    DOT National Transportation Integrated Search

    1997-01-01

    The purpose of this study was to design experimental laboratory equipment and perform experiments to investigate the basic physical processes that occur in concrete for periods of several hours to several days after mixing. The study was conducted in...

  8. The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.

    PubMed

    Hendrick, R E

    1994-07-01

    This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.

  9. Micro-Macro Duality and Space-Time Emergence

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    2011-03-01

    The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).

  10. Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills.

    PubMed

    Sella, Francesco; Sader, Elie; Lolliot, Simon; Cohen Kadosh, Roi

    2016-09-01

    Recent studies have highlighted the potential role of basic numerical processing in the acquisition of numerical and mathematical competences. However, it is debated whether high-level numerical skills and mathematics depends specifically on basic numerical representations. In this study mathematicians and nonmathematicians performed a basic number line task, which required mapping positive and negative numbers on a physical horizontal line, and has been shown to correlate with more advanced numerical abilities and mathematical achievement. We found that mathematicians were more accurate compared with nonmathematicians when mapping positive, but not negative numbers, which are considered numerical primitives and cultural artifacts, respectively. Moreover, performance on positive number mapping could predict whether one is a mathematician or not, and was mediated by more advanced mathematical skills. This finding might suggest a link between basic and advanced mathematical skills. However, when we included visuospatial skills, as measured by block design subtest, the mediation analysis revealed that the relation between the performance in the number line task and the group membership was explained by non-numerical visuospatial skills. These results demonstrate that relation between basic, even specific, numerical skills and advanced mathematical achievement can be artifactual and explained by visuospatial processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  12. Physical methods for genetic plant transformation

    NASA Astrophysics Data System (ADS)

    Rivera, Ana Leonor; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.

    2012-09-01

    Production of transgenic plants is a routine process for many crop species. Transgenes are introduced into plants to confer novel traits such as improved nutritional qualities, tolerance to pollutants, resistance to pathogens and for studies of plant metabolism. Nowadays, it is possible to insert genes from plants evolutionary distant from the host plant, as well as from fungi, viruses, bacteria and even animals. Genetic transformation requires penetration of the transgene through the plant cell wall, facilitated by biological or physical methods. The objective of this article is to review the state of the art of the physical methods used for genetic plant transformation and to describe the basic physics behind them.

  13. Geophysical System Verification (GSV): A Physics-Based Alternative to Geophysical Prove-Outs for Munitions Response

    DTIC Science & Technology

    2015-09-24

    engineering field, or equivalent experience, and are familiar with the basic MR processes. Section 2 summarizes the physical justification for the... Engineering Problems (SAGEEP), Seattle, April 2 -6, 2006. 8. Interstate Technology and Regulatory Council. 2004. “Geophysical Prove-Outs for Munitions Response...YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

  14. Geophysical System Verification (GSV): A Physics-Based Alternative to Geophysical Prove-Outs for Munitions Response. Addendum

    DTIC Science & Technology

    2015-09-24

    engineering field, or equivalent experience, and are familiar with the basic MR processes. Section 2 summarizes the physical justification for the... Engineering Problems (SAGEEP), Seattle, April 2 -6, 2006. 8. Interstate Technology and Regulatory Council. 2004. “Geophysical Prove-Outs for Munitions Response...YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

  15. Notes to Parents - When Your Child Has Undergone Amputation.

    ERIC Educational Resources Information Center

    Pierson, Margaret Hauser

    Designed to provide parents with basic information about the physical and emotional aspects of amputation, the booklet gives information about the grief response, body image, phantom limb sensation, stump care, and the prosthesis. The section on the grief process describes normal reactions to loss: denial, anger, bargaining, depression, and…

  16. The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.

    2007-09-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less

  17. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  18. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  19. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    NASA Astrophysics Data System (ADS)

    Isliker, H.; Pisokas, Th.; Strintzi, D.; Vlahos, L.

    2010-08-01

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R /LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  20. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  1. Planning Model of Physics Learning In Senior High School To Develop Problem Solving Creativity Based On National Standard Of Education

    NASA Astrophysics Data System (ADS)

    Putra, A.; Masril, M.; Yurnetti, Y.

    2018-04-01

    One of the causes of low achievement of student’s competence in physics learning in high school is the process which they have not been able to develop student’s creativity in problem solving. This is shown that the teacher’s learning plan is not accordance with the National Eduction Standard. This study aims to produce a reconstruction model of physics learning that fullfil the competency standards, content standards, and assessment standards in accordance with applicable curriculum standards. The development process follows: Needs analysis, product design, product development, implementation, and product evaluation. The research process involves 2 peers judgment, 4 experts judgment and two study groups of high school students in Padang. The data obtained, in the form of qualitative and quantitative data that collected through documentation, observation, questionnaires, and tests. The result of this research up to the product development stage that obtained the physics learning plan model that meets the validity of the content and the validity of the construction in terms of the fulfillment of Basic Competence, Content Standards, Process Standards and Assessment Standards.

  2. ecode - Electron Transport Algorithm Testing v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene

    2016-10-05

    ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less

  3. Basic Instruction in Physical Education.

    ERIC Educational Resources Information Center

    Priest, Laurie, Ed.

    Chapter 1 of this monograph dealing with basic physical education instruction programs traces the history of physical education in colleges and universities from 1885 to 1985. Physical education programs became strongly entrenched within the higher education curriculum with the sanction of college administrators who recognized a responsibility to…

  4. Water Resources Research October 1, 1979 - September 30, 1980: Summary statements of research activities by the Water Resources Division

    USGS Publications Warehouse

    ,

    1981-01-01

    Research in the WRD had its beginnings in the late 1950's when the "core research" line item was added to the Congressional budget. Since this time the Federal program has grown from a "basic sciences" program to one that includes a broad spectrum of basic and applied scientific investigations. Water resources research in WRD includes the study of water in all its phases and uses the basic sciences of mathematics, chemistry, physics, biology, geology and engineering to gain a fundamental understanding of the processes that affect the movement of water and its chemical constituents through hydrologic systems. The basic knowledge and methodologies derived from water resources research are applicable not only to the solution of current problems associated with the Nation's water resources, but also to anticipated hydrologic issues.

  5. Teaching Sustainability in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Coffey, David

    Guiding students to a better understanding of sustainability is a key part of a modern undergraduate education. Since 2014, Warren Wilson College has incorporated a sustainability component into our introductory physics courses. Students perform energy audits and abatement plans for a business or building. In the process, students strengthen their competency with basic physics concepts including energy, power, units, and conservation of energy but also gain an appreciation of the complexity of sustainability as well as the need for quantitative understanding. These courses are taught to mostly undergraduate science majors. The challenges and opportunities of incorporating such a broad and personalized educational component will be discussed.

  6. Model of a programmable quantum processing unit based on a quantum transistor effect

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  7. Framework and implementation for improving physics essential skills via computer-based practice: Vector math

    NASA Astrophysics Data System (ADS)

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-06-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.

  8. Spectral-element simulations of wave propagation in complex exploration-industry models: Imaging and adjoint tomography

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Nissen-Meyer, T.; Morency, C.; Tromp, J.

    2008-12-01

    Seismic imaging in the exploration industry is often based upon ray-theoretical migration techniques (e.g., Kirchhoff) or other ideas which neglect some fraction of the seismic wavefield (e.g., wavefield continuation for acoustic-wave first arrivals) in the inversion process. In a companion paper we discuss the possibility of solving the full physical forward problem (i.e., including visco- and poroelastic, anisotropic media) using the spectral-element method. With such a tool at hand, we can readily apply the adjoint method to tomographic inversions, i.e., iteratively improving an initial 3D background model to fit the data. In the context of this inversion process, we draw connections between kernels in adjoint tomography and basic imaging principles in migration. We show that the images obtained by migration are nothing but particular kinds of adjoint kernels (mainly density kernels). Migration is basically a first step in the iterative inversion process of adjoint tomography. We apply the approach to basic 2D problems involving layered structures, overthrusting faults, topography, salt domes, and poroelastic regions.

  9. Global stability for epidemic models on multiplex networks.

    PubMed

    Huang, Yu-Jhe; Juang, Jonq; Liang, Yu-Hao; Wang, Hsin-Yu

    2018-05-01

    In this work, we consider an epidemic model in a two-layer network in which the dynamics of susceptible-infected-susceptible process in the physical layer coexists with that of a cyclic process of unaware-aware-unaware in the virtual layer. For such multiplex network, we shall define the basic reproduction number [Formula: see text] in the virtual layer, which is similar to the basic reproduction number [Formula: see text] defined in the physical layer. We show analytically that if [Formula: see text] and [Formula: see text], then the disease and information free equilibrium is globally stable and if [Formula: see text] and [Formula: see text], then the disease free and information saturated equilibrium is globally stable for all initial conditions except at the origin. In the case of [Formula: see text], whether the disease dies out or not depends on the competition between how well the information is transmitted in the virtual layer and how contagious the disease is in the physical layer. In particular, it is numerically demonstrated that if the difference in [Formula: see text] and [Formula: see text] is greater than the product of [Formula: see text], the deviation of [Formula: see text] from 1 and the relative infection rate for an aware susceptible individual, then the disease dies out. Otherwise, the disease breaks out.

  10. Information Fluxes as Concept for Categorizations of Life

    NASA Astrophysics Data System (ADS)

    Hildenbrand, Georg; Hausmann, M.

    2012-05-01

    Definitions of life are controversially discussed; however, they are mostly depending on bio- evolutionary driven arguments. Here, we propose a systematic, theoretical approach to the question what life is, by categorization and classification of different levels of life. This approach is mainly based on the analysis of information flux occurring in systems being suspicious to be alive, and on the analysis of their power of environmental control. In a first step, we show that all biological definitions of life can be derived from basic physical principles of entropy (number of possible states of a thermodynamic system) and of the energy needed for controlling entropic development. In a next step we discuss how any process where information flux is generated, regardless of its materialization is defined and related to classical definitions of life. In a third step we resume the proposed classification scheme in its most basic way, looking only for existence of data storage, its processing, and its environmental control. We join inhere a short discussion how the materialization of information fluxes can take place depending on the special properties of the four basic physical forces. Having done all this we are able to give everybody a classification catalogue at hand that one can categorize the kind of life one is talking about, thus overcoming the obstacles deriving from the simple appearing question whether something is alive or not. On its most basic level as presented here, our scheme offers a categorization for fire, crystals, prions, viruses, spores, up to cells and even tardigrada and cryostases.

  11. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  12. The Myth of Learning by Instruction from without

    ERIC Educational Resources Information Center

    Swann, Joanna

    2007-01-01

    Despite the ascendancy of constructivism, it seems that many, if not most, educationists in higher education and elsewhere still assume there is some transference of information to the learner from the social or physical environment, and that any process of interpretation and construction takes place after this basic information has been passively…

  13. A procedure for classifying textural facies in gravel-bed rivers

    Treesearch

    John M. Buffington; David R. Montgomery

    1999-01-01

    Textural patches (i.e., grain-size facies) are commonly observed in gravel-bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified...

  14. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  15. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  16. 20 CFR 220.102 - Non-severe impairment(s), defined.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of these include— (1) Physical functions such as walking, standing, sitting, lifting, pushing, pulling...

  17. Validation of the Military Entrance Physical Strength Capacity Test. Technical Report 610.

    ERIC Educational Resources Information Center

    Myers, David C.; And Others

    A battery of physical ability tests was validated using a predictive, criterion-related strategy. The battery was given to 1,003 female soldiers and 980 male soldiers before they had begun Army Basic Training. Criterion measures which represented physical competency in Basic Training (physical proficiency tests, sick call, profiles, and separation…

  18. Physical Fitness: A Way of Life. Second Edition.

    ERIC Educational Resources Information Center

    Getchell, Bud

    The basics of physical fitness and information for developing a systematic program of exercise and physical activity for the individual are outlined. This book is divided into three major areas. Part one contains chapters dealing with basic physical fitness, understanding the human body and its needs, and methods of appraising individual fitness.…

  19. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations (Version 2)

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2017-05-01

    GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.

  20. Physics of vascular brachytherapy.

    PubMed

    Jani, S K

    1999-08-01

    Basic physics plays an important role in understanding the clinical utility of radioisotopes in brachytherapy. Vascular brachytherapy is a very unique application of localized radiation in that dose levels very close to the source are employed to treat tissues within the arterial wall. This article covers basic physics of radioactivity and differentiates between beta and gamma radiations. Physical parameters such as activity, half-life, exposure and absorbed dose have been explained. Finally, the dose distribution around a point source and a linear source is described. The principles of basic physics are likely to play an important role in shaping the emerging technology and its application in vascular brachytherapy.

  1. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  2. A new supernova light curve modeling program

    NASA Astrophysics Data System (ADS)

    Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József

    2017-12-01

    Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.

  3. Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    Maynard, N. C. (Editor)

    1979-01-01

    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.

  4. Influence of Additives on Masonry and Protective Paints’ Quality

    NASA Astrophysics Data System (ADS)

    Kostiunina, I. L.; Vyboishchik, A. V.

    2017-11-01

    The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.

  5. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  6. MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  7. MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambelli, J.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  8. MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, S.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  9. MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  10. WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  11. WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  12. WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  13. WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevins, N.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  14. WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambelli, J.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  15. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  16. A Model for Generation of Martian Surface Dust, Soil and Rock Coatings: Physical vs. Chemical Interactions, and Palagonitic Plus Hydrothermal Alteration

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.

    1999-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.

  17. Effect of the Environment and Environmental Uncertainty on Ship Routes

    DTIC Science & Technology

    2012-06-01

    models consisting of basic differential equations simulating the fluid dynamic process and physics of the environment. Based on Newton’s second law of...Charles and Hazel Hall, for their unconditional love and support. They were there for me during this entire process , as they have been throughout...A simple transit across the Atlantic Ocean can easily become a rough voyage if the ship encounters high winds, which in turn will cause a high sea

  18. Understanding and Observing Subglacial Friction Using Seismology

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction. Basal icequake mechanisms also provide unique constraints on subglacial stress state as well as variations in water pressures. Together, the use of standard seismological concepts and new observations thus promises to provide new constraints on subglacial mechanics and focus attention back on the basic physical processes involved.

  19. Visual Basic Applications to Physics Teaching

    ERIC Educational Resources Information Center

    Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena

    2011-01-01

    Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…

  20. Order & Diversity in the Living World: Teaching Taxonomy & Systematics in Schools.

    ERIC Educational Resources Information Center

    Crisci, Jorge V.; And Others

    The world faces two converging crises, a lack of biological literacy and a rapid increase in environmental degradation. In order to insure a secure and safe environment for future generations of organisms, all humans must be taught the basic biological and physical processes that sustain life. This project seeks to fill the chasm in the general…

  1. Dataflow models for fault-tolerant control systems

    NASA Technical Reports Server (NTRS)

    Papadopoulos, G. M.

    1984-01-01

    Dataflow concepts are used to generate a unified hardware/software model of redundant physical systems which are prone to faults. Basic results in input congruence and synchronization are shown to reduce to a simple model of data exchanges between processing sites. Procedures are given for the construction of congruence schemata, the distinguishing features of any correctly designed redundant system.

  2. The physical characteristics of human proteins in different biological functions.

    PubMed

    Wang, Tengjiao; Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.

  3. The physical characteristics of human proteins in different biological functions

    PubMed Central

    Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865

  4. A new method of search design of refrigerating systems containing a liquid and gaseous working medium based on the graph model of the physical operating principle

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. A.; Sorokin, V. S.; Mishustina, S. N.; Proidakova, N. V.; Postupaeva, S. G.

    2017-01-01

    The article describes a new method of search design of refrigerating systems, the basis of which is represented by a graph model of the physical operating principle based on thermodynamical description of physical processes. The mathematical model of the physical operating principle has been substantiated, and the basic abstract theorems relatively semantic load applied to nodes and edges of the graph have been represented. The necessity and the physical operating principle, sufficient for the given model and intended for the considered device class, were demonstrated by the example of a vapour-compression refrigerating plant. The example of obtaining a multitude of engineering solutions of a vapour-compression refrigerating plant has been considered.

  5. Energy transfer processes between Tm(3+) and Ho(3+) in LiYF4. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Oezen, Goenuel

    1991-01-01

    The spectroscopic properties of the crystal LiYF4 doped with Thulium (Tm) and Holmium (Ho) ions are studied. The basic processes are discussed that regulate the transfer of energy between these two ions in this crystal. In this system Tm is considered the donor ion and the Ho the acceptor ion. Spectral data were obtained on three samples available: LiYF4:Tm(3+) (0.5 percent), LiYF4:Ho(3+) (1 percent), and LiYF4:Tm(3+) (5 percent), Ho(3+) (0.2 percent). Spectral data, which include absorption, luminescence, excitation, and the response to pulsed excitation in a wide range of temperatures, allowed to look at the energy transfer processes by considering the kinetic evolution of the emission of the two ions (donor and acceptor) involved in the process and the basic spectroscopic properties related to them. This inclusive approach has led to the validation of the physical model.

  6. Computer simulations in teaching physics: Development and implementation of a hypermedia system for high school teachers

    NASA Astrophysics Data System (ADS)

    da Silva, A. M. R.; de Macêdo, J. A.

    2016-06-01

    On the basis of the technological advancement in the middle and the difficulty of learning by the students in the discipline of physics, this article describes the process of elaboration and implementation of a hypermedia system for high school teachers involving computer simulations for teaching basic concepts of electromagnetism, using free tool. With the completion and publication of the project there will be a new possibility of interaction of students and teachers with the technology in the classroom and in labs.

  7. Physical Processes Controlling Earth's Climate

    NASA Technical Reports Server (NTRS)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  8. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  9. Plasma Arc Welding: How it Works

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur

    2004-01-01

    The physical principles of PAW from basic arcs to keyholing to variable polarity are outlined. A very brief account of the physics of PAW with an eye to the needs of a welder is presented. Understanding is usually (but not always) superior to handbooks and is required (unless dumb luck intervenes) for innovation. And, in any case, all welders by nature desire to know. A bit of history of the rise and fall of the Variable Polarity (VP) PA process in fabrication of the Space Shuttle External Tank is included.

  10. Planning for Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.

  11. Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  12. Student Teachers' Attitudes about Basic Physics Laboratory

    ERIC Educational Resources Information Center

    Yesilyurt, Mustafa

    2004-01-01

    In this study an attitude questionnaire was developed and applied to identify student teachers' interests and attitudes for basic physics laboratory. In physics laboratory practices run by a higher education institution a new attitude questionnaire was developed and applied twice in two terms by researchers to increase student teachers' success…

  13. Quantitative Methodology: A Guide for Emerging Physical Education and Adapted Physical Education Researchers

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Hodge, Samuel R.

    2015-01-01

    Emerging professionals, particularly senior-level undergraduate and graduate students in kinesiology who have an interest in physical education for individuals with and without disabilities, should understand the basic assumptions of the quantitative research paradigm. Knowledge of basic assumptions is critical for conducting, analyzing, and…

  14. Processes and Instructions Encouraging Thai Students Consistently Pass the First Round of The National Physics Academics Olympiads

    NASA Astrophysics Data System (ADS)

    Teevasuthornsakul, Chalongchai; Manosuttirit, Artnarong; Suwanno, Chirasak; Sutsaguan, Lanchakorn

    2010-07-01

    This research focused on the processes and physics instruction of 25 schools located in Bangkok and up-country in Thailand in order to explain why many of their students have passed the first round of the National Physics Academic Olympiads consistently. The high schools in Thailand can apply and support their students and develop their potential in physics. The development of physics professional is the cornerstone of a developing country and increase physics quality base on sciences development in the future in Thailand. The duration of collecting all data was from May 2007 to May 2009. The methodology for this research was the qualitative research method. The researchers interviewed managers, teachers and students at each school location or used semi-structured interview forms. The researchers used the Investigator Triangulation approach to check the qualitative data and the Cause and Effect Analysis approach to analyze situation factors. The results showed that in processes were include 1) enhanced the students with the Academic Olympiads to develop the capacities of students; 2) motivated the students with processes such as good instruction in physics and special privilege in continuing studies in university; and 3) tutorial systems and drill and practice systems support students into subsequent rounds. 4) Admiration activities accommodated the students continually and suitably. Most of the teaching styles used in their lectures, in both basic contents and practice, encouraged students to analyze entrance examination papers, little laboratory. While students say that" They just know that a physics laboratory is very important to study physics after they passed Olympic camp."

  15. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.

    PubMed

    Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S

    2011-02-01

    Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  16. Issues in access to safe drinking water and basic hygiene for persons with physical disabilities in rural Cambodia.

    PubMed

    MacLeod, Marin; Pann, Mala; Cantwell, Ray; Moore, Spencer

    2014-12-01

    An estimated 1.6 million people die from diarrheal diseases each year due to lack of access to safe water and sanitation, and persons with physical disabilities face additional barriers. In Cambodia, approximately 5% of the population is disabled, presenting substantial obstacles in accessing these basic services. The purpose of this study was twofold: first, to identify the challenges facing persons with physical disabilities in accessing safe household water and basic hygiene in rural Cambodia; and, second, to use these results to generate policy and practice recommendations for the water and sanitation hygiene sector implementing water treatment system interventions in rural settings. Fifteen field interviews were conducted with persons with physical disabilities. Thematic analysis was used to identify six main themes. The results indicated that environmental barriers to access were greater in the workplace than household settings and those persons with disabilities had greater awareness about safe drinking water compared to basic hygiene. Additionally, lack of physical strength, distance to water, and lack of financial means were noted as common access barriers. The findings support ongoing research and offer insight into the particular challenges facing persons with physical disabilities in rural areas in accessing safe drinking water and basic hygiene.

  17. Education Research in Physical Therapy: Visions of the Possible.

    PubMed

    Jensen, Gail M; Nordstrom, Terrence; Segal, Richard L; McCallum, Christine; Graham, Cecilia; Greenfield, Bruce

    2016-12-01

    Education research has been labeled the "hardest science" of all, given the challenges of teaching and learning in an environment encompassing a mixture of social interactions, events, and problems coupled with a persistent belief that education depends more on common sense than on disciplined knowledge and skill. The American Educational Research Association specifies that education research-as a scientific field of study-examines teaching and learning processes that shape educational outcomes across settings and that a learning process takes place throughout a person's life. The complexity of learning and learning environments requires not only a diverse array of research methods but also a community of education researchers committed to exploring critical questions in the education of physical therapists. Although basic science research and clinical research in physical therapy have continued to expand through growth in the numbers of funded physical therapist researchers, the profession still lacks a robust and vibrant community of education researchers. In this perspective article, the American Council of Academic Physical Therapy Task Force on Education Research proposes a compelling rationale for building a much-needed foundation for education research in physical therapy, including a set of recommendations for immediate action. © 2016 American Physical Therapy Association.

  18. Analysis on the science literacy ability of vocational school physics teacher using NOSLiT indicators

    NASA Astrophysics Data System (ADS)

    Rahayu, P. P.; Masykuri, M.; Soeparmi

    2018-04-01

    Professional Physics teacher must be able to manage science learning process by associating science itself with the daily life. At first the teacher must have competency in the ability of science literacy. The target of this research is vocational school Physics teachers for the purpose to describe their ability on science literacy. This research is a survey research using test method. The test instrument is The NOSLiT by Wenning.Research results are: 1) Scientific Nomenclature : 38.46 %, 2) Basic experimental and observational abilities : 38.46 %, 3) Rules of scientific evidence : 0%, 4) Postulate science: 15.38%, 5) scientific disposition: 7. 69%.Conclusion: The result of each indicator shows that the ability of science literacy of vocational school Physics teachers has not met the expectations yet. It’s can be used as the reflection for education experts to improve their science literacy ability so that can be applied to the learning process that directly or indirectly will have an impact on improving the students’ science literacy.

  19. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  20. Basic Machines - The "Nuts and Bolts" of Technical Physics Minicourse, Career Oriented Pre-Technical Physics. Preliminary Edition.

    ERIC Educational Resources Information Center

    Bullock, Bob; And Others

    This minicourse was prepared for use with secondary physics students in the Dallas Independent School District and is one option in a physics program which provides for the selection of topics on the basis of student career needs and interests. This minicourse was aimed at two levels in the study of basic machines. The "light" level…

  1. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  2. Knowledge Elicitation: Phase 1 Final Report. Volume 1

    DTIC Science & Technology

    1989-06-01

    34 i.e., superficial features such as type of apparatus, while experts rely on basic principles of physics (e.g., conservation of energy ) and generic...process. This last part of the model would typically consist of descriptions of the impact of the process on one or more of the objects. Figure 3-4...goals. The elicitor is probing for an underlying mental model. 9. Expert: To kill him before he can take any action that would impact on our forces. 10

  3. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.

  4. Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''

    NASA Astrophysics Data System (ADS)

    Kurki-Suonio, Kaarle

    2011-03-01

    This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.

  5. A Social Psychological Perspective on the Links between Close Relationships and Health.

    PubMed

    Slatcher, Richard B; Selcuk, Emre

    2017-02-01

    The association between the quality of people's close relationships and their physical health is well-established. But from a psychological perspective, how do close relationships impact physical health? This article summarizes recent work seeking to identify the relationship processes, psychological mediators and moderators of the links between close relationships and health, with an emphasis on studies of married and cohabitating couples. We begin with a brief review of a recent meta-analysis of the links between marital quality and health. We then describe our strength and strain model of marriage and health, homing in on one process- partner responsiveness -and one moderator- adult attachment style -to illustrate ways in which basic relationship science can inform our understanding of how relationships impact physical health. We conclude with a brief discussion of promising directions in the study of close relationships and health.

  6. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  7. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  8. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians

    Treesearch

    Barton D. Clinton

    2003-01-01

    Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...

  9. Dielectric properties of agricultural products – fundamental principles, influencing factors, and measurement technirques. Chapter 4. Electrotechnologies for Food Processing: Book Series. Volume 3. Radio-Frequency Heating

    USDA-ARS?s Scientific Manuscript database

    In this chapter, definitions of dielectric properties, or permittivity, of materials and a brief discussion of the fundamental principles governing their behavior with respect to influencing factors are presented. The basic physics of the influence of frequency of the electric fields and temperatur...

  10. ISTP CDF Skeleton Editor

    NASA Technical Reports Server (NTRS)

    Chimiak, Reine; Harris, Bernard; Williams, Phillip

    2013-01-01

    Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.

  11. Geodynamics in Modular Course System at Vienna High School

    NASA Astrophysics Data System (ADS)

    Pitzl-Reinbacher, Robert

    2017-04-01

    In Austria there are currently some major reforms concerning high school education underway. At our school, the Bundesgymnasium and Bundesrealgymnasium Draschestrasse, a school belonging to the Vienna Bilingual Schooling branch, we have developed a course system in which pupils can select courses and determine individually which areas of study they want to focus on. Specially devised courses have been developed which fit within the framework of natural and applied sciences but go beyond the basic curriculum in physics. Geodynamics is the title of one of these courses, with an emphasis on weather, climate and geodynamic processes of the earth's crust. The course „The restless earth" deals specifically with plate tectonics, vulcanism, formation of mountains and processes such as ocean currents and the physics involved. Apart from theoretical basics we use manifold media and approaches concerning visualization: graphics, map data taken from Google Maps, satellite pictures, and others. The knowledge acquired in this course is broadened and consolidated by means of excursions to the Vienna Natural History Museum where additional instructional materials and visual aids are on display. Based on this experience pupils are requested to hold presentations (individually or in groups) at the end of the course.

  12. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.

    There are deep similarities between Whitehead's idea of the process by which nature unfolds and the ideas of quantum theory. Whitehead says that the world is made of ''actual occasions'', each of which arises from potentialities created by prior actual occasions. These actual occasions are happenings modeled on experiential events, each of which comes into being and then perishes, only to be replaced by a successor. It is these experience-like happenings that are the basic realities of nature, according to Whitehead, not the persisting physical particles that Newtonian physics took be the basic entities. Similarly, Heisenberg says that what ismore » really happening in a quantum process is the emergence of an actual from potentialities created by prior actualities. In the orthodox Copenhagen interpretation of quantum theory the actual things to which the theory refer are increments in ''our knowledge''. These increments are experiential events. The particles of classical physics lose their fundamental status: they dissolve into diffuse clouds of possibilities. At each stage of the unfolding of nature the complete cloud of possibilities acts like the potentiality for the occurrence of a next increment in knowledge, whose occurrence can radically change the cloud of possibilities/potentialities for the still-later increments in knowledge. The fundamental difference between these ideas about nature and the classical ideas that reigned from the time of Newton until this century concerns the status of the experiential aspects of nature. These are things such as thoughts, ideas, feelings, and sensations. They are distinguished from the physical aspects of nature, which are described in terms of quantities explicitly located in tiny regions of space and time. According to the ideas of classical physics the physical world is made up exclusively of things of this latter type, and the unfolding of the physical world is determined by causal connections involving only these things. Thus experiential-type things could be considered to influence the flow of physical events only insofar as they themselves were completely determined by physical things. In other words, experiential-type qualities. insofar as they could affect the flow of physical events, could--within the framework of classical physics--not be free: they must be completely determined by the physical aspects of nature that are, by themselves,sufficient to determine the flow of physical events.« less

  14. Nuclear Medicine Physics: The Basics. 7th ed.

    PubMed

    Mihailidis, Dimitris

    2012-10-01

    Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.

  15. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  16. Students' Notions regarding "Covariance" of a Physical Theory

    ERIC Educational Resources Information Center

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    A physical theory is said to be covariant with respect to a certain class of transformations when its basic equations retain their "form" under those transformations. It is one of the basic notions encountered in physics, particularly in the domain of relativity. In this paper we study in some detail how students deal with this notion in different…

  17. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  18. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  19. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  20. [Effects of sexual maturation on body composition, dermatoglyphics, somatotype and basic physical qualities of adolescents].

    PubMed

    Linhares, Renato Vidal; Matta, Marcelo de Oliveira; Lima, Jorge R P; Dantas, Paulo M Silva; Costa, Mônica Barros; Fernandes Filho, José

    2009-02-01

    Describe the characteristics of body composition, somatotype, basic physical qualities, dermatoglyphics and bone age regarding sexual maturation stages of boys. A transversal study was carried out in 136 boys, between 10 and 14 years of age. Clinical assessment, physical examination and radiography of wrists and hands to calculate bone age were performed. A tendency of increasing total body mass, stature, body mass index, body bone diameters and muscle circumferences and basic physical qualities was found with the advancing of puberty. No differences were found in dermatoglyphics and somatotype between different stages of puberty maturation. Due to the changes in important parameters of physical training that occur during puberty, it can be concluded that the selection of children and adolescents for sport training and competitions should be based not only on chronological age but also, and mainly on sexual maturation, for better physical assessment and appropriate training for this population.

  1. Hydrodynamic theory of active matter

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank; Grill, Stephan W.; Salbreux, Guillaume

    2018-07-01

    We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

  2. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  3. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  4. The Role of Theory and Modeling in the International Living with a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, M.

    2004-01-01

    Today, theory and modeling play a critical role in our quest to understand the connection between solar eruptive phenomena, and their impacts in interplanetary space and in the near-Earth space environment. This new role is based on two developments, one related to the goal of basic physical understanding, and the other to space weather-related applications. When targeting physical our focus is shifting away from investigations aiming at basic discoveries, to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical explanations that need to be verified or falsified by empirical evidence. Within this paradigm, a much more tight integration between theory modeling, and space flight mission design and execution is not only beneficial, but essential. One of the prime objectives of space weather research, on the other hand, is the prediction of space environmental conditions for the benefit of humans and their assets in near-Earth space and on the ground, as well as on solar system bodies like Mars that are of interest to exploration by humans. By its very nature, prediction requires modeling, which, in turn, requires understanding. We will present an overview of the role of theory and modeling within the International Living With a Star program. Specifically, we will focus on an assessment of present-day and future capabilities, as well as on strategies for tight integration of theory and modeling in space science investigations.

  5. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  6. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    NASA Astrophysics Data System (ADS)

    Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.

  7. Fugitive Dust Emissions: Development of a Real-time Monitor

    DTIC Science & Technology

    2011-10-01

    the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective

  8. Elastic Domain Wall Waves in Ferroelectric Ceramics and Single Crystals

    DTIC Science & Technology

    1988-07-01

    properties of piezoelectric and electrostrictive types of ferroelectric ceramics and single crystals. This was for the purpose of shedding light on the...effectiveness and general characteristics of fabrication techniques, as well as exploring basic physical mechanisms playing a role in the technology of...routing and processing devices on small ferroelectric wafers, fabricated by simple inexpensive poling and biasing techniques. Such devices ma) be

  9. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  10. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

    ERIC Educational Resources Information Center

    Vanko, Peter

    2007-01-01

    First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

  11. ``Physics with a Smile''-Explaining Phenomena with a Qualitative Problem-Solving Strategy

    NASA Astrophysics Data System (ADS)

    Mualem, Roni; Eylon, Bat-Sheva

    2007-03-01

    Various studies indicate that high school physics students and even college students majoring in physics have difficulties in qualitative understanding of basic concepts and principles of physics.1-5 For example, studies carried out with the Force Concept Inventory (FCI)1,6 illustrate that qualitative tasks are not easy to solve even at the college level. Consequently, "conceptual physics" courses have been designed to foster qualitative understanding, and advanced high school physics courses as well as introductory college-level courses strive to develop qualitative understanding. Many physics education researchers emphasize the importance of acquiring some qualitative understanding of basic concepts in physics as early as middle school or in the context of courses that offer "Physics First" in the ninth grade before biology or chemistry.7 This trend is consistent with the call to focus the science curriculum on a small number of basic concepts and ideas, and to instruct students in a more "meaningful way" leading to better understanding. Studies7-10 suggest that familiar everyday contexts (see Fig. 1) are useful in fostering qualitative understanding.

  12. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  13. Boundary Conditions for the Paleoenvironment: Chemical and Physical Processes in the Pre-Solar Nebula

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Schloerb, F. Peter

    1997-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar clouds and in primitive solar system objects. Research has included the detection and study of a number of new interstellar molecules and investigation of reaction pathways for astrochemistry from a comparison of theory and observed molecular abundances. The latter includes studies of cold, dark clouds in which ion-molecule chemistry should predominate, searches for the effects of interchange of material between the gas and solid phases in interstellar clouds, unbiased spectral surveys of particular sources, and systematic investigation of the interlinked chemistry and physics of dense interstellar clouds. In addition, the study of comets has allowed a comparison between the chemistry of such minimally thermally processed objects and that of interstellar clouds, shedding light on the evolution of the biogenic elements during the process of solar system formation.

  14. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  15. Turbulence in laboratory and natural plasmas: Connecting the dots

    NASA Astrophysics Data System (ADS)

    Jenko, Frank

    2015-11-01

    It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.

  16. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.

    2003-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.

  17. On-Ramp: Improving students' understanding of lock-in amplifiers

    NASA Astrophysics Data System (ADS)

    DeVore, Seth; Singh, Chandralekha; Levy, Jeremy

    2013-03-01

    A lock-in amplifier is a powerful and versatile instrument which is used frequently in condensed matter physics research. However, many students struggle with the basics of a lock-in amplifier and they have difficulty in interpreting the data obtained with this device in diverse applications. To improve students' understanding, we are developing an ``On-Ramp'' tutorial based on physics education research which makes use of a computer simulation of a lock-in amplifier. During the development of the tutorial we interviewed several faculty members and graduate students. The tutorial is based on a field-tested approach in which students realize their difficulties after predicting the outcome of experiments that use a lock-in amplifier; students can check their predictions using simulations. The tutorial then guides students toward a coherent understanding of the basics of a lock-in amplifier. This poster will discuss the development and assessment process. This work is supported by NSF NEB (DMR-1124131) and NSF (PHY-1202909).

  18. Migration of cells in a social context

    PubMed Central

    Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified “cellular traffic rules” and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  19. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-02

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.

  20. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGES

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  1. Identifying predictors of physics item difficulty: A linear regression approach

    NASA Astrophysics Data System (ADS)

    Mesic, Vanes; Muratovic, Hasnija

    2011-06-01

    Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal physics knowledge structures. Identified predictors point out the fundamental cognitive dimensions of student physics achievement at the end of compulsory education in Bosnia and Herzegovina, whose level of development influenced the test results within the conducted assessments.

  2. Testing for multigroup equivalence of a measuring instrument: a walk through the process.

    PubMed

    Byrne, Barbara M

    2008-11-01

    This article presents an overview and application of the steps taken in testing for the equivalence of a measuring instrument across one or more groups. Following a basic description of, and rationale underlying these steps, the process is illustrated with data comprising response scores to four nonacademic subscales (Physical SC [Ability], Physical SC [Appearance], Social SC [Peers], and Social SC [Parents]) of the Self Description Questionnaire-I for Australian (N = 497) and Nigerian (N = 439) adolescents. All tests for validity and equivalence are based on the analysis of covariance structures within the framework of CFA models using the EQS 6 program. Prospective impediments to equivalence are suggested and additional caveats proposed in the special case where the groups under study represent different cultures.

  3. The Physics of Energy

    NASA Astrophysics Data System (ADS)

    Jaffe, Robert L.; Taylor, Washington

    2018-01-01

    Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.

  4. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  5. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  6. Biophysics at the Boundaries: The Next Problem Sets

    NASA Astrophysics Data System (ADS)

    Skolnick, Malcolm

    2009-03-01

    The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future biophysicists to fill these roles.

  7. Positive electrode processing for Hughes NiH2 cells

    NASA Technical Reports Server (NTRS)

    Bleser, C. A.

    1982-01-01

    The basic procedures were developed for the manufacture of nickel cadmium batteries. An electrochemical impregnation in an aqueous ethanol solution is used in this process. Several additional controls were instituted for production of flight electrodes, including a Hughes controlled MCD, a solution reserved exclusively for the impregnation of Hughes positive electrodes a system of complete traceability for individual electrodes, an electrical characterization test to provide information on weight and capacity at the plaque level, and a stress test to provide data on capacity, weight, and physical parameters at the electrode level.

  8. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    NASA Astrophysics Data System (ADS)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  9. Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  10. [The origins of the basic healthcare system in Brazil: the District System of Sanitation Administration].

    PubMed

    Campos, Carlos Eduardo Aguilera

    2007-01-01

    There exists an interaction between multiple issues involving policy making, the building of knowledge and the implementation of practices in the health sector, which results in the particular way health services are provided in different historical contexts. The emergence and consolidation of sanitation organization was the result of a political process based on an idea of meeting the needs perceived in a given historical context. The historical course taken by the basic healthcare system in Brazil is analyzed from the perspective of its organizational and welfare principles, its expansion in physical terms, and its function within the public health system between 1918 and 1942. The article seeks to describe in detail the antecedents and initiatives taken in the establishment of a district system of sanitation administration, first in Rio de Janeiro and later across Brazil, which was a precursor of the basic healthcare system in Brazil.

  11. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.

  12. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

    ERIC Educational Resources Information Center

    Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

    2012-01-01

    In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

  13. Testing principle working mechanisms of the health action process approach for subjective physical age groups.

    PubMed

    Wienert, Julian; Kuhlmann, Tim; Fink, Sebastian; Hambrecht, Rainer; Lippke, Sonia

    2016-01-01

    This study investigated differences in social-cognitive predictors and self-regulatory planning, as proposed by the health action process approach (HAPA), across three different subjective physical age groups for physical activity. With a cross-sectional design, 521 participants across the chronological age span from 25 to 86 years (M = 48.79; SD = 12.66) were separated into three groups: those who feel physically younger than they are in terms of chronological age, the same perceived and chronological age, and feeling physically older compared to their chronological age. Participants were assessed regarding their perceived vulnerability, outcome expectancies, general intentions, planning, self-efficacy, and stages of physical activity (non-intenders, intenders, and actors). Data were analysed via mean comparison and multigroup structural equation modelling. Mean differences for all but one construct were eminent in all groups, generally showing that those feeling physically younger also report better social-cognitive predictors of physical activity (e.g. lower perceived vulnerability) in comparison to those who feel the same age or older. The model showed that basic working mechanisms of the HAPA can be applied to all groups. With that, the results provide for the first time evidence that principle working mechanism of the HAPA can be applied to all subjective physical age groups. These may be used to tailor health promoting interventions according to participants' needs as a more suitable proxy than chronological age.

  14. Understanding Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Lamers, Henny J. G. L. M.; Levesque, Emily M.

    2017-12-01

    'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote® and PowerPoint® formats.

  15. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  16. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  17. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  18. Greek Undergraduate Physical Education Students' Basic Computer Skills

    ERIC Educational Resources Information Center

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  19. Fundamental Movement Skill Proficiency amongst Adolescent Youth

    ERIC Educational Resources Information Center

    O' Brien, Wesley; Belton, Sarahjane; Issartel, Johann

    2016-01-01

    Background: Literature suggests that physical education programmes ought to provide intense instruction towards basic movement skills needed to enjoy a variety of physical activities. Fundamental movement skills (FMS) are basic observable patterns of behaviour present from childhood to adulthood (e.g. run, skip and kick). Recent evidence indicates…

  20. Basic Stuff--Ideas for Implementation.

    ERIC Educational Resources Information Center

    Fox, Connie

    Use of the American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD) "Basic Stuff" (1981) series (which includes six texts explaining each concept and three texts illustrating their use in the elementary, middle, and secondary schools) is recommended for physical education teacher preparation programs. A study was undertaken…

  1. Sport Motor Competencies and the Experience of Social Recognition among Peers in Physical Education--A Video-Based Study

    ERIC Educational Resources Information Center

    Grimminger, Elke

    2013-01-01

    Background: Being recognized as a competent and accepted member in the peer group is one of the most important basic human needs for children and youth. However, it is the peer group itself that decides which competencies are estimated and which are not, and through this process, a social order as well as peer power constellations is created.…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahan, Alexis Chanel

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  3. National Needs for Critically Evaluated Physical and Chemical Data.

    DTIC Science & Technology

    1978-01-01

    poorly conceived experimencs, ineffective or inefficient manufacturing plants , and a waste of both effort and resources. To those studying basic...aspects of research and development and in the design of most products, industrial plants , and processes. They are also needed to assess the need for...designs can be made more precise, tolerances reduced, and R&D options narrowed. The wasteful practice of overdesigning industrial plants to allow for

  4. Physics For Dummies

    NASA Astrophysics Data System (ADS)

    Holzner, Steve; Ph., D.

    2005-11-01

    The fun and easy way to understand the basic principles of physics How does gravity work? What does e=mc2 really mean? And what's a charm quark? Physics For Dummies answers these questions and more, explaining the basics of physical science and its importance in our everyday lives in a simple, clear, and entertaining fashion. Whether readers are taking a class, helping kids with homework, or are simply interested in how the world works, this plain-English guide gives them the knowledge they need to understand basic physics. Through real-world examples and problems, it covers such key topics as motion, energy, and waves (sound, light, wave-particle); solids, liquids, and gases; thermodynamics; electromagnetism; relativity; atomic and nuclear structures; and the Big Bang and stars. Steven Holzner, PhD (Ithaca, NY), is the author of more than 40 books and a former contributing editor at PC Magazine. He has been on the faculty of MIT and taught Physics 101 and 102 at Cornell for over ten years.

  5. Biomorphodynamics: Physical-biological feedbacks that shape landscapes

    USGS Publications Warehouse

    Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L.

    2008-01-01

    Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the modeling of such emergent interactions. Copyright 2008 by the American Geophysical Union.

  6. [Discussion on research and development of new traditional Chinese medicine preparation process based on idea of QbD].

    PubMed

    Feng, Yi; Hong, Yan-Long; Xian, Jie-Chen; Du, Ruo-Fei; Zhao, Li-Jie; Shen, Lan

    2014-09-01

    Traditional processes are mostly adopted in traditional Chinese medicine (TCM) preparation production and the quality of products is mostly controlled by terminal. Potential problems of the production in the process are unpredictable and is relied on experience in most cases. Therefore, it is hard to find the key points affecting the preparation process and quality control. A pattern of research and development of traditional Chinese medicine preparation process based on the idea of Quality by Design (QbD) was proposed after introducing the latest research achievement. Basic theories of micromeritics and rheology were used to characterize the physical property of TCM raw material. TCM preparation process was designed in a more scientific and rational way by studying the correlation among enhancing physical property of raw material, preparation process and product quality of preparation. So factors affecting the quality of TCM production would be found out and problems that might occur in the pilot process could be predicted. It would be a foundation for the R&D and production of TCM preparation as well as support for the "process control" of TCMIs gradually realized in the future.

  7. Hands-on, online, and workshop-based K-12 weather and climate education resources from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.

    2009-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  8. Clouds, weather, climate, and modeling for K-12 and public audiences from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.

    2010-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  9. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2006-11-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  10. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2010-06-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  11. Fluid Dynamics of Human Phonation and Speech

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Erath, Byron D.; Plesniak, Michael W.

    2013-01-01

    This article presents a review of the fluid dynamics, flow-structure interactions, and acoustics associated with human phonation and speech. Our voice is produced through the process of phonation in the larynx, and an improved understanding of the underlying physics of this process is essential to advancing the treatment of voice disorders. Insights into the physics of phonation and speech can also contribute to improved vocal training and the development of new speech compression and synthesis schemes. This article introduces the key biomechanical features of the laryngeal physiology, reviews the basic principles of voice production, and summarizes the progress made over the past half-century in understanding the flow physics of phonation and speech. Laryngeal pathologies, which significantly enhance the complexity of phonatory dynamics, are discussed. After a thorough examination of the state of the art in computational modeling and experimental investigations of phonatory biomechanics, we present a synopsis of the pacing issues in this arena and an outlook for research in this fascinating subject.

  12. Summer School on Interstellar Processes: Abstracts of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)

    1986-01-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  13. [Thermodynamic analysis of water adsorption and desorption process of Chinese herbal decoction pieces].

    PubMed

    Cheng, Lin; Luo, Xiao-Jian; Han, Xiu-Lin; Wang, Wen-Kai; Rao, Xiao-Yong; Xu, Shao-Zhong; He, Yan

    2016-09-01

    Based on the basic theory of thermodynamics, the thermodynamic parameters and related equations in the process of water adsorption and desorption of Chinese herbal decoction pieces were established, and their water absorption and desorption characteristics were analyzed. The physical significance of the thermodynamic parameters, such as differential adsorption enthalpy, differential adsorption entropy, integral adsorption enthalpy, integral adsorption entropy and the free energy of adsorption, were discussed in this paper to provide theoretical basis for the research on the water adsorption and desorption mechanism, optimum drying process parameters, storage conditions and packaging methods of Chinese herbal decoction pieces. Copyright© by the Chinese Pharmaceutical Association.

  14. Dive into Scuba

    ERIC Educational Resources Information Center

    Coelho, Jeffrey; Fielitz, Lynn R.

    2006-01-01

    Scuba is a unique physical education activity that middle school and high school students can experience in physical education to provide them with the basic skills needed to enjoy the sport for many years to come. This article describes the basic scuba diving equipment, proper training and certification for instructors and students, facilities,…

  15. Using Assessment to Support Basic Instruction Programs in Physical Education

    ERIC Educational Resources Information Center

    Roberts, Thomas; Evans, Tom; Ormond, Frank

    2006-01-01

    College/University administrators have, for various reasons, scrutinized Physical Education basic instruction program (BIP) requirements for possible reduction. In an effort to defend these requirements, assessment should be undertaken to obtain objective and subjective data that measure a program's effectiveness. This study was conducted at a…

  16. Developing More Effective Curriculum Via "Basic Stuff."

    ERIC Educational Resources Information Center

    Heitmann, Helen M.

    Discussed is the design and development of a physical education curriculum, incorporating principles discussed in the "Basic Stuff" physical education series. Four tasks are suggested for planning the curriculum: (1) develop a unit for activity instruction, where the concepts inherent in the sport or activity skills may be identified; (2) develop…

  17. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  18. The Effects of a Physical Education Intervention to Support the Satisfaction of Basic Psychological Needs on the Motivation and Intentions to be Physically Active.

    PubMed

    Franco, Evelia; Coterón, Javier

    2017-10-01

    The aim of the study was to investigate the effects of an intervention to support the basic psychological needs on the satisfaction of these needs, intrinsic motivation, intention to be physically active and some enjoyment-related outcomes in Physical Education. The present study incorporated strategies presented by Standage and Ryan (2012) in a previous study. A quasi-experimental study was conducted with two groups (n experimental = 30; n control = 23) of 2nd year Secondary Education students aged between 13 and 15 (M = 13.35, SD = .62) by delivering 24 physical education classes. The teacher in the experimental group underwent prior and continual training. The results revealed that the students from the experimental group showed a significant increase in the perception of autonomy and competence. Furthermore, the experimental group showed a greater perception than the control group in the enjoyment related to learning and contents. These results provide information about the efficacy of an intervention programme based on the strategies presented by Standage and Ryan (2012) to foster satisfaction of basic psychological needs and facilitate support for basic psychological needs to promote the development of positive learning-related outcomes.

  19. WE-E-204-02: Journal of Medical Physics and JACMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  20. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  1. Basic needs and their predictors for intubated patients in surgical intensive care units.

    PubMed

    Liu, Jin-Jen; Chou, Fan-Hao; Yeh, Shu-Hui

    2009-01-01

    This study was conducted to investigate the basic needs and communication difficulties of intubated patients in surgical intensive care units (ICUs) and to identify predictors of the basic needs from the patient characteristics and communication difficulties. In this descriptive correlational study, 80 surgical ICU patients were recruited and interviewed using 3 structured questionnaires: demographic information, scale of basic needs, and scale of communication difficulties. The intubated patients were found to have moderate communication difficulties. The sense of being loved and belonging was the most common need in the intubated patients studied (56.00 standardized scores). A significantly positive correlation was found between communication difficulties and general level of basic needs (r = .53, P < .01), and another positive correlation was found between the length of stay in ICUs and the need for love and belonging (r = .25, P < .05). The basic needs of intubated patients could be significantly predicted by communication difficulties (P = .002), use of physical restraints (P = .010), lack of intubation history (P = .005), and lower educational level (P = .005). These 4 predictors accounted for 47% of the total variance in basic needs. The intubated patients in surgical ICUs had moderate basic needs and communication difficulties. The fact that the basic needs could be predicted by communication difficulties, physical restraints, and educational level suggests that nurses in surgical ICUs need to improve skills of communication and limit the use of physical restraints, especially in patients with a lower educational level.

  2. Neutrino physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haxton, Wick C.; Holstein, Barry R.; Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

    2000-01-01

    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers.

  3. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  4. Questions on universal constants and four-dimensional symmetry from a broad viewpoint. I

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    It is demonstrated that there is a flexibility in clock synchronizations and that four-dimensional symmetry framework can be viewed broadly. The true universality of basic constants is discussed, considering a class of measurement processes based on the velocity = distance/time interval, which always yields some number when used by an observer. The four-dimensional symmetry framework based on common time for all observers is formulated, and related processes of measuring light speed are discussed. Invariant 'action functions' for physical laws in the new four-dimensional symmetry framework with the common time are established to discuss universal constants. Truly universal constants are demonstrated, and it is shown that physics in this new framework and in special relativity are equivalent as far as one-particle systems and the S-matrix in field theories are concerned.

  5. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.; Wagner, William J. (Technical Monitor)

    2000-01-01

    During the last three years we have continued the development of extensive computer programs for constructing realistic models of the solar atmosphere and for calculating detailed spectra to use in the interpretation of solar observations. This research involves two major interrelated efforts: work by Avrett and Loeser on the Pandora computer program for optically thick non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed high-resolution synthesis of the solar spectrum using data for over 58 million atomic and molecular lines. Our objective is to construct atmospheric models from which the calculated spectra agree as well as possible with high-and low-resolution observations over a wide wavelength range. Such modeling leads to an improved understanding of the physical processes responsible for the structure and behavior of the atmosphere.

  6. Effects of Increased Physical Activity on Motor Skills and Marks in Physical Education: An Intervention Study in School Years 1 through 9 in Sweden

    ERIC Educational Resources Information Center

    Ericsson, Ingegerd

    2011-01-01

    Background: Studies have shown that some children do not participate in sport or exercise because they did not establish early coordination and basic motor skills while at school. Basic motor skills form significant parts of the goals for students to achieve in the Swedish school subject Physical Education and Health (PEH). Aims: The aim was to…

  7. International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials"

    NASA Astrophysics Data System (ADS)

    2015-04-01

    The International Scientific Conference on "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held four times in Tomsk, then in Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), and the island of Cyprus. The tenth conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 14-38-10210 and No. 14-02-20376.

  8. PREFACE: International Scientific Conference on Radiation-Thermal Effects and Processes in Inorganic Materials 2015 (RTEP2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The International Scientific Conference "Radiation-Thermal Effects and Processes in Inorganic Materials" is a traditional representative forum devoted to the discussion of fundamental problems of radiation physics and its technical applications. The first nine conferences were held fourfold in Tomsk, Ulan-Ude (Russia), Bishkek (Kyrgyzstan), Tashkent (Uzbekistan), Sharm El Sheikh (Egypt), the island of Cyprus. The XI conference was held in Tomsk, Russia. The program of the Conference covers a wide range of technical areas and modern aspects of radiation physics, its applications and related matters. Topics of interest include, but are not limited to: • Physical and chemical phenomena in inorganic materials in radiation, electrical and thermal fields; • Research methods and equipment modification states and properties of materials; • Technologies and equipment for their implementation; • The use of radiation-thermal processes in nanotechnology; • Adjacent to the main theme of the conference issues The conference was attended by leading scientists from countries near and far abroad who work in the field of radiation physics of solid state and of radiation material science. The School-Conference of Young Scientists was also held during the conference. The event was held with the financial support of the Russian Foundation for Basic Research, projects No. 15-02-20616.

  9. Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI.

    PubMed

    Hakky, Michael; Pandey, Shilpa; Kwak, Ellie; Jara, Hernan; Erbay, Sami H

    2013-08-01

    This article outlines artifactual findings commonly encountered in neuroradiologic MRI studies and offers clues to differentiate them from true pathology on the basis of their physical properties. Basic MR physics concepts are used to shed light on the causes of these artifacts. MRI is one of the most commonly used techniques in neuroradiology. Unfortunately, MRI is prone to image distortion and artifacts that can be difficult to identify. Using the provided case illustrations, practical clues, and relevant physical applications, radiologists may devise algorithms to troubleshoot these artifacts.

  10. Classical dense matter physics: some basic methods and results

    NASA Astrophysics Data System (ADS)

    Čelebonović, Vladan

    2002-07-01

    This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.

  11. A Study on the Priority Selection of Sediment-related Desaster Evacuation Using Debris Flow Combination Degree of Risk

    NASA Astrophysics Data System (ADS)

    Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.

    2017-12-01

    As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation

  12. The Solar-Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Hargreaves, John Keith

    1995-05-01

    The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.

  13. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  14. Fitness

    MedlinePlus

    ... activity are? Check out this info: What is physical fitness? top Physical fitness means you can do ... for things like bending and stretching. What is physical activity? top Basically, physical activity is anything that ...

  15. Approaches to Changing the Physical Attributes of the Adult Learning Environment: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Fulton, Rodney D.

    A study surveyed 139 individuals to determine if differences in the way they approached the physical attributes of various learning environments could be attributed to either gender or age. Participants were Montana State University graduate students in education; adult basic education students in Bozeman, Montana; adult basic education faculty…

  16. Development and Optimisation of an In-Service Teacher Training Programme on Motivational Assessment in Physical Education

    ERIC Educational Resources Information Center

    Slingerland, Menno; Borghouts, Lars; Jans, Liesbeth; Weeldenburg, Gwen; van Dokkum, Gertjan; Vos, Steven; Haerens, Leen

    2017-01-01

    Although assessment practices are commonly part of the physical education (PE) curriculum they may often frustrate rather than support students' basic needs for autonomy, competence and relatedness. Nevertheless, assessment also provides various promising opportunities to support these basic needs and enhance learning in students. In order to…

  17. Student Physical Education Teachers' Well-Being: Contribution of Basic Psychological Needs

    ERIC Educational Resources Information Center

    Ciyin, Gülten; Erturan-Ilker, Gökçe

    2014-01-01

    This study adopted Self-Determination Theory tenets and aimed to explore whether student physical education (PE) teachers' satisfaction of the three basic psychological needs independently predicts well-being. 267 Turkish student PE teachers were recruited for the study. Two stepwise multiple regression analysis was performed in which each outcome…

  18. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  19. Exercise Self-Efficacy and Perceived Wellness among College Students in a Basic Studies Course

    ERIC Educational Resources Information Center

    Sidman, Cara L.; D'Abundo, Michelle Lee; Hritz, Nancy

    2009-01-01

    University basic studies courses provide a valuable opportunity for facilitating the knowledge, skills, and beliefs that develop healthy behaviors to last a lifetime. Belief in one's ability to participate in physical activity, exercise self-efficacy, is a psychological construct that has had a documented impact on physical activity. Although…

  20. Using Sport Education in a University Physical Activity Course

    ERIC Educational Resources Information Center

    Blocker, Danielle; Wahl-Alexander, Zachary

    2018-01-01

    At a majority of colleges and universities around the country, basic activity courses are taught predicated on teaching students basic skills and instilling healthy habits. The purpose of this article is to outline and describe a physical conditioning course that utilized the sport education (SE) model and emphasized outside engagement to instill…

  1. Hardware-Software Complex for Measurement of Energy and Angular Distributions of Charged Particles Formed in Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Vikhlyantsev, O. P.; Generalov, L. N.; Kuryakin, A. V.; Karpov, I. A.; Gurin, N. E.; Tumkin, A. D.; Fil'chagin, S. V.

    2017-12-01

    A hardware-software complex for measurement of energy and angular distributions of charged particles formed in nuclear reactions is presented. Hardware and software structures of the complex, the basic set of the modular nuclear-physical apparatus of a multichannel detecting system on the basis of Δ E- E telescopes of silicon detectors, and the hardware of experimental data collection, storage, and processing are presented and described.

  2. Developing Low-Noise GaAs JFETs For Cryogenic Operation

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.

    1995-01-01

    Report discusses aspects of effort to develop low-noise, low-gate-leakage gallium arsenide-based junction field-effect transistors (JFETs) for operation at temperature of about 4 K as readout amplifiers and multiplexing devices for infrared-imaging devices. Transistors needed to replace silicon transistors, relatively noisy at 4 K. Report briefly discusses basic physical principles of JFETs and describes continuing process of optimization of designs of GaAs JFETs for cryogenic operation.

  3. Temperature data acquired from the DOI/GTN-P Deep Borehole Array on the Arctic Slope of Alaska, 1973-2013

    USGS Publications Warehouse

    Clow, Gary D.

    2014-01-01

    System (GTOS). The data will also be useful for refining our basic understanding of the physical conditions in permafrost in Arctic Alaska, as well as providing important information for validating predictive models used for climate impact assessments. The processed data are available from the Advanced Cooperative Arctic Data and Information Service (ACADIS) repository at doi:10.5065/D6N014HK.

  4. Modelling and Simulation in the Design Process of Armored Vehicles

    DTIC Science & Technology

    2003-03-01

    trackway conditions is a demanding optimization task. Basically, a high level of ride comfort requires soft suspension tuning, whereas driving safety relies...The maximum off-road speed is generally limited by traction, input torque, driving safety and ride comfort. When obstacles are to be negotiated, the...wheel travel was defined during the mobility simulation runs. Figure 14: Ramp 1.5m at 40 kph; virtual and physical prototype Driving safety and ride

  5. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons

    NASA Astrophysics Data System (ADS)

    Su, Yue-Hua; Lu, Han-Tao

    2018-04-01

    One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system's symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.

  6. Diagnosis of dynamic process over rainband of landfall typhoon

    NASA Astrophysics Data System (ADS)

    Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li

    2010-07-01

    This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.

  7. Computer-aided engineering of semiconductor integrated circuits

    NASA Astrophysics Data System (ADS)

    Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.

    1980-07-01

    Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.

  8. Developments in the kinetic theories of ion and electron swarms in the 1960s and 70s

    NASA Astrophysics Data System (ADS)

    Skullerud, H. R.

    2017-04-01

    The two decades between 1960 to 1980 saw quite a fantastic development in diverse areas in physics, and so also in the quantitative theoretical treatment and deeper understanding of the behaviour of isolated electrons and ions in gases—that is ‘charged particle swarm physics’. The evolution in swarm theory was strongly correlated with the contemporary advances in computer technology and the emergence of new and accurate experimental methods for finding charged particle transport parameters, as drift velocities, diffusion coefficients and reaction rates, and also with developments in neighbouring fields as plasma physics and the physics of electronic and molecular collisions. In 1960, low energy electron behaviour could already be calculated with reasonable accuracy in the so-called two-term approximation, while ion behaviour could only be treated at weak electric fields. By 1980, reasonably complete theories had been developed for perhaps most cases in interest—which is reflected in a number of reviews, books and journal articles published in the early 1980s. We will present a journey through the developments in this period and the basic theories behind the Boltzmann equation and Maxwell’s transfer equations. We will also indicate how the interaction between different studies of the same basic processes have led to the elimination of shortcomings and a better understanding.

  9. Studying marine stratus with large eddy simulation

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh

    1990-01-01

    Data sets from field experiments over the stratocumulus regime may include complications from larger scale variations, decoupled cloud layers, diurnal cycle, or entrainment instability, etc. On top of the already complicated turbulence-radiation-condensation processes within the cloud-topped boundary layer (CTBL), these complexities may sometimes make interpretation of the data sets difficult. To study these processes, a better understanding is needed of the basic processes involved in the prototype CTBL. For example, is cloud top radiative cooling the primary source of the turbulent kinetic energy (TKE) within the CTBL. Historically, laboratory measurements have played an important role in addressing the turbulence problems. The CTBL is a turbulent field which is probably impossible to generate in laboratories. Large eddy simulation (LES) is an alternative way of 'measuring' the turbulent structure under controlled environments, which allows the systematic examination of the basic physical processes involved. However, there are problems with the LES approach for the CTBL. The LES data need to be consistent with the observed data. The LES approach is discussed, and results are given which provide some insights into the simulated turbulent flow field. Problems with this approach for the CTBL and information from the FIRE experiment needed to justify the LES results are discussed.

  10. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  11. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  12. Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass

    NASA Astrophysics Data System (ADS)

    Dai, Wen-bin; Li, Yu; Cang, Da-qiang; Zhou, Yuan-yuan; Fan, Yong

    2014-05-01

    This study proposes an efficient way to utilize all the chemical components of the basic oxygen furnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000°C in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.

  13. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers ofmore » the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.« less

  14. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

    NASA Astrophysics Data System (ADS)

    Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

    2016-01-01

    This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

  15. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  16. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  17. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Bobela, David C.; Yang, Ye

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  18. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE PAGES

    Chen, Chao; Bobela, David C.; Yang, Ye; ...

    2017-03-17

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  19. Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production.

    PubMed

    Ruggeri, Bernardo; Luongo Malave, Andrea C; Bernardi, Milena; Fino, Debora

    2013-11-01

    The production of hydrogen through Anaerobic Digestion (AD) has been investigated to verify the efficacy of several pretreatment processes. Three types of waste with different carbon structures have been tested to obtain an extensive representation of the behavior of the materials present in Organic Waste (OW). The following types of waste were selected: Sweet Product Residue (SPR), i.e., confectionary residue removed from the market after the expiration date, Organic Waste Market (OWM) refuse from a local fruit and vegetable market, and Coffee Seed Skin (CSS) waste from a coffee production plant. Several pretreatment processes have been applied, including physical, chemical, thermal, and ultrasonic processes and a combination of these processes. Two methods have been used for the SPR to remove the packaging, manual (SPR) and mechanical (SPRex). A pilot plant that is able to extrude the refuse to 200atm was utilized. Two parameters have been used to score the different pretreatment processes: efficiency (ξ), which takes into account the amount of energy produced in the form of hydrogen compared with the available energy embedded in the refuse, and efficacy (η), which compares the efficiency obtained using the pretreated refuse with that obtained using the untreated refuse. The best result obtained for the SPR was the basic pretreatment, with η=6.4, whereas the thermal basic pretreatment gave the highest value, η=17.0 for SPRex. The best result for the OWM was obtained through a combination of basic/thermal pretreatments with η=9.9; lastly, the CSS residue with ultrasonic pretreatment produced the highest quantity of hydrogen, η=5.2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. WE-E-204-00: Where to Send My Manuscript

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  1. WE-E-204-01: ASTRO Based Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, E.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  2. TU-B-16A-01: To Which Journal Should I Submit My Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J; Mills, M; Klein, E

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given the large number (about 100) competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose ofmore » this symposium is to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. The senior editors for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase chances of acceptance To help decipher which journal is appropriate for a given work.« less

  3. WE-E-204-03: Radiology and Other Imaging Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  4. Physics through the 1990s: Elementary-particle physics

    NASA Astrophysics Data System (ADS)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  5. Physics through the 1990s: elementary-particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less

  6. Physics through the 1990s: Elementary-particle physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  7. Development of a web-based and mobile app to support physical activity in individuals with rheumatoid arthritis: results from the second step of a co-design process.

    PubMed

    Revenäs, Åsa; Opava, Christina H; Martin, Cathrin; Demmelmaier, Ingrid; Keller, Christina; Åsenlöf, Pernilla

    2015-02-09

    Long-term adherence to physical activity recommendations remains challenging for most individuals with rheumatoid arthritis (RA) despite evidence for its health benefits. The aim of this study was to provide basic data on system requirement specifications for a Web-based and mobile app to self-manage physical activity. More specifically, we explored the target user group, features of the future app, and correlations between the system requirements and the established behavior change techniques (BCTs). We used a participatory action research design. Qualitative data were collected using multiple methods in four workshops. Participants were 5 individuals with RA, a clinical physiotherapist, an officer from the Swedish Rheumatism Association, a Web designer, and 2 physiotherapy researchers. A taxonomy was used to determine the degree of correlation between the system requirements and established BCTs. Participants agreed that the future Web-based and mobile app should be based on two major components important for maintaining physical activity: (1) a calendar feature for goal setting, planning, and recording of physical activity performance and progress, and (2) a small community feature for positive feedback and support from peers. All system requirements correlated with established BCTs, which were coded as 24 different BCTs. To our knowledge, this study is the first to involve individuals with RA as co-designers, in collaboration with clinicians, researchers, and Web designers, to produce basic data to generate system requirement specifications for an eHealth service. The system requirements correlated to the BCTs, making specifications of content and future evaluation of effectiveness possible.

  8. Planetary Dynamos

    NASA Astrophysics Data System (ADS)

    Gaur, Vinod K.

    The article begins with a reference to the first rational approaches to explaining the earth's magnetic field notably Elsasser's application of magneto-hydrodynamics, followed by brief outlines of the characteristics of planetary magnetic fields and of the potentially insightful homopolar dynamo in illuminating the basic issues: theoretical requirements of asymmetry and finite conductivity in sustaining the dynamo process. It concludes with sections on Dynamo modeling and, in particular, the Geo-dynamo, but not before some of the evocative physical processes mediated by the Lorentz force and the behaviour of a flux tube embedded in a perfectly conducting fluid, using Alfvén theorem, are explained, as well as the traditional intermediate approaches to investigating dynamo processes using the more tractable Kinematic models.

  9. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  10. An Experimental Study of Applied Ground Loads in Landing

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Lindquist, Dean C; Potter, Dexter M

    1955-01-01

    Results are presented of an experimental investigation made of the applied ground loads and the coefficient of friction between the tire and the ground during the wheel spin-up process in impacts of a small landing gear under controlled conditions on a concrete landing strip in the Langley impact basin. The basic investigation included three major phases: impacts with forward speed at horizontal velocities up to approximately 86 feet per second, impacts with forward speed and reverse wheel rotation to simulate horizontal velocities up to about 273 feet per second, and spin-up drop tests for comparison with the other tests. In addition to the basic investigation, supplementary tests were made to evaluate the drag-load alleviating effects of prerotating the wheel before impact so as to reduce the relative velocity between the tire and ground. In the presentation of the results, an attempt has been made to interpret the experimental data so as to obtain some insight into the physical phenomena involved in the wheel spin-up process.

  11. [Some comments on ecological field].

    PubMed

    Wang, D

    2000-06-01

    Based on the data of plant ecological field studies, this paper reviewed the conception of ecological field, field eigenfunctions, graphs of ecological field and its application of ecological field theory in explaining plant interactions. It is suggested that the basic character of ecological field is material, and based on the current research level, it is not sure whether ecological field is a kind of specific field different from general physical field. The author gave some comments on the formula and estimation of parameters of basic field function-ecological potential model on ecological field. Both models have their own characteristics and advantages in specific conditions. The author emphasized that ecological field had even more meaning of ecological methodology, and applying ecological field theory in describing the types and processes of plant interactions had three characteristics: quantitative, synthetic and intuitionistic. Field graphing might provide a new way to ecological studies, especially applying the ecological field theory might give an appropriate quantitative explanation for the dynamic process of plant populations (coexistence and interference competition).

  12. The Physics of a Gymnastics Flight Element

    NASA Astrophysics Data System (ADS)

    Contakos, Jonas; Carlton, Les G.; Thompson, Bruce; Suddaby, Rick

    2009-09-01

    From its inception, performance in the sport of gymnastics has relied on the laws of physics to create movement patterns and static postures that appear almost impossible. In general, gymnastics is physics in motion and can provide an ideal framework for studying basic human modeling techniques and physical principles. Using low-end technology and basic principles of physics, we analyzed a high-end gymnastics skill competed in by both men and women. The comprehensive goal of the examination is to scientifically understand how a skill of this magnitude is actually physically possible and what must a gymnast do to successfully complete the skill. The examination is divided into three sections, each of which is comprehensive enough to be a separate assignment or small group project.

  13. Estimation of the viscosities of liquid binary alloys

    NASA Astrophysics Data System (ADS)

    Wu, Min; Su, Xiang-Yu

    2018-01-01

    As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.

  14. Deep--deeper--deepest? Encoding strategies and the recognition of human faces.

    PubMed

    Sporer, S L

    1991-03-01

    Various encoding strategies that supposedly promote deeper processing of human faces (e.g., character judgments) have led to better recognition than more shallow processing tasks (judging the width of the nose). However, does deeper processing actually lead to an improvement in recognition, or, conversely, does shallow processing lead to a deterioration in performance when compared with naturally employed encoding strategies? Three experiments systematically compared a total of 8 different encoding strategies manipulating depth of processing, amount of elaboration, and self-generation of judgmental categories. All strategies that required a scanning of the whole face were basically equivalent but no better than natural strategy controls. The consistently worst groups were the ones that rated faces along preselected physical dimensions. This can be explained by subjects' lesser task involvement as revealed by manipulation checks.

  15. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  16. Magnetohydrodynamic (MHD) analyses of various forms of activity and their propagation through helio spheric space

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.

  17. Monte Carlos of the new generation: status and progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frixione, Stefano

    2005-03-22

    Standard parton shower monte carlos are designed to give reliable descriptions of low-pT physics. In the very high-energy regime of modern colliders, this is may lead to largely incorrect predictions of the basic reaction processes. This motivated the recent theoretical efforts aimed at improving monte carlos through the inclusion of matrix elements computed beyond the leading order in QCD. I briefly review the progress made, and discuss bottom production at the Tevatron.

  18. Concentric Eyewall Formation in Typhoon Sinlaku (2008). Part 2: Axisymmetric Dynamical Processes

    DTIC Science & Technology

    2011-07-01

    Pacific Asian Regional Campaign (T- PARC , Elsberry and Harr 2008; Chou et al. 2011; Weissmann et al. 2011). On account of the combined aircraft resources...the ELDORA Doppler radar data. Taken together, the findings in Didlake and Houze (2011) and Bell et al. (2011) suggest the occurrence of the...and T- PARC (Elsberry and Harr 2008) with abundant aircraft observations taken that can be used to address many basic questions about the physics of

  19. Physiological Responses and Hedonics During Prolonged Physically Interactive Videogame Play.

    PubMed

    Santo, Antonio S; Barkley, Jacob E; Hafen, Paul S; Navalta, James

    2016-04-01

    This study was designed to assess physiologic responses and hedonics (i.e., liking) during prolonged physically interactive videogame play. Participants (n = 24) completed three 30-minute videogame conditions on separate days in a random order. During two of the conditions participants played physically interactive videogames (Nintendo of America, Inc. [Redmond, WA] "Wii™ Fit" "Basic Run" and "Basic Step"). During the third condition participants played a traditional/sedentary game ("Tanks!"), which required minimal physical movement for gameplay. Oxygen consumption (VO2) was assessed using indirect calorimetry throughout each condition and averaged every 5 minutes. Liking was assessed via visual analog scale at the 15- and 30-minute time points during each condition. Mean VO2 was significantly (P < 0.001) greater during "Basic Run" (16.14 ± 5.8 mL/kg/minute, 4.6 ± 1.7 metabolic equivalents [METs]) than either "Basic Step" (11.4 ± 1.7 mL/kg/minute, 3.3 ± 0.5 METs) or the traditional/sedentary videogame (5.39 ± 1.0 mL/kg/minute, 1.5 ± 0.1 METs). "Basic Step" was also greater (P < 0.001) than the traditional/sedentary game. VO2 did not significantly (P = 0.25) fluctuate across the 30-minute session for any game. In other words, participants maintained a consistent physiologic intensity throughout each 30-minute condition. There were no differences (P ≥ 0.20) across gaming conditions or time for liking. Participants achieved and maintained moderate-intensity physical activity (≥3.0 METs) during both 30-minute physically interactive videogame conditions. Furthermore, because liking was similar across all gaming conditions, participants may be willing to substitute the physically interactive videogames in place of the traditional/sedentary game.

  20. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  1. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  2. STEM education and Fermi problems

    NASA Astrophysics Data System (ADS)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  3. A DOE Perspective

    NASA Astrophysics Data System (ADS)

    Bennett, Kristin

    2004-03-01

    As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.

  4. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development Regulations... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  5. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  6. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  7. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  8. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  9. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    PubMed

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  11. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  12. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  13. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  14. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  15. EDITORIAL: Fracture: from the atomic to the geophysical scale Fracture: from the atomic to the geophysical scale

    NASA Astrophysics Data System (ADS)

    Bouchaud, Elisabeth; Soukiassian, Patrick

    2009-11-01

    Although fracture is a very common experience in every day life, it still harbours many unanswered questions. New avenues of investigation arise concerning the basic mechanisms leading to deformation and failure in heterogeneous materials, particularly in non-metals. The processes involved are even more complex when plasticity, thermal fluctuations or chemical interactions between the material and its environment introduce a specific time scale. Sub-critical failure, which may be reached at unexpectedly low loads, is particularly important for silicate glasses. Another source of complications originates from dynamic fracture, when loading rates become so high that the acoustic waves produced by the crack interact with the material heterogeneities, in turn producing new waves that modify the propagation. Recent progress in experimental techniques, allowing one to test and probe materials at sufficiently small length or time scales or in three dimensions, has led to a quantitative understanding of the physical processes involved. In parallel, simulations have also progressed, by extending the time and length scales they are able to reach, and thus attaining experimentally accessible conditions. However, one central question remains the inclusion of these basic mechanisms into a statistical description. This is not an easy task, mostly because of the strong stress gradients present at the tip of a crack, and because the averaging of fracture properties over a heterogeneous material, containing more or less brittle phases, requires rare event statistics. Substantial progress has been made in models and simulations based on accurate experiments. From these models, scaling laws have been derived, linking the behaviour at a micro- or even nano-scale to the macroscopic and even to geophysical scales. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics cover several of these important topics, including the physical processes in fracture mechanisms, the sub-critical failure issue, the dynamical fracture propagation, and the scaling laws from the micro- to the geophysical scales. Achievements and progress are reported, and the many open questions are discussed, which should provide a sound basis for present and future prospects.

  16. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  17. The onset of plasma potential locking

    DOE PAGES

    Hopkins, Matthew M.; Yee, Benjamin T.; Baalrud, Scott D.; ...

    2016-06-22

    In this study, we provide insight into the role and impact that a positively biased electrode (anode) has on bulk plasma potential. Using two-dimensional Particle-in-Cell simulations, we investigate the plasma potential as an anode transitions from very small (“probe” mode) to large (“locking” mode). Prior theory provides some guidance on when and how this transition takes place. Initial experimental results are also compared. The simulations demonstrate that as the surface area of the anode is increased transitions in plasma potential and sheath polarity occur, consistent with experimental observations and theoretical predictions. It is expected that understanding this basic plasma behaviormore » will be of interest to basic plasma physics communities, diagnostic developers, and plasma processing devices where control of bulk plasma potential is important.« less

  18. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  19. Understanding MRI: basic MR physics for physicians.

    PubMed

    Currie, Stuart; Hoggard, Nigel; Craven, Ian J; Hadjivassiliou, Marios; Wilkinson, Iain D

    2013-04-01

    More frequently hospital clinicians are reviewing images from MR studies of their patients before seeking formal radiological opinion. This practice is driven by a multitude of factors, including an increased demand placed on hospital services, the wide availability of the picture archiving and communication system, time pressures for patient treatment (eg, in the management of acute stroke) and an inherent desire for the clinician to learn. Knowledge of the basic physical principles behind MRI is essential for correct image interpretation. This article, written for the general hospital physician, describes the basic physics of MRI taking into account the machinery, contrast weighting, spin- and gradient-echo techniques and pertinent safety issues. Examples provided are primarily referenced to neuroradiology reflecting the subspecialty for which MR currently has the greatest clinical application.

  20. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  1. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  2. How do classical particle-field systems become unstable? - The last physics problem that Ronald Davidson studied

    NASA Astrophysics Data System (ADS)

    Qin, Hong

    2016-10-01

    Many of the classical particle-field systems in (neutral and nonneutral) plasma physics and accelerator physics become unstable when the system parameters vary. How do these instabilities happen? It turns out, very interestingly, that all conservative systems become unstable by the same mechanism, i.e, the resonance between a positive- and a negative-action modes. And this is the only route that a stable system can become unstable. In this talk, I will use several examples in plasma physics and accelerator physics with finite and infinite degrees of freedom to illustrate the basic physical picture and the rigorous theoretical structure of the process. The features at the transition between stable and unstable regions in the parameter space are the fundamental characteristics of the underlying real Hamiltonian system and complex G-Hamiltonian system. The resonance between a positive- and a negative-action modes at the transition is the Krein collision well-known to mathematicians. Research supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  3. Physical activity (PA) and the disablement process: a 14-year follow-up study of older non-disabled women and men.

    PubMed

    Schultz-Larsen, Kirsten; Rahmanfard, Naghmeh; Holst, Claus

    2012-01-01

    Few studies have explored the associations of reported PA (RPA) with the processes underlying the development of disability. The present study was performed to explore RPA among older persons and its association with onset of functional dependence and mortality. Among a probability sample of 1782 community-living persons, aged 75-83 years, we evaluated the 1021 who reported no disability in basic activities of daily living. Participants were followed for a median of 8.34 years in public registers to determine onset of disability and mortality. RPA predicted mortality in older women (HR=1.77, 95%CI=1.42-2.19) and men (HR=1.65, 95%CI=1.27-2.14) over long time intervals. The effect of RPA persisted among permanently disabled older women, after adjusting for age, baseline vulnerability and grade of disability. Low RPA was independently associated with risk of incident disability (HR=1.56, 95%CI=1.10-2.23) in men. Among older women, the association between RPA and incidence of disability was attenuated in analyses that controlled for baseline mobility function. Thus, the association between physical activity and mortality reflected processes different from those underlying a simple relation between physical activity, disability and mortality. Physical activity was an ubiquitous predictor of longevity, but only for women. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  5. A Curriculum Guide for Electricity/Electronics.

    ERIC Educational Resources Information Center

    Rouse, Bill, Comp.

    This curriculum guide is designed to upgrade the secondary electrical trades program in Mississippi by broadening its scope to incorporate basic electronic principles. Covered in the individual chapters of the guide are the following courses: basic electricity (occupational information, basic physics, circuit fundamentals, resistance and Ohm's…

  6. History of Medical Physics.

    ERIC Educational Resources Information Center

    Laughlin, John S.

    1983-01-01

    Traces the development of basic radiation physics that underlies much of today's medical physics and looks separately at the historical development of two major subfields of medical physics: radiation therapy and nuclear medicine. Indicates that radiation physics has made important contributions to solving biomedical problems in medical…

  7. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    NASA Astrophysics Data System (ADS)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  8. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  9. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  10. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  11. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  12. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  13. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  14. Basic history taking and the avian physical examination.

    PubMed

    Rich, G A

    1991-11-01

    As one may readily see, the basic avian physical examination should be an extensive, thorough procedure. A wide array of diseases and conditions can be detected during the examination. A flow sheet or checklist should be instituted to maintain consistency and cover all aspects of the history and physical examination. I highly recommend as an adjunct to the basic physical examination Gram stains of the choanae, crop, and cloacae or feces. Owing to the fact that a great number of compromised avian patients either are ill because of gram-negative bacteria or have become more compromised by opportunistic organisms such as yeast or gram-negative bacteria, identification of these conditions greatly facilitates treatment and recovery of the avian patient. Other ancillary tests, such as fecal flotation, complete blood count, culture and sensitivity, Chlamydia test, chemistry profile, radiology, and laparotomy/laparoscopy, are available to the practitioner to aid in the diagnosis of various diseases involving the avian patient. [Editor's note: The editors suggest that the complete blood count be done before an extensive physical examination is undertaken to avoid a stress hemogram.

  15. Cognitive predictors of skilled performance with an advanced upper limb multifunction prosthesis: a preliminary analysis.

    PubMed

    Hancock, Laura; Correia, Stephen; Ahern, David; Barredo, Jennifer; Resnik, Linda

    2017-07-01

    Purpose The objectives were to 1) identify major cognitive domains involved in learning to use the DEKA Arm; 2) specify cognitive domain-specific skills associated with basic versus advanced users; and 3) examine whether baseline memory and executive function predicted learning. Method Sample included 35 persons with upper limb amputation. Subjects were administered a brief neuropsychological test battery prior to start of DEKA Arm training, as well as physical performance measures at the onset of, and following training. Multiple regression models controlling for age and including neuropsychological tests were developed to predict physical performance scores. Prosthetic performance scores were divided into quartiles and independent samples t-tests compared neuropsychological test scores of advanced scorers and basic scorers. Baseline neuropsychological test scores were used to predict change in scores on physical performance measures across time. Results Cognitive domains of attention and processing speed were statistically significantly related to proficiency of DEKA Arm use and predicted level of proficiency. Conclusions Results support use of neuropsychological tests to predict learning and use of a multifunctional prosthesis. Assessment of cognitive status at the outset of training may help set expectations for the duration and outcomes of treatment. Implications for Rehabilitation Cognitive domains of attention and processing speed were significantly related to level of proficiencyof an advanced multifunctional prosthesis (the DEKA Arm) after training. Results provide initial support for the use of neuropsychological tests to predict advanced learningand use of a multifunctional prosthesis in upper-limb amputees. Results suggest that assessment of patients' cognitive status at the outset of upper limb prosthetictraining may, in the future, help patients, their families and therapists set expectations for theduration and intensity of training and may help set reasonable proficiency goals.

  16. TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Welzel, T.

    2009-05-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.

  17. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

    NASA Astrophysics Data System (ADS)

    Vilão, Rui C.; Melo, Santino L. S.

    2014-12-01

    We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

  18. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    NASA Astrophysics Data System (ADS)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  19. Evaluation of Games in Games and Physical Activity Course Curriculum in Terms of Common Basic Skills

    ERIC Educational Resources Information Center

    Inan, Mehmet; Ozden, Bülent; Dervent, Fatih; Küçüktepe, Coskun

    2016-01-01

    The purpose of this study was to provide an overview of the games in the "I am Playing Games" (IPG) compilation booklet that was used in the Games and Physical Activity (GPA) curriculum. 257 games in IPG compilation booklet were coded whether they had elements that would enable development of common basic skills or not. Common basic…

  20. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  1. Manufacture of Sparse-Spectrum Optical Microresonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Kossakovski, Dimitri

    2006-01-01

    An alternative design for dielectric optical microresonators and a relatively simple process to fabricate them have been proposed. The proposed microresonators would exploit the same basic physical phenomena as those of microtorus optical resonators and of the microsphere optical resonators described elsewhere. The resonances in such devices are associated with the propagation of electromagnetic waves along circumferential paths in "whispering-gallery" modes. The main advantage afforded by the proposal is that the design and the fabrication process are expected to be amenable to production of multiple microresonators having reproducible spectral parameters -- including, most notably, high values of the resonance quality factor (Q) and reproducible resonance frequencies.

  2. Study of connectivity in student teams by observation of their learning processes

    NASA Astrophysics Data System (ADS)

    Pacheco, Patricio H.; Correa, Rafael D.

    2016-05-01

    A registration procedure based data tracking classroom activities students formed into teams, which are immersed in basic learning processes, particularly physical sciences is presented. For the analysis of the data various mathematical tools to deliver results in numerical indicators linking their learning, performance, quality of relational nexus to transformation their emotions. The range of variables under observation and further study, which is influenced by the evolution of the emotions of the different teams of students, it also covers the traditional approach to information delivery from outside (teaching in lecture) or from inside each team (abilities of pupils) to instructional materials that enhance learning inquiry and persuasion.

  3. Manual of Documentation Practices Applicable to Defence-Aerospace Scientific and Technical Information. Volume 2. Section 4 - Data Recording and Storage. Section 5 - Mechanization Systems and Operations. Section 6 - Announcement Services and Publications

    DTIC Science & Technology

    1979-07-01

    processes rely upon the coincidence of holes drilled , with considerable precision, in special cards. The computer can handle this kind of basic...PERFORMANCE 70No.12,17/2 Gray.R.A. Cabaniss,0.H. 4i.1972 63PP 57ref Indexing Terms: * Metrology /*Standards/Physics/Physicr Availability: TRC L1.20 A1-SURV...within the parent organsation is gauged to fit within this requitement. The imiphiations of this aspvct of SI processing are dealt with in detail in

  4. Linear momentum, angular momentum and energy in the linear collision between two balls

    NASA Astrophysics Data System (ADS)

    Hanisch, C.; Hofmann, F.; Ziese, M.

    2018-01-01

    In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.

  5. Basic Understanding of Earth Tunneling by Melting : Volume 1. Basic Physical Principles.

    DOT National Transportation Integrated Search

    1974-07-01

    A novel technique, which employs the melting of rocks and soils as a means of excavating or tunneling while simultaneously generating a glass tunnel lining and/or primary support, was studied. The object of the study was to produce a good basic under...

  6. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    This research is computational /theoretical and complements the Caltech experimental program. We have developed an understanding of the basic physical processes and produced computational models and implemented these into Eulerian and Lagrangian finite element codes. The key issues we have addressed include the conditions required for: faulting (strain localization), elastic moduli weakening, dynamic weakening (layering elastic instabilities and fluidization), bulking (creation of porosity at zero pressure) and compaction of pores, frictional melting (creation of pseudotachylytes), partial and selective devolatilization of materials (e.g. CaCO3, water/ice mixtures), and debris flows.

  7. USU Center of Excellence in Theory and Analysis of the Geo-Plasma Environment

    DTIC Science & Technology

    1993-02-01

    h4cgt) 4 V 5,’/c OJi- o PROGRAM PRO............ .. Bolling AFB, D.C. 20332-0o0/ ELEMENT NO. NO. N NO. 11. TITLE (Incad. Security Cla"aificaai-USU...and orbiting space structures. The overall goal of tht. research was to obtain a better understanding of the basic chemical and physical processes...Force systems, including OTH radars, communications, and orbiting space structures. The overall goal of the research was to obtain a better

  8. Comparative advantages and limitations of the basic metrology methods applied to the characterization of nanomaterials.

    PubMed

    Linkov, Pavel; Artemyev, Mikhail; Efimov, Anton E; Nabiev, Igor

    2013-10-07

    Fabrication of modern nanomaterials and nanostructures with specific functional properties is both scientifically promising and commercially profitable. The preparation and use of nanomaterials require adequate methods for the control and characterization of their size, shape, chemical composition, crystalline structure, energy levels, pathways and dynamics of physical and chemical processes during their fabrication and further use. In this review, we discuss different instrumental methods for the analysis and metrology of materials and evaluate their advantages and limitations at the nanolevel.

  9. Housing Operation Taking into Account Obsolescence and Physical Deterioration

    NASA Astrophysics Data System (ADS)

    Petrenko, L.; Manjilevskaja, S.

    2017-11-01

    The article focuses on the basic theory and practical aspects of improving the strategic management in terms of enhancing the quality of a technological process: these aspects have been proven experimentally by their introduction in company operations. The authors have worked out some proposals aimed at selecting an optimal supplier for building companies as well as the algorithm for the analysis and optimization of a construction company basing on scientific and practical research and the experimental data obtained in the experiment

  10. Elementary metallography

    NASA Technical Reports Server (NTRS)

    Kazem, Sayyed M.

    1992-01-01

    Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.

  11. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    NASA Astrophysics Data System (ADS)

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  12. Towards Realistic Implementations of a Majorana Surface Code.

    PubMed

    Landau, L A; Plugge, S; Sela, E; Altland, A; Albrecht, S M; Egger, R

    2016-02-05

    Surface codes have emerged as promising candidates for quantum information processing. Building on the previous idea to realize the physical qubits of such systems in terms of Majorana bound states supported by topological semiconductor nanowires, we show that the basic code operations, namely projective stabilizer measurements and qubit manipulations, can be implemented by conventional tunnel conductance probes and charge pumping via single-electron transistors, respectively. The simplicity of the access scheme suggests that a functional code might be in close experimental reach.

  13. Planetary rings and astrophysical discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik

    2016-05-01

    Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.

  14. A Stand-Alone Interactive Physics Showcase

    ERIC Educational Resources Information Center

    Pfaff, Daniel; Hagelgans, Anja; Weidemuller, Matthias; Bretzer, Klaus

    2012-01-01

    We present a showcase with interactive exhibits of basic physical experiments that constitutes a complementary method for teaching physics and interesting students in physical phenomena. Our interactive physics showcase, shown in Fig. 1, stimulates interest for science by letting the students experience, firsthand, surprising phenomena and…

  15. [Modeling the academic performance of medical students in basic sciences and pre-clinical courses: a longitudinal study].

    PubMed

    Zúñiga, Denisse; Mena, Beltrán; Oliva, Rose; Pedrals, Nuria; Padilla, Oslando; Bitran, Marcela

    2009-10-01

    The study of predictors of academic performance is relevant for medical education. Most studies of academic performance use global ratings as outcome measure, and do not evaluate the influence of the assessment methods. To model by multivariate analysis, the academic performance of medical considering, besides academic and demographic variables, the methods used to assess students' learning and their preferred modes of information processing. Two hundred seventy two students admitted to the medical school of the Pontificia Universidad Católica de Chile from 2000 to 2003. Six groups of variables were studied to model the students' performance in five basic science courses (Anatomy, Biology, Calculus, Chemistry and Physics) and two pre-clinical courses (Integrated Medical Clinic I and IT). The assessment methods examined were multiple choice question tests, Objective Structured Clinical Examination and tutor appraisal. The results of the university admission tests (high school grades, mathematics and biology tests), the assessment methods used, the curricular year and previous application to medical school, were predictors of academic performance. The information processing modes influenced academic performance, but only in interaction with other variables. Perception (abstract or concrete) interacted with the assessment methods, and information use (active or reflexive), with sex. The correlation between the real and predicted grades was 0.7. In addition to the academic results obtained prior to university entrance, the methods of assessment used in the university and the information processing modes influence the academic performance of medical students in basic and preclinical courses.

  16. Dusty (complex) plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey

    The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.

  17. Psychological predictors of children' s recess physical activity motivation and behavior.

    PubMed

    Stellino, Megan Babkes; Sinclair, Christina D

    2013-06-01

    This study explored the relationship between children's basic psychological needs satisfaction at recess, level of recess physical activity motivation (RPAM), and recess physical activity (RPA). Fifth-grade children (N = 203; 50.2% boys; 71.7% healthy-weight) completed measures of age, gender, basic psychological need satisfaction, and level of self-determined motivation for RPA. Children also wore pedometers during six consecutive 30-min mid-school-day recesses. Multiple regression analyses indicated unique significant predictors of RPAM and RPA according to gender and weight status. RPAM was significantly predicted by all three basic psychological needs for boys and only competence need satisfaction for girls and healthy-weight children. RPA was predicted by RPAM for girls, competence need satisfaction for overweight children, and autonomy need satisfaction for boys and healthy-weight children. Findings support self-determination theory and provide important insight into the variations in psychological predictors of motivation for RPA and actual physical activity behavior based on gender and weight status.

  18. Compensation Techniques in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less

  19. 20 CFR 220.102 - Non-severe impairment(s), defined.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of... supervision, co-workers and usual work situations; and (6) Dealing with changes in a routine work setting. ...

  20. 20 CFR 220.102 - Non-severe impairment(s), defined.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of... supervision, co-workers and usual work situations; and (6) Dealing with changes in a routine work setting. ...

  1. 20 CFR 220.102 - Non-severe impairment(s), defined.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of... supervision, co-workers and usual work situations; and (6) Dealing with changes in a routine work setting. ...

  2. 20 CFR 220.102 - Non-severe impairment(s), defined.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of... supervision, co-workers and usual work situations; and (6) Dealing with changes in a routine work setting. ...

  3. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  4. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  5. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  6. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  7. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  8. MO-DE-BRA-04: The CREATE Medical Physics Research Training Network: Training of New Generation Innovators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J; Collins, L; Devic, S

    Purpose: Over the past century, physicists have played a major role in transforming scientific discovery into everyday clinical applications. However, with the increasingly stringent requirements to regulate medical physics as a health profession, the role of physicists as scientists and innovators has become at serious risk of erosion. These challenges trigger the need for a new, revolutionized training program at the graduate level that respects scientific rigor, attention for medical physics-relevant developments in basic sciences, innovation and entrepreneurship. Methods: A grant proposal was funded by the Collaborative REsearch and Training Experience program (CREATE) of the Natural Sciences and Engineering Researchmore » Council (NSERC) of Canada. This enabled the creation of the Medical Physics Research Training Network (MPRTN) around two CAMPEP-accredited medical physics programs. Members of the network consist of medical device companies, government (research and regulatory) and academia. The MPRTN/CREATE program proposes a curriculum with three main themes: (1) radiation physics, (2) imaging & image processing and (3) radiation response, outcomes and modeling. Results: The MPRTN was created mid 2013 (mprtn.com) and features (1) four new basic Ph.D. courses; (2) industry participation in research projects; (3) formal job-readiness training with involvement of guest faculty from academia, government and industry. MPRTN activities since 2013 include 22 conferences; 7 workshops and 4 exchange travels. Three patents were filed or issued, nine awards/best papers were won. Fifteen journal publications were accepted/published, 102 conference abstracts. There are now 13 industry partners. Conclusion: A medical physics research training network has been set up with the goal to harness graduate student’s job-readiness for industry, government and academia in addition to the conventional clinical role. Two years after inception, significant successes have been booked, but the true challenge will be to demonstrate that with this training philosophy CREATE scholars gain access to a much broader job market. Supported by the Natural Sciences and Engineering Research Council (NSERC) Canada.« less

  9. Indirect handle on the down-quark Yukawa coupling.

    PubMed

    Goertz, Florian

    2014-12-31

    To measure the Yukawa couplings of the up and down quarks, Yu,d, seems to be far beyond the capabilities of current and (near) future experiments in particle physics. By performing a general analysis of the potential misalignment between quark masses and Yukawa couplings, we derive predictions for the magnitude of induced flavor-changing neutral currents (FCNCs), depending on the shift in the physical Yukawa coupling of first-generation quarks. We find that a change of more than 50% in Yd would generically result in ds transitions in conflict with kaon physics. This could already be seen as evidence for a nonvanishing direct coupling of the down quark to the newly discovered Higgs boson. The nonobservation of certain--already well-constrained--processes is thus turned into a powerful indirect measure of otherwise basically unaccessible physical parameters of the effective standard model. Similarly, improvements in limits on FCNCs in the up-type quark sector can lead to valuable information on Yu.

  10. Physics in the Ionosphere.

    ERIC Educational Resources Information Center

    Murket, A. J.

    1979-01-01

    Develops a simple model of radio wave propagation and illustrates how basic physical concepts such as refractive index, refraction, reflection and dispersion can be applied to a situation normally not met in introductory physics courses. (Author/GA)

  11. Bespoke physics for living technology.

    PubMed

    Ackley, David H

    2013-01-01

    In the physics of the natural world, basic tasks of life, such as homeostasis and reproduction, are extremely complex operations, requiring the coordination of billions of atoms even in simple cases. By contrast, artificial living organisms can be implemented in computers using relatively few bits, and copying a data structure is trivial. Of course, the physical overheads of the computers themselves are huge, but since their programmability allows digital "laws of physics" to be tailored like a custom suit, deploying living technology atop an engineered computational substrate might be as or more effective than building directly on the natural laws of physics, for a substantial range of desirable purposes. This article suggests basic criteria and metrics for bespoke physics computing architectures, describes one such architecture, and offers data and illustrations of custom living technology competing to reproduce while collaborating on an externally useful computation.

  12. Optimal Physical Training During Military Basic Training Period.

    PubMed

    Santtila, Matti; Pihlainen, Kai; Viskari, Jarmo; Kyröläinen, Heikki

    2015-11-01

    The goal for military basic training (BT) is to create a foundation for physical fitness and military skills of soldiers. Thereafter, more advanced military training can safely take place. Large differences in the initial physical performance of conscripts or recruits have led military units to develop more safe and effective training programs. The purpose of this review article was to describe the limiting factors of optimal physical training during the BT period. This review revealed that the high volume of low-intensity physical activity combined with endurance-type military training (like combat training, prolonged physical activity, and field shooting) during BT interferes with optimal development of maximal oxygen uptake and muscle strength of the soldiers. Therefore, more progressive, periodized, and individualized training programs are needed. In conclusion, optimal training programs lead to higher training responses and lower risks for injuries and overloading.

  13. Preface

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki; Samukawa, Seiji

    2007-06-01

    Twenty-first century will be the era of the design technology on a firm basis of physics and chemistry under circumstances of a prospective high-speed computing along the line of environmentally friendly and economically saving society. The 4th International Workshop on Basic Aspects of Nonequilibrium Plasmas Interacting with Surfaces (BANPIS); Negative ions, their function & designability, and the 4th EU-Japan Joint Symposium on Plasma Processes (JSPP) were held at Hotel Highland Resort close to Mt. Fuji in Japan on January 30 - February 1, 2006. The joint conference was organized by the 21st century Center of Excellence (COE) for ;Optical & Electronic Device Technology for Access Networks; in Keio University, and co-operated by the Center for ;Atomic and Molecular Engineering,; in Open University, and by The Japan Society of Applied Physics.

  14. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  15. Automatic methods of the processing of data from track detectors on the basis of the PAVICOM facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. B.; Goncharova, L. A.; Davydov, D. A.; Publichenko, P. A.; Roganova, T. M.; Polukhina, N. G.; Feinberg, E. L.

    2007-02-01

    New automatic methods essentially simplify and increase the rate of the processing of data from track detectors. This provides a possibility of processing large data arrays and considerably improves their statistical significance. This fact predetermines the development of new experiments which plan to use large-volume targets, large-area emulsion, and solid-state track detectors [1]. In this regard, the problem of training qualified physicists who are capable of operating modern automatic equipment is very important. Annually, about ten Moscow students master the new methods, working at the Lebedev Physical Institute at the PAVICOM facility [2 4]. Most students specializing in high-energy physics are only given an idea of archaic manual methods of the processing of data from track detectors. In 2005, on the basis of the PAVICOM facility and the physicstraining course of Moscow State University, a new training work was prepared. This work is devoted to the determination of the energy of neutrons passing through a nuclear emulsion. It provides the possibility of acquiring basic practical skills of the processing of data from track detectors using automatic equipment and can be included in the educational process of students of any physical faculty. Those who have mastered the methods of automatic data processing in a simple and pictorial example of track detectors will be able to apply their knowledge in various fields of science and technique. Formulation of training works for pregraduate and graduate students is a new additional aspect of application of the PAVICOM facility described earlier in [4].

  16. The APSU 0.5m Telescope - A Hands-On Learning Environment for Secondary Teachers

    NASA Astrophysics Data System (ADS)

    Allyn Smith, J.; Buckner, S. L.; Pirkle, S. F.

    2012-05-01

    Physical science teachers with hands-on experience are critical to secondary education learning. In "Before It’s Too Late," the U.S. Department of Education (2000) estimated "about 56% of high school students taking physical science are taught by out-of-field teachers." In Tennessee, the problem is even greater, while the demand is increasing. This project aims to address the shortage of well-prepared physics and astronomy teachers. Austin Peay State University has recently installed a 0.5m telescope with imaging and rudimentary spectroscopic capability. We are committed to working with the College of Education to bring secondary teachers in training and practicing secondary teachers to the telescope to experience basic operations and conduct small research projects. This is done via classes and summer workshops. We describe the program setup, expectations for the participants, learning outcomes, and the evaluation process.

  17. Requirements for fault-tolerant factoring on an atom-optics quantum computer.

    PubMed

    Devitt, Simon J; Stephens, Ashley M; Munro, William J; Nemoto, Kae

    2013-01-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  18. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  19. Unified Models of Turbulence and Nonlinear Wave Evolution in the Extended Solar Corona and Solar Wind

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Wagner, William (Technical Monitor)

    2004-01-01

    The PI (Cranmer) and Co-I (A. van Ballegooijen) made substantial progress toward the goal of producing a unified model of the basic physical processes responsible for solar wind acceleration. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a 1D model of plasma heating and acceleration. The accomplishments in Year 2 are divided into these two categories: 1a. Focused Study of Kinetic Magnetohydrodynamic (MHD) Turbulence. lb. Focused Study of Non - WKB Alfven Wave Rejection. and 2. The Unified Model Code. We have continued the development of the computational model of a time-study open flux tube in the extended corona. The proton-electron Monte Carlo model is being tested, and collisionless wave-particle interactions are being included. In order to better understand how to easily incorporate various kinds of wave-particle processes into the code, the PI performed a detailed study of the so-called "Ito Calculus", i.e., the mathematical theory of how to update the positions of particles in a probabilistic manner when their motions are governed by diffusion in velocity space.

  20. Object segmentation controls image reconstruction from natural scenes

    PubMed Central

    2017-01-01

    The structure of the physical world projects images onto our eyes. However, those images are often poorly representative of environmental structure: well-defined boundaries within the eye may correspond to irrelevant features of the physical world, while critical features of the physical world may be nearly invisible at the retinal projection. The challenge for the visual cortex is to sort these two types of features according to their utility in ultimately reconstructing percepts and interpreting the constituents of the scene. We describe a novel paradigm that enabled us to selectively evaluate the relative role played by these two feature classes in signal reconstruction from corrupted images. Our measurements demonstrate that this process is quickly dominated by the inferred structure of the environment, and only minimally controlled by variations of raw image content. The inferential mechanism is spatially global and its impact on early visual cortex is fast. Furthermore, it retunes local visual processing for more efficient feature extraction without altering the intrinsic transduction noise. The basic properties of this process can be partially captured by a combination of small-scale circuit models and large-scale network architectures. Taken together, our results challenge compartmentalized notions of bottom-up/top-down perception and suggest instead that these two modes are best viewed as an integrated perceptual mechanism. PMID:28827801

  1. Taking a Swat at Physics with a Ping-Pong Paddle.

    ERIC Educational Resources Information Center

    Graney, Chris M.

    1994-01-01

    A professor of physics discusses ideas on how to use physics to improve your ping-pong game. Describes how basic physics was used to analyze a simple ball-paddle collision problem and provide students with insight on the application of physics to a fun and real life situation. (ZWH)

  2. Basic physics of laser interaction with vital tissue.

    PubMed

    Wigdor, Harvey

    2008-09-01

    It is essential for any practitioner who uses lasers in their clinical practice to understand the basic physics of lasers. It is this knowledge that allows for an educated assessment of the clinical outcomes that lasers produce in our patients. It is also this understanding that provides a scientific basis for the visual feedback the clinician uses to vary parameters as needed to get the desired clinical results. It is the intent of this paper to discuss the very basic reasons why lasers affect tissues the way they do, and to synthesize the plethora of information dental practitioners are seeing regularly in dental journals.

  3. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarino, Vincenzo, E-mail: vguarino@unina.it; Altobelli, Rosaria; Cirillo, Valentina

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow tomore » produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.« less

  4. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenzo; Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi

    2015-12-01

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial's manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell-biomaterial and cell- cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.

  5. 25 CFR 15.11 - What are the basic steps of the probate process?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What are the basic steps of the probate process? 15.11 Section 15.11 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROBATE PROBATE OF INDIAN... are the basic steps of the probate process? The basic steps of the probate process are: (a) We learn...

  6. History of lasers.

    PubMed

    Gross, Andreas J; Herrmann, Thomas R W

    2007-06-01

    The developments of laser technology from the cradle of modern physics in 1900 by Planck to its latest medical boundaries is an exciting example of how basic physics finds its way into clinical practice. This article merits the protagonists and their contribution to the steps in this development. The competition between the different research groups finally led to the award of the Nobel Prize to Townes, Basov and Prokhorov in 1964 for the scientific basis on quantum electronics, which led to the construction of oscillators and amplifiers based on the laser-maser principle. Forty-three years after Einstein's first theories Maiman introduced the first ruby laser for commercial use. This marked the key step for the laser application and pioneered fruitful cooperations between basic and clinical science. The pioneers of lasers in clinical urology were Parsons in 1966 with studies in canine bladders and Mulvany 1968 with experiments in calculi fragmentation. The central technological component for the triumphal procession of lasers in urology is the endoscope. Therefore lasers are currently widely used, being the tool of choice in some areas, such as endoscopical lithotriptic stone treatment or endoluminal organ-preserving tumor ablation. Furthermore they show promising treatment alternatives for the treatment of benign prostate hyperplasia.

  7. Perceptual and affective mechanisms in facial expression recognition: An integrative review.

    PubMed

    Calvo, Manuel G; Nummenmaa, Lauri

    2016-09-01

    Facial expressions of emotion involve a physical component of morphological changes in a face and an affective component conveying information about the expresser's internal feelings. It remains unresolved how much recognition and discrimination of expressions rely on the perception of morphological patterns or the processing of affective content. This review of research on the role of visual and emotional factors in expression recognition reached three major conclusions. First, behavioral, neurophysiological, and computational measures indicate that basic expressions are reliably recognized and discriminated from one another, albeit the effect may be inflated by the use of prototypical expression stimuli and forced-choice responses. Second, affective content along the dimensions of valence and arousal is extracted early from facial expressions, although this coarse affective representation contributes minimally to categorical recognition of specific expressions. Third, the physical configuration and visual saliency of facial features contribute significantly to expression recognition, with "emotionless" computational models being able to reproduce some of the basic phenomena demonstrated in human observers. We conclude that facial expression recognition, as it has been investigated in conventional laboratory tasks, depends to a greater extent on perceptual than affective information and mechanisms.

  8. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  9. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    NASA Astrophysics Data System (ADS)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The bridging between these two human aspects of life, can lead to a “why” of science, and a “meaning” of life. A progress report on these efforts is presented, essentially being of the results indicated by an extended format of the usual weekly reporting used previously in Basic Physics lectures.

  10. A Flush Toilet Model for the Transistor

    NASA Astrophysics Data System (ADS)

    Organtini, Giovanni

    2012-04-01

    In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted. This is not true for transistors. In most textbooks the behavior of a transistor is given without formal explanation. When the amplification is computed, for some reason, students have difficulties in identifying the basic physical mechanisms that give rise to such an effect. In this paper we give a simple and captivating illustration of the working principles of a transistor as an amplifier, tailored to high school students even with almost no background in electronics nor in modern physics. We assume that the target audience is familiar with the idea that a diode works as a check valve for currents. The lecture emphasis is on the illustration of physics principles governing the behavior of a transistor, rather than on a formal description of the processes leading to amplification.

  11. Motivating Students To Read Physics Content.

    ERIC Educational Resources Information Center

    Sprague, Marsha M.; Cotturone, Jennifer

    2003-01-01

    Describes effective projects that made students effectively read scientific materials in the physics content area. Suggests using trade books in science to enhance student learning of basic physics concepts and comprehension of technical reading matter. (KHR)

  12. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  13. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  14. Natural photosystems from an engineer's perspective: length, time, and energy scales of charge and energy transfer.

    PubMed

    Noy, Dror

    2008-01-01

    The vast structural and functional information database of photosynthetic enzymes includes, in addition to detailed kinetic records from decades of research on physical processes and chemical reaction-pathways, a variety of high and medium resolution crystal structures of key photosynthetic enzymes. Here, it is examined from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in novel biological and non-biological solar-energy conversion systems. This survey reveals that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Furthermore, the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. This underlines a critical challenge for projected de novo designed constructions, that is, the control of spatial organization of cofactor molecules within dense array of different cofactors, some well within 1 nm from each other.

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT III, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO INTRODUCE BASIC HYDRAULIC PRINCIPLES AND PROVIDE AN UNDERSTANDING OF HYDRAULIC TRANSMISSIONS USED IN DIESEL POWERED VEHICLES. TOPICS ARE WHY USE HYDRAULICS, REVIEWING BASIC PHYSICS LAWS IN RELATION TO HYDRAULICS, UNDERSTANDING THE HYDRAULIC SYSTEM, AND DEVELOPING A BASIC HYDRAULIC SYSTEM. THE MODULE…

  16. Sparking young minds with Moon rocks and meteorites

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Lindstrom, Marilyn M.

    1993-01-01

    What could be more exciting than seeing pieces of other worlds? The Apollo program left a legacy of astounding accomplishments and precious samples. Part of the thrill of those lunar missions is brought to schools by the lunar sample educational disks, which contain artifacts of six piloted trips to the Moon. Johnson Space Center (JSC) is preparing 100 new educational disks containing pieces of meteorites collected in Antarctica. These represent chunks of several different asteroids, that were collected in one of the most remote, forbidding environments on Earth. These pieces of the Moon and asteroids represent the products of basic planetary processes (solar nebular processes, initial differentiation, volcanism, and impact), and, in turn, these processes are controlled by basic physical and chemical processes (energy, energy transfer, melting, buoyancy, etc.). Thus, the lunar and meteorite sample disks have enormous educational potential. New educational materials are being developed to accompany the disks. Present materials are not as effective as they could be, especially in relating samples to processes and to other types of data such as spectral studies and photogeology. Furthermore, the materials are out of date. New background materials will be produced for teachers, assembling slide sets with extensive captions, and devising numerous hands-on classroom activities to do while the disks are at a school and before and after they arrive. The classroom activities will be developed by teams of experienced teachers working with lunar and meteorite experts.

  17. Assessing Student Understanding of Physical Hydrology

    NASA Astrophysics Data System (ADS)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2 students had a full understanding of the processes linked to hydrology. Half the students had provided evidence of the desired understanding; however, half still demonstrated only a rudimentary understanding. Results on Q2 were similar. On the pre-test, 2 students scored 0, 21 students scored 1, indicating rudimentary understanding, 2 students scored a 2, and no student scored a 3. On the post-test, again approximately half the students achieved the desired understanding: 9 students showed some recognition of concepts, 12 students demonstrated a basic understanding; only one student exhibited full understanding. On Q3, no student scored 0, 9 scored 1, 15 scored 2 and 1 student scored 3. On the post-test, one student scored 1, 16 students scored 2, and 5 students scored 3. Students were significantly better at responding to Q3 (the application) as opposed to Q1 and Q2, which were more abstract. Research has shown that students are often better able to solve contextualized problems when they are unable to deal with more abstract tasks. This result has limitations including the small number of participants, all from one institution, and the fact that the rubric was still under development. Nevertheless, the high inter-rater agreement by a group of experts is significant; the rubric we developed is a potentially useful tool for assessment of learning and understanding physical hydrology. Supported by NSF CAREER grant (EAR-0955750).

  18. Student Physical Therapists' Competence and Self-Confidence in Basic Clinical Assessment and Musculoskeletal Differential Diagnosis.

    PubMed

    Alexander, Kathleen M; Olsen, Janette; Seiger, Cindy; Peterson, Teri S

    2016-01-01

    Student physical therapists are expected to learn and confidently perform technical skills while integrating nontechnical behavioral and cognitive skills in their examinations and interventions. The purpose of this study was to compare the self-confidence of entry-level doctoral student physical therapists during foundational assessment and musculoskeletal differential diagnosis courses and the students' competencies based on skills examinations. Methods using qualitative and quantitative procedures. Student physical therapists (n=27) participated in a basic assessment course followed by a musculoskeletal differential diagnosis course. The students completed confidence surveys prior to skills examinations in both courses. A random sample of students participated in focus groups, led by a researcher outside the physical therapy department. Student confidence did not correlate with competency scores. At the end of the basic clinical assessment course and the beginning of the differential diagnosis course, students' confidence was significantly below baseline. However, by the end of the differential diagnosis course, student confidence had returned to original baseline levels. Over three semesters, the students lost confidence and then regained confidence in their abilities. Additional experience and practice influenced perceived confidence. However, increased competence may have been associated with poor self-appraisal skills instead of increased competency.

  19. Understanding the Magic of the Bicycle; Basic scientific explanations to the two-wheeler's mysterious and fascinating behavior

    NASA Astrophysics Data System (ADS)

    Connolly, Joseph W.

    The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature.

  20. Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier-Stokes-Fourier equations

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2011-10-01

    Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.

  1. [Application of activated carbon from waste tea in desulfurization and denitrification].

    PubMed

    Song, Lei; Zhang, Bin; Deng, Wen

    2014-10-01

    The effects of pore structure, graphite and surface structure of waste tea activated carbon on its desulfurization and denitrification performance were investigated. The adsorption kinetics and adsorption process were also studied. The results showed that less graphitization, lower micropore size and more nitrogenous basic group of adsorbent enhanced its desulfurization ability. When well- developed mesopores were present in adsorbent, the NO removal efficiency was decreased, while more nitrogenous basic groups promoted the removal rate of NO. When SO2 and NO were removed together, competing adsorption occurred. After oxygen and steam were introduced to the flue gas, the removal efficiencies of SO2 and NO were increased. The adsorption of SO2 and NO onto waste tea activated carbon was physical adsorption without O2 and H2O, while the vapor promoted chemical adsorption of SO2 in the presence of water and oxygen. The adsorption process of the material can be well described by Bangham's kinetic equation, and the value of R2 was no less than 0.989. O2 and water vapor slowed the adsorption rates of SO2 and NO.

  2. Ontology patterns for complex topographic feature yypes

    USGS Publications Warehouse

    Varanka, Dalia E.

    2011-01-01

    Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J.H.; Im, C.J.

    The following report presents the technical progress achieved during the first quarter. The completion of this contract entails engineering evaluation in conjunction with basic laboratory research to determine overall process improvements, associated cost savings and the effect of these savings on product price as they relate to the UCC Physical Beneficiation Process for coal-water slurry manufacture. The technical effort for this quarter has concentrated on two basic areas of concern as they relate to the above-mentioned process. First, an engineering evaluation was carried out to examine the critical areas of improvement in the existing UCC Research Corporation single-stage cleaning circuitmore » (coarse coal, heavy media washer). When the plant runs for low ash coal product, at the specific gravity near 1.30, it was found that substantial product contamination resulted from magnetite carry over in the clean coal product. The reduction of the magnetite contamination would entail the application of more spray water to the clean coal drain and rinse screen, and the refinement of the existing dilute media handling system, to accept the increased quality of rinse water. It was also determined that a basic mechanical overhaul is needed on the washbox to ensure dependable operation during the future production of low-ash coal. The various cost elements involved with this renovation were determined by UCC personnel in the operational division. The second area of investigation was concerned with the laboratory evaluation of three separate source coals obtained from United Coal Company (UCC) and nearby mines to determine probable cleanability when using each seam of coal as a feed in the existing beneficiation process. Washability analyses were performed on each sample utilizing a specific gravity range from 1.25 to 1.50. 4 figures, 3 tables.« less

  4. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.

  5. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

    PubMed

    Schwabl, Herbert; Klima, Herbert

    2005-04-01

    Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

  6. Women prefer biology after taking basic physics

    NASA Astrophysics Data System (ADS)

    Randall, Ian

    2017-04-01

    A survey of almost 10,000 undergraduates in New Zealand has found that women are more likely to choose to study life sciences after taking a first-year physics course rather than progressing further in the physical sciences.

  7. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recentlymore » updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and the implementation of user-friendly graphical interfaces. Due to its comprehensive physical simulation and thanks to its broad qualification database with more than a thousand benchmark/calculation comparisons, CRISTAL V0 provides outstanding and reliable accuracy for criticality evaluations for configurations covering the entire fuel cycle (i.e. from enrichment, pellet/assembly fabrication, transportation, to fuel reprocessing). After a brief description of the calculation scheme and the physics algorithms used in this code package, results for the various fissile media encountered in a UO{sub 2} fuel fabrication plant will be detailed and discussed. (authors)« less

  8. REVIEW ARTICLE: How will physics be involved in silicon microelectronics

    NASA Astrophysics Data System (ADS)

    Kamarinos, Georges; Felix, Pierre

    1996-03-01

    By the year 2000 electronics will probably be the basis of the largest industry in the world. Silicon microelectronics will continue to keep a dominant place covering 99% of the `semiconductor market'. The aim of this review article is to indicate for the next decade the domains in which research work in `physics' is needed for a technological advance towards increasing speed, complexity and density of silicon ultra large scale integration (ULSI) integrated circuits (ICs). By `physics' we mean here not only condensed matter physics but also the basic physical chemistry and thermodynamics. The review begins with a brief and general introduction in which we elucidate the current state of the art and the trends in silicon microelectronics. Afterwards we examine the involvement of physics in silicon microelectronics in the two main sections. The first section concerns the processes of fabrication of ICs: lithography, oxidation, diffusion, chemical and physical vapour deposition, rapid thermal processing, etching, interconnections, ultra-clean processing and microcontamination. The second section concerns the electrical operation of the ULSI devices. It defines the integration scales and points out the importance of the intermediate scale of integration which is the scale of the next generation of ICs. The emergence of cryomicroelectronics is also reviewed and an extended paragraph is dedicated to the problem of reliability and ageing of devices and ICs: hot carrier degradation, interdevice coupling and noise are considered. It is shown, during our analysis, that the next generation of silicon ICs needs mainly: (i) `scientific' fabrication and (ii) microscopic modelling and simulation of the electrical characteristics of the scaled down devices. To attain the above objectives a return to the `first principles' of physics as well as a recourse to nonlinear and non-equilibrium thermodynamics are mandatory. In the references we list numerous review papers and references of specialized colloquia proceedings so that a more detailed survey of the subject is possible for the reader.

  9. Career Education Resource Guide for Physics. (Tentative.)

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    The career education resource guide integrates learning activities in basic physics with an exploration of careers in physics or related fields. The guide is keyed to the physics textbooks and laboratory manuals adopted by the Louisiana State Department of Education in 1973. The field of physics is divided into six subject areas: (1) the…

  10. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity

    ERIC Educational Resources Information Center

    Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer

    2015-01-01

    Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion…

  11. The Active plus protocol: systematic development of two theory- and evidence-based tailored physical activity interventions for the over-fifties.

    PubMed

    van Stralen, Maartje M; Kok, Gerjo; de Vries, Hein; Mudde, Aart N; Bolman, Catherine; Lechner, Lilian

    2008-12-04

    Limited data are available on the development, implementation and evaluation processes of physical activity promotion programmes among older adults. More integrative insights into interventions describing the planned systematic development, implementation and evaluation are needed. The purpose of this study is to give an integrative insight into the development of the Active plus programme applying the six-step Intervention Mapping protocol. The Active plus programme consisted of two theory- and evidence-based tailored physical activity promotion interventions, both comprising three tailored letters delivered over four months and aimed at raising awareness of insufficient physical activity, and stimulating physical activity initiation and maintenance among the over-fifties. The first intervention, the basic tailored intervention, provided tailored letters that intervened on the psychosocial determinants of physical activity. The second intervention, the intervention plus, provided the same tailored information but additionally provided tailored information about physical activity opportunities in the specific environment in which the older adults lived. This environment-based component also provided access to a forum and e-buddy system on a website. A plan for implementation and evaluation is also described. The planned development of the Active plus programme resulted in two theory- and evidence-based tailored physical activity interventions targeted at the over-fifties. Dutch Trial Register NTR 920.

  12. Experimental Overview of Direct Photon Results in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert

    2016-07-01

    Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.

  13. Fundamentals handbook of electrical and computer engineering. Volume 1 Circuits fields and electronics

    NASA Astrophysics Data System (ADS)

    Chang, S. S. L.

    State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.

  14. Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2005-10-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.

  15. Quantum Metric of Classic Physics

    NASA Astrophysics Data System (ADS)

    Machusky, Eugene

    2017-09-01

    By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E.A.; Smed, P.F.; Bryndum, M.B.

    The paper describes the numerical program, PIPESIN, that simulates the behavior of a pipeline placed on an erodible seabed. PIPEline Seabed INteraction from installation until a stable pipeline seabed configuration has occurred is simulated in the time domain including all important physical processes. The program is the result of the joint research project, ``Free Span Development and Self-lowering of Offshore Pipelines`` sponsored by EU and a group of companies and carried out by the Danish Hydraulic Institute and Delft Hydraulics. The basic modules of PIPESIN are described. The description of the scouring processes has been based on and verified throughmore » physical model tests carried out as part of the research project. The program simulates a section of the pipeline (typically 500 m) in the time domain, the main input being time series of the waves and current. The main results include predictions of the onset of free spans, their length distribution, their variation in time, and the lowering of the pipeline as function of time.« less

  17. Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.; Pandit, Aniruddha B.

    Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

  18. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  19. Man's Basic Needs. Resource Units, Grade 1. Providence Social Studies Curriculum Project.

    ERIC Educational Resources Information Center

    Providence Public Schools, RI.

    GRADES OR AGES: Grade 1. SUBJECT MATTER: Social studies; man's basic needs. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 chapters, five of which outline the basic curriculum subunits. These five chapters are laid out in three columns, one each for topics, activities, and materials. Other chapters are in list form. The guide…

  20. A Basic Manual for Physical Plant Administration.

    ERIC Educational Resources Information Center

    Weber, George O., Ed.; Fincham, Michael W., Ed.

    This book provides practical advice on problems of institutional plant management to physical plant administrators. Areas covered include the role, organization, and facilities of the physical plant department; personnel administration; financial administration; buildings maintenance and operation; custodial services; utilities distribution…

  1. ATHENA: A Personalized Platform to Promote an Active Lifestyle and Wellbeing Based on Physical, Mental and Social Health Primitives

    PubMed Central

    Fahim, Muhammad; Idris, Muhammad; Ali, Rahman; Nugent, Christopher; Kang, Byeong; Huh, Eui-Nam; Lee, Sungyoung

    2014-01-01

    Technology provides ample opportunities for the acquisition and processing of physical, mental and social health primitives. However, several challenges remain for researchers as how to define the relationship between reported physical activities, mood and social interaction to define an active lifestyle. We are conducting a project, ATHENA(activity-awareness for human-engaged wellness applications) to design and integrate the relationship between these basic health primitives to approximate the human lifestyle and real-time recommendations for wellbeing services. Our goal is to develop a system to promote an active lifestyle for individuals and to recommend to them valuable interventions by making comparisons to their past habits. The proposed system processes sensory data through our developed machine learning algorithms inside smart devices and utilizes cloud infrastructure to reduce the cost. We exploit big data infrastructure for massive sensory data storage and fast retrieval for recommendations. Our contributions include the development of a prototype system to promote an active lifestyle and a visual design capable of engaging users in the goal of increasing self-motivation. We believe that our study will impact the design of future ubiquitous wellness applications. PMID:24859031

  2. Biophysical controls on cluster dynamics and architectural differentiation of microbial biofilms in contrasting flow environments

    PubMed Central

    Hödl, Iris; Mari, Lorenzo; Bertuzzo, Enrico; Suweis, Samir; Besemer, Katharina; Rinaldo, Andrea; Battin, Tom J

    2014-01-01

    Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre-scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in ‘ripple-like’ and ‘star-like’ architectures – as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size-structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single-species bacterial biofilms. PMID:23879839

  3. Some Learning Problems Concerning the Use of Symbolic Language in Physics.

    ERIC Educational Resources Information Center

    De Lozano, Silvia Ragout; Cardenas, Marta

    2002-01-01

    Draws the attention of teachers of basic university physics courses to student problems concerning the interpretation of the symbolic language used in physics. Reports specific difficulties found in the first physics course related to different kinds of statements expressed in the mathematical language. (Contains 15 references.) (Author/YDS)

  4. The Correlated Lecture Laboratory Series in Diagnostic Radiological Physics.

    ERIC Educational Resources Information Center

    Lamel, David A.; And Others

    This series in diagnostic radiological physics has been designed to provide the physics background requisite for the proper conduct of medical diagnostic x-ray examinations. The basic goal of the series is to bridge physics theory and radiological practice, achieved by combining pertinent lecture material with laboratory exercises that illustrate…

  5. 42 CFR 410.60 - Outpatient physical therapy services: Conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Outpatient physical therapy services: Conditions... Services § 410.60 Outpatient physical therapy services: Conditions. (a) Basic rule. Except as specified in paragraph (a)(3)(iii) of this section, Medicare Part B pays for outpatient physical therapy services only if...

  6. 42 CFR 410.60 - Outpatient physical therapy services: Conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Outpatient physical therapy services: Conditions... Services § 410.60 Outpatient physical therapy services: Conditions. (a) Basic rule. Except as specified in paragraph (a)(3)(iii) of this section, Medicare Part B pays for outpatient physical therapy services only if...

  7. 42 CFR 410.60 - Outpatient physical therapy services: Conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Outpatient physical therapy services: Conditions... Services § 410.60 Outpatient physical therapy services: Conditions. (a) Basic rule. Except as specified in paragraph (a)(3)(iii) of this section, Medicare Part B pays for outpatient physical therapy services only if...

  8. 42 CFR 410.60 - Outpatient physical therapy services: Conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Outpatient physical therapy services: Conditions... Services § 410.60 Outpatient physical therapy services: Conditions. (a) Basic rule. Except as specified in paragraph (a)(3)(iii) of this section, Medicare Part B pays for outpatient physical therapy services only if...

  9. 42 CFR 410.60 - Outpatient physical therapy services: Conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Outpatient physical therapy services: Conditions... Services § 410.60 Outpatient physical therapy services: Conditions. (a) Basic rule. Except as specified in paragraph (a)(3)(iii) of this section, Medicare Part B pays for outpatient physical therapy services only if...

  10. A new thermally immobilized fluorinated stationary phase for RP-HPLC.

    PubMed

    Maldaner, Liane; Jardim, Isabel C S F

    2010-02-01

    A new fluorinated stationary phase was prepared through thermal immobilization of poly(methyl-3,3,3-trifluoropropylsiloxane) onto 5 microm Kromasil silica particles. The best conditions of immobilization time and temperature were determined through a central composite design and response surface methodologies. Physical-chemical characterization using solid-state (29)Si NMR measurements, infrared spectroscopy and elemental analysis showed that the immobilization process was effective to promote a coating of the support that corresponds to a monolayer of polymer. The stationary phase presents selectivity for positional isomers and good peak shape for basic compounds.

  11. Research Technology

    NASA Image and Video Library

    1999-10-21

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  12. Simulation of the GEM detector for BM@N experiment

    NASA Astrophysics Data System (ADS)

    Baranov, Dmitriy; Rogachevsky, Oleg

    2017-03-01

    The Gas Electron Multiplier (GEM) detector is one of the basic parts of the BM@N experiment included in the NICA project. The simulation model that takes into account features of signal generation process in an ionization GEM chamber is presented in this article. Proper parameters for the simulation were extracted from data retrieved with the help of Garfield++ (a toolkit for the detailed simulation of particle detectors). Due to this, we are able to generate clusters in layers of the micro-strip readout that correspond to clusters retrieved from a real physics experiment.

  13. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  14. HESSI Spacecraft Model

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The acronym, HESSI, stnds for the High Energy Solar Spectroscopic Imager. HESSI is a NASA mission proposed by astrophysicists who study the Sun. Their goal is to learn more about the basic physical processes that occur in solar flares. Teams of astrophysicists and engineers worked together to decide what kinds of observations HESSI would make and what kinds of scientific instrumentation would be required. The HESSI teams will achieve their goal by making "color" pictures of solar flares in X rays and gamma rays. This model is designed to help students understand the operation and objectives of HESSI.

  15. Artist's concept of Antimatter propulsion system

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  16. Self-organized Motion During Dictyostelium amoebae aggregation

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2004-03-01

    After starvation, amoeba of the cellular slime mold Dictyostelium discoideum aggregate to form rudimentary multicellular organisms. The coordination of the individual motions of hundreds of thousands of individual cells is an important ingredient in the success of this process. This coordination is accomplished by chemical signaling during the early stages and by direct cell-cell interactions once the cells reach the nascent mound. This talk will review the basic nonequilibrium physics underlying the spatial patterns formed by these cooperative motions, including high-density incoming streams and spontaneously rotating mounds.

  17. Space Flight Ionizing Radiation Environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  18. RCRA, superfund and EPCRA hotline training module. Introduction to: Miscellaneous and other units (40 cfr part 264, subpart x and 40 cfr part 265, subparts p, q, and r) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module describes the basic requirements and types of units of 40 CFR Part 264, Subpart X and standards for broadly defined treatment processes - Thermal treatment (Part 265, Subpart P); chemical, physical, and biological treatment (Subpart Q); and underground injection (Subpart R). Explains when corrective action applies to these subparts. It presents the relationship between Part 264, Subpart X, and Part 265, Subparts P, Q, and R.

  19. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  20. Refractories for high alkali environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.W.; Cloer, F.

    1996-12-31

    Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.

  1. Basic research and data analysis for the national geodetic satellite program and for the earth and ocean physics applications program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Activities related to the National Geodetic Satellite Program are reported and include a discussion of Ohio State University's OSU275 set of tracking station coordinates and transformation parameters, determination of network distortions, and plans for data acquisition and processing. The problems encountered in the development of the LAGEOS satellite are reported in an account of activities related to the Earth and Ocean Physics Applications Program. The LAGEOS problem involves transmission and reception of the laser pulse designed to make accurate determinations of the earth's crustal and rotational motions. Pulse motion, ephemeris, arc range measurements, and accuracy estimates are discussed in view of the problem. Personnel involved in the two programs are also listed, along with travel activities and reports published to date.

  2. Plasma Flow Past Cometary and Planetary Satellite Atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Gombosi, Tamas I.; Kabin, Konstantin

    2000-01-01

    The tenuous atmospheres and ionospheres of comets and outer planet satellites share many common properties and features. Such similarities include a strong interaction with their outer radiation, fields and particles environs. For comets the interaction is with the magnetized solar wind plasma, whereas for satellites the interaction is with the strongly magnetized and corotating planetary magnetospheric plasma. For this reason there are many common or analogous physical regimes, and many of the same modeling techniques are used to interpret remote sensing and in situ measurements in order to study the important underlying physical phenomena responsible for their appearances. We present here a review of various modeling approaches which are used to elucidate the basic properties and processes shaping the energetics and dynamics of these systems which are similar in many respects.

  3. Workbook, Basic Mathematics and Wastewater Processing Calculations.

    ERIC Educational Resources Information Center

    New York State Dept. of Environmental Conservation, Albany.

    This workbook serves as a self-learning guide to basic mathematics and treatment plant calculations and also as a reference and source book for the mathematics of sewage treatment and processing. In addition to basic mathematics, the workbook discusses processing and process control, laboratory calculations and efficiency calculations necessary in…

  4. A Physics Workshop in Hispaniola.

    ERIC Educational Resources Information Center

    Little, R. N.

    1983-01-01

    Describes two workshops for physics teachers in Hispaniola. Workshops demonstrated how mechanics could be developed from planetary motions and how basic mechanics concepts could be introduced through a guided discovery approach. Comments on workshop activities, organization, participant attitudes, and physics curriculum/instruction in Hispaniola…

  5. Classifying the Basic Parameters of Ultraviolet Copper Bromide Laser

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S. G.; Iliev, I. P.; Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.

    2009-10-01

    The performance of deep ultraviolet copper bromide lasers is of great importance because of their applications in medicine, microbiology, high-precision processing of new materials, high-resolution laser lithography in microelectronics, high-density optical recording of information, laser-induced fluorescence in plasma and wide-gap semiconductors and more. In this paper we present a statistical study on the classification of 12 basic lasing parameters, by using different agglomerative methods of cluster analysis. The results are based on a big amount of experimental data for UV Cu+ Ne-CuBr laser with wavelengths 248.6 nm, 252.9 nm, 260.0 nm and 270.3 nm, obtained in Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences. The relevant influence of parameters on laser generation is also evaluated. The results are applicable in computer modeling and planning the experiments and further laser development with improved output characteristics.

  6. Towards Plasma-Based Water Purification: Challenges and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Foster, John

    2016-10-01

    Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.

  7. On the Basic Principles of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2014-12-01

    How and why Differentiation occurs has dominated Igneous Petrology since its beginning (~1880) even though many of the problems associated with it have been thoroughly solved. Rediscovery of the proverbial wheel with new techniques impedes progress. As soon as thin section petrography was combined with rock and mineral chemistry, rock diversity, compositional suites, and petrographic provinces all became obvious. The masterful 1902 CIPW norm in a real sense solved the chemical mystery of differentiation: rocks are related by the addition and subtraction of minerals in the anciently appreciated process of fractional crystallization. Yet few believed this, even after phase equilibria arrived. Assimilation, gas transfer, magma mixing, Soret diffusion, immiscibility, and other processes had strong adherents, even though by 1897 Becker conclusively showed the ineffectiveness of molecular diffusion in large-scale processes. The enormity of heat to molecular diffusion (today's Lewis no.) should have been convincing; but few paid attention. Bowen did, and he refined and restated the result; few still paid attention. And in spite of his truly masterful command of experiment and field relations in promoting fractional crystallization, Fenner and others fought him with odd arguments. The beauty of phase equilibria eventually dominated at the expense of knowing the physical side of differentiation. Bowen himself saw and struggled with the connection between physical and chemical processes. Progress has come from new concepts in heat transfer, kinetics, and slurry dynamics. The key approach is understanding the dynamic competition between spatial rates of solidification and all other processes. The lesson is clear: Scholarship and combined field, laboratory and technical expertise are critical to understanding magmatic processes. Magma is a limitlessly enchanting and challenging material wherein physical processes buttressed by chemistry govern.

  8. Towards bioelectronic logic (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meredith, Paul; Mostert, Bernard; Sheliakina, Margarita; Carrad, Damon J.; Micolich, Adam P.

    2016-09-01

    One of the critical tasks in realising a bioelectronic interface is the transduction of ion and electron signals at high fidelity, and with appropriate speed, bandwidth and signal-to-noise ratio [1]. This is a challenging task considering ions and electrons (or holes) have drastically different physics. For example, even the lightest ions (protons) have mobilities much smaller than electrons in the best semiconductors, effective masses are quite different, and at the most basic level, ions are `classical' entities and electrons `quantum mechanical'. These considerations dictate materials and device strategies for bioelectronic interfaces alongside practical aspects such as integration and biocompatibility [2]. In my talk I will detail these `differences in physics' that are pertinent to the ion-electron transduction challenge. From this analysis, I will summarise the basic categories of device architecture that are possibilities for transducing elements and give recent examples of their realisation. Ultimately, transducing elements need to be combined to create `bioelectronic logic' capable of signal processing at the interface level. In this regard, I will extend the discussion past the single element concept, and discuss our recent progress in delivering all-solids-state logic circuits based upon transducing interfaces. [1] "Ion bipolar junction transistors", K. Tybrandt, K.C. Larsson, A. Richter-Dahlfors and M. Berggren, Proc. Natl Acad. Sci., 107, 9929 (2010). [2] "Electronic and optoelectronic materials and devices inspired by nature", P Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert and P.E. Schwenn, Reports on Progress in Physics, 76, 034501 (2013).

  9. Physics for excited neutrons

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2017-01-01

    Some scientists claim they can control genetically engineered neurons using magnetic fields. Have they and the high-profile journals that published their research failed to understand basic physics? Edwin Cartlidge investigates

  10. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  11. Coastal processes of the Elwha River delta: Chapter 5 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.

  12. Fundamental Movement Skills Development under the Influence of a Gymnastics Program and Everyday Physical Activity in Seven-Year-Old Children.

    PubMed

    Culjak, Zoran; Miletic, Durdica; Kalinski, Suncica Delas; Kezic, Ana; Zuvela, Frane

    2014-04-01

    The objectives of this study were: a) to examine the influence of an 18-week basic artistic gymnastics program on fundamental movement skills (FMS) development in seven-year-old children; b) to determine correlations between children's daily activities and successful performance of FMS and basic artistic gymnastics skills. Seventy five first grade primary school children took part in this study. A physical education teacher specialized in artistic gymnastics conducted a gymnastics program for 18 weeks, three times a week. The level of gymnastics skills and FMS were identified at the beginning and at the end of the program. The level of gymnastics skills was evaluated by performance of eight artistic gymnastics skills, while FMS were evaluated by the use of FMS-polygon. Physical activity and inactivity was evaluated by using a proxy-questionnaire "Netherlands Physical Activity Questionnaire˝ (NPAQ). According to the dependent samples t test, significant differences were found in the FMS-polygon and all gymnastics skills before and after the 18-week gymnastics program. Increasing correlations were established over time between gymnastics skills and the FMS-polygon. Unorganized daily activity of children significantly correlated with their mastering of gymnastics skills and FMS. The presented findings confirm: (1) the thesis that basic artistic gymnastics skills and FMS could be developed simultaneously, (2) the theory of positive transfer of similar skills between FMS and artistic gymnastic skills. Mastering basic artistic gymnastics skills will provoke improvement of FMS and finally become a prerequisite for successful introduction of learning more complex gymnastics skills. The obtained results imply that an increase of children's unorganized daily activities can improve the mastering of basic gymnastics skills and simultaneously the development of FMS.

  13. Fundamental Movement Skills Development under the Influence of a Gymnastics Program and Everyday Physical Activity in Seven-Year-Old Children

    PubMed Central

    Culjak, Zoran; Miletic, Durdica; Kalinski, Suncica Delas; Kezic, Ana; Zuvela, Frane

    2014-01-01

    Abstract Objective The objectives of this study were: a) to examine the influence of an 18-week basic artistic gymnastics program on fundamental movement skills (FMS) development in seven-year-old children; b) to determine correlations between children’s daily activities and successful performance of FMS and basic artistic gymnastics skills. Methods Seventy five first grade primary school children took part in this study. A physical education teacher specialized in artistic gymnastics conducted a gymnastics program for 18 weeks, three times a week. The level of gymnastics skills and FMS were identified at the beginning and at the end of the program. The level of gymnastics skills was evaluated by performance of eight artistic gymnastics skills, while FMS were evaluated by the use of FMS-polygon. Physical activity and inactivity was evaluated by using a proxy-questionnaire “Netherlands Physical Activity Questionnaire˝ (NPAQ). Findings According to the dependent samples t test, significant differences were found in the FMS-polygon and all gymnastics skills before and after the 18-week gymnastics program. Increasing correlations were established over time between gymnastics skills and the FMS-polygon. Unorganized daily activity of children significantly correlated with their mastering of gymnastics skills and FMS. The presented findings confirm: (1) the thesis that basic artistic gymnastics skills and FMS could be developed simultaneously, (2) the theory of positive transfer of similar skills between FMS and artistic gymnastic skills. Conclusion Mastering basic artistic gymnastics skills will provoke improvement of FMS and finally become a prerequisite for successful introduction of learning more complex gymnastics skills. The obtained results imply that an increase of children’s unorganized daily activities can improve the mastering of basic gymnastics skills and simultaneously the development of FMS. PMID:25535529

  14. Basic Research Investigations into Multimode Laser and EM Launchers for Affordable, Rapid Access to Space (Volumes 1 and 2)

    DTIC Science & Technology

    2010-08-31

    The physics and operating principles for TEA C02 lasers can be found in several useful references (Patel, 1968; Siegman , 1986; Svelto, 1998 and...AND SUBTITLE 5a. CONTRACT NUMBER F A9550-05-1-0392 "Basic Research Investigations into Multimode Laser and 5b. GRANT NUMBER EM Launchers for...pulsed airbreathing/rocket laser propulsion. investigates the physics of laser energy deposition into stationary and hypersonic working fluids

  15. Music Theory and the Harmony Method in J. Kepler's Work " The harmony of the Universe"

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.

    In Kepler's book The Harmony of the Universe, edited in 1619, the theory of music as a science of that time is presented. Also the investigation of the correspondence between musical proportion and orbital parameters of the planets is presented. Kepler's book The Harmony of the Universe is a work that discloses the basic physical regularities of the developing Universe, which so far had not been definitively formulated. To explain the development process, Kepler introduced the concept of a "productive force" or "forming force" that directs the development of natural phenomena with the principles of world harmony, described by him. In addition to the four known natural interactions is a fifth one, that had never been studied fully. In this way we can explain the development of natural phenomena as alive and nonalive. Arising from the "productive force" that directs the flow of processes with the laws of harmony is an explanation of the existence of "anti-entropy" processes, a contradiction to the second law of thermodynamics, but playing a fundamental part in nature. The "golden section" apparatus defines space and time frames of process flow. The contents of the book give a notion about the way or "program" of development. Which basic law of nature is hiden in the contents of book is yet to be resolved (Kepler, 1939).

  16. Secondary Students' Understanding of Basic Ideas of Special Relativity

    NASA Astrophysics Data System (ADS)

    Dimitriadi, Kyriaki; Halkia, Krystallia

    2012-11-01

    A major topic that has marked 'modern physics' is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the two axioms of the theory (the principle of relativity and the invariance of the speed of light) and their consequences (the relativity of simultaneity, time dilation and length contraction). Based on an analysis of physics college textbooks, on a review of the relevant bibliography and on a pilot study, a teaching and learning sequence consisting of five sessions was developed. To collect the data, experimental interviews (the so-called teaching experiment) were used. The teaching experiment may be viewed as a Piagetian clinical interview that is deliberately employed as a teaching and learning situation. The sample consisted of 40 10th grade students (aged 15-16). The data were collected by taping and transcribing the 'interviews', as well as from two open-ended questionnaires filled out by each student, one before and the other after the sessions. Methods of qualitative content analysis were applied. The results show that upper secondary education students are able to cope with the basic ideas of the TSR, but there are some difficulties caused by the following student conceptions: (a) there is an absolute frame of reference, (b) objects have fixed properties and (c) the way events happen is independent of what the observers perceive.

  17. Geographic-didactical games as interactive tools to test and improve student's basic knowledge in Physical Geography

    NASA Astrophysics Data System (ADS)

    Winkler, S.; Tintrup Gen. Suntrup, A.

    2009-04-01

    Due to an increasing disproportion between experienced teaching staff and student numbers at German universities, the time available for teaching the fundamental basic knowledge in Physical Geography was condensed during the past decade. Unfortunately, this mainly has been achieved at the expense of practical lessons of testing student's knowledge. The recent introduction of the Bachelor/Master degree has not solved this problem, but rather accelerated that tend. The "losers" of this tendency are those students enrolled in trainee teacher studies in Geography. In conjunction with the recent modifications of the study programs putting more focus on applied or specialized fields of Geography and its methodology, the trainee teacher students often express their critics and urgently demand opportunities to improve and test their basic knowledge (because it is especially that knowledge, they need at school and for their traditional examination). As the study program is quite dense, there is no room for special courses or seminars. By contrast, one has to use some free time slots available e.g. in the evenings of the usually quite long German excursions or of weekend seminars. However, after a day in the field or in the classroom, the teacher has to find a method owing enough excitement and clearly visible benefit for the students to achieve sufficient motivation. Interactive geographic-didactical games have been developed exclusively for this purpose and applied at different occasions. Those games had the goal of testing student's basic knowledge in a rather unconventional and "casual" style in order to motivate active participation. Most of the games could be played in small groups of students with the teacher only occasionally being involved as referee. Of course, the games had the general aim of improving the basic knowledge - or at least give the students the possibility to discover their own strength (or weakness) just before it is too late (as it e.g. would be during examination). Some examples of the games developed will be presented. Among those, games based on the principle of visualisation were most successfully. E.g. students had to describe and explain an image showing a geomorphologic landform or process, a geological rock formation etc. in front of the group to win some goodies. This game was considered as of very practical use by the students as such image interpretation is a common exercise in their oral examination. In addition, a special version of the child's favourite "Memory" containing selected geological and geomorphologic features was designed. As the students not only had to find the correct pair of photos, but as well were asked to name the feature and give as much information as available to the referee supplied with a related fact sheet, this game has shown great pedagogic value. The application of games for the purpose of testing and improving the basic knowledge in Physical Geography was successful, and gained very positive evaluation by the students themselves. As they directly discovered their immediate benefit for their own studies, motivation was high throughout the (sometimes very late) evenings. Such games might be at least partially an appropriate substitution for the recent time deficit in teaching basic fundamentals of Physical Geography in the regular study program. Therefore, they should be considered as part of a modern way of teaching at university level. However, their conceptual and practical development requires last but not least much experience and routine of the teaching staff, and a high degree of motivation from their side, too.

  18. Primary Journal Literature of Physics.

    ERIC Educational Resources Information Center

    Cooper, Marianne; Thayer, Candace W.

    Four hundred and ninety one primary journals covered by "Physics Abstracts" in 1965 have been studied and their basic characteristics analyzed in terms of sponsorship, distribution by country, language, frequency, and coverage by secondary services other than "Physics Abstracts," and the number of libraries holding each…

  19. Using Case Studies in the Teaching of Physical Principles

    ERIC Educational Resources Information Center

    Lowe, Ian

    1975-01-01

    Proposes the use of problems of the everyday world to motivate students to master basic physical principles. Cites the example of conversion of solar energy by a photovoltaic cell as a source of topics in electricity and solid state physics. (CP)

  20. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  1. Soft matter food physics--the physics of food and cooking.

    PubMed

    Vilgis, Thomas A

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  2. Reviews

    NASA Astrophysics Data System (ADS)

    2005-07-01

    WE RECOMMEND When Physics Became King This book delves into the history of science since the 18th century. The History of the Laser An interesting read that will teach you far more than its title suggests. History of Physics Selected Reprints A fascinating collection of physics papers spanning four decades. Datalogging set-ups Five great products from Leybold Didactic’s CASSY range. Videocom Measure motion and convert it to graphs with this great device. Basic Raybox This simple piece of equipment offers great performance. WORTH A LOOK Virtual Physics Lab John Nunn’s software demystifies science using clear illustrations. HANDLE WITH CARE Microchem Electricity Kit This box of equipment for introducing electricity lacks quality. Raymond the Raybox A disappointing raybox. The basic version reviewed on p389 is better. WEB WATCH A rough guide to e-learning.

  3. Introduction of Special Physics Topics (Geophysics) Through the Use of Physics Laboratory Projects

    ERIC Educational Resources Information Center

    Parker, R. H.; Whittles, A. B. L.

    1970-01-01

    Describes the objectives and content of a physics laboratory program for freshman students at the British Columbia Institute of Technology. The first part of the program consists of basic physics experiments, while the second part emphasizes student work on projects in geophysics that have direct technical applications. (LC)

  4. The Physics of a Gymnastics Flight Element

    ERIC Educational Resources Information Center

    Contakos, Jonas; Carlton, Les G.; Thompson, Bruce; Suddaby, Rick

    2009-01-01

    From its inception, performance in the sport of gymnastics has relied on the laws of physics to create movement patterns and static postures that appear almost impossible. In general, gymnastics is physics in motion and can provide an ideal framework for studying basic human modeling techniques and physical principles. Using low-end technology and…

  5. 29 CFR 1910.144 - Safety color code for marking physical hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be... basic color for designating caution and for marking physical hazards such as: Striking against...

  6. Physics for Physicians: Integrating Science into the Medical Curriculum, 1910-1950.

    ERIC Educational Resources Information Center

    Hayter, Charles R. R.

    1996-01-01

    Discusses the emphasis on physics instruction in the medical school curriculum, focusing on the career of J. K. Robertson (1885-1958), who taught physics to medical students at Queen's University in Kingston, Ontario, for nearly half a century. Reviews Robertson's combination of basic and applied physics instruction and emphasis on radiology. (MDM)

  7. Effects of food processing on food allergens.

    PubMed

    Sathe, Shridhar K; Sharma, Girdhari M

    2009-08-01

    Food allergies are on the rise in Western countries. With the food allergen labeling requirements in the US and EU, there is an interest in learning how food processing affects food allergens. Numerous foods are processed in different ways at home, in institutional settings, and in industry. Depending on the processing method and the food, partial or complete removal of the offending allergen may be possible as illustrated by reduction of peanut allergen in vitro IgE immunoreactivity upon soaking and blanching treatments. When the allergen is discretely located in a food, one may physically separate and remove it from the food. For example, lye peeling has been reported to produce hypoallergenic peach nectar. Protein denaturation and/or hydrolysis during food processing can be used to produce hypoallergenic products. This paper provides a short overview of basic principles of food processing followed by examples of their effects on food allergen stability. Reviewed literature suggests assessment of processing effects on clinically relevant reactivity of food allergens is warranted.

  8. Physically-Based Models for the Reflection, Transmission and Subsurface Scattering of Light by Smooth and Rough Surfaces, with Applications to Realistic Image Synthesis

    NASA Astrophysics Data System (ADS)

    He, Xiao Dong

    This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.

  9. The Effect of Moisture on the Hydrolysis of Basic Salts.

    PubMed

    Shi, Xiaoyang; Xiao, Hang; Chen, Xi; Lackner, Klaus S

    2016-12-19

    A great deal of information exists concerning the hydration of ions in bulk water. Much less noticeable, but equally ubiquitous is the hydration of ions holding on to several water molecules in nanoscopic pores or in natural air at low relative humidity. Such hydration of ions with a high ratio of ions to water molecules (up to 1:1) are essential in determining the energetics of many physical and chemical systems. Herein, we present a quantitative analysis of the energetics of ion hydration in nanopores based on molecular modeling of a series of basic salts associated with different numbers of water molecules. The results show that the degree of hydrolysis of basic salts in the presence of a few water molecules is significantly different from that in bulk water. The reduced availability of water molecules promotes the hydrolysis of divalent and trivalent basic ions (S 2 - , CO 3 2- , SO 3 2- , HPO 4 2- , SO 4 2- , PO 4 3- ), which produces lower valent ions (HS - , HCO 3 - , HSO 3 - , H 2 PO 4 - , HSO 4 - , HPO 4 2- ) and OH - ions. However, reducing the availability of water inhibits the hydrolysis of monovalent basic ions (CN - , HS - ). This finding sheds some light on a vast number of chemical processes in the atmosphere and on solid porous surfaces. The discovery has wide potential applications including designing efficient absorbents for acidic gases. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  11. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    ERIC Educational Resources Information Center

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  12. High School Physics Teacher Preparation: Results from the 2012-13 Nationwide Survey of High School Physics Teachers. Focus On

    ERIC Educational Resources Information Center

    White, Susan; Tyler, John

    2015-01-01

    This report examines teachers' self-assessed preparedness to teach physics, their membership in professional organizations, and where they turn for help when they have questions. Almost every teacher reports feeling at least adequately prepared to teach basic physics knowledge and the application of physics to everyday experience. The smallest…

  13. Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator II: Physical and Geometrical Considerations

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2009-04-01

    The physical meaning of the particularly simple non-degenerate supermetric, introduced in the previous part by the authors, is elucidated and the possible connection with processes of topological origin in high energy physics is analyzed and discussed. New possible mechanism of the localization of the fields in a particular sector of the supermanifold is proposed and the similarity and differences with a 5-dimensional warped model are shown. The relation with gauge theories of supergravity based in the OSP(1/4) group is explicitly given and the possible original action is presented. We also show that in this non-degenerate super-model the physic states, in contrast with the basic states, are observables and can be interpreted as tomographic projections or generalized representations of operators belonging to the metaplectic group Mp(2). The advantage of geometrical formulations based on non-degenerate super-manifolds over degenerate ones is pointed out and the description and the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the point of view of the possible vacuum solutions.

  14. WE-DE-206-00: MRI Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less

  15. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  16. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts.

    PubMed

    Pandey, Shilpa; Hakky, Michael; Kwak, Ellie; Jara, Hernan; Geyer, Carl A; Erbay, Sami H

    2013-05-01

    Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluate the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls. ©RSNA, 2013.

  17. Back to basics: the role of health insurance in getting a physical exam.

    PubMed

    McBride, Duane C; Drumm, Rene D; Terry-McElrath, Yvonne; Chitwood, Dale D

    2005-01-01

    The social work profession has a long history of advocacy to improve the human condition, especially for groups of people at high risk of discrimination and marginalization. Social workers have been instrumental in identifying, assessing, treating, and preventing illicit drug use as part of this commitment to advocacy. One component of social work's endeavors on behalf of drug users and other populations- at-risk has been advocating for increased access to health care. This article examines the role that having health insurance plays in obtaining the most basic of all health care-getting a physical examination. Featuring a sample of 1,271 chronic and injecting street drug users and comparison group non-users, the analysis demonstrates that having health insurance enhances access and utilization of health care among this at-risk population. Subjects who had health insurance for even one month of the past twelve were twice as likely to participate in basic health care by having a physical exam.

  18. Unlocking Potentials of Microwaves for Food Safety and Quality

    PubMed Central

    Tang, Juming

    2015-01-01

    Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. PMID:26242920

  19. Unlocking Potentials of Microwaves for Food Safety and Quality.

    PubMed

    Tang, Juming

    2015-08-01

    Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. © 2015 Institute of Food Technologists®

  20. Investigation of the environmental impacts of naturally occurring radionuclides in the processing of sulfide ores for gold using gamma spectrometry.

    PubMed

    Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C

    2011-09-01

    The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment.

  1. Basic research on design analysis methods for rotorcraft vibrations

    NASA Technical Reports Server (NTRS)

    Hanagud, S.

    1991-01-01

    The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.

  2. Climate Physics

    ERIC Educational Resources Information Center

    Space, William

    2007-01-01

    Numerous connections exist between climate science and topics normally covered in physics and physical science courses. For instance, lessons on heat and light can be used to introduce basic climate science, and the study of electric circuits provides a context for studying the relationship between electricity consumption and carbon pollution. To…

  3. Telecommunication for the Physically Handicapped.

    ERIC Educational Resources Information Center

    Cunningham, Pat; Gose, Joan

    The paper examines the uses of telecommunication for physically handicapped students. Basic equipment, including a modem and keyboard interface, are described. The types and uses of computer bulletin boards are also described. Among benefits of telecommunications for physically handicapped students noted in the paper are social prestige,…

  4. Firewalking: A Lesson in Physics.

    ERIC Educational Resources Information Center

    Taylor, John R.

    1989-01-01

    Emphasizes firewalking as a good illustration of basic concepts in thermodynamics. Describes the basic principles of firewalking and other factors including the cooling of the surface embers, moisture of the feet, thick skin on the feet, tolerance for pain, and other uncontrolled factors. (YP)

  5. Get Active

    MedlinePlus

    ... Health Benefits 1 of 8 sections The Basics: Health Benefits What are the benefits of physical activity? Physical ... a disability . Next section Get Started Previous section Health Benefits 3 of 8 sections Take Action! Take Action: ...

  6. Money is essential: ownership intuitions are linked to physical currency.

    PubMed

    Uhlmann, Eric Luis; Lei Zhu, Luke

    2013-05-01

    Due to basic processes of psychological essentialism and contagion, one particular token of monetary currency is not always interchangeable with another piece of currency of equal economic value. When money loses its physical form it is perceived as "not quite the same" money (i.e., to have partly lost the original essence that distinguished it from other monetary tokens), diminishing its intuitive link with its original owner. Participants were less likely to recommend stolen or lost money be returned when it had been subsequently deposited in an electronic bank account, as opposed to retaining its original physical form (Studies 1a and 1b). Conversely, an intuitive sense of ownership is enhanced through physical contact with a piece of hard currency. Participants felt the piece of currency a person had originally lost should be returned to him rather than another piece of currency of equivalent value, even when they did not believe he would be able to tell the difference and considered distinguishing it from other money illogical. This effect was reduced when the currency had been sterilized, wiping it clean of all physical traces of its previous owner (Studies 2a, 2b, and 3). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Metrology in physics, chemistry, and biology: differing perceptions.

    PubMed

    Iyengar, Venkatesh

    2007-04-01

    The association of physics and chemistry with metrology (the science of measurements) is well documented. For practical purposes, basic metrological measurements in physics are governed by two components, namely, the measure (i.e., the unit of measurement) and the measurand (i.e., the entity measured), which fully account for the integrity of a measurement process. In simple words, in the case of measuring the length of a room (the measurand), the SI unit meter (the measure) provides a direct answer sustained by metrological concepts. Metrology in chemistry, as observed through physical chemistry (measures used to express molar relationships, volume, pressure, temperature, surface tension, among others) follows the same principles of metrology as in physics. The same basis percolates to classical analytical chemistry (gravimetry for preparing high-purity standards, related definitive analytical techniques, among others). However, certain transition takes place in extending the metrological principles to chemical measurements in complex chemical matrices (e.g., food samples), as it adds a third component, namely, indirect measurements (e.g., AAS determination of Zn in foods). This is a practice frequently used in field assays, and calls for additional steps to account for traceability of such chemical measurements for safeguarding reliability concerns. Hence, the assessment that chemical metrology is still evolving.

  8. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    NASA Astrophysics Data System (ADS)

    Reisenegger, Andreas; Zepeda, Felipe S.

    2016-03-01

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.

  9. Structure of "Ventilation and Warming" in Notes on Nursing Written by Florence Nightingale in 19th Century: Introduction of Basic Physics to Nursing Students

    NASA Astrophysics Data System (ADS)

    Ogoh, Kazutoshi

    "Basic Natural Science" for freshmen at Miyazaki Prefectural Nursing University has a component including physics. Here students learn three principles of thermal transfer; conduction, radiation, and convection through a series of experiments. The purpose of these experiments is to understand the structure of a method for the caring of breathing and temperature of patients as written in "Ventilation and Warming", the first chapter of F. Nightingale's Notes on Nursing. Students can then apply this structure to retain fresh air in today's hospital rooms, and can then appreciate studying real physics incorporated into fundamental knowledge for nursing practice.

  10. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging.

    PubMed

    Wáng, Yì-Xiáng J; Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-12-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.

  11. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging

    PubMed Central

    Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-01-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging’s basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs. PMID:26807369

  12. Talent in Female Gymnastics: a Survival Analysis Based upon Performance Characteristics.

    PubMed

    Pion, J; Lenoir, M; Vandorpe, B; Segers, V

    2015-11-01

    This study investigated the link between the anthropometric, physical and motor characteristics assessed during talent identification and dropout in young female gymnasts. 3 cohorts of female gymnasts (n=243; 6-9 years) completed a test battery for talent identification. Performance-levels were monitored over 5 years of competition. Kaplan-Meier and Cox Proportional Hazards analyses were conducted to determine the survival rate and the characteristics that influence dropout respectively. Kaplan-Meier analysis indicated that only 18% of the female gymnasts that passed the baseline talent identification test survived at the highest competition level 5 years later. The Cox Proportional Hazards Model indicated that gymnasts with a score in the best quartile for a specific characteristic significantly increased chances of survival by 45-129%. These characteristics being: basic motor skills (129%), shoulder strength (96%), leg strength (53%) and 3 gross motor coordination items (45-73%). These results suggest that tests batteries commonly used for talent identification in young female gymnasts may also provide valuable insights into future dropout. Therefore, multidimensional test batteries deserve a prominent place in the selection process. The individual test results should encourage trainers to invest in an early development of basic physical and motor characteristics to prevent attrition. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Social Physique Anxiety and Intention to Be Physically Active: A Self-Determination Theory Approach.

    PubMed

    Sicilia, Álvaro; Sáenz-Alvarez, Piedad; González-Cutre, David; Ferriz, Roberto

    2016-12-01

    Based on self-determination theory, the purpose of this study was to analyze the relationship between social physique anxiety and intention to be physically active, while taking into account the mediating effects of the basic psychological needs and behavioral regulations in exercise. Having obtained parents' prior consent, 390 students in secondary school (218 boys, 172 girls; M age  = 15.10 years, SD = 1.94 years) completed a self-administered questionnaire during physical education class that assessed the target variables. Preliminary analyses included means, standard deviations, and bivariate correlations among the target variables. Next, a path analysis was performed using the maximum likelihood estimation method with the bootstrapping procedure in the statistical package AMOS 19. Analysis revealed that social physique anxiety negatively predicted intention to be physically active through mediation of the basic psychological needs and the 3 autonomous forms of motivation (i.e., intrinsic motivation, integrated regulation, and identified regulation). The results suggest that social physique anxiety is an internal source of controlling influence that hinders basic psychological need satisfaction and autonomous motivation in exercise, and interventions aimed at reducing social physique anxiety could promote future exercise.

  14. The Role of Hot ISM in Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Ostriker, Jeremiah

    2014-08-01

    The cooling rate for hot gas in and around galaxies has a critical importance both in physically setting the basic mass scale for these massive, self-gravitating systems and as an observational tool for assessing formation models, by enabling the comparison between predicted and observed X-ray luminosities. Three classic papers in 1977 showed that it would be difficult for galaxies above a certain mass to cool on a dynamical timescale. That mass scale, in terms of fundamental physics is as follows: M ≃ [({Gm_p^2}/{hbar c})^{-2}({e^2}/{hbar c})^5({m_p}/{m_e})^{1/2}]m_{p} or roughly 10^{12} solar masses. Galaxies above this mass tend to be enveloped in the hot, X-ray emitting, gaseous halos familiar to Chandra observers and their predecessors. The outer parts of these gaseous halos are easily kept hot by SNI, dynamical in-fall of satellites and other processes, but the inner parts will repeatedly collapse into cooling flows, starbursts and AGN flare-ups. The thermal X-ray emission will be highly variable with this providing an important diagnostic for these physical processes. Also, normal cosmological inflow of gas onto massive galaxies can be shown to produce (absent feedback) more X-rays emission than is observed - providing yet another argument for feedback processes, which would reduce the ambient hot gas density. Finally, several postulated physical scenarios, such as gas rich ("wet") binary spiral mergers or thermal AGN feedback would produce X-ray emission far in excess of observational limits, again showing the power of X-ray observations as a critical diagnostic tool.

  15. A physical mechanism producing suprathermal populations and initiating substorms in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Sarafopoulos, D. V.

    2008-06-01

    We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS) the stretched (tail-like) magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≍7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC) instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≍10 RE) selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now missing, that might help explain the persistent, outstanding deficiencies in our physical description of magnetospheric substorms. The mechanism is tested, checked, and found consistent with substorm associated observations performed ~30 and 60 RE away from Earth.

  16. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  17. Instrumentation & Data Acquisition System (D AS) Engineer

    NASA Technical Reports Server (NTRS)

    Jackson, Markus Deon

    2015-01-01

    The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.

  18. Geometrical approach to tumor growth.

    PubMed

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  19. The Physics Inside our Brain. Comment on "Topodynamics of Metastable Brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Garreffa, Girolamo

    2017-07-01

    The explanation of brain function in rational and objective terms is absolutely the most difficult challenge of all times and is continuously stimulated by a rooted instinct of knowledge. Humans, since their early forms of structured ;organization; of mental processes, improved more and more their communication attempts and ability to share perceptions and emotions and language (in any form) was the first basic instrument to assess externally in some way a sort of end result of above mentioned mental processes. How this ;abstract organizing entity; is and how it works we are still studying and debating, with exciting results and with increasingly consideration of philosophical thinking of the past and of our times (Aristotle, Kant, Hegel, Russel).

  20. Quark contact interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Bazzocchi, F.; De Sanctis, U.; Fabbrichesi, M.; Tonero, A.

    2012-06-01

    Quark contact interactions are an important signal of new physics. We introduce a model in which the presence of a symmetry protects these new interactions from giving large corrections in flavor changing processes at low energies. This minimal model provides the basic set of operators which must be considered to contribute to the high-energy processes. To discuss their experimental signature in jet pairs produced in proton-proton collisions, we simplify the number of possible operators down to two. We show (for a representative integrated luminosity of 200pb-1 at s=7TeV) how the presence of two operators significantly modifies the bound on the characteristic energy scale of the contact interactions, which is obtained by keeping a single operator.

Top