Sample records for basic physics questions

  1. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  2. Intellectual and Physical Disabilities in Prehistory and Early Civilization

    ERIC Educational Resources Information Center

    Berkson, Gershon

    2004-01-01

    This paper is focused on three basic questions: The first concerns when specific disabilities first appeared during human evolution. The second question has to do with causes of disabilities. The third question concerns social responses to people with disabilities. Discussions on each of the issues are presented.

  3. Solar physics in the space age

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.

  4. MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  5. MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  6. MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambelli, J.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  7. MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, S.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  8. MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  9. WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  10. WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  11. WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  12. WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevins, N.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  13. WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambelli, J.

    Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less

  14. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  15. High School Physics Teacher Preparation: Results from the 2012-13 Nationwide Survey of High School Physics Teachers. Focus On

    ERIC Educational Resources Information Center

    White, Susan; Tyler, John

    2015-01-01

    This report examines teachers' self-assessed preparedness to teach physics, their membership in professional organizations, and where they turn for help when they have questions. Almost every teacher reports feeling at least adequately prepared to teach basic physics knowledge and the application of physics to everyday experience. The smallest…

  16. Survey of the Nutrition Knowledge Of Practicing Male and Female Physical Educator/Coaches.

    ERIC Educational Resources Information Center

    Webb, James L.; And Others

    An assessment was made of the extent of nutrition knowledge of physical education teachers and coaches. The investigation addressed three primary questions: (1) Do practicing physical educator/coaches possess nutritional knowledge comparable to that of college students enrolled in a university basic nutrition class?; (2) Do male and female…

  17. An Analysis of the Content and Questions of the Physics Textbooks of the Basic Education Level (Ages 13-15) in Libya.

    ERIC Educational Resources Information Center

    Khoja, Suleiman; Ventura, Frank

    1997-01-01

    Determines the extent physics textbooks contribute to physics teaching objectives and knowledge acquisition in Libya. Analysis of seventh- through ninth-grade physics textbooks and cognitive demand shows a limited effect of textbook content on knowledge acquisition and educational objectives. Suggestions are made for promoting the acquisition of…

  18. Optimization of Ballast Design: A Case Study of the Physics Entrepreneurship Program

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Cheng, Norman; Lamouri, Abbas; Sulcs, Juris; Brown, Robert; Taylor, Cyrus

    2001-10-01

    This talk presents a typical internship project for students in the Physics Entrepreneurship Program at Case Western Reserve University. As part of their overall strategy, Advanced Lighting International (ADLT) is involved in the production of magnetic ballasts for metal halide lamps. The systems in which these ballasts function is undergoing rapid evolution, leading to the question of how the design of the ballasts can be optimized in order to deliver superior performance for lower cost. Addressing this question requires a full understanding of a variety of issues ranging from the basic modeling of the physics of the magnetic ballasts to questions of overall market strategy, manufacturing considerations, and the competitive environment.

  19. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.

  20. A Paradox in Physics Education in France

    ERIC Educational Resources Information Center

    Smigiel, Eddie; Sonntag, Michel

    2013-01-01

    This paper deals with the nature and the level of difficulty of teaching and learning physics in the first year of undergraduate engineering schools in France. Our case study is based on a survey regarding a classic and basic question in applied physics, and which was conducted with a group of second-year students in a post-baccalaureate 1…

  1. The Hyperloop as a Source of Interesting Estimation Questions

    NASA Astrophysics Data System (ADS)

    Allain, Rhett

    2014-03-01

    The Hyperloop is a conceptual high speed transportation system proposed by Elon Musk. The basic idea uses passenger capsules inside a reduced pressure tube. Even though the actual physics of dynamic air flow in a confined space can be complicated, there are a multitude estimation problems that can be addressed. These back-of-the-envelope questions can be approximated by physicists of all levels as well as the general public and serve as a great example of the fundamental aspects of physics.

  2. Answering Gauguin’s Questions: Where Are We Coming From, Where Are We Going, and What Are We?

    ScienceCinema

    Ellis, John [CERN

    2017-12-09

    The knowledge of matter revealed by the current reigning theory of particle physics, the so-called Standard Model, still leaves open many basic questions. What is the origin of the matter in the Universe? How does its mass originate? What is the nature of the dark matter that fills the Universe? Are there additional dimensions of space? The Large Hadron Collider (LHC) at the CERN Laboratory in Geneva, Switzerland, where high-energy experiments have now started, will take physics into a new realm of energy and time, and will address these physics analogues of Gauguin's questions. The answers will set the stage for possible future experiments beyond the scope of the LHC.

  3. Physics For Dummies

    NASA Astrophysics Data System (ADS)

    Holzner, Steve; Ph., D.

    2005-11-01

    The fun and easy way to understand the basic principles of physics How does gravity work? What does e=mc2 really mean? And what's a charm quark? Physics For Dummies answers these questions and more, explaining the basics of physical science and its importance in our everyday lives in a simple, clear, and entertaining fashion. Whether readers are taking a class, helping kids with homework, or are simply interested in how the world works, this plain-English guide gives them the knowledge they need to understand basic physics. Through real-world examples and problems, it covers such key topics as motion, energy, and waves (sound, light, wave-particle); solids, liquids, and gases; thermodynamics; electromagnetism; relativity; atomic and nuclear structures; and the Big Bang and stars. Steven Holzner, PhD (Ithaca, NY), is the author of more than 40 books and a former contributing editor at PC Magazine. He has been on the faculty of MIT and taught Physics 101 and 102 at Cornell for over ten years.

  4. A Qualitative Examination of Community College Instructors' Strategies for Engaging Students with Physical Disabilities

    ERIC Educational Resources Information Center

    Kusek, Thomas A.

    2017-01-01

    Community colleges continually experience increasing enrollment of students with physical disabilities. This basic qualitative study implemented face-to-face interviews of 10 community college faculty members that have a variety of academic and disciplines and have assisted students with disabilities. Participants were asked questions developed…

  5. A Demonstration of the Analysis of Variance Using Physical Movement and Space

    ERIC Educational Resources Information Center

    Owen, William J.; Siakaluk, Paul D.

    2011-01-01

    Classroom demonstrations help students better understand challenging concepts. This article introduces an activity that demonstrates the basic concepts involved in analysis of variance (ANOVA). Students who physically participated in the activity had a better understanding of ANOVA concepts (i.e., higher scores on an exam question answered 2…

  6. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  7. The origins of the universe: why is there something rather than nothing?

    PubMed

    Paulson, Steve; Albert, David; Holt, Jim; Turok, Neil

    2015-12-01

    Perhaps the greatest mystery is why the universe exists in the first place. How is it possible for something to emerge from nothing, or has a universe in some form always existed? This question of origins-both of the universe as a whole and of the fundamental laws of physics-raises profound scientific, philosophical, and religious questions, culminating in the most basic existential question of all: Why are we here? Discussion of this and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  8. Opportunities for Drell-Yan Physics at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E.; Bland, L.; Crawford, H.

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participantsmore » of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.« less

  9. The maximum entropy production principle: two basic questions.

    PubMed

    Martyushev, Leonid M

    2010-05-12

    The overwhelming majority of maximum entropy production applications to ecological and environmental systems are based on thermodynamics and statistical physics. Here, we discuss briefly maximum entropy production principle and raises two questions: (i) can this principle be used as the basis for non-equilibrium thermodynamics and statistical mechanics and (ii) is it possible to 'prove' the principle? We adduce one more proof which is most concise today.

  10. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  11. An Overview of the Basic Principles of Negligence: What the Courts Expect and Demand of Physical Educators.

    ERIC Educational Resources Information Center

    Pinnell, Ronald L.; Pinnell, Julia M.

    Teachers and coaches once held a special place in the hearts and minds of the American public; however, times have changed. Students are quick to question authority and parents are more willing to retain the services of an attorney to solve their problems. Elementary and secondary school physical education teachers are especially vulnerable…

  12. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  13. The Applied Behavior Analysis Research Paradigm and Single-Subject Designs in Adapted Physical Activity Research.

    PubMed

    Haegele, Justin A; Hodge, Samuel Russell

    2015-10-01

    There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.

  14. Self-assessment of current knowledge in nuclear medicine (second edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, J.B.; Frey, G.D.; Cooper, J.F.

    1981-01-01

    In this updated second edition, the order of contents of the textbook has been reorganized. It has been divided into main parts: Basic Science and Clinical Nuclear Medicine. Basic Science, Part I, encompasses basic physics, radiation protection, interaction of radiation with matter and radiation detection, imaging, nuclear pharmacy, and radiation biology. Part II, Clinical Nuclear Medicine, covers the central nervous system, bone, gastroenterology (liver/spleen), cardiovascular system, pulmonary system, genitourinary system, thyroid and endocrine systems, gallium studies, radioassay, hematology, and therapy. The total number of pages of the current edition is increased to 250 from the 213 of the first editionmore » but there are fewer questions because those in the basic science area have been carefully selected to 60 of the original 98 questions. Compared with the previous edition, there are two advantages in the current one: (1) the addition of explanatory answers; and (2) the inclusion of up-to-date scintiphotos replacing rectilinear scan illustrations.« less

  15. Software "Socrative" and Smartphones as Tools for Implementation of Basic Processes of Active Physics Learning in Classroom: An Initial Feasibility Study with Prospective Teachers

    ERIC Educational Resources Information Center

    Méndez Coca, David; Slisko, Josip

    2013-01-01

    Many physics professors have difficulties to know and assess in real time the learning of the students in their courses. Nevertheless, today, with Internet and the new technology devices that the students use every day, like smartphones, such tasks can be carried out relatively easy. The professor pose a few questions in "Socrative," the…

  16. Relevancy in Basic Courses: Considering Toxic Chemical Disposal.

    ERIC Educational Resources Information Center

    Sollimo, Vincent J.

    1985-01-01

    A 2-week unit on toxic chemical waste disposal is used in a physical science course for nonscience majors. Descriptions of the unit, supplementary student activities, and student library project are provided. Also provided are selected student responses to a five-question survey on the unit. (JN)

  17. Childhood Victimization and Crime Victimization

    ERIC Educational Resources Information Center

    McIntyre, Jared Kean; Widom, Cathy Spatz

    2011-01-01

    The purpose of this study is to determine whether abused and neglected children are at increased risk for subsequent crime victimization. We ask four basic questions: (a) Does a history of child abuse/neglect increase one's risk of physical, sexual, and property crime victimization? (b) Do lifestyle characteristics (prostitution, running away,…

  18. A Question and Answer Guide to Astronomy

    NASA Astrophysics Data System (ADS)

    Christian, Carol; Roy, Jean-René

    2017-03-01

    Preface; 1. The sky viewed from Earth; 2. The Earth and Moon system; 3. The Solar System; 4. Stars and stellar systems; 5. Galaxies and the Universe; 6. Life in the Universe; 7. Amateur astronomy; 8. Telescopes and instruments; Unit conversion and basic physical and astronomical measurements; References; Bibliography; Index.

  19. Laws, causation, and explanation in the special sciences.

    PubMed

    Kim, Jaegwon

    2005-01-01

    There is the general philosophical question concerning the relationship between physics, which is often taken to be our fundamental and all-encompassing science, on one hand and the special sciences, such as biology and psychology, each of which deals with phenomena in some specially restricted domain, on the other. This paper deals with a narrower question: Are there laws in the special sciences, laws like those we find, or expect to find, in basic physics? Three arguments that are intended to show that there are no such laws are presented and examined. The paper ends with brief remarks concerning the implications of these arguments for explanation and causation in the special sciences.

  20. Exercise motivation of college students in online, face-to-face, and blended basic studies physical activity and wellness course delivery formats.

    PubMed

    Sidman, Cara Lynn; Fiala, Kelly Ann; D'Abundo, Michelle Lee

    2011-01-01

    The purpose of this study was to assess exercise motivation among college students self-selected into 4 online (OL) and face-to-face (F2F) basic studies' physical activity and wellness course delivery formats. Out of 1,037 enrolled students during the Spring 2009 semester, 602 responded online to demographic questions and to the Behavioural Regulation in Exercise Questionnaire, which assessed exercise motivation on 5 subscales. There were no significant differences (p > .05) in exercise motivation for students across course delivery formats, but there was a significant difference in age and employment status between the completely OL and F2F course formats. Health and physical educators can utilize these findings to better understand that physical activity and wellness students are not necessarily trying to avoid physical activity when selecting the OL course format, but are more likely trying to balance work and school responsibilities and need greater flexibility in time and location.

  1. Research, the lifeline of medicine.

    PubMed

    Kornberg, A

    1976-05-27

    Advances in medicine spring from discoveries in physics, chemistry and biology. Among key contributions to the diagnosis, treatment and prevention of cardiovascular and pulmonary diseases, a recent Comroe-Dripps analysis shows two thirds to have been basic rather than applied research. Without a firm foundation in basic knowledge innovations perceived as advances prove hollow and collapse. Strong social, economic and political pressures now threaten acquisition of basic knowledge. Scientists feel driven to undertake excessively complex problems and gamble against the historical record that science generally progresses by tackling discrete and well defined questions. Regardless of circumstances, professional standards require the physician and scientist to be creative and enlarge the fund of knowledge.

  2. The international spinal cord injury pain basic data set.

    PubMed

    Widerström-Noga, E; Biering-Sørensen, F; Bryce, T; Cardenas, D D; Finnerup, N B; Jensen, M P; Richards, J S; Siddall, P J

    2008-12-01

    To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population. International. The ISCIPDS:B was developed by a working group consisting of individuals with published evidence of expertise in SCI-related pain regarding taxonomy, psychophysics, psychology, epidemiology and assessment, and one representative of the Executive Committee of the International SCI Standards and Data Sets. The members were appointed by four major organizations with an interest in SCI-related pain (International Spinal Cord Society, ISCoS; American Spinal Injury Association, ASIA; American Pain Society, APS and International Association for the Study of Pain, IASP). The initial ISCIPDS:B was revised based on suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA and APS Boards, and the Neuropathic Pain Special Interest Group of the IASP, individual reviewers and societies and the ISCoS Council. The final ISCIPDS:B contains core questions about clinically relevant information concerning SCI-related pain that can be collected by health-care professionals with expertise in SCI in various clinical settings. The questions concern pain severity, physical and emotional function and include a pain-intensity rating, a pain classification and questions related to the temporal pattern of pain for each specific pain problem. The impact of pain on physical, social and emotional function, and sleep is evaluated for each pain.

  3. Beckham as Physicist?

    ERIC Educational Resources Information Center

    Ireson, Gren

    2001-01-01

    If football captures the interest of students, it can be used to teach physics. In this case, a Beckham free-kick can be used to introduce concepts such as drag, the Bernoulli principle, Reynolds number, and the Magnus effect by asking the simple question: How does he curve the ball so much? Introduces basic mechanics along the way. (Author/ASK)

  4. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  5. The problem of the Grand Unification Theory

    NASA Astrophysics Data System (ADS)

    Treder, H.-J.

    The evolution and fundamental questions of physical theories unifying the gravitational, electromagnetic, and quantum-mechanical interactions are explored, taking Pauli's aphorism as a motto: 'Let no man join what God has cast asunder.' The contributions of Faraday and Riemann, Lorentz, Einstein, and others are discussed, and the criterion of Pauli is applied to Grand Unification Theories (GUT) in general and to those seeking to link gravitation and electromagnetism in particular. Formal mathematical symmetry principles must be shown to have real physical relevance by predicting measurable phenomena not explainable without a GUT; these phenomena must be macroscopic because gravitational effects are to weak to be measured on the microscopic level. It is shown that empirical and theoretical studies of 'gravomagnetism', 'gravoelectricity', or possible links between gravoelectrity and the cosmic baryon assymmetry eventually lead back to basic questions which appear philosophical or purely mathematical but actually challenge physics to seek verifiable answers.

  6. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  7. Multi-scale mechanics from molecules to morphogenesis

    PubMed Central

    Davidson, Lance; von Dassow, Michelangelo; Zhou, Jian

    2009-01-01

    Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis. PMID:19394436

  8. Effectiveness of interprofessional education in renal physiology curricula for health sciences graduate students.

    PubMed

    Harrison-Bernard, Lisa M; Naljayan, Mihran V; Eason, Jane M; Mercante, Donald E; Gunaldo, Tina P

    2017-12-01

    The primary purpose of conducting an interprofessional education (IPE) experience during the renal physiology block of a graduate-level course was to provide basic science, physical therapy, and physician assistant graduate students with an opportunity to work as a team in the diagnosis, treatment, and collaborative care of a patient with acute kidney injury. The secondary purpose was to enhance the understanding of basic renal physiology principles with a patient case presentation of renal pathophysiology. The overall purpose was to assess the value of IPE integration within a basic science course by examining student perceptions and program evaluation. Graduate-level students operated in interprofessional teams while working through an acute kidney injury patient case. The following Interprofessional Education Collaborative subcompetencies were targeted: Roles/Responsibilities (RR) Behavioral Expectations (RR1, RR4) and Interprofessional Communication (CC) Behavioral Expectations (CC4). Clinical and IPE stimulus questions were discussed both within and between teams with assistance provided by faculty facilitators. Students were given a pre- and postsurvey to determine their knowledge of IPE. There were statistically significant increases from pre- to postsurvey scores for all six IPE questions for all students. Physical therapy and physician assistant students had a statistically significant increase in pre- to postsurvey scores, indicating a more favorable perception of their interprofessional competence for RR1, RR4, and CC4. No changes were noted in pre- to postsurvey scores for basic science graduate students. Incorporating planned IPE experiences into multidisciplinary health science courses represents an appropriate venue to have students learn and apply interprofessional competencies. Copyright © 2017 the American Physiological Society.

  9. Information Fluxes as Concept for Categorizations of Life

    NASA Astrophysics Data System (ADS)

    Hildenbrand, Georg; Hausmann, M.

    2012-05-01

    Definitions of life are controversially discussed; however, they are mostly depending on bio- evolutionary driven arguments. Here, we propose a systematic, theoretical approach to the question what life is, by categorization and classification of different levels of life. This approach is mainly based on the analysis of information flux occurring in systems being suspicious to be alive, and on the analysis of their power of environmental control. In a first step, we show that all biological definitions of life can be derived from basic physical principles of entropy (number of possible states of a thermodynamic system) and of the energy needed for controlling entropic development. In a next step we discuss how any process where information flux is generated, regardless of its materialization is defined and related to classical definitions of life. In a third step we resume the proposed classification scheme in its most basic way, looking only for existence of data storage, its processing, and its environmental control. We join inhere a short discussion how the materialization of information fluxes can take place depending on the special properties of the four basic physical forces. Having done all this we are able to give everybody a classification catalogue at hand that one can categorize the kind of life one is talking about, thus overcoming the obstacles deriving from the simple appearing question whether something is alive or not. On its most basic level as presented here, our scheme offers a categorization for fire, crystals, prions, viruses, spores, up to cells and even tardigrada and cryostases.

  10. Origin of life. The role of experiments, basic beliefs, and social authorities in the controversies about the spontaneous generation of life and the subsequent debates about synthesizing life in the laboratory.

    PubMed

    Deichmann, Ute

    2012-01-01

    For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.

  11. Cosmology. A first course

    NASA Astrophysics Data System (ADS)

    Lachieze-Rey, Marc

    This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.

  12. [Ultrasound in the emergency department as an extension of the practitioner's clinical examination].

    PubMed

    Schmit, Aline; Pécoul, David; Lebret, Yannick; Dussoix, Philippe

    2018-01-31

    Ultrasound in the emergency department and general practice can be used as an extension of the physical examination, answering simple questions. It requires a short basic training that is easily accessible. This article illustrates with a few examples (kidney, lung and fractures) the interest of this formidable tool becoming unavoidable in the emergency department and general practice.

  13. Expanding the basic science debate: the role of physics knowledge in interpreting clinical findings.

    PubMed

    Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L; Skye, Aimee L; Woods, Nicole N

    2012-10-01

    Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical information. Participants studied a handout about several respiratory disorders and how to interpret respiratory exam findings. The control group received the information in standard "textbook" format and the experimental group was presented with the same information as well as a causal explanation about how sound travels through lungs in both the normal and disease states. Comprehension and memory of the information was evaluated with a multiple-choice exam. Several questions that were not related to the causal knowledge served as control items. Questions related to the interpretation of physical exam findings served as the critical test items. The experimental group outperformed the control group on the critical test items, and our study shows that a causal explanation can improve a student's memory for interpreting clinical details. We suggest an expansion of which basic sciences are considered fundamental to medical education.

  14. Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.; Weerts, H.; Brock, R.

    2012-06-05

    Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantummore » mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there new sources of CP violation? Is there CP violation in the leptonic sector? Are neutrinos their own antiparticles? Do the forces unify? Is there a weakly coupled hidden sector that is related to dark matter? Do new symmetries exist at very high energy scales? To identify the most compelling science opportunities in this area, the workshop Fundamental Physics at the Intensity Frontier was held in December 2011, sponsored by the Office of High Energy Physics in the US Department of Energy Office of Science. Participants investigated the most promising experiments to exploit these opportunities and described the knowledge that can be gained from such a program. The workshop generated much interest in the community, as witnessed by the large and energetic participation by a broad spectrum of scientists. This document chronicles the activities of the workshop, with contributions by more than 450 authors. The workshop organized the intensity frontier science program along six topics that formed the basis for working groups: experiments that probe (i) heavy quarks, (ii) charged leptons, (iii) neutrinos, (iv) proton decay, (v) light, weakly interacting particles, and (vi) nucleons, nuclei, and atoms. The conveners for each working group included an experimenter and a theorist working in the field and an observer from the community at large. The working groups began their efforts well in advance of the workshop, holding regular meetings and soliciting written contributions. Specific avenues of exploration were identified by each working group. Experiments that study rare strange, charm, and bottom meson decays provide a broad program of measurements that are sensitive to new interactions. Charged leptons, particularly muons and taus, provide a precise probe for new physics because the Standard Model predictions for their properties are very accurate. Research at the intensity frontier can reveal CP violation in the lepton sector, and elucidate whether neutrinos are their own antiparticles. A very weakly coupled hidden-sector that may comprise the dark matter in the universe could be discovered. The search for proton decay can probe the unification of the forces with unprecedented reach and test sacrosanct symmetries to very high scales. Detecting an electric dipole moment for the neutron, or neutral atoms, could establish a clear signal for new physics, while limits on such a measurement would place severe constraints on many new theories. This workshop marked the first instance where discussion of these diverse programs was held under one roof. As a result, it was realized that this broad effort has many connections; a large degree of synergy exists between the different areas and they address similar questions. Results from one area were found to be pertinent to experiments in another domain.« less

  15. Cosmic secrets

    NASA Astrophysics Data System (ADS)

    Schommers, W.

    1. The absolute truth. 1.1. Final truth. 1.2. Two important questions. 1.3. Why does the cosmos exist? 1.4. Are the laws of nature independent of the observer's own nature? 1.5. Self0indulgence was dominant. 1.6. Newton's mechanics and its overestimation. 1.7. Scientific realism. 1.8. An important principle: as little outside world as possible. 1.9. Inside world and outside world. 1.10. Principal questions. 1.11. How does science progress? 1.12. Final remarks -- 2. The projection principle. 2.1. The elements of space and time. 2.2. Relationship between matter and space-time. 2.3. Two relevant features. 2.4. Two kinds of "objects". 2.5. Perception processes. 2.6. Inside world and outside world. 2.7. The influence of evolution. 2.8. Information in the picture versus information in basic reality (outside reality). 2.9. Other biological systems. 2.10. How many (geometrical) objects can be in space-time? 2.11. Two types of space-time? 2.12. Summary -- 3. Fictitious realities. 3.1. Conventional quantum theory: critical remarks. 3.2. The projection principle in connection with fictitious realities. 3.3. Distribution of information. 3.4. Basic transformation effects. 3.5. Pictures within projection theory. 3.6. Auxiliary construction. 3.7. Basic laws. 3.8. Extension of conventional quantum theory. 3.9. Only processes are relevant! 3.10. Interactions. 3.11. Distance-independent interactions. 3.12. Arbitrary jumps within (r, t)-space. 3.13.Mach's principle: preliminary remarks. 3.14. Can a lone, elementary object exist in the cosmos? 3.15. The meaning of the potential functions. 3.16. Time. 3.17. Time travel in physics. 3.18. Summary -- 4. Basic reality and levels of reality. 4.1. Hard objects. 4.2. General physical laws. 4.3. States of mind. 4.4. Outside world and basic reality. 4.5. Objective processes. 4.6. Observations. 4.7. No interactions within (r, t)-space. 4.8. The general cannot be deduced from the particular. 4.9. Remarks on the notion "world equation". 4.10. On the anthropic principle. 4.11. Summary -- 5. Cosmological constant and physical reality. 5.1. Introductory remarks. 5.2. The cosmological constant. 5.3. Critical remarks on basic quantum theory. 5.4. Projection theory and the emptying. 5.5. Artificial vacuum effects!? 5.6. On the observation of physically real process. 5.7. Curved spaces. 5.8. Flatness and horizon problem. 5.8. Summary -- 6. Final remarks.

  16. The Importance of Mixing Virtual and Real Information in Games

    NASA Astrophysics Data System (ADS)

    Gaonach, H.

    2014-12-01

    Educational technology is rapidly evolving, today's classrooms are replete with ipads, iphones, interactive white boards, and other Internet tools and gadgets. However we mustn't be diverted by the technology and lose the basic focus on the communication of scientific ideas to the students. What do we want to teach them? I will present new educational kits including games about active volcanoes as well as climates and climate change. These tools have been created for 8-12 year olds who play on teams. The teams use question-cards and basic geographic knowledge to move on a regular play board by answering scientific questions. In addition to learning the science, through interpreting latitudes and longitudes, children will better understand the link between Google map and the world map after such exercises! With their teacher, they will be able to play with traditional pieces but also use tablets or computers to listen to videos as well as obtain additional subject related questions and activities. In this way, the Web is an infinite extension of the regular game played on a table with physical pieces. Let's see how it works!

  17. Remote access application for general physics examinations in the Magistracy Institute of National Research Nuclear University MEPhI

    NASA Astrophysics Data System (ADS)

    Kalashnikov, N. P.; Muravyev-Smirnov, S. S.; Samarchenko, D. A.; Tyulyusov, A. N.

    2017-01-01

    We discuss the remote training technique in general physics for foreign students. The examination for the student certification was chosen in the quiz form for all parts of the general physics course. This article describes the basic principles of the creation and placement of the structured question bank for the distance learning system. The possibility of creating an adaptive tests system on the basis of the minimal state education requirements is described. The examination results are analyzed and the tests validity is carried out based on the comparison of the exam results with a student certification during the semester.

  18. Variations on the Game of Life

    NASA Astrophysics Data System (ADS)

    Peper, Ferdinand; Adachi, Susumu; Lee, Jia

    The Game of Life is defined in the framework of Cellular Automata with discrete states that are updated synchronously. Though this in itself has proven to be fertile ground for research, it leaves open questions regarding the robustness of the model with respect to variations in updating methods, cell state representations, neighborhood definitions, etc. These questions may become important when the ideal conditions under which the Game of Life is supposed to operate cannot be satisfied, like in physical realizations. This chapter describes three models in which Game of Life-like behavior is obtained, even though some basic tenets are violated.

  19. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  20. 39 Questionable Assumptions in Modern Physics

    NASA Astrophysics Data System (ADS)

    Volk, Greg

    2009-03-01

    The growing body of anomalies in new energy, low energy nuclear reactions, astrophysics, atomic physics, and entanglement, combined with the failure of the Standard Model and string theory to predict many of the most basic fundamental phenomena, all point to a need for major new paradigms. Not Band-Aids, but revolutionary new ways of conceptualizing physics, in the spirit of Thomas Kuhn's The Structure of Scientific Revolutions. This paper identifies a number of long-held, but unproven assumptions currently being challenged by an increasing number of alternative scientists. Two common themes, both with venerable histories, keep recurring in the many alternative theories being proposed: (1) Mach's Principle, and (2) toroidal, vortex particles. Matter-based Mach's Principle differs from both space-based universal frames and observer-based Einsteinian relativity. Toroidal particles, in addition to explaining electron spin and the fundamental constants, satisfy the basic requirement of Gauss's misunderstood B Law, that motion itself circulates. Though a comprehensive theory is beyond the scope of this paper, it will suggest alternatives to the long list of assumptions in context.

  1. Physics in the Courtroom

    NASA Astrophysics Data System (ADS)

    Vosk, Ted

    2011-10-01

    The principles, methods and technologies of physics can provide a powerful tool for the discovery of truth in the criminal justice system. Accordingly, physics based forensic evidence is relied upon in criminal prosecutions around the country every day. Infrared spectroscopy for the determination of the alcohol concentration of an individual's breath, force, momentum and multi-body dynamics for purposes of accident reconstruction and the basic application of sound metrological (measurement) practices constitute but a few examples. In many cases, a jury's determination of guilt or innocence, upon which the liberty of a Citizen rests, may in fact be determined by such evidence. Society may well place a high degree of confidence in the integrity of verdicts so obtained when ``the physics'' has been applied in a valid manner. Unfortunately, as concluded by the National Academy of Sciences, ``The law's greatest dilemma in its heavy reliance on forensic evidence--concerns the question of whether---and to what extent-- -there is science in any given `forensic science' discipline.'' Even where valid physical principles are relied upon, their improper application by forensic practitioners who have little physics training, background and/or understanding calls into question the validity of results or conclusions obtained. This presentation provides examples of the application of physics in the courtroom, where problems have been discovered and how they can be addressed by the physics community.

  2. "We Know but We Don't Really Know": Diet, Physical Activity and Cardiovascular Disease Prevention Knowledge and Beliefs Among Underserved Pregnant Women.

    PubMed

    Beckham, A Jenna; Urrutia, Rachel Peragallo; Sahadeo, Latoya; Corbie-Smith, Giselle; Nicholson, Wanda

    2015-08-01

    To describe the knowledge of underserved pregnant women related to diet, physical activity, and cardiovascular disease (CVD). Underserved pregnant women from the University of North Carolina and Pitt County, North Carolina participated in 9 focus group interviews. Focus group questions focused on knowledge of CVD risk factors, lifestyle prevention strategies such as diet and physical activity, and the sources of such knowledge. Data were analyzed with the constant comparative method. Prior to the focus group, each woman was invited to complete a telephone survey to collect demographic information and responses to a 13-item CVD knowledge questionnaire. Means and frequency procedures were used to analyze demographic information. Fifty women participated in nine focus group interviews. Participants possessed basic knowledge of CVD risk factors and preventive strategies, such as basic guidelines and recommendations for healthy diet and physical activity in pregnancy. However, women often receive incomplete guidance from obstetric providers, and women, therefore, desired more information on these topics. Some gaps were filled by nurses and nutritionists. Women also sought information from female friends and relatives. Incorrect knowledge was demonstrated in all groups and led to less healthful behaviors in some cases. Underserved pregnant women have basic knowledge about healthy lifestyle and CVD prevention behaviors; however important gaps and misinformation exist.

  3. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    ScienceCinema

    Giddings, Steve

    2018-02-02

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  4. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    PubMed

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  5. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (3/3)

    ScienceCinema

    Giddings, Steve

    2018-05-23

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  6. Uncertain for a century: quantum mechanics and the dilemma of interpretation.

    PubMed

    Frank, Adam

    2015-12-01

    Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.

  7. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    ScienceCinema

    Giddings, Steven

    2018-02-09

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking's discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.

  8. Preparing future teachers to anticipate student difficulties in physics in a graduate-level course in physics, pedagogy, and education research

    NASA Astrophysics Data System (ADS)

    Thompson, John R.; Christensen, Warren M.; Wittmann, Michael C.

    2011-06-01

    We describe courses designed to help future teachers reflect on and discuss both physics content and student knowledge thereof. We use three kinds of activities: reading and discussing the literature, experiencing research-based curricular materials, and learning to use the basic research methods of physics education research. We present a general overview of the two courses we have designed as well as a framework for assessing student performance on physics content knowledge and one aspect of pedagogical content knowledge—knowledge of student ideas—about one particular content area: electric circuits. We find that the quality of future teachers’ responses, especially on questions dealing with knowledge of student ideas, can be successfully categorized and may be higher for those with a nonphysics background than those with a physics background.

  9. Diagnostic Tests for Entering and Departing Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Waltham, Chris; Kotlicki, A.

    2006-12-01

    A diagnostic test administered at the start of a class should test basic concepts which are recognized as course prerequisites. The questions should not be over-packaged: e.g. students should be required to create models, rather than this being done for them each time. Students should be allowed great latitude in their answers, so we can discover what they are thinking. When administered at the end of a class the goals should be similar: testing concepts taught in the class itself and the retention of necessary concepts from previous classes. Great care has to be taken to avoid teaching to the test. In assessing an entire program, for example an undergraduate majors degree in physics, then one looks for very general skills and knowledge not specific to any one course. The purpose of an undergraduate degree in physics (or indeed any science) is to equip the students with a set of problem-solving skills and basic knowledge which can be applied in a large variety of workplace settings and to allow that student to contribute to civic society as a science-literate person. The creator of any diagnostic test should always have these big goals in mind. We have developed a set of questions which we think fulfill these criteria, yet are not specific to any particular level of science education. They have been administered to students in secondary schools across Canada, incoming first-year science students and final-year physics students at the University of British Columbia. The results will be presented.

  10. Evaluating Scientific Misconceptions and Scientific Literacy in a General Science Course

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Scott, T. J.

    2009-12-01

    The data used in this study were collected as part of the course assignments for General Education Science (GSci) 101: “Physics, Chemistry, and the Human Experience” at James Madison University. The course covers the basic principles of physics, chemistry, and astronomy. The primary goals of this study were to analyze student responses to general scientific questions, to identify scientific misconceptions, and to evaluate scientific literacy by comparing responses collected from different groups of students and from questions given during the course versus at the end of the course. While this project is focused on general scientific concepts, the misconceptions and patterns identified are particularly relevant for improving pedagogy in the geosciences as this field relies on multidisciplinary knowledge of fundamental physics, chemistry, and astronomy. We discuss differences in the results between the disciplines of physics, chemistry, and astronomy and their implications for general geology education and literacy, emphasizing the following questions: (a) What do students typically get wrong? (b) Did the overall scientific literacy of the students increase throughout the semester? Are the concepts discussed in answers provided at the end of class more accurate than those provided during class? (c) How do the before- and after- class responses change with respect to language and terminology? Did the students use more scientific terminology? Did the students use scientific terminology correctly?

  11. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  12. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (1/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steve

    2010-09-08

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking'smore » discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.« less

  13. Black Holes in the Cosmos, the Lab, and in Fundamental Physics (2/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steven

    2010-09-07

    Black holes present the extreme limits of physics. They are ubiquitous in the cosmos, and in some extra-dimensional scenarios they could be produced at colliders. They have also yielded a puzzle that challenges the foundations of physics. These talks will begin with an overview of the basics of black hole physics, and then briefly summarize some of the exciting developments with cosmic black holes. They will then turn to properties of quantum black holes, and the question of black hole production in high energy collisions, perhaps beginning with the LHC. I will then overview the apparent paradox emerging from Hawking'smore » discovery of black hole evaporation, and what it could be teaching us about the foundations of quantum mechanics and gravity.« less

  14. Scientific and personal recollections of Roberto Petronzio

    NASA Astrophysics Data System (ADS)

    Parisi, Giorgio

    2018-03-01

    This paper aims to recall some of the main contributions of Roberto Petronzio to physics, with a particular regard to the period we have been working together. His seminal contributions cover an extremely wide range of topics: the foundation of the perturbative approach to QCD, various aspects of weak interaction theory, from basic questions (e.g. the mass of the Higgs) to lattice weak interaction, lattice QCD from the beginning to most recent computations.

  15. Ideas, Concepts, Doctrine: Basic Thinking in the United States Air Force, 1961-1984. Volume 2

    DTIC Science & Technology

    1989-12-01

    followed in this new second volume. Dr David MacIsaac, a$sociate director for research, Airpower Research Institute, stimulated much ofthe thinking...us a capability to observe and report the physical evidence of an enemy’s situation . This information is a vital requirement for the conduct of war...asking questions, suggesting alternatives, proposing objectives, stimulating progress .»79 As has been seen, McNamara immediately implemented

  16. International Linear Collider Reference Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, James,; Okada, Yasuhiro,; Walker, Nicholas J.,

    2007-08-13

    {lg_bullet} What is the universe? How did it begin? {lg_bullet} What are matter and energy? What are space and time? These basic questions have been the subject of scientific theories and experiments throughout human history. The answers have revolutionized the enlightened view of the world, transforming society and advancing civilization. Universal laws and principles govern everyday phenomena, some of them manifesting themselves only at scales of time and distance far beyond everyday experience. Particle physics experiments using particle accelerators transform matter and energy, to reveal the basic workings of the universe. Other experiments exploit naturally occurring particles, such as solarmore » neutrinos or cosmic rays, and astrophysical observations, to provide additional insights.« less

  17. What Questions Should I Ask My Doctor?

    MedlinePlus

    ... Trials Database Supporting Research Raising Awareness Our Blog Patient Education Pancreas News Basics of Pancreatic Cancer FAQs The ... Detection- Goggins Lab Sol Goldman Center Discussion Board Patient Education / Basics of Pancreatic Cancer Questions What questions should ...

  18. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  19. EDITORIAL: Fracture: from the atomic to the geophysical scale Fracture: from the atomic to the geophysical scale

    NASA Astrophysics Data System (ADS)

    Bouchaud, Elisabeth; Soukiassian, Patrick

    2009-11-01

    Although fracture is a very common experience in every day life, it still harbours many unanswered questions. New avenues of investigation arise concerning the basic mechanisms leading to deformation and failure in heterogeneous materials, particularly in non-metals. The processes involved are even more complex when plasticity, thermal fluctuations or chemical interactions between the material and its environment introduce a specific time scale. Sub-critical failure, which may be reached at unexpectedly low loads, is particularly important for silicate glasses. Another source of complications originates from dynamic fracture, when loading rates become so high that the acoustic waves produced by the crack interact with the material heterogeneities, in turn producing new waves that modify the propagation. Recent progress in experimental techniques, allowing one to test and probe materials at sufficiently small length or time scales or in three dimensions, has led to a quantitative understanding of the physical processes involved. In parallel, simulations have also progressed, by extending the time and length scales they are able to reach, and thus attaining experimentally accessible conditions. However, one central question remains the inclusion of these basic mechanisms into a statistical description. This is not an easy task, mostly because of the strong stress gradients present at the tip of a crack, and because the averaging of fracture properties over a heterogeneous material, containing more or less brittle phases, requires rare event statistics. Substantial progress has been made in models and simulations based on accurate experiments. From these models, scaling laws have been derived, linking the behaviour at a micro- or even nano-scale to the macroscopic and even to geophysical scales. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics cover several of these important topics, including the physical processes in fracture mechanisms, the sub-critical failure issue, the dynamical fracture propagation, and the scaling laws from the micro- to the geophysical scales. Achievements and progress are reported, and the many open questions are discussed, which should provide a sound basis for present and future prospects.

  20. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  1. Concentric Eyewall Formation in Typhoon Sinlaku (2008). Part 2: Axisymmetric Dynamical Processes

    DTIC Science & Technology

    2011-07-01

    Pacific Asian Regional Campaign (T- PARC , Elsberry and Harr 2008; Chou et al. 2011; Weissmann et al. 2011). On account of the combined aircraft resources...the ELDORA Doppler radar data. Taken together, the findings in Didlake and Houze (2011) and Bell et al. (2011) suggest the occurrence of the...and T- PARC (Elsberry and Harr 2008) with abundant aircraft observations taken that can be used to address many basic questions about the physics of

  2. Understanding Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Lamers, Henny J. G. L. M.; Levesque, Emily M.

    2017-12-01

    'Understanding Stellar Evolution' is based on a series of graduate-level courses taught at the University of Washington since 2004, and is written for physics and astronomy students and for anyone with a physics background who is interested in stars. It describes the structure and evolution of stars, with emphasis on the basic physical principles and the interplay between the different processes inside stars such as nuclear reactions, energy transport, chemical mixing, pulsation, mass loss, and rotation. Based on these principles, the evolution of low- and high-mass stars is explained from their formation to their death. In addition to homework exercises for each chapter, the text contains a large number of questions that are meant to stimulate the understanding of the physical principles. An extensive set of accompanying lecture slides is available for teachers in both Keynote® and PowerPoint® formats.

  3. Artificial muscles driven by the cooperative actuation of electrochemical molecular machines. Persistent discrepancies and challenges

    NASA Astrophysics Data System (ADS)

    Otero

    2017-10-01

    Here we review the persisting conceptual discrepancies between different research groups working on artificial muscles based on conducting polymers and other electroactive material. The basic question is if they can be treated as traditional electro-mechanical (physical) actuators driven by electric fields and described by some adaptation of their physical models or if, replicating natural muscles, they are electro-chemo-mechanical actuators driven by electrochemical reaction of the constitutive molecular machines: the polymeric chains. In that case the charge consumed by the reaction will control the volume variation of the muscular material and the motor displacement, following the basic and single Faraday's laws: the charge consumed by the reaction determines the number of exchanged ions and solvent, the film volume variation to lodge/expel them and the amplitude of the movement. Deviations from the linear relationships are due to the osmotic exchange of solvent and to the presence of parallel reactions from the electrolyte, which originate creeping effects. Challenges and limitations are underlined.

  4. Student difficulties measuring distances in terms of wavelength: Lack of basic skills or failure to transfer?

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2013-06-01

    In a previous paper that focused on the transmission of periodic waves at the boundary between two media, we documented difficulties with the basic concepts of wavelength, frequency, and propagation speed, and with the relationship v=fλ. In this paper, we report on student attempts to apply this relationship in problems involving two-source and thin-film interference. In both cases, interference arises from differences in the path lengths traveled by two waves. We found that some students (up to 40% on certain questions) had difficulty with a task that is fundamental to understanding these phenomena: expressing a physical distance, such as the separation between two sources, in terms of the wavelength of a periodic wave. We administered a series of questions to try to identify factors that influence student performance. We concluded that most incorrect responses stemmed from erroneous judgment about the type of reasoning required, not an inability to do said reasoning. A number of students do not seem to treat the spacing of moving wave fronts as analogous to immutable measurement tools (e.g., rulers).

  5. Competing explanations for cosmic acceleration or why is the expansion of the universe accelerating?

    NASA Astrophysics Data System (ADS)

    Ishak, Mustapha

    2012-06-01

    For more than a decade, a number of cosmological observations have been indicating that the expansion of the universe is accelerating. Cosmic acceleration and the questions associated with it have become one of the most challenging and puzzling problems in cosmology and physics. Cosmic acceleration can be caused by (i) a repulsive dark energy pervading the universe, (ii) an extension to General Relativity that takes effect at cosmological scales of distance, or (iii) the acceleration may be an apparent effect due to the fact that the expansion rate of space-time is uneven from one region to another in the universe. I will review the basics of these possibilities and provide some recent results including ours on these questions.

  6. Lunar interferometric astronomy: Some basic questions

    NASA Technical Reports Server (NTRS)

    Woolf, Neville

    1992-01-01

    The author examines some basic questions as to why there should be astronomical facilities on the far side of the moon. The questions are ones of appropriateness, i.e., is this a proper use for human resources, what the real goals are, and are the present concepts the best match for the goals.

  7. Kirlian Photography as a Teaching Tool of Physics

    NASA Astrophysics Data System (ADS)

    Terrel, Andy; Thacker, Beth Ann, , Dr.

    2002-10-01

    There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.

  8. The unification of physics: the quest for a theory of everything.

    PubMed

    Paulson, Steve; Gleiser, Marcelo; Freese, Katherine; Tegmark, Max

    2015-12-01

    The holy grail of physics has been to merge each of its fundamental branches into a unified "theory of everything" that would explain the functioning and existence of the universe. The last step toward this goal is to reconcile general relativity with the principles of quantum mechanics, a quest that has thus far eluded physicists. Will physics ever be able to develop an all-encompassing theory, or should we simply acknowledge that science will always have inherent limitations as to what can be known? Should new theories be validated solely on the basis of calculations that can never be empirically tested? Can we ever truly grasp the implications of modern physics when the basic laws of nature do not always operate according to our standard paradigms? These and other questions are discussed in this paper. © 2015 New York Academy of Sciences.

  9. Growth of a Species, an Association, a Science: 80 Years of Growth and Development Research

    PubMed Central

    Sherwood, Richard J.; Duren, Dana L.

    2014-01-01

    Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying “what makes people different.” The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. PMID:23283658

  10. Growth of a species, an association, a science: 80 years of growth and development research.

    PubMed

    Sherwood, Richard J; Duren, Dana L

    2013-01-01

    Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying "what makes people different." The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. Copyright © 2012 Wiley Periodicals, Inc.

  11. Integrating the dimensions of sex and gender into basic life sciences research: methodologic and ethical issues.

    PubMed

    Holdcroft, Anita

    2007-01-01

    The research process -- from study design and selecting a species and its husbandry, through the experiment, analysis, peer review, and publication -- is rarely subject to questions about sex or gender differences in mainstream life sciences research. However, the impact of sex and gender on these processes is important in explaining biological variations and presentation of symptoms and diseases. This review aims to challenge assumptions and to develop opportunities to mainstream sex and gender in basic scientific research. Questions about the mechanisms of sex and gender effects were reviewed in relation to biological, environmental, social, and psychological interactions. Gender variations, in respect to aging, socializing, and reproduction, that are present in human populations but are rarely featured in laboratory research were considered to more effectively translate animal research into clinical health care. Methodologic approaches to address the present lack of a gender dimension in research include actively reducing variations through attention to physical factors, biological rhythms, and experimental design. In addition, through genomic and acute nongenomic activity, hormones may compound effects through multiple small sex differences that occur during the course of an acute pathologic event. Furthermore, the many exogenous sex steroid hormones and their congeners used in medicine (eg, in contraception and cancer therapies) may add to these effects. The studies reviewed provide evidence that sex and gender are determinants of many outcomes in life science research. To embed the gender dimension into basic scientific research, a broad approach -- gender mainstreaming -- is warranted. One example is the use of review boards (eg, animal ethical review boards and journal peer-review boards) in which gender-related standardized questions can be asked about study design and analysis. A more fundamental approach is to question the relevance of present-day laboratory models to design methods to best represent the age-related changes, comorbidity, and variations experienced by each sex in clinical medicine.

  12. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  13. Rogue events in the group velocity horizon.

    PubMed

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.

  14. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  15. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  16. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  17. The case for advanced physics topics in oral and maxillofacial surgery.

    PubMed

    Tandon, Rahul; Herford, Alan S

    2014-10-01

    Research in oral and maxillofacial surgery has focused mainly on principles founded in the biological and chemical sciences, which have provided excellent answers to many questions. However, recent technologic advances have begun to gain prominence in many of the medical sciences, providing clinicians with more effective tools for diagnosis and treatment. The era of modern physics has led to the development of diagnostic techniques that could provide information at a more basic level than many of the current biochemical methods used. The goal of this report is to introduce 2 of these methods and describe how they can be applied to oral and maxillofacial surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Julius Edgar Lilienfeld Prize Lecture: The Higgs Boson, String Theory, and the Real World

    NASA Astrophysics Data System (ADS)

    Kane, Gordon

    2012-03-01

    In this talk I'll describe how string theory is exciting because it can address most, perhaps all, of the questions we hope to understand about our world: why quarks and leptons make up our world, what forces form our world, cosmology, parity violation, and much more. I'll explain why string theory is testable in basically the same ways as the rest of physics, and why much of what is written about that is misleading. String theory is already or soon being tested in several ways, including correctly predicting the recently observed Higgs boson properties and mass, and predictions for dark matter, LHC physics, cosmological history, and more, from work in the increasingly active subfield ``string phenomenology.''

  19. Do Active Learning Approaches in Recitation Sections Improve Student Performance? A Case Study from an Introductory Mechanics Course

    NASA Astrophysics Data System (ADS)

    Tobin, R. G.

    2018-01-01

    Abundant research leaves little question that pedagogical approaches involving active student engagement with the material, and opportunities for student-to-student discussions, lead to much better learning outcomes than traditional instructor-led, expository instructional formats, in physics and in many other fields. In introductory college physics classes, some departments have departed radically from conventional lecture-recitation-laboratory course structures, but many, including my own, retain the basic format of large-group classroom sessions (lectures) supplemented by smaller-group meetings focused on problem solving (recitations) and separate laboratory meetings. Active student engagement in the lectures is encouraged through approaches such as Peer Instruction and Interactive Lecture Demonstrations, and these approaches have been demonstrably successful.

  20. Nontraditional approach to algebra-based general physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    1997-03-01

    In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.

  1. Statistics and Discoveries at the LHC (1/4)

    ScienceCinema

    Cowan, Glen

    2018-02-09

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  2. Statistics and Discoveries at the LHC (3/4)

    ScienceCinema

    Cowan, Glen

    2018-02-19

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  3. Statistics and Discoveries at the LHC (4/4)

    ScienceCinema

    Cowan, Glen

    2018-05-22

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  4. Beckham as physicist?

    NASA Astrophysics Data System (ADS)

    Ireson, Gren

    2001-01-01

    It is hard to think of a medium that does not use football or soccer as a means of promotion. It is also hard to think of a student who has not heard of David Beckham. If football captures the interest of students it can be used to teach physics; in this case a Beckham free-kick can be used to introduce concepts such as drag, the Bernoulli principle, Reynolds number and the Magnus effect, by asking the simple question: How does he curve the ball so much? Much basic mechanics can also be introduced along the way.

  5. Statistics and Discoveries at the LHC (2/4)

    ScienceCinema

    Cowan, Glen

    2018-04-26

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  6. Basic Physics Questions Addressed by Astrophysics

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    Dark matter, dark energy, the Big Bang, testing relativity -- all are physics questions accessible to astrophysicists -- but all require new equipment. As Harwit's "Cosmic Discovery" pointed out, almost all great surprises in astronomy came from new equipment or new uses of equipment designed for other purposes, and many of those had military applications. I will outline prospects for new equipment and discuss how that equipment can be developed and built. Bigger and lighter mirrors, wavefront sensing and control, new detector technology, cryogenics -- each has its own social network, its own special possibilities, and its own funding sources outside science. I will discuss some examples drawn from real-life experience with the James Webb Space Telescope, a telescope that was said to have a "giggle factor" when it was proposed in 1995. Now each of the 10 major technologies has been brought to maturity, flight hardware is being built, and launch is planned for 2014. As an instrument builder all my life, I will speculate a little on what may be within our reach over the next few decades.

  7. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  8. Student-Posed Problems

    NASA Astrophysics Data System (ADS)

    Harper, Kathleen A.; Etkina, Eugenia

    2002-10-01

    As part of weekly reports,1 structured journals in which students answer three standard questions each week, they respond to the prompt, If I were the instructor, what questions would I ask or problems assign to determine if my students understood the material? An initial analysis of the results shows that some student-generated problems indicate fundamental misunderstandings of basic physical concepts. A further investigation explores the relevance of the problems to the week's material, whether the problems are solvable, and the type of problems (conceptual or calculation-based) written. Also, possible links between various characteristics of the problems and conceptual achievement are being explored. The results of this study spark many more questions for further work. A summary of current findings will be presented, along with its relationship to previous work concerning problem posing.2 1Etkina, E. Weekly Reports;A Two-Way Feedback Tool, Science Education, 84, 594-605 (2000). 2Mestre, J.P., Probing Adults Conceptual Understanding and Transfer of Learning Via Problem Posing, Journal of Applied Developmental Psychology, 23, 9-50 (2002).

  9. Internet-Based Laboratory Immersion: When The Real Deal is Not Available

    NASA Astrophysics Data System (ADS)

    Meisner, Gerald; Hoffman, Harol

    2004-11-01

    Do you want all of your students to investigate equilibrium conditions in the physics lab, but don't have time for lab investigations? Do your under-prepared students need basic, careful and detailed remedial work to help them succeed? LAAPhysics provides an answer to these questions by means of robust online physics courseware based on: (1) a sound, research-based pedagogy (2) a rich laboratory environment with skills and operational knowledge transferable to the wet lab' and (3) a paradigm which is economically scalable. LAAPhysics provides both synchronous and asynchronous learning experiences for an introductory, algebra-based course for students (undergraduate, AP High School, seekers of a second degree), those seeking career changes, and pre-service and in-service teachers. We have developed a simulated physics laboratory comprised of virtual lab equipment and instruments, associated curriculum modules and virtual guidance for real time feedback, formative assessment and collaborative learning.

  10. Rogue events in the group velocity horizon

    PubMed Central

    Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Mahnke, Christoph; Mitschke, Fedor; Steinmeyer, Günter

    2012-01-01

    The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems. PMID:23152941

  11. Requirements for fault-tolerant factoring on an atom-optics quantum computer.

    PubMed

    Devitt, Simon J; Stephens, Ashley M; Munro, William J; Nemoto, Kae

    2013-01-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  12. Promoting physical activity in people with intellectual and multiple disabilities through a basic technology-aided program.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Alberti, Gloria; Perilli, Viviana; Zimbaro, Carmen; Boccasini, Adele; Mazzola, Carlo; Russo, Roberto

    2018-06-01

    This study assessed a technology-aided program (monitoring responding, and ensuring preferred stimulation and encouragements) for promoting physical activity with 11 participants with severe/profound intellectual and multiple disabilities. Each participant was provided with an exercise device (e.g. a static bicycle and a stepper) and exposed to the program according to an ABAB design, in which A and B represented baseline and intervention phases, respectively. Data recording concerned (a) the participants' responses with the exercise device (e.g. pedaling) during baseline and intervention phases and (b) their heart rates during the last intervention phase. The results showed that all participants had significant increases in responding with the exercise devices during the intervention phases. Heart-rate values during the intervention sessions indicated that the participants' responding during those sessions mostly amounted to moderate-intensity physical activity, with potential benefits for their overall physical condition. Implications of the findings and questions for future research in the area were discussed.

  13. Rockets: Physical science teacher's guide with activities

    NASA Astrophysics Data System (ADS)

    Vogt, Gregory L.; Rosenberg, Carla R.

    1993-07-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  14. Rockets: Physical science teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  15. The American Indian Digest.

    ERIC Educational Resources Information Center

    Russell, George

    This guide provides a basic source of historical and contemporary Indian information from an American Indian perspective and includes study questions at the end of each section. The primary function of this guide is to be a quick-study reference handbook. Basic questions essential to understanding current problems and issues of American Indians…

  16. Assessing Student Understanding of Physical Hydrology

    NASA Astrophysics Data System (ADS)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2 students had a full understanding of the processes linked to hydrology. Half the students had provided evidence of the desired understanding; however, half still demonstrated only a rudimentary understanding. Results on Q2 were similar. On the pre-test, 2 students scored 0, 21 students scored 1, indicating rudimentary understanding, 2 students scored a 2, and no student scored a 3. On the post-test, again approximately half the students achieved the desired understanding: 9 students showed some recognition of concepts, 12 students demonstrated a basic understanding; only one student exhibited full understanding. On Q3, no student scored 0, 9 scored 1, 15 scored 2 and 1 student scored 3. On the post-test, one student scored 1, 16 students scored 2, and 5 students scored 3. Students were significantly better at responding to Q3 (the application) as opposed to Q1 and Q2, which were more abstract. Research has shown that students are often better able to solve contextualized problems when they are unable to deal with more abstract tasks. This result has limitations including the small number of participants, all from one institution, and the fact that the rubric was still under development. Nevertheless, the high inter-rater agreement by a group of experts is significant; the rubric we developed is a potentially useful tool for assessment of learning and understanding physical hydrology. Supported by NSF CAREER grant (EAR-0955750).

  17. Is Knowledge of Physical Reality Still Kantian? Some Remarks About the Transcendental Character of Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Laino, Luigi

    2018-06-01

    In the following paper, the author will try to test the meaning of the transcendental approach in respect of the inner changes implied by the idea of quantum gravity. He will firstly describe the basic methodological Kant's aim, viz. the grounding of a meta-science of physics as the a priori corpus of physical knowledge. After that, he will take into account the problematic physical and philosophical relationship between the theory of relativity and the quantum mechanics; in showing how the elementary ontological and epistemological assumptions of experience result to be changed within them, he will also show the further modifications occurred in the development of the loop quantum gravity. He will particularly focus on the tough problem of the relationship space-matter, in order to settle the decisive question about the possibility of keeping a transcendental approach in the light of quantum gravity. He will positively answer by recalling Cassirer's theory of the invariants of experience, although he will also add some problematic issues arising from the new physical context.

  18. Education Research in Physical Therapy: Visions of the Possible.

    PubMed

    Jensen, Gail M; Nordstrom, Terrence; Segal, Richard L; McCallum, Christine; Graham, Cecilia; Greenfield, Bruce

    2016-12-01

    Education research has been labeled the "hardest science" of all, given the challenges of teaching and learning in an environment encompassing a mixture of social interactions, events, and problems coupled with a persistent belief that education depends more on common sense than on disciplined knowledge and skill. The American Educational Research Association specifies that education research-as a scientific field of study-examines teaching and learning processes that shape educational outcomes across settings and that a learning process takes place throughout a person's life. The complexity of learning and learning environments requires not only a diverse array of research methods but also a community of education researchers committed to exploring critical questions in the education of physical therapists. Although basic science research and clinical research in physical therapy have continued to expand through growth in the numbers of funded physical therapist researchers, the profession still lacks a robust and vibrant community of education researchers. In this perspective article, the American Council of Academic Physical Therapy Task Force on Education Research proposes a compelling rationale for building a much-needed foundation for education research in physical therapy, including a set of recommendations for immediate action. © 2016 American Physical Therapy Association.

  19. An IYPT-based undergraduate physics tournament in China

    NASA Astrophysics Data System (ADS)

    Li, Chuanyong; Song, Feng; Liu, Yubin; Sun, Qian

    2013-03-01

    International Young Physicists' Tournament (IYPT) is a team-oriented scientific competition of secondary school students. The participants present their solutions to scientific problems they have prepared over several months and discuss their solutions with other teams. It can also be implemented in university level as its physics problems are all open questions and have no standard answers, especially suitable for undergraduates' ability training in China. The annual tournament of physics learning of undergraduates in our school of physics was started in 2008. Each year, there are 15-18 teams, 20 more student volunteers and 30 more faculty jurors involved. The students benefited in different ways. It is project-based, requiring students to solve the problems in a research way. Team work is developed in both experimenting and discussing stages. The knowledge learned in classrooms can be used to solve these practical and life-related problems, raising their interest and initiative in physics learning. Finally, they are building up their skills in scientific presentation and communication. An IYPT-based program called CUPT (China undergraduate physics tournament) was launched in 2010 and annually attracts about 40 universities to attend. It gains its important role in physics education. National Fund for Talent Training in Basic Sciences (J1103208)

  20. Some thoughts about consciousness: from a quantum mechanics perspective.

    PubMed

    Gargiulo, Gerald J

    2013-08-01

    The article explores some of the basic findings of quantum physics and information theory and their possible usefulness in offering new vistas for understanding psychoanalysis and the patient-analyst interchange. Technical terms are explained and placed in context, and examples of applying quantum models to clinical experience are offered. Given the complexity of the findings of quantum mechanics and information theory, the article aims only to introduce some of the major concepts from these disciplines. Within this framework the article also briefly addresses the question of mind as well as the problematic of reducing the experience of consciousness to neurological brain functioning.

  1. Student opinion in England about science and technology

    NASA Astrophysics Data System (ADS)

    Jenkins, Edgar W.

    2006-05-01

    An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate year of compulsory schooling, think about science and technology. It suggests that several basic research questions need to be addressed and answered if the present widespread decline in the industrialised world in the popularity of the physical sciences as subjects of advanced study is to be halted.

  2. Key Questions Related To Building Collaborative and Inclusive Schools.

    ERIC Educational Resources Information Center

    Idol, Lorna

    1997-01-01

    Provides 15 key questions that educators should consider in developing collaborative and inclusive schools. The questions are organized into three categories: general and philosophical questions pertaining to inclusion, questions about the basic mechanics of developing inclusion programs, and questions about the practical implementation of…

  3. Genome-wide network of regulatory genes for construction of a chordate embryo.

    PubMed

    Shoguchi, Eiichi; Hamaguchi, Makoto; Satoh, Nori

    2008-04-15

    Animal development is controlled by gene regulation networks that are composed of sequence-specific transcription factors (TF) and cell signaling molecules (ST). Although housekeeping genes have been reported to show clustering in the animal genomes, whether the genes comprising a given regulatory network are physically clustered on a chromosome is uncertain. We examined this question in the present study. Ascidians are the closest living relatives of vertebrates, and their tadpole-type larva represents the basic body plan of chordates. The Ciona intestinalis genome contains 390 core TF genes and 119 major ST genes. Previous gene disruption assays led to the formulation of a basic chordate embryonic blueprint, based on over 3000 genetic interactions among 79 zygotic regulatory genes. Here, we mapped the regulatory genes, including all 79 regulatory genes, on the 14 pairs of Ciona chromosomes by fluorescent in situ hybridization (FISH). Chromosomal localization of upstream and downstream regulatory genes demonstrates that the components of coherent developmental gene networks are evenly distributed over the 14 chromosomes. Thus, this study provides the first comprehensive evidence that the physical clustering of regulatory genes, or their target genes, is not relevant for the genome-wide control of gene expression during development.

  4. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 2. Students' Common Errors, Misconceptions and Difficulties in Understanding

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…

  5. Physical Activity Basics

    MedlinePlus

    ... Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Physical Activity Basics Recommend on Facebook Tweet Share Compartir How much physical activity do you need? Regular physical activity helps improve ...

  6. Who's Asking?

    ERIC Educational Resources Information Center

    Kohn, Alfie

    2015-01-01

    In this article, Alfie Kohn discusses four questions about questioning--starting with questions that are more basic, and progressing to some that are "deeper and potentially more subversive of traditional schooling." He begins by considering what questions we should ask students, and encourages teachers to keep questions with…

  7. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-07-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (εF). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper.

  8. Diagnostics and structure

    NASA Technical Reports Server (NTRS)

    Vial, J. C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation.

  9. SHARP User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y. Q.; Shemon, E. R.; Thomas, J. W.

    SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It is comprised of several components including physical modeling tools, tools to integrate the physics codes for multi-physics analyses, and a set of tools to couple the codes within the MOAB framework. Physics modules currently include the neutronics code PROTEUS, the thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the three individual physics modules are available with the SHARP distribution to help the user to either carry out the primary multi-physics calculationmore » with basic knowledge or perform further advanced development with in-depth knowledge of these codes. This manual provides step-by-step instructions on employing SHARP, including how to download and install the code, how to build the drivers for a test case, how to perform a calculation and how to visualize the results. Since SHARP has some specific library and environment dependencies, it is highly recommended that the user read this manual prior to installing SHARP. Verification tests cases are included to check proper installation of each module. It is suggested that the new user should first follow the step-by-step instructions provided for a test problem in this manual to understand the basic procedure of using SHARP before using SHARP for his/her own analysis. Both reference output and scripts are provided along with the test cases in order to verify correct installation and execution of the SHARP package. At the end of this manual, detailed instructions are provided on how to create a new test case so that user can perform novel multi-physics calculations with SHARP. Frequently asked questions are listed at the end of this manual to help the user to troubleshoot issues.« less

  10. Musical Sound, Instruments, and Equipment

    NASA Astrophysics Data System (ADS)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  11. Questions on universal constants and four-dimensional symmetry from a broad viewpoint. I

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1983-01-01

    It is demonstrated that there is a flexibility in clock synchronizations and that four-dimensional symmetry framework can be viewed broadly. The true universality of basic constants is discussed, considering a class of measurement processes based on the velocity = distance/time interval, which always yields some number when used by an observer. The four-dimensional symmetry framework based on common time for all observers is formulated, and related processes of measuring light speed are discussed. Invariant 'action functions' for physical laws in the new four-dimensional symmetry framework with the common time are established to discuss universal constants. Truly universal constants are demonstrated, and it is shown that physics in this new framework and in special relativity are equivalent as far as one-particle systems and the S-matrix in field theories are concerned.

  12. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    NASA Astrophysics Data System (ADS)

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboğlu, Canan

    2013-08-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society, economy, and international politics. One article discusses a new thermonuclear reactor, and the second one is about depleted uranium and its danger for health. 189 first-year undergraduate physics and primary education Greek students were given one of the two articles each, and asked to answer a number of accompanying questions dealing with knowledge that is part of the Greek high school curriculum. The study was repeated with 272 first-year undergraduate physics, physics education, science education, and primary education Turkish students. Acceptable or partially acceptable answers were provided on average by around 20 % of Greek and 11 % of Turkish students, while a large proportion (on the average, around 50 % of Greek and 27 % of Turkish students) abstained from answering the questions. These findings are disappointing, but should be seen in the light of the limited or no coverage of the relevant learning material in the Greek and the Turkish high-school programs. Student conceptual difficulties, misconceptions and implications for research and high school curricula are discussed.

  13. A Statistician's View of Upcoming Grand Challenges

    NASA Astrophysics Data System (ADS)

    Meng, Xiao Li

    2010-01-01

    In this session we have seen some snapshots of the broad spectrum of challenges, in this age of huge, complex, computer-intensive models, data, instruments,and questions. These challenges bridge astronomy at many wavelengths; basic physics; machine learning; -- and statistics. At one end of our spectrum, we think of 'compressing' the data with non-parametric methods. This raises the question of creating 'pseudo-replicas' of the data for uncertainty estimates. What would be involved in, e.g. boot-strap and related methods? Somewhere in the middle are these non-parametric methods for encapsulating the uncertainty information. At the far end, we find more model-based approaches, with the physics model embedded in the likelihood and analysis. The other distinctive problem is really the 'black-box' problem, where one has a complicated e.g. fundamental physics-based computer code, or 'black box', and one needs to know how changing the parameters at input -- due to uncertainties of any kind -- will map to changing the output. All of these connect to challenges in complexity of data and computation speed. Dr. Meng will highlight ways to 'cut corners' with advanced computational techniques, such as Parallel Tempering and Equal Energy methods. As well, there are cautionary tales of running automated analysis with real data -- where "30 sigma" outliers due to data artifacts can be more common than the astrophysical event of interest.

  14. Development and validation of climate change system thinking instrument (CCSTI) for measuring system thinking on climate change content

    NASA Astrophysics Data System (ADS)

    Meilinda; Rustaman, N. Y.; Firman, H.; Tjasyono, B.

    2018-05-01

    The Climate Change System Thinking Instrument (CCSTI) is developed to measure a system thinking ability in the concept of climate change. CCSTI is developed in four phase’s development including instrument draft development, validation and evaluation including readable material test, expert validation, and field test. The result of field test is analyzed by looking at the readability score in Cronbach’s alpha test. Draft instrument is tested on college students majoring in Biology Education, Physics Education, and Chemistry Education randomly with a total number of 80 college students. Score of Content Validation Index at 0.86, which means that the CCSTI developed are categorized as very appropriate with question indicators and Cronbach’s alpha about 0.605 which mean categorized undesirable to minimal acceptable. From 45 questions of system thinking, there are 37 valid questions spread in four indicators of system thinking, which are system thinking phase I (pre-requirement), system thinking phase II (basic), system thinking phase III (intermediate), and system thinking phase IV (coherent expert).

  15. Transitions between homogeneous phases of polar active liquids

    NASA Astrophysics Data System (ADS)

    Dauchot, Olivier; Nguyen Thu Lam, Khanh Dang; Schindler, Michael; EC2M Team; PCT Team

    2015-03-01

    Polar active liquids, composed of aligning self-propelled particle exhibit large scale collective motion. Simulations of Vicsek-like models of constant-speed point particles, aligning with their neighbors in the presence of noise, have revealed the existence of a transition towards a true long range order polar-motion phase. Generically, the homogenous polar state is unstable; non-linear propagative structures develop; and the transition is discontinuous. The long range dynamics of these systems has been successfully captured using various scheme of kinetic theories. However the complexity of the dynamics close to the transition has somewhat hindered more basics questions. Is there a simple way to predict the existence and the order of a transition to collective motion for a given microscopic dynamics? What would be the physically meaningful and relevant quantity to answer this question? Here, we tackle these questions, restricting ourselves to the study of the homogeneous phases of polar active liquids in the low density limit and obtain a very intuitive understanding of the conditions which particle interaction must satisfy to induce a transition towards collective motion.

  16. Importance of questionnaire context for a physical activity question.

    PubMed

    Jørgensen, M E; Sørensen, M R; Ekholm, O; Rasmussen, N K

    2013-10-01

    Adequate information about physical activity habits is essential for surveillance, implementing, and evaluating public health initiatives in this area. Previous studies have shown that question order and differences in wording result in systematic differences in people's responses to questionnaires; however, this has never been shown for physical activity questions. The aim was to study the influence of different formulations and question order on self-report physical activity in a population-based health interview survey. Four samples of each 1000 adults were drawn at random from the National Person Register. A new question about physical activity was included with minor differences in formulations in samples 1-3. Furthermore, the question in sample 2 was included in sample 4 but was placed in the end of the questionnaire. The mean time spent on moderate physical activity varied between the four samples from 57 to 100 min/day. Question order was associated with the reported number of minutes spent on moderate-intensity physical activity and with prevalence of meeting the recommendation, whereas physical inactivity was associated with the differences in formulation of the question. Questionnaire context influences the way people respond to questions about physical activity significantly and should be tested systematically in validation studies of physical activity questionnaires. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effectiveness of basic life support instruction in physical education students--a pilot study.

    PubMed

    Bielec, Grzegorz; Klajman, Paweł; Pęczak-Graczyk, Alicja

    2014-01-01

    According to the literature, 40% of injuries affecting school-age children are sports related. The role of physical education students, as future teachers, seems to be of high importance in terms of protecting children's safety during sports classes. The aim is to evaluate the level of basic life support (BLS) knowledge and skills in physical education students instructed with the use of different methods. Second-year physical education students (n=104, M age=20±0.6 years) were randomly assigned to three groups: experimental 1 (E1), experimental 2 (E2), and control (C). Group E1 students participated in a 2-hour BLS course based on computer-assisted presentations. Group E2 trainees practiced BLS algorithm in pairs during a 2-hour course. No manikins were used in both intervention groups. Students of Group C were asked to learn BLS algorithm on their own. All groups fulfilled a 10-question multiple-choice test on BLS at the beginning and the end of the experiment. After completing the course participants performed BLS on a manikin. The results of knowledge test were not significant before an experiment but differed essentially among the groups afterward (analysis of variance contrast analysis, p<.05). Regardless of teaching method used, no significant differences were found among the students in preparatory BLS actions and cardiopulmonary resuscitation (CPR) performance on a manikin. The level of CPR performance was very low in all groups. Students of both intervention groups improved their BLS knowledge after the training. Teaching methods used in the current study seemed to be ineffective in terms of practical CPR skills. Access to greater number of modern manikins should improve the BLS training in physical education students. Moreover, permanent consultation on instructional methods with emergency medicine experts is recommended for university teachers.

  18. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  19. The Mile Deep Muon Detector at Sanford Underground Laboratory

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret; Gabriel, Steve

    2012-03-01

    For educating students and teachers about basic nuclear and particle physics, you can't go wrong with cosmic rays muons as a cheap and reliable source of data. A simple and relatively inexpensive detector gives a myriad of possibilities to cover core material in physical science, chemistry, physics, and statistics and gives students opportunities to design their own investigations. At Sanford Underground Laboratory at Homestake, in Lead, SD, cosmic ray muon detectors are being used to answer the first question always asked by any visitor to the facility, ``Why are you building the lab a mile underground'' A conventional Quarknet-style detector is available in the education facility on the surface, with a much larger companion detector, the Mile Deep Muon Detector, set up 4850 feet below the surface. Using the Quarknet data acquisition board, the data will be made available to students and teachers through the Cosmic Ray E-lab website. The detector was tested and installed as part of a summer program for students beginning their first or second year of college.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoilova, N. I.

    Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation ofmore » motion determine the quantum mechanical commutation relation?.« less

  1. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Availability of Instructional Materials at the Basic Education Level in Enugu Educational Zone of Enugu State, Nigeria

    ERIC Educational Resources Information Center

    Chukwu, Leo C.; Eze, Thecla A. Y.; Agada, Fidelia Chinyelugo

    2016-01-01

    The study examined the availability of instructional materials at the basic education level in Enugu Education Zone of Enugu State, Nigeria. One research question and one hypothesis guided the study. The research question was answered using mean and grand mean ratings, while the hypothesis was tested using t-test statistics at 0.05 level of…

  3. The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.

    PubMed

    Hendrick, R E

    1994-07-01

    This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.

  4. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  5. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  6. Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, V. M.

    2008-12-01

    Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).

  7. Contributions of basic nuclear physics to the nuclear waste management

    NASA Astrophysics Data System (ADS)

    Flocard, Hubert

    2002-04-01

    Nuclear fission is presently a contested method of electricity production. The issue of nuclear waste management stands out among the reasons why. On the other hand, the nuclear industry has demonstrated its capacity to reliably generate cheap electricity while producing negligible amounts of greenhouse gases. These assets explain why this form of energy is still considered among the options for the long term production of electricity at least in developed countries. However, in order to tackle the still not adequately answered question of the waste, new schemes may have to be considered. Among those which have been advanced recently, the less polluting cycles such as those based on Thorium rather than Uranium and/or the transmutation of the minor actinides and some long lived fission products of the present cycle have been actively investigated. In both cases, it turns that the basic knowledge underlying these methods is either missing or incomplete. This situation opens a window of opportunity for useful contributions from basic nuclear physicists. This article describes some of them and presents the ongoing activities as well as some of the projects put forth for the short or medium term. .

  8. The Shape of a Ponytail and the Statistical Physics of Hair Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Warren, Patrick B.; Ball, Robin C.

    2012-02-01

    From Leonardo to the Brothers Grimm our fascination with hair has endured in art and science. Yet, a quantitative understanding of the shapes of a hair bundles has been lacking. Here we combine experiment and theory to propose an answer to the most basic question: What is the shape of a ponytail? A model for the shape of hair bundles is developed from the perspective of statistical physics, treating individual fibers as elastic filaments with random intrinsic curvatures. The combined effects of bending elasticity, gravity, and bundle compressibility are recast as a differential equation for the envelope of a bundle, in which the compressibility enters through an ``equation of state.'' From this, we identify the balance of forces in various regions of the ponytail, extract the equation of state from analysis of ponytail shapes, and relate the observed pressure to the measured random curvatures of individual hairs.

  9. Tunable orbital angular momentum in high-harmonic generation

    PubMed Central

    Gauthier, D.; Ribič, P. Rebernik; Adhikary, G.; Camper, A.; Chappuis, C.; Cucini, R.; DiMauro, L. F.; Dovillaire, G.; Frassetto, F.; Géneaux, R.; Miotti, P.; Poletto, L.; Ressel, B.; Spezzani, C.; Stupar, M.; Ruchon, T.; De Ninno, G.

    2017-01-01

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms. PMID:28378741

  10. Affective science perspectives on cancer control: Strategically crafting a mutually beneficial research agenda

    PubMed Central

    Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman

    2015-01-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511

  11. On humanity's role in space

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1978-01-01

    Manned spaceflight is considered within the framework of two broad categories: human exploitation of space for economic or scientific gain, and human habitation of space as a place where man may live, grow, and actualize himself. With the advent of the Space Shuttle, exploitation of space will take the form of new product development. This will continue during the 1990s as the new products are manufactured on a scale large enough to be profitable. The turn of the century should see major industries in space, and large space habitats. Thus, the question of mankind's existential needs arises. In addition to basic physical needs, the spiritual and cultural requirements of human beings must be considered. The impact of man's presence in space upon human culture in general is discussed with reference to international cooperation, public interest in space programs, scientific advancement, the basic urge to explore, and the density of mankind as a whole; which will become free of external constraints as we step into the cosmos.

  12. Summary of the ACAT Round Table Discussion: Open-source, knowledge sharing and scientific collaboration

    NASA Astrophysics Data System (ADS)

    Carminati, Federico; Perret-Gallix, Denis; Riemann, Tord

    2014-06-01

    Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: • The importance of having various licensing models in academic research; • The basic value of proper recognition and attribution of intellectual property, including scientific software; • The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following discussion.

  13. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

    PubMed

    Schwabl, Herbert; Klima, Herbert

    2005-04-01

    Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

  14. Facial Affect Reciprocity in Dyadic Interactions

    DTIC Science & Technology

    2012-09-01

    experiment and the beginning of the debrief. Alphas were high and acceptable for all groups in all studies for both pretests and posttests (Table 3... group members. Such questions are rooted in a basic understanding of the interpersonal functions of emotion and expression; yet, research on the...responding of group members. Such questions are rooted in a basic understanding of the interpersonal functions of emotion. Yet, research on the interpersonal

  15. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  16. Mina Shaughnessy in the 1990s: Some Changing Answers in Basic Writing.

    ERIC Educational Resources Information Center

    McAlexander, Patricia J.

    Although Mina Shaughnessy remains influential in the basic writing field, her answers to the vital questions of who basic writers are and why they underachieve as writers are changing. Whether she intended to or not, Shaughnessy's book "Errors and Expectations" (published in 1977) was a major force in forming an image of basic writers as…

  17. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  18. Problems Experienced by Ovarian Cancer Survivors During Treatment.

    PubMed

    Keim-Malpass, Jessica; Mihalko, Shannon L; Russell, Greg; Case, Doug; Miller, Brigitte; Avis, Nancy E

    To identify problems at different treatment points (early treatment, mid-treatment, early posttreatment, and late posttreatment) among women with ovarian cancer. Longitudinal and cross-sectional study design. An academic and community clinical cancer center in the Southeastern United States. Sixty-eight women with Stage I to IV ovarian cancer. Variables assessed included reported problems (physical, psychosocial, pain, marital, medical interaction), social support, optimism, and responses to open-ended questions. Analysis involved mixed models for longitudinal repeated measures and unpaired t tests and content analysis to describe responses to open-ended questions. Physical and psychosocial problems were greatest during early treatment and decreased throughout the treatment trajectory. Women with greater levels of social support and optimism at baseline had fewer problems over time. Women who did not have trouble paying for basics had fewer problems related to pain and psychological problems. Problems across all domains must be addressed throughout the treatment trajectory, even after chemotherapy has ended. Nurses are well positioned to refer women appropriately to social workers and clinical navigators across all domains of care and should consider systematic assessment of patient-reported problems as a routine form of practice. Copyright © 2017 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  19. Microgravity: Molecular Dynamics Simulations at the NCCS Probe the Behavior of Liquids in Low Gravity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The life of the very small, whether in something as complicated as a human cell or as simple as a drop of water, is of fundamental scientific interest: By knowing how a tiny amount of material reacts to changes in its environment, scientists maybe able to answer questions about how a bulk of material would react to comparable changes. NASA is in the forefront of computational research into a broad range of basic scientific questions about fluid dynamics and the nature of liquid boundary instability. For example, one important issue for the space program is how drops of water and other materials will behave in the low-gravity environment of space and how the low gravity will affect the transport and containment of these materials. Accurate prediction of this behavior is among the aims of a set of molecular dynamics experiments carried out on the NCCSs Cray supercomputers. In conventional computational studies of materials, matter is treated as continuous - a macroscopic whole without regard to its molecular parts - and the behavior patterns of the matter in various physical environments are studied using well-established differential equations and mathematical parameters based on physical properties such as compressibility density, heat capacity, and vapor pressure of the bulk material.

  20. The Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Rebut, Paul-Henri

    2017-02-01

    This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.

  1. Basic Instruction in Physical Education.

    ERIC Educational Resources Information Center

    Priest, Laurie, Ed.

    Chapter 1 of this monograph dealing with basic physical education instruction programs traces the history of physical education in colleges and universities from 1885 to 1985. Physical education programs became strongly entrenched within the higher education curriculum with the sanction of college administrators who recognized a responsibility to…

  2. Fermilab | Science at Fermilab | Experiments & Projects | Cosmic Frontier

    Science.gov Websites

    Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library

  3. "Why did you really do it?" A mixed-method analysis of the factors underpinning motivations to register as a body donor.

    PubMed

    Cornwall, Jon; Poppelwell, Zoe; McManus, Ruth

    2018-05-15

    Individuals who register as body donors do so for various reasons, with aiding medical science a common motivation. Despite awareness of several key reasons for donation, there are few in-depth explorations of these motivations to contextualize persons' reasons for donating. This study undertakes a mixed-method exploration of motivations for body donation to facilitate deeper understanding of the reasons underpinning donor registration. A survey of all newly registered body donors at a New Zealand university was performed over a single year. The survey included basic demographic information, a categorical question on reason for donation, a free-text question on donation motivation, and a free-text question allowing "other" comments on body donation. Basic statistical analysis was performed on demographic and categorical data, and thematic analysis used on free-text responses. From 169 registrants, 126 people (average age 70.5 years; 72 female) returned completed surveys (response rate 75%). Categorical data indicate a primary motivation of aiding medical science (86%). Fifty-one respondents (40%) provided free-text data on motivation, with other comments related to motivation provided by forty-one (33%). Common themes included reference to usefulness, uniqueness (pathophysiology and anatomy), gift-giving, kinship, and impermanence of the physical body. Consistent with previous studies, the primary reason for body donation was aiding medical science, however underpinning this was a complex layer of themes and sub-themes shaping motivations for choices. Findings provide important information that can guide development of robust informed consent processes, aid appropriate thanksgiving service delivery, and further contextualize the importance of medical professionals in body donation culture. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  4. Questions about Physics: The Case of a Turkish "Ask a Scientist" Website

    ERIC Educational Resources Information Center

    Yerdelen-Damar, Sevda; Eryilmaz, Ali

    2010-01-01

    The physics questions submitted to an "ask a scientist" website were classified with respect to field of interest in physics, type of requested information in the question (factual, explanatory, etc.), and motivation for asking the question (applicative or non-applicative). In addition, differences in the number of females' and males'…

  5. Questions of Brain Hemispheric Specialization and Gender Difference in Spatial Tests.

    ERIC Educational Resources Information Center

    McWhinnie, Harold J.

    This paper presents a review of selected literature relevant to a general question of hemispheric specialization (right or left brain) and questions of gender differences in spatial abilities among a group of art students. Three basic questions for discussion are proposed: (1) is there a relationship between hemispheric dominance and spatial…

  6. The CERN disposal of the FELIX project proposal: some comments on and justification for it.

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Roy, D.

    1998-12-01

    The authors seriously questioned and still continue to question the overemphasised "prospects" in the past of the so-called FELIX project in the domain of ultrahigh-energy astroparticle physics and the optimism that was nurtured around it. This was and is somewhat irrational because there is so far no dearth in the accumulated data for the testing of the models for particle production. But that up to now we failed to build up a really and concretely standard theory of particle production is due to our poverty in outlook and philosophy. The authors picked up and pointed out the very basic down-to-earth observables which even in the available energy range would really suffice to judge the merits and successes of any of the models. That the spirit of FELIX-like proposals might resurrect with just some other name even after the present (and temporary?) setback of the FELIX project remains the point of concern to the authors.

  7. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  8. Moving Between Discourses: From Learning-As-Acquisition To Learning-As-Participation

    NASA Astrophysics Data System (ADS)

    Sfard, Anna

    2009-11-01

    In this paper I address the question of how to talk about learning so as to be able to cope with at least some of the longstanding quandaries and to arrive at new insights. After a very brief historical review, I concentrate on two basic metaphors for learning in which current educational research seems to be grounded: the metaphors of learning-as-acquisition and of learning-as-participation. After stating the importance of both of these approaches and arguing that researches should be adjusting their leading metaphors to the questions they ask, I present my own choice: a brand of participationist discourse which is grounded in the vision of thinking as a form of communication and of physics and mathematics as types of discourses. The usefulness of the proposed way of talking about learning is then illustrated with the help of empirical materials taken from my recent study on a 7th grade class just introduced to negative numbers.

  9. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 1. Statistical Analysis of a Quantitative Study

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 1 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught in the twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used. The study compared performance in five questions that tested recall of knowledge or application of algorithmic procedures (type-A…

  10. Electronic Data Interchange in U.S. Navy Contracting Activities

    DTIC Science & Technology

    1992-12-01

    the basic research question, the following subsidiary questions were asked: 1. How is EDI being used in the private sector and within the Department of...eliminated by using EDI transactions. According to a DoD small business EDI Guide , (DLA Partnership, 1991, p.15) in financial management applications, a...and to place orders against basic ordering agreements (BOA). The ASO is currently transmitting the ASC X12 850 [Purchase Order] to approximately 25

  11. Viewpoint: Back to the Basics in Social Studies? Personal Statements by Three Canadian Educators

    ERIC Educational Resources Information Center

    Sutherland, Neil; And Others

    1977-01-01

    Neil Sutherland discusses the historical context of the back to basics movement in social studies. Ken Osborne points out that the movement is stifling innovation. Max van Manen addresses the question of what curricula should be considered basic. (Author/RM)

  12. MAD Submission Form

    Science.gov Websites

    best answered by professional advice/consulting. Questions concerning the development of commercial products or the operation of a commercial organization. Questions answered by basic references, such as

  13. A general geometric theory of attitude determination from directional sensing

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1976-01-01

    A general geometric theory of spacecraft attitude determination from external reference direction sensors was presented. Outputs of different sensors are reduced to two kinds of basic directional measurements. Errors in these measurement equations are studied in detail. The partial derivatives of measurements with respect to the spacecraft orbit, the spacecraft attitude, and the error parameters form the basis for all orbit and attitude determination schemes and error analysis programs and are presented in a series of tables. The question of attitude observability is studied with the introduction of a graphical construction which provides a great deal of physical insight. The result is applied to the attitude observability of the IMP-8 spacecraft.

  14. Using Space Weather for Enhanced, Extreme Terrestrial Weather Predictions.

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Lee, T. A., III

    2017-12-01

    Considering the complexities of the Sun-Earth system, the impacts of space weather to weather here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial weather. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space weather contribute to extreme weather on Earth, and if so, to what degree?"

  15. Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer

    PubMed Central

    Cohen, Ivan J; Blasberg, Ronald

    2017-01-01

    Immunotherapy is revolutionizing cancer care across disciplines. The original success of immune checkpoint blockade in melanoma has already been translated to Food and Drug Administration–approved therapies in a number of other cancers, and a large number of clinical trials are underway in many other disease types, including breast cancer. Here, we review the basic requirements for a successful antitumor immune response, with a focus on the metabolic and physical barriers encountered by lymphocytes entering breast tumors. We also review recent clinical trials of immunotherapy in breast cancer and provide a number of interesting questions that will need to be answered for successful breast cancer immunotherapy. PMID:28979132

  16. Breastfeed Your Baby

    MedlinePlus

    ... Basics: Health Benefits What are the benefits of breastfeeding? Breastfeeding gives you and your baby time to ... Basics: Common Questions If you are worried about breastfeeding, you aren't alone. It's normal to have ...

  17. Alternative Conceptions: Turning Adversity into Advantage

    NASA Astrophysics Data System (ADS)

    Ferreira, Annalize; Lemmer, Miriam; Gunstone, Richard

    2017-08-01

    While a vast body of research has identified difficulties in students' understanding about forces and acceleration and their related alternative conceptions, far less research suggests ways to use students' alternative conceptions to enhance conceptual understanding of a specific fundamental concept. This study focused on distinguishing between students' conceptual understanding of the Newtonian concept of gravitational acceleration being the same for all objects and students' alternative conception that heavy objects fall faster. A multiple choice questionnaire was distributed to first year physics students for three consecutive years at a university in South Africa. The results indicate that changing the direction of motion and the physics quantity asked in paired questions revealed practically significant inconsistencies in students' reasoning and conceptions. This research contributes to the body of knowledge in proposing how the alternative conception of mass-related gravitational acceleration can be used in instruction to enhance conceptual understanding of the force-mass-acceleration relationship. Understanding of this relationship not only promotes conceptual understanding of the basic Newtonian concepts of the laws of motion which forms the critical foundation on which more advanced physics courses are built, but also contributes towards students' perception of physics as a set of coherent ideas applicable in all contexts.

  18. Motions of Celestial Bodies; Computer simulations

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene

    2014-10-01

    This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.

  19. Affective science perspectives on cancer control: strategically crafting a mutually beneficial research agenda.

    PubMed

    Ferrer, Rebecca A; Green, Paige A; Barrett, Lisa Feldman

    2015-05-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally laden. As such, affective science research to elucidate questions related to the basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this article is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. © The Author(s) 2015.

  20. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  1. Students’ understanding of forces: Force diagrams on horizontal and inclined plane

    NASA Astrophysics Data System (ADS)

    Sirait, J.; Hamdani; Mursyid, S.

    2018-03-01

    This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.

  2. J. J. Sakurai Prize for Theoretical Particle Physics Talk: The Boundless Horizons of Supercollider Physics

    NASA Astrophysics Data System (ADS)

    Quigg, Chris

    2011-04-01

    The Large Hadron Collider at CERN is moving the experimental frontier of particle physics to the domain of electroweak symmetry breaking, reaching energies around one trillion electron volts for collisions among the basic constituents of matter. We do not know what the new wave of exploration will find, but the discoveries we make and the new puzzles we encounter are certain to change the face of particle physics and echo through neighboring sciences. In this new world, we confidently expect to learn what sets electromagnetism apart from the weak interactions, with profound implications for deceptively simple questions: Why are there atoms? Why chemistry? What makes stable structures possible? A pivotal step will be finding the Higgs boson-or whatever takes its place -and exploring its properties. But we hope for much more. More predictive extensions of the electroweak theory, including dynamical symmetry breaking and supersymmetry, imply new kinds of matter that would be within reach of LHC experiments. We suspect that candidates for the dark matter of the Universe could also await discovery on the TeV scale. The strong interactions may hold their own surprises. As we unravel the riddle of electroweak symmetry breaking, prospects arise for other new insights: into the different forms of matter, the unity of quarks and leptons, and the nature of spacetime. The questions in play all seem linked to one another-and to the kinship of the weak and electromagnetic interactions. I will speak of the evolving dialogue between theory and experiment, highlighting the work before us. Fermilab is operated by the Fermi Research Alliance under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy.

  3. 20 CFR 220.102 - Non-severe impairment(s), defined.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... significantly limit the claimant's physical or mental ability to do basic work activities. (b) Basic work activities. Basic work activities means the ability and aptitudes necessary to do most jobs. Examples of these include— (1) Physical functions such as walking, standing, sitting, lifting, pushing, pulling...

  4. How Asking a Very Basic Research Question Led Us to a Model for at Least Three Diseases | Poster

    Cancer.gov

    By Howard Young Editor’s note: This article is adapted from Dr. Young’s January 12, 2015, post to the I am Intramural Blog of the Intramural Research Program. When I started this project, it was not my objective to develop a model for any specific disease, nor did I even suspect that the ultimate result would be some insight into autoimmune disease. The basic research question

  5. Helping physics teacher-candidates develop questioning skills through innovative technology use

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina

    2015-12-01

    Peer Instruction has been used successfully in undergraduate classrooms for decades. Its success depends largely on the quality of multiple-choice questions. Yet it is still rare in secondary schools because of teachers' lack of experience in designing, evaluating, and implementing conceptual questions. Research-based multiple-choice conceptual questions are also underutilized in physics teacher education. This study explores the implementation of Peer Instruction enhanced by PeerWise collaborative online system, in a physics methods course in a physics teacher education program.

  6. Validation of the Military Entrance Physical Strength Capacity Test. Technical Report 610.

    ERIC Educational Resources Information Center

    Myers, David C.; And Others

    A battery of physical ability tests was validated using a predictive, criterion-related strategy. The battery was given to 1,003 female soldiers and 980 male soldiers before they had begun Army Basic Training. Criterion measures which represented physical competency in Basic Training (physical proficiency tests, sick call, profiles, and separation…

  7. Physical Fitness: A Way of Life. Second Edition.

    ERIC Educational Resources Information Center

    Getchell, Bud

    The basics of physical fitness and information for developing a systematic program of exercise and physical activity for the individual are outlined. This book is divided into three major areas. Part one contains chapters dealing with basic physical fitness, understanding the human body and its needs, and methods of appraising individual fitness.…

  8. Brain-Computer Interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    PubMed Central

    Kübler, A.; Birbaumer, N.

    2008-01-01

    Objective To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. Method We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and 6 with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. Results A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Conclusions Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Significance Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS. PMID:18824406

  9. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations (Version 2)

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2017-05-01

    GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.

  10. Physics of vascular brachytherapy.

    PubMed

    Jani, S K

    1999-08-01

    Basic physics plays an important role in understanding the clinical utility of radioisotopes in brachytherapy. Vascular brachytherapy is a very unique application of localized radiation in that dose levels very close to the source are employed to treat tissues within the arterial wall. This article covers basic physics of radioactivity and differentiates between beta and gamma radiations. Physical parameters such as activity, half-life, exposure and absorbed dose have been explained. Finally, the dose distribution around a point source and a linear source is described. The principles of basic physics are likely to play an important role in shaping the emerging technology and its application in vascular brachytherapy.

  11. Advanced Placement Economics. Macroeconomics: Student Activities.

    ERIC Educational Resources Information Center

    Morton, John S.

    This book is designed to help advanced placement students better understand macroeconomic concepts through various activities. The book contains 6 units with 64 activities, sample multiple-choice questions, sample short essay questions, and sample long essay questions. The units are entitled: (1) "Basic Economic Concepts"; (2) "Measuring Economic…

  12. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  13. Basic Information about Lead in Drinking Water

    MedlinePlus

    ... Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question ... Related Information from Other Federal Government Agencies General Information about Lead in Drinking Water How Lead Gets ...

  14. Competition Overview Presentation: The basics on competing for EPA assistance programs

    EPA Pesticide Factsheets

    The basics on competing for EPA assistance programs. Finding EPA Competitive Opportunities and contact the Officer of Grants and Debarment competition staff should you have any additional questions or concerns.

  15. PREFACE: Ferrofluids

    NASA Astrophysics Data System (ADS)

    Odenbach, Professor Stefan

    2006-09-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of ferrofluid research. Ferrofluids—suspensions of magnetic nanoparticles—exhibit as a specific feature the magnetic control of their physical parameters and of flows appearing in such fluids. This magnetic control can be achieved by means of moderate magnetic fields with a strength of the order of 10 mT. This sort of magnetic control also enables the design of a wide variety of technical applications such as the use of the magnetic forces for basic research in fluid dynamics. The overall field of ferrofluid research is already about 40 years old. Starting with the first patent on the synthesis of magnetic nanoparticle suspensions by S Papell in 1964, a vivid field of research activities has been established. Looking at the long time in which ferrofluids have been the focus of scientific interest, one can ask the question, what kind of recent developments justify a special issue of a scientific journal? New developments in a field, which depends strongly on a certain material class and which opens research possibilities in different scientific fields will nowadays usually require an interdisciplinary approach. This kind of approach starting from the synthesis of magnetic suspensions, including research concerning their basic properties and flow behaviour and focusing on new applications has been the core of a special research programme funded by the Deutsche Forschungsgemeinschaft (DFG) over the past 6 years. Within this programme—entitled `Colloidal Magnetic Fluids: Basics, Synthesis and Applications of New Ferrofluids'—more than 30 different research groups have been coordinated to achieve new results in various fields related to ferrofluid research. The basic approach of the program has been the assumption that new applications well beyond the typical ferrofluid techniques, for example loud speaker cooling or sealing of rotary shafts, will require tailored magnetic suspensions with properties clearly focused towards the need of the application. While such tailoring of fluids to certain well defined properties sounds like a straightforward approach one has to face the fact that it requires a clear definition of the required properties. This definition itself has to be based on a fundamental physical knowledge of the processes determining certain magnetically controlled phenomena in ferrofluids. To make this point concrete one can look into the detailed aims of the mentioned research program. The application areas identified for the future development of research and application of suspensions of magnetic nanoparticles have been on the one hand the biomedical application—especially with respect to cancer treatment—and on the other hand the use of magnetically controlled rheological properties of ferrofluids for new active technical devices. Both directions require, as mentioned, as a basis for success the synthesis of new ferrofluids with dedicated properties. While the medical applications have to rely on biocompatibility as well as on stability of the suspensions in a biomedical environment, the use of ferrofluids in technical devices employing their magnetically controlled rheological properties will depend on an enhancement of the changes of the fluid's viscous properties in the presence of moderate magnetic fields. For both requirements ferrofluids with a make up clearly different from the usual magnetite based fluids have to be synthesized. The question of how the detailed microscopic make up of the fluids would have to look has to be answered on the basis of basic research results defining the physics background of the respective phenomena. Taking these aspects together it becomes obvious that the aforementioned research program had goals aiming far beyond the state of the art of classical ferrofluid research. These goals as well as the basic strategy to achieve them is in a way reflected by the structure of this issue of Journal of Physics: Condensed Matter. The issue contains results emerging from the research programme as well as invited papers from researchers not participating in the programme but working in closely related areas. The issue is subdivided into five main sections dealing with synthesis, basic physical description, rheology, and both the medical and technical applications of ferrofluids. As can be expected from work done within an interdisciplinary context many of the papers would fit into more than one of these sections and catagorization is thus sometimes difficult. We have therefore tried to place them into the section reflecting the main field of research to which the respective results belong. The first section is on synthesis and characterization of magnetic suspensions. The first paper in this section is dedicated partly to magnetite ferrofluids but with special aspects concerning the particle size tailoring them for applications especially in the field of magnetic hyperthermia. After this, three different types of `new' ferrofluids are presented. Fluids based on pure metal particles exhibiting much stronger magnetic properties than the common magnetite fluids, fluids with a temperature sensitive surfactant shell allowing a change of the particle’s hydrodynamic diameter by variation of the fluid’s temperature and fluids containing spheres of nonmagnetic material with embedded magnetic particles which are already used in new medical applications. The second section is dedicated to the basic physics of ferrofluids and highlights three different topics. First the question of magnetization dynamics is discussed and different aspects of this fundamental problem, which determines the basic description of ferrofluids, are highlighted. The second topic is the well known surface instability appearing in ferrofluids in a homogeneous magnetic field perpendicular to the fluid surface. This part shows clearly how many undiscovered phenomena can be found, even in an area which is as old as the whole research field, if an appropriate measuring technique is used and fresh ideas help to find unexpected effects. The last part of this section deals with the question of dynamics and structure of ferrofluids and shows the experimental possibilities of scattering techniques in this field. Within the third section the question of field dependent changes of the rheological behaviour of ferrofluids is discussed. The first three papers provide theoretical approaches for the understanding of the connection between the rheological properties and shear and field induced changes in the fluid’s microstructure. The fourth paper provides the related experimental results showing the combination of microstructural and rheological measurements under well defined conditions. The last paper of this section does not directly belong to ferrofluid research but to a closely related field—so called magneto-rheological (MR) suspensions, which differ from ferrofluids mainly by the size of the suspended particles and the strength of the rheological effects. As modern theoretical approaches, like the one discussed by Liu et al in the second section have shown, the relation between the effects in ferrofluids and those in MR fluids is so close that it could probably be described in a common theory. Sections four and five contain the application orientated results. In the fourth section the medical applications are the focus of interest. The section starts with a paper which could have also been placed in the synthesis section—the growth of magnetotactic bacteria and the extraction of the magnetic particles produced by these bacteria. The paper also contains information about the characterization of the particles especially with respect to their application. The characterization aspect is then continued in two papers outlining new diagnostic techniques with close relation to future biomedical application of magnetic fluids. Next in vitro applications, especially questions of cell separation using magnetic forces, are highlighted before the final papers address the therapeutic aspects of magnetic drug targeting and magnetic hyperthermia. Finally the fifth section describes three different new approaches for the technical use of ferrofluids. Again, the specialized design of the fluids themselves is an important step towards the new application goals. Altogether the papers within this issue outline the unique potential of magnetically controlled suspensions, the interdisciplinary nature of the related research and the prospects of strongly networked and interdisciplinary activities in the field. I hope that it will give an insight into the fascination of ferrofluid research and a feeling for the advances made in the past years.

  16. Teacher Effectiveness as Correlate of Students' Cognitive Achievement at Upper Basic Education in Basic Technology

    ERIC Educational Resources Information Center

    Owoh, Titus M.

    2016-01-01

    This study sought to find out the relationship between students perception of their teacher effectiveness and academic achievement in Basic Technology. Teacher's personality, teaching techniques/classroom management strategy and appearance, all integrate to make for teacher effectiveness. To carry out this research, two research questions and one…

  17. Adult Basic Education Materials Evaluation Guide.

    ERIC Educational Resources Information Center

    Harrison, David

    This guide is intended for use by adult basic education practitioners in the screening of basic reading textbooks prior to their adoption for classroom use. The guide is in the form of a questionnaire and consists of dichotomous-choice questions arranged into three sections that relate to the product design, adult learning, and reading instruction…

  18. Basic Relationships among Scale, Quality, and Benefits in Sino-Foreign Cooperative Education

    ERIC Educational Resources Information Center

    Lin, Jinhui

    2016-01-01

    The basic relationships among scale, quality, and benefits in Sino-foreign cooperative education are key to the development of cooperative education. It is necessary to construct a theoretical framework for the basic relationships among scale, quality, and benefits in Sino-foreign cooperative education and analyze the questions faced in…

  19. The Importance of Incorporating Multiculturalism in Basic Communication Courses.

    ERIC Educational Resources Information Center

    Funkhouser, Edward T.

    Multiculturalism has a place in basic communication courses. At a personal level, cross-cultural communication is concerned with the way a person chooses to treat another--it is a question of communication ethics, a subject that should be introduced in any basic communication course because communicators must consider how to deal fairly and…

  20. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    NASA Astrophysics Data System (ADS)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  1. The Basic Epistemological Questions--Are There Also Valid Answers?

    ERIC Educational Resources Information Center

    Oderman, Dale B.

    Epistemology is the branch of philosophy that seeks answers to two main questions: How do we know? and How do we know we know? This paper is concerned with how four major schools of thought have addressed these questions and the implications that their answers to these questions have for education. The paper begins by discussing how four major…

  2. The American Indians: Answers to 101 Questions.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    Presented in a simple and straightforward manner, this publication answers questions basic to an understanding of the American Indian and his socioeconomic position in the United States. The following identify major areas covered and representative questions: (1) The Indian People (Who is an Indian?); (2) The Legal Status of Indians (Are Indians…

  3. Optics in engineering education: stimulating the interest of first-year students

    NASA Astrophysics Data System (ADS)

    Blanco-García, Jesús; Vazquez-Dorrío, Benito

    2014-07-01

    The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.

  4. Effects of basic clinical skills training on objective structured clinical examination performance.

    PubMed

    Jünger, Jana; Schäfer, Sybille; Roth, Christiane; Schellberg, Dieter; Friedman Ben-David, Miriam; Nikendei, Christoph

    2005-10-01

    The aim of curriculum reform in medical education is to improve students' clinical and communication skills. However, there are contradicting results regarding the effectiveness of such reforms. A study of internal medicine students was carried out using a static group design. The experimental group consisted of 77 students participating in 7 sessions of communication training, 7 sessions of skills-laboratory training and 7 sessions of bedside-teaching, each lasting 1.5 hours. The control group of 66 students from the traditional curriculum participated in equally as many sessions but was offered only bedside teaching. Students' cognitive and practical skills performance was assessed using Multiple Choice Question (MCQ) testing and an objective structured clinical examination (OSCE), delivered by examiners blind to group membership. The experimental group performed significantly better on the OSCE than did the control group (P < 0.01), whereas the groups did not differ on the MCQ test (P < 0.15). This indicates that specific training in communication and basic clinical skills enabled students to perform better in an OSCE, whereas its effects on knowledge did not differ from those of the traditional curriculum. Curriculum reform promoting communication and basic clinical skills are effective and lead to an improved performance in history taking and physical examination skills.

  5. MO-DE-BRA-01: Enhancing Radiation Physics Instruction Through Gamification and E-Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driewer, J; Lei, Y; Morgan, B

    Purpose: This project sought to “gamify” the instruction of radiation interaction physics concepts for technology students. Gamification applies game mechanics and user interactions in active learning contexts. In one part of this project, a self-guided eModule was developed for conceptual radiation interaction instruction. In a second part, a web-based game, Particle Launch (http://particle-launcher.ist.unomaha.edu), was created to challenge students to quickly apply radiation interaction concepts in a way that is stimulating and motivating. Methods: The eModule, focused on conceptual interaction physics, was designed in Adobe Captivate and incorporates animation, web videos, and assessment questions in order to generate student interest. Navigatingmore » the whole module takes 40 minutes for beginners. Assessments after three main sections are comprised of 3–4 questions randomly selected from a question pool. In collaboration with the University of Nebraska at Omaha’s College of Information Science and Technology, the Particle Launch game was created with the Unity gaming engine and designed with a game-play look and feel. The object of the game is to utilize different particles, energies, and directions to destroy a target given a limited number of resources and time to complete the task. A rewards system encourages accurate shots. Results: The eModule part of the project encourages a flipped classroom model in which class time is devoted to application of concepts rather than information-based lectures. Currently, eModule assessments are not tracked but this feature could be incorporated to encourage participation. Furthermore, in a class of five technology students, the game was found to be fun and engaging and had the effect of reinforcing basic concepts from the eModule. Conclusion: Gamification has significant potential to alter medical physics instruction. Game-play feedback is an important part of the learning process. Students found Particle Launch inviting and challenging and further research could help game design. This project was generously supported by the Office of the Vice-Chancellor for Academic Affairs and the University of Nebraska Medical Center.« less

  6. Improving basic life support training for medical students.

    PubMed

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.

  7. Comparison of University Students' Understanding of Graphs in Different Contexts

    ERIC Educational Resources Information Center

    Planinic, Maja; Ivanjek, Lana; Susac, Ana; Milin-Sipus, Zeljka

    2013-01-01

    This study investigates university students' understanding of graphs in three different domains: mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics, physics, and other context questions about graphs were developed. A test consisting of these eight sets of questions (24 questions in all) was…

  8. The effect of changes to question order on the prevalence of 'sufficient' physical activity in an Australian population survey.

    PubMed

    Hanley, Christine; Duncan, Mitch J; Mummery, W Kerry

    2013-03-01

    Population surveys are frequently used to assess prevalence, correlates and health benefits of physical activity. However, nonsampling errors, such as question order effects, in surveys may lead to imprecision in self reported physical activity. This study examined the impact of modified question order in a commonly used physical activity questionnaire on the prevalence of sufficient physical activity. Data were obtained from a telephone survey of adults living in Queensland, Australia. A total of 1243 adults participated in the computer-assisted telephone interview (CATI) survey conducted in July 2008 which included the Active Australia Questionnaire (AAQ) presented in traditional or modified order. Binary logistic regression analyses was used to examine relationships between question order and physical activity outcomes. Significant relationships were found between question order and sufficient activity, recreational walking, moderate activity, vigorous activity, and total activity. Respondents who received the AAQ in modified order were more likely to be categorized as sufficiently active (OR = 1.28, 95% CI 1.01-1.60). This study highlights the importance of question order on estimates of self reported physical activity. This study has shown that changes in question order can lead to an increase in the proportion of participants classified as sufficiently active.

  9. Visual Basic Applications to Physics Teaching

    ERIC Educational Resources Information Center

    Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena

    2011-01-01

    Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…

  10. Urine: Waste product or biologically active tissue?

    PubMed

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  11. Assessment of toxicology knowledge in the fourth-year medical students: Three years of data.

    PubMed

    Buchanan, Jennie; Windels, Daniel; Druck, Jeffrey; Heard, Kennon

    2018-01-01

    Pharmacology and toxicology are core content knowledge for physicians. Medical students should demonstrate understanding of general pharmacology and basic treatment of poisoning. The objective of this study was to measure the knowledge of the 4th-year medical students (MS4) on these topics over 3 years. A multiple-choice exam (15 questions) was administered to MS4 students in spring of 2010, 2011, and 2012. Questions were developed by medical toxicologists to evaluate basic knowledge in three areas: pharmacologic effects (PE), treatment of poisoning (TOP), and pharmacokinetics (PK). The students were grouped by intended specialties into pharmacologic intense (anesthesia, emergency medicine, internal medicine, pediatrics, and psychiatry), less pharmacologic intense specialties (dermatology, OB/GYN, ophthalmology, pathology, physical medicine and rehabilitation, radiology, and surgery) and by completion of a pharmacology or toxicology elective. Mean group scores were compared using ANOVA. Totally 332 of 401 (83%) students completed the survey. Mean scores were stable over the three years, higher for students completing a toxicology rotation and for students entering a pharmacologically intense specialty. The external validity is limited to a single medical school with incomplete participation and content was limited by the survey length. Consistent results over the three-year period and correlation of performance with completing a toxicology rotation and intent to enter a pharmacology intensive specialty suggest this survey may correlate with toxicology knowledge. Implementation of required core courses focused on toxicology may improve core content knowledge in fourth year medical students.

  12. Two approaches to physics tutoring

    NASA Astrophysics Data System (ADS)

    Solomaniuck, Tania

    One in two first-year students at science or biomedical faculties fail in basic subjects such as mathematics, chemistry or physics. Course-specific tutoring is one of the available means for improving their performance. In the present research, two tutoring models are developed. Both incorporate independent learning, but from different perspectives and priorities. A pragmatic tutoring approach. The first part of the thesis describes the search process for an optimal course-specific tutoring strategy for a standard first-year physics course in life sciences curricula. After a number of empirical research rounds, a pragmatic compromise emerged as the most suitable form of tutoring. The approach is characterised by: (1) priority to questions from students; (2) a high degree of interactivity with the tutor and among students; (3) due consideration to the number of questions to be dealt with and the depth in which they should be discussed. Most students participating in the tutoring sessions expressed their satisfaction and performed sufficiently well in their exams. However, there was still a problem: the students' insight into the course material was restricted to first-order processing of the syllabus. While this would be satisfactory in non-scientific study programmes, it is deemed insufficient in programmes where deeper insight is required in order that students be able to deal adequately with new conceptual questions or problems. In-depth tutoring. In science programmes, the core objective is for students to acquire in-depth knowledge. Therefore, science educators are designing and studying teaching methods that are geared not only to the acquisition of in-depth knowledge as such, but also to the motivation of students to take a more in-depth approach to learning. Some of the crucial notions in their research are: the extent to which the course content ties in with students' prior knowledge, problem-setting strategies and concept-context linking. 'In-depth tutoring' integrates these crucial notions into a didactical structure that deviates from the classical course structure proposed in reference works. Chapters and learning activities begin with key questions in an area of application that ties in with the interests of the students. In the case of biology students, they are invited to answer biomechanical questions on the basis of their ready knowledge of dynamics, to compare their answers with those from their fellow-students, and to evaluate. However, the questions are formulated in such a way that the students will encounter a problem: lack of knowledge, contradictions, ... This problem creates a need for new information and thus provides a motivation for the knowledge expansion foreseen in the curriculum. Through carefully designed assignments, the students acquire the knowledge and skills they need in order to be able to reach consensus on a scientifically substantiated answer to the initial question.

  13. Hands-on Physics Education of Residents in Diagnostic Radiology.

    PubMed

    Zhang, Jie; Hardy, Peter A; DiSantis, David J; Oates, M Elizabeth

    2017-06-01

    The American Board of Radiology Core Examination integrates assessment of physics knowledge into its overall testing of clinical radiology, with an emphasis on understanding image quality and artifacts, radiation dose, and patient safety for each modality or subspecialty organ system. Accordingly, achieving a holistic approach to physics education of radiology residents is a huge challenge. The traditional teaching of radiological physics-simply through didactic lectures-was not designed for such a holistic approach. Admittedly, time constraints and clinical demands can make incorporation of physics teaching into clinical practice problematic. We created and implemented a week-long, intensive physics rotation for fledgling radiology residents and evaluated its effectiveness. The dedicated physics rotation is held for 1 week during the first month of radiology residency. It comprises three components: introductory lectures, hands-on practical clinical physics operations, and observation of clinical image production. A brief introduction of the physics pertinent to each modality is given at the beginning of each session. Hands-on experimental demonstrations are emphasized, receiving the greatest allotment of time. The residents perform experiments such as measuring radiation dose, studying the relationship between patient dose and clinical practice (eg, fluoroscopy technique), investigating the influence of acquisition parameters (kV, mAs) on radiographs, and evaluating image quality using computed tomography, magnetic resonance imaging, ultrasound, and gamma camera/single-photon emission computed tomography/positron emission tomography phantoms. Quantitative assessment of the effectiveness of the rotation is based on an examination that tests the residents' grasp of basic medical physics concepts along with written course evaluations provided by each resident. The pre- and post-rotation tests show that after the physics rotation, the average correct score of 25 questions improved from 13.6 ± 2.4 to 19 ± 1.2. The survey shows that the physics rotation during the first week of residency is favored by all residents and that 1 week's duration is appropriate. All residents are of the opinion that the intensive workshop would benefit them in upcoming clinical rotations. Residents acknowledge becoming more comfortable regarding the use of radiation and providing counsel regarding radiation during pregnancy. An immersive, short-duration, clinically oriented physics rotation is well received by new or less experienced radiology trainees, correlates basic physics concepts with their relevance to clinical imaging, and more closely parallels expectations of the American Board of Radiology Core Examination. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Student Teachers' Attitudes about Basic Physics Laboratory

    ERIC Educational Resources Information Center

    Yesilyurt, Mustafa

    2004-01-01

    In this study an attitude questionnaire was developed and applied to identify student teachers' interests and attitudes for basic physics laboratory. In physics laboratory practices run by a higher education institution a new attitude questionnaire was developed and applied twice in two terms by researchers to increase student teachers' success…

  15. Quantitative Methodology: A Guide for Emerging Physical Education and Adapted Physical Education Researchers

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Hodge, Samuel R.

    2015-01-01

    Emerging professionals, particularly senior-level undergraduate and graduate students in kinesiology who have an interest in physical education for individuals with and without disabilities, should understand the basic assumptions of the quantitative research paradigm. Knowledge of basic assumptions is critical for conducting, analyzing, and…

  16. Meeting Basic Learning Needs through Programmes of Early Childhood Care and Development.

    ERIC Educational Resources Information Center

    Consultative Group on Early Childhood Care and Development, Haydenville, MA.

    Noting that early childhood development is the foundation for basic education across the life span, the first chapter of this report discusses the benefits of early interventions for individuals and society and justifies the basis for programs which aim at meeting the basic learning needs of young children. It also suggests several questions which…

  17. The Alpha Mu Study: A Report on the Survey of Basic Business Survival Skills.

    ERIC Educational Resources Information Center

    Whitney, Eugene P.

    A study was conducted to secure information relating to the following questions: (1) Are high school graduates leaving school with sufficient basic business skills to adequately manage their personal business affairs? and (2) what role is the business education department playing to provide all students with these basic business skills? A list of…

  18. Black holes in the early Universe.

    PubMed

    Volonteri, Marta; Bellovary, Jillian

    2012-12-01

    The existence of massive black holes (MBHs) was postulated in the 1960s, when the first quasars were discovered. In the late 1990s their reality was proven beyond doubt in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of MBHs. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first MBHs must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. MBHs populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of MBHs. What physical mechanisms led to the formation of the first MBHs? How massive were the initial MBH seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? The answers to most of these questions are works in progress, in the spirit of these reports on progress in physics.

  19. Breastfeeding-Basics

    Cancer.gov

    Breastfeeding is a great way to give your baby a healthy start. Here we cover some of the most common questions new moms have. There are also people in your community who can answer other, more specific questions you may have.

  20. Tunable orbital angular momentum in high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, David; Ribič, P. Rebernik; Adhikary, G.

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions,more » and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. Finally, the methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.« less

  1. Transition in Electron Physics of Magnetic Reconnection in Weakly Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.

    2013-12-01

    Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current sheets. Recent research in collisionless reconnection has shown that electron kinetic physics plays a key role in the evolution. Large-scale electron current sheets may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these electron structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into electrons and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional plasmas are discussed.

  2. Tunable orbital angular momentum in high-harmonic generation

    DOE PAGES

    Gauthier, David; Ribič, P. Rebernik; Adhikary, G.; ...

    2017-04-05

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions,more » and the disentanglement and independent control of the intrinsic and extrinsic components of the photon’s angular momentum at short-wavelengths. Finally, the methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.« less

  3. Black holes in loop quantum gravity.

    PubMed

    Perez, Alejandro

    2017-12-01

    This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.

  4. Physical Model of the Genotype-to-Phenotype Map of Proteins

    NASA Astrophysics Data System (ADS)

    Tlusty, Tsvi; Libchaber, Albert; Eckmann, Jean-Pierre

    2017-04-01

    How DNA is mapped to functional proteins is a basic question of living matter. We introduce and study a physical model of protein evolution which suggests a mechanical basis for this map. Many proteins rely on large-scale motion to function. We therefore treat protein as learning amorphous matter that evolves towards such a mechanical function: Genes are binary sequences that encode the connectivity of the amino acid network that makes a protein. The gene is evolved until the network forms a shear band across the protein, which allows for long-range, soft modes required for protein function. The evolution reduces the high-dimensional sequence space to a low-dimensional space of mechanical modes, in accord with the observed dimensional reduction between genotype and phenotype of proteins. Spectral analysis of the space of 1 06 solutions shows a strong correspondence between localization around the shear band of both mechanical modes and the sequence structure. Specifically, our model shows how mutations are correlated among amino acids whose interactions determine the functional mode.

  5. An Archival COS Study of Multi-phase Galactic Outflows and Their Dependence on Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Chisholm, John

    2013-10-01

    Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.

  6. [Tracking study to improve basic academic ability in chemistry for freshmen].

    PubMed

    Sato, Atsuko; Morone, Mieko; Azuma, Yutaka

    2010-08-01

    The aims of this study were to assess the basic academic ability of freshmen with regard to chemistry and implement suitable educational guidance measures. At Tohoku Pharmaceutical University, basic academic ability examinations are conducted in chemistry for freshmen immediately after entrance into the college. From 2003 to 2009, the examination was conducted using the same questions, and the secular changes in the mean percentage of correct response were statistically analyzed. An experience survey was also conducted on 2007 and 2009 freshmen regarding chemical experiments at senior high school. Analysis of the basic academic ability examinations revealed a significant decrease in the mean percentage of correct responses after 2007. With regard to the answers for each question, there was a significant decrease in the percentage of correct answers for approximately 80% of questions. In particular, a marked decrease was observed for calculation questions involving percentages. A significant decrease was also observed in the number of students who had experiences with chemical experiments in high school. However, notable results have been achieved through the implementation of practice incorporating calculation problems in order to improve calculation ability. Learning of chemistry and a lack of experimental experience in high school may be contributory factors in the decrease in chemistry academic ability. In consideration of the professional ability demanded of pharmacists, the decrease in calculation ability should be regarded as a serious issue and suitable measures for improving calculation ability are urgently required.

  7. Gender-based performance differences in an introductory physics course

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark Lee

    Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.

  8. Extending the trans-contextual model in physical education and leisure-time contexts: examining the role of basic psychological need satisfaction.

    PubMed

    Barkoukis, Vassilis; Hagger, Martin S; Lambropoulos, George; Tsorbatzoudis, Haralambos

    2010-12-01

    The trans-contextual model (TCM) is an integrated model of motivation that aims to explain the processes by which agentic support for autonomous motivation in physical education promotes autonomous motivation and physical activity in a leisure-time context. It is proposed that perceived support for autonomous motivation in physical education is related to autonomous motivation in physical education and leisure-time contexts. Furthermore, relations between autonomous motivation and the immediate antecedents of intentions to engage in physical activity behaviour and actual behaviour are hypothesized. The purpose of the present study was to incorporate the constructs of basic psychological need satisfaction in the TCM to provide a more comprehensive explanation of motivation and demonstrate the robustness of the findings of previous tests of the model that have not incorporated these constructs. Students (N=274) from Greek secondary schools. Participants completed self-report measures of perceived autonomy support, autonomous motivation, and basic psychological need satisfaction in physical education. Follow-up measures of these variables were taken in a leisure-time context along with measures of attitudes, subjective norms, perceived behavioural control (PBC), and intentions from the theory of planned behaviour 1 week later. Self-reported physical activity behaviour was measured 4 weeks later. Results supported TCM hypotheses. Basic psychological need satisfaction variables uniquely predicted autonomous motivation in physical education and leisure time as well as the antecedents of intention, namely, attitudes, and PBC. The basic psychological need satisfaction variables also mediated the effects of perceived autonomy support on autonomous motivation in physical education. Findings support the TCM and provide further information of the mechanisms in the model and integrated theories of motivation in physical education and leisure time.

  9. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  10. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  11. Atom Interferometry

    ScienceCinema

    Kasevich, Mark

    2017-12-22

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  12. Physical Biology of the Materials-Microorganism Interface.

    PubMed

    Sakimoto, Kelsey K; Kornienko, Nikolay; Cestellos-Blanco, Stefano; Lim, Jongwoo; Liu, Chong; Yang, Peidong

    2018-02-14

    Future solar-to-chemical production will rely upon a deep understanding of the material-microorganism interface. Hybrid technologies, which combine inorganic semiconductor light harvesters with biological catalysis to transform light, air, and water into chemicals, already demonstrate a wide product scope and energy efficiencies surpassing that of natural photosynthesis. But optimization to economic competitiveness and fundamental curiosity beg for answers to two basic questions: (1) how do materials transfer energy and charge to microorganisms, and (2) how do we design for bio- and chemocompatibility between these seemingly unnatural partners? This Perspective highlights the state-of-the-art and outlines future research paths to inform the cadre of spectroscopists, electrochemists, bioinorganic chemists, material scientists, and biologists who will ultimately solve these mysteries.

  13. Atom Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, Mark

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Canmore » atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?« less

  14. CRAF Mission: An opportunity for exobiology

    NASA Technical Reports Server (NTRS)

    Neugebauer, Marcia; Weissman, Paul

    1992-01-01

    The Halley missions of 1986 gave us a first, quick glimpse of a comet nucleus and the first in situ measurements of cometary gas and dust. Many of our basic ideas about cometary nuclei were confirmed while a number of startling new discoveries were also made. However, in many respects the very fast Halley flybys raised more questions than they answered. We learned, for example, that comets contain a large amount of organic material but we were unable to determine precisely which organic molecules were present. We learned, too, that the nucleus of a comet is a dark, irregularly shaped body, but we could determine very little about the physical state and structure of the ices and grains within the comet nucleus.

  15. Keys to Success: School Facilities Primer, Questions & Answers 101.

    ERIC Educational Resources Information Center

    Brady, Jim

    This publication provides answers to basic questions to help school board members more fully address the complexities of the planning, design, and construction process in order to maximize the goal of student success. The 101 questions and answers are in the areas of: facility planning; learning environment; information technology; safe schools;…

  16. Cartesian Dualism and Physical Education: Epistemological Incompatibility.

    ERIC Educational Resources Information Center

    Ross, Saul

    Two questions arise in examining the implications of physical education: Is physical education an education of the physical? and Is physical education an education through the physical? In these two questions there are two distinct points of view, two different ways of understanding the meaning, scope, and aim of education, two conceptions of man,…

  17. Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier-Stokes-Fourier equations

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2011-10-01

    Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.

  18. Issues in access to safe drinking water and basic hygiene for persons with physical disabilities in rural Cambodia.

    PubMed

    MacLeod, Marin; Pann, Mala; Cantwell, Ray; Moore, Spencer

    2014-12-01

    An estimated 1.6 million people die from diarrheal diseases each year due to lack of access to safe water and sanitation, and persons with physical disabilities face additional barriers. In Cambodia, approximately 5% of the population is disabled, presenting substantial obstacles in accessing these basic services. The purpose of this study was twofold: first, to identify the challenges facing persons with physical disabilities in accessing safe household water and basic hygiene in rural Cambodia; and, second, to use these results to generate policy and practice recommendations for the water and sanitation hygiene sector implementing water treatment system interventions in rural settings. Fifteen field interviews were conducted with persons with physical disabilities. Thematic analysis was used to identify six main themes. The results indicated that environmental barriers to access were greater in the workplace than household settings and those persons with disabilities had greater awareness about safe drinking water compared to basic hygiene. Additionally, lack of physical strength, distance to water, and lack of financial means were noted as common access barriers. The findings support ongoing research and offer insight into the particular challenges facing persons with physical disabilities in rural areas in accessing safe drinking water and basic hygiene.

  19. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  20. Basic Machines - The "Nuts and Bolts" of Technical Physics Minicourse, Career Oriented Pre-Technical Physics. Preliminary Edition.

    ERIC Educational Resources Information Center

    Bullock, Bob; And Others

    This minicourse was prepared for use with secondary physics students in the Dallas Independent School District and is one option in a physics program which provides for the selection of topics on the basis of student career needs and interests. This minicourse was aimed at two levels in the study of basic machines. The "light" level…

  1. Alternative Physics Examination Questions: Identification and Explanation of Different Discriminating Powers

    NASA Astrophysics Data System (ADS)

    Forster, Patricia A.

    2005-12-01

    The issue of unfairness arises in high-stakes public examinations when students choose questions from alternatives that are offered and marks on the alternatives turn out to be discrepant. This paper addresses and defines unfairness and discrepancy in the context of alternative questions in Physics Tertiary Entrance Examinations (TEE) in Western Australia. As well, I present an analysis of question characteristics that explain observed marks-differences. The characteristics mainly relate to the construction of the text of questions, the detail on diagrams, and requirements for calculation. The list of characteristics could inform the setting of compulsory as well as alternative examination questions. The paper includes a brief exploration of results by gender on the alternative Physics TEE questions.

  2. Inquiring Minds

    Science.gov Websites

    Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library

  3. Public Awareness Survey Recommendations of the NHTSA-GHSA Working Group

    DOT National Transportation Integrated Search

    2011-07-01

    The Governors Highway Safety Association (GHSA) and the National Highway Traffic Safety Administration (NHTSA) developed a basic set of survey questions including information on seat belt use, impaired driving, and speeding. These core questions can ...

  4. Inquiring Minds

    Science.gov Websites

    Proposed Projects and Experiments Fermilab's Tevatron Questions for the Universe Theory Computing High Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library Visual Media Services Timeline History High-Energy Physics Accelerator Science in Medicine Follow

  5. Spin, mass, and symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, M.E.

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deepermore » question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.« less

  6. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  7. The use of quizStar application for online examination in basic physics course

    NASA Astrophysics Data System (ADS)

    Kustijono, R.; Budiningarti, H.

    2018-03-01

    The purpose of the study is to produce an online Basic Physics exam system using the QuizStar application. This is a research and development with ADDIE model. The steps are: 1) analysis; 2) design; 3) development; 4) implementation; 5) evaluation. System feasibility is reviewed for its validity, practicality, and effectiveness. The subjects of research are 60 Physics Department students of Universitas Negeri Surabaya. The data analysis used is a descriptive statistic. The validity, practicality, and effectiveness scores are measured using a Likert scale. Criteria feasible if the total score of all aspects obtained is ≥ 61%. The results obtained from the online test system by using QuizStar developed are 1) conceptually feasible to use; 2) the system can be implemented in the Basic Physics assessment process, and the existing constraints can be overcome; 3) student's response to system usage is in a good category. The results conclude that QuizStar application is eligible to be used for online Basic Physics exam system.

  8. Back to the Basics: An Investigation of School- and District-Level Remediation Efforts Associated with Minnesota's Basic Standards for High School Graduation.

    ERIC Educational Resources Information Center

    Schleisman, Jane L.; Peterson, Kristin A.; Davison, Mark L.

    This report describes an investigation of the types of additional instructional opportunities and remediation efforts provided by Minnesota schools and districts for students who do not initially meet basic skill requirements in reading and/or mathematics in eighth grade. Primary research questions included: What additional instructional…

  9. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  10. Adult Basic Education and Self-Esteem: Practical Strategies for Addressing Self-Esteem Problems among Basic Skills Students.

    ERIC Educational Resources Information Center

    Kirstein, Kurt D.

    The strategies used by practicing adult basic education (ABE) teachers to retain students with poor self-esteem were examined through an Internet survey that was sent to 115 ABE instructors at community colleges in Washington. The survey, which contained questions about the prevalence of poor self-esteem among ABE dropouts, specific behaviors…

  11. A collaborative learning approach for service-oriented introductory physics

    NASA Astrophysics Data System (ADS)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received for the service physics course was typically on the order of 3 out of a possible 5; a score considered unsatisfactory by the administration.

  12. Why Fly ITSP and GEC or Don't We Understand the Ionosphere and Thermosphere?

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.

    2007-05-01

    The ionosphere/thermosphere (I/T) community faces some significant challenges in the next few years. Principal among these challenges is that of conveying to the broader space science community the need for additional, focused space-based research missions that address the major problems of I/T physics. What do we say when we hear that 1) the I/T is basically understood, 2) I/T science is about improving the specification of the I/T rather than answering basic questions and 3) the only reason we study the I/T is for its practical applications to communications, navigation and orbit-dynamics? The ability of first principles models to produce a reasonable fit to observations seems to provide prima facie evidence that we do understand the physics, chemistry and dynamics of the I/T. However, we have so few systematic, well calibrated, unambiguous, global measurements of the I/T and there are so many poorly characterized inputs to the models that there is a great range in the ability of the model to be "tuned" to reproduce a particular set of measurements. The ability of the models to reproduce the general behavior should enable us to determine what our "known unknowns" are and provide valuable insight into those processes or quantities that we must measure in order to make further progress in our understanding. Future missions, especially those like GEC or ITSP as well as potential Explorer-class missions, that look at the I/T in a new way, will tell us if there are "unknown unknowns" that await our investigation.. There are still new and exciting questions at all spatial and temporal scales in the ionosphere and thermosphere. The pending missions - Ionosphere Thermosphere Storm Probes (ITSP) and Geospace Electrodynamics Connections (GEC) - are vital to testing our understanding of the physics of the storm-time response of the I/T and the electrodynamic connection of the ionosphere with geospace, respectively. With these missions we seek to characterize the spatial and temporal variability of the I/T and to understand the root cause of that variability on a global scale and in a global context.. Coupled with the rich variety and history of distributed ground-based measurements, we can address these issues that are at the heart of our need to understand the physical processes that are parameterized as sub-gridscale phenomena on the first principles models.

  13. Questions and Issues in Basic Writing and Computing (Computers and Controversy).

    ERIC Educational Resources Information Center

    Gay, Pamela

    1991-01-01

    Presents findings from 18 reviewed studies with regard to attitude and the quality of writing performance. Discusses pedagogy and the problem of defining basic writers. Suggests research directions that can help move educators toward a new pedagogy. (MG)

  14. Analysis of Questions Used in the Teaching of Non-Narrative Poetry.

    ERIC Educational Resources Information Center

    McBride, William Gilbert

    The purposes of this study were to analyze questions used in the teaching of non-narrative poetry and to ascertain whether it is possible to establish any generally useful, basic pattern of question asking that would provide the student some fundamental guidelines for the study of this type of literature. First, a detailed examination of Robert…

  15. The Effects of Different Feedback Strategies Using Computer-Administered Multiple-Choice Questions as Instruction.

    ERIC Educational Resources Information Center

    Clariana, Roy B.; And Others

    The present study investigated the effects of using different forms of material with 100 eleventh grade students enrolled in a 5-week CBI (computer based instruction) summer enrichment program in Memphis, Tennessee. The basic design consisted of two conditions of instructional support (text and questions vs. questions only), two testings…

  16. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    ERIC Educational Resources Information Center

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…

  17. Growth Impacts on Public Service Expenditures: Some Questions for the Community. Coping with Growth.

    ERIC Educational Resources Information Center

    Rimbey, Neil R.

    Defining public services as the basic community/regional services which are provided to residents through tax receipts and service charges, this publication identifies variables for each service group and presents them in the form of questions that communities should find useful when analyzing impacts of growth. After listing questions dealing…

  18. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  19. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  20. Exploring the perceived health benefits of singing in a choir: an international cross-sectional mixed-methods study.

    PubMed

    Moss, Hilary; Lynch, Julie; O'Donoghue, Jessica

    2018-05-01

    This mixed-methods exploratory study investigates the perceived health benefits of singing in a choir from an international sample of choristers. An online questionnaire including demographic information, 28 quantitative statements and two qualitative questions relating to the perceived health benefits of singing in a choir was distributed via email and social media over a period of 4 months to a sample of 1,779 choristers. Basic descriptives and comparisons between subgroups of the sample are presented along with thematic analysis of qualitative comments. Basic descriptives suggest an overwhelmingly positive response. Females scored significantly higher than males on physical benefits, social benefits and emotional benefits. Professional singers reported significantly more physical, social and spiritual benefits than amateur singers. Bias may be present in these findings as the results were entirely self-reported by people who already sing in choirs. Qualitative thematic analysis identified six key themes which may counter this bias by providing deeper understanding of the perceived benefits for choir singers. These include social connection, physical and physiological benefits (specifically respiratory health), cognitive stimulation, mental health, enjoyment and transcendence. Choral singing elicits a positive response in the chorister across a plethora of domains. This research confirms previous findings on the health benefits of singing but offers evidence from the largest sample of singers to date. However, results are based on self-perceptions of choristers, and findings are, therefore, limited. Results may be used as a base on which to develop further research in this area. It also provides confirmatory evidence to support choral singing as a means of improving wellbeing in many populations, including but not limited to workplaces, schools, nursing homes, communities and churches.

  1. Investigating the Effects of Underplating at Raukumara Peninsula, New Zealand: Insights from DEM Modeling

    NASA Astrophysics Data System (ADS)

    Farrell, W. C.; Morgan, J.

    2017-12-01

    It is thought that subcretion and underplating are important processes at subduction zones worldwide. Despite its proposed common occurrence, the physical mechanisms controlling if underplating occurs and the rate of its associated uplift are poorly understood. Basic questions about the tectonic and geomechanical parameters governing subduction channel stability, subcretion, and the rate and shape of associated uplift have proven difficult to answer. In this study we employ the Discrete Element Method (DEM) to address these questions, using the Raukumara Peninsula of New Zealand as the real-world basis of many of our model inputs. Multiple geophysical datasets suggest that the Raukumara Peninsula is underlain by underplated sediments at Moho depths, and these may be responsible for anomalously high rates of uplift in the area. The combined geologic, geophysical, and geodetic data from the region serve to constrain model geometries and boundary conditions, allowing us to test the mechanisms for underplating and upper crustal response. The effects of surface processes and potential for shallow trenchward sliding are also investigated in the modeling effort.

  2. Recognizing and exploring the right questions with climate data: An example of better understanding ENSO in climate projections

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.; Buja, L.; Gutowski, W. J., Jr.; Halley-Gotway, J.; Kaatz, L.; Yates, D. N.

    2017-12-01

    Coordinated, multi-model climate change projection archives have already led to a flourishing of new climate impact applications. Collections and online tools for the computation of derived indicators have attracted many non-specialist users and decision-makers and facilitated for them the exploration of potential future weather and climate changes on their systems. Guided by a set of standardized steps and analyses, many can now use model output and determine basic model-based changes. But because each application and decision-context is different, the question remains if such a small collection of standardized tools can faithfully and comprehensively represent the critical physical context of change? We use the example of the El Niño - Southern Oscillation, the largest and most broadly recognized mode of variability in the climate system, to explore the difference in impact contexts between a quasi-blind, protocol-bound and a flexible, scientifically guided use of climate information. More use oriented diagnostics of the model-data as well as different strategies for getting data into decision environments are explored.

  3. 38 CFR 1.522 - Determination of the question as to whether disclosure will be prejudicial to the mental or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... question as to whether disclosure will be prejudicial to the mental or physical health of claimant. 1.522... question as to whether disclosure will be prejudicial to the mental or physical health of claimant... prejudicial to the mental or physical health of the claimant, beneficiary, or other person in whose behalf...

  4. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier

    Science.gov Websites

    Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library

  5. Fermilab | Science at Fermilab | Experiments & Projects

    Science.gov Websites

    Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics Experiments & Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Medicine Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle Physics Library

  6. Nuclear Medicine Physics: The Basics. 7th ed.

    PubMed

    Mihailidis, Dimitris

    2012-10-01

    Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.

  7. New York Times Current News Physics Applications

    NASA Astrophysics Data System (ADS)

    Cise, John

    2010-03-01

    Since 2007 I have been using NYTimes current News articles rich in graphics and physics variables for developing edited one page web (http://CisePhysics.homestead.com/files/NYT.htm) physics questions based on current events in the news. The NYTimes home page listed above contains currently ten pages with about 40 one page current edited News related physics articles per page containing: rich graphics, graphic editions by the author, edited articles, introduction to a question, questions, and answers. I use these web pages to introduce new physics concepts to students with current applications of concepts in the news. I also use these one page physics applications as pop quizzes and extra credit for students. As news happens(e.g. the 2010 Vancouver Olympics) I find the physics applications in the NYTimes articles and generate applications and questions. These new one page applications with questions are added to the home page: http://CisePhysics.homestead.com/files/NYT.htm The newest pages start with page 10 and work back in time to 9, 8, etc. The ten web pages with about 40 news articles per page are arranged in the traditional manner: vectors, kinematics, projectiles, Newton, Work & Energy, properties of matter, fluids, temperature, heat, waves, and sound. This site is listed as a resource in AAPT's Compadre site.

  8. Implementation of the Zuluaga-Raysmith (Z-R) model for assessment of perceived basic human needs in home health clients and caregivers.

    PubMed

    Zuluaga, B H

    2000-01-01

    The Zuluaga-Raysmith (Z-R) model is a conceptual framework that incorporates accepted concepts of universal basic human needs developed by Maslow, yet removes the hierarchical nature of these. The Z-R model recognizes the existence of a health-illness continuum and accepts that an entity (individual, family, aggregate, or community) may move freely in the direction of greater health and self-actualization or towards illness and premature death. The Z-R model identifies 10 basic needs and recognizes that a perceived deficit in any one of these needs can adversely affect the level of wellness of the entity being considered. This exploratory and descriptive study used 11 nurses as interviewers. Subjects consisted of a convenience sample of homebound clients of a home health agency in a metropolitan city, and selected caregivers (n = 27). A modified functional wellness inventory (developed in 1993 by Louvenia Carter) was used with several open-ended questions, which together related to the 10 needs of the Z-R model. Reliability coefficient of the instrument was 0.84. Descriptive statistics were used to analyze the data, using means, percentages, and frequencies. Open-ended questions were grouped according to content and ranked in order of frequency. The five most pressing needs of this small sample were income; physical health; opportunity to make a contribution; mobility; and mental, emotional, social, and spiritual health (MESSH). Nurses unanimously reported that use of the instrument and the Z-R model helped them to focus on the total person, identify strengths in their clients, identify perceived needs deficits, and therefore, with the client, facilitate the preparation of a timely and cost-effective interdisciplinary plan of care to help the entity to move to a higher level of wellness despite the presence of chronic disease, disability, or impending death. These findings suggested that further research is warranted to explore the use of the Z-R model. A replication study is in progress.

  9. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  10. Students' Notions regarding "Covariance" of a Physical Theory

    ERIC Educational Resources Information Center

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    A physical theory is said to be covariant with respect to a certain class of transformations when its basic equations retain their "form" under those transformations. It is one of the basic notions encountered in physics, particularly in the domain of relativity. In this paper we study in some detail how students deal with this notion in different…

  11. Improving measures of work-related physical functioning.

    PubMed

    McDonough, Christine M; Ni, Pengsheng; Peterik, Kara; Marfeo, Elizabeth E; Marino, Molly E; Meterko, Mark; Rasch, Elizabeth K; Brandt, Diane E; Jette, Alan M; Chan, Leighton

    2017-03-01

    To expand content of the physical function domain of the Work Disability Functional Assessment Battery (WD-FAB), developed for the US Social Security Administration's (SSA) disability determination process. Newly developed questions were administered to 3532 recent SSA applicants for work disability benefits and 2025 US adults. Factor analyses and item response theory (IRT) methods were used to calibrate and link the new items to the existing WD-FAB, and computer-adaptive test simulations were conducted. Factor and IRT analyses supported integration of 44 new items into three existing WD-FAB scales and the addition of a new 11-item scale (Community Mobility). The final physical function domain consisting of: Basic Mobility (56 items), Upper Body Function (34 items), Fine Motor Function (45 items), and Community Mobility (11 items) demonstrated acceptable psychometric properties. The WD-FAB offers an important tool for enhancement of work disability determination. The FAB could provide relevant information about work-related functioning for initial assessment of claimants; identifying denied applicants who may benefit from interventions to improve work and health outcomes; enhancing periodic review of work disability beneficiaries; and assessing outcomes for policies, programs and services targeting people with work disability.

  12. Improving Measures of Work-Related Physical Functioning

    PubMed Central

    McDonough, Christine M.; Ni, Pengsheng; Peterik, Kara; Marfeo, Elizabeth E.; Marino, Molly E.; Meterko, Mark; Rasch, Elizabeth K; Brandt, Diane E.; Jette, Alan M; Chan, Leighton

    2016-01-01

    Purpose To expand content of the physical function domain of the Work Disability Functional Assessment Battery (WD-FAB), developed for the US Social Security Administration’s (SSA) disability determination process. Methods Newly developed questions were administered to 3,532 recent SSA applicants for work disability benefits and 2,025 US adults. Factor analyses and item response theory (IRT) methods were used to calibrate and link the new items to existing WD-FAB, and computer-adaptive test simulations were conducted. Results Factor and IRT analyses supported integration of 44 new items into 3 existing WD-FAB scales and the addition of a new 11-item scale (Community Mobility). The final physical function domain consisting of: Basic Mobility (56 items), Upper Body Function (34 items), Fine Motor Function (45 items), and Community Mobility (11 items) demonstrated acceptable psychometric properties. Conclusions The WD-FAB offers an important tool for enhancement of work disability determination. The FAB could provide relevant information about work-related functioning for initial assessment of claimants, identifying denied applicants who may benefit from interventions to improve work and health outcomes; enhancing periodic review of work disability beneficiaries; and assessing outcomes for policies, programs and services targeting people with work disability. PMID:28005243

  13. My Summer with Science Policy

    NASA Astrophysics Data System (ADS)

    Murray, Marissa

    This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.

  14. Assessment of Department of Defense Basic Research

    DTIC Science & Technology

    2005-01-01

    Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF...with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information... downloaded from: http://www.nap.edu/catalog/11177.html Assessment of Department of Defense Basic Research Committee on Department of Defense Basic

  15. The NIE Conference on Basic Mathematical Skills and Learning (Euclid, Ohio, October 4-6, 1975). Volume I: Contributed Position Papers.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC.

    In October 1975 a conference was convened in Euclid, Ohio, by the Basic Skills Group of the National Institute of Education (NIE). Thirty-three participants presented position papers addressing two major questions: (1) What are basic mathematical skills and learning? (2) What are the major problems related to children's acquisition of basic…

  16. [Effects of sexual maturation on body composition, dermatoglyphics, somatotype and basic physical qualities of adolescents].

    PubMed

    Linhares, Renato Vidal; Matta, Marcelo de Oliveira; Lima, Jorge R P; Dantas, Paulo M Silva; Costa, Mônica Barros; Fernandes Filho, José

    2009-02-01

    Describe the characteristics of body composition, somatotype, basic physical qualities, dermatoglyphics and bone age regarding sexual maturation stages of boys. A transversal study was carried out in 136 boys, between 10 and 14 years of age. Clinical assessment, physical examination and radiography of wrists and hands to calculate bone age were performed. A tendency of increasing total body mass, stature, body mass index, body bone diameters and muscle circumferences and basic physical qualities was found with the advancing of puberty. No differences were found in dermatoglyphics and somatotype between different stages of puberty maturation. Due to the changes in important parameters of physical training that occur during puberty, it can be concluded that the selection of children and adolescents for sport training and competitions should be based not only on chronological age but also, and mainly on sexual maturation, for better physical assessment and appropriate training for this population.

  17. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Science.gov Websites

    Search Search Go Science at Fermilab Fermilab and the Higgs Boson Frontiers of Particle Physics and Answers Submit a Question Frontiers of Particle Physics Benefits to Society Benefits to Society Results Inquiring Minds Questions About Physics Other High-Energy Physics Sites More About Particle

  18. HIV/AIDS Information Needs of Sexually Transmitted Infection Clinic Patients: Content Analysis of Questions Asked during Prevention Counseling

    ERIC Educational Resources Information Center

    Kalichman, Seth C.; Cain, Demetria; Knecht, Joanna; Hill, Justin

    2008-01-01

    Basic factual information about disease is the cornerstone of health promotion and disease prevention interventions. Previous studies have shown that content analysis of the questions asked of service providers can elucidate the information needs of service consumers. Questions asked by individuals at known high risk for HIV infection have not…

  19. A few questions related to information and symmetries in physics

    NASA Astrophysics Data System (ADS)

    Darvas, G.

    2017-01-01

    Information exchange between inanimate objects (like individual physical particles, or systems) involves special approaches, due to the peculiarity that conscious information emitters/recipients are excluded from the process. This paper aims at answering a part of some questions arising by such approaches. One can ask the question, whether is it possible to speak about physical information when there is no live recipient to accept, evaluate, and use it? Can one speak about "physical information" (e.g., signal exchange) between inanimate physical objects at all? (cf., Feynman diagrams.) If yes, what is the nature of that information? Is (physical) information a passive phenomenon, or its existence presumes activity? What does a signal represent if it is not observed and used at the other end, and where is that other end when one can say that the signal in question was lost without observation or use? I try to illustrate my personal answers with a few examples quoted from the history of 20th c. physics. My answers to the questions are not intended to be revelations and to provide final solutions, rather they serve as arguments and indicate that nothing is closed, the discussion is open.

  20. Physics is …; The Physicist explores attributes of physics

    NASA Astrophysics Data System (ADS)

    Baker, F. Todd

    2016-12-01

    He's back! 'The physicist'returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within 'Physics Is' are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction. These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, 'Physics Is' ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.

  1. Quality of life after liver transplantation--preliminary report.

    PubMed

    Łaba, Marta; Pszenny, Anna; Gutowska, Dominika; Jonas, Maurycy; Durlik, Magdalena; Paczek, Leszek; Wasiak, Dariusz; Czerwiński, Jarosław; Małkowski, Piotr

    2008-01-01

    Liver transplantation (OLTx) is an optimal method of treatment of end-stage liver failure. It gives a chance to get back to an active life. 80-90% of patients survive over 1 year after liver transplantation with a perspective of a long life.Recently more attention is being paid to health related quality of life (QoL). It is considered as a combination of physical and mental condition, social and economical state and somatic experience. The aim of the study was to analyze patient's QoL after OLTx compared to the condition before OLTx. 123 patients 1-12 years after transplantation were included in the study. The study was conducted in Outpatients Clinic of Immunology, Transplantology and Internal Medicine Department and Transplantation Medicine and Nephrology Department of Warsaw Medical University between October 2007 and January 2008. Original questionnaire was used, consisting of 8 general questions and 44 detailed questions concerning pre- and posttransplant period. Information about physical condition (health, mobility, basic functions, drug side effects), mental condition (anxiety, happiness, cognition disorders), social function (family, friends, work) and economic status were gathered. "Never, sometimes, often, very often" score was used. Majority of subjects de fi ned their quality of life and physical condition before transplantation as poor, and post transplantation - as good. The respondent's mental condition didn't differ much before and after transplantation. Level of satisfaction was higher after transplantation. Health condition in some cases affected patients' family life, however it often devastated their social life before OLTx. Most patients were on disability pension and after transplantation they indicated the influence of health on their financial condition. The quality of life after liver transplantation gets better and it's de fi ned as good or very good. During the analysis of QoL a difference between conditions before and after LTX wasn't observed.

  2. Interesting Scientific Questions Regarding Interactions in the Gas-aerosol-cloud System

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh

    2002-01-01

    The growth of human population and their use of land, food and energy resources affect the Earth's atmosphere, biosphere and oceans in a complex manner. Many important questions in earth sciences today deal with issues regarding the impact of human activities on our immediate and future environment, ranging in scope from local (i.e. air pollution) to global (i.e. global warming) scale problems. Because the mass of the Earth's atmosphere is negligible compare to that found in the oceans and the biosphere, the atmosphere can respond quickly to natural and/or manmade perturbations. For example, seasonal 'ozone hole' formation in the Antarctic is a result of manmade CFC emissions in just the last 40 years. Also, the observed rise in global temperatures (known as global warming) is linked to a rapid increase in carbon dioxide and other greenhouse gas concentrations (emitted primarily by combustion processes) over the last century. The Earth's atmosphere is composed of a mixture of gases, aerosol and cloud particles. Natural and anthropogenic emissions of gases and aerosols affect the composition of the Earth's atmosphere. Changes in the chemical and physical makeup of the atmosphere can influence how the Earth will interact with the incoming solar radiation and the outgoing infrared radiation and vise versa. While, some perturbations are short-lived, others are long-lived and can affect the Earth's global climate and chemistry in many decades to come, In order to be able to separate the natural effects from anthropogenic ones, it is essential that we understand the basic physics and chemistry of interactions in the gas-aerosol-cloud system in the Earth's atmosphere. The important physics and chemistry that takes place in the coupled gas-aerosol-cloud system as it relates to aircraft observations are discussed.

  3. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  4. On the phase space structure of IP3 induced Ca2+ signalling and concepts for predictive modeling

    NASA Astrophysics Data System (ADS)

    Falcke, Martin; Moein, Mahsa; TilÅ«naitÄ--, Agne; Thul, Rüdiger; Skupin, Alexander

    2018-04-01

    The correspondence between mathematical structures and experimental systems is the basis of the generalizability of results found with specific systems and is the basis of the predictive power of theoretical physics. While physicists have confidence in this correspondence, it is less recognized in cellular biophysics. On the one hand, the complex organization of cellular dynamics involving a plethora of interacting molecules and the basic observation of cell variability seem to question its possibility. The practical difficulties of deriving the equations describing cellular behaviour from first principles support these doubts. On the other hand, ignoring such a correspondence would severely limit the possibility of predictive quantitative theory in biophysics. Additionally, the existence of functional modules (like pathways) across cell types suggests also the existence of mathematical structures with comparable universality. Only a few cellular systems have been sufficiently investigated in a variety of cell types to follow up these basic questions. IP3 induced Ca2+signalling is one of them, and the mathematical structure corresponding to it is subject of ongoing discussion. We review the system's general properties observed in a variety of cell types. They are captured by a reaction diffusion system. We discuss the phase space structure of its local dynamics. The spiking regime corresponds to noisy excitability. Models focussing on different aspects can be derived starting from this phase space structure. We discuss how the initial assumptions on the set of stochastic variables and phase space structure shape the predictions of parameter dependencies of the mathematical models resulting from the derivation.

  5. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  6. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

    ERIC Educational Resources Information Center

    Vanko, Peter

    2007-01-01

    First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

  7. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

    ERIC Educational Resources Information Center

    Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

    2016-01-01

    The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

  8. ``Physics with a Smile''-Explaining Phenomena with a Qualitative Problem-Solving Strategy

    NASA Astrophysics Data System (ADS)

    Mualem, Roni; Eylon, Bat-Sheva

    2007-03-01

    Various studies indicate that high school physics students and even college students majoring in physics have difficulties in qualitative understanding of basic concepts and principles of physics.1-5 For example, studies carried out with the Force Concept Inventory (FCI)1,6 illustrate that qualitative tasks are not easy to solve even at the college level. Consequently, "conceptual physics" courses have been designed to foster qualitative understanding, and advanced high school physics courses as well as introductory college-level courses strive to develop qualitative understanding. Many physics education researchers emphasize the importance of acquiring some qualitative understanding of basic concepts in physics as early as middle school or in the context of courses that offer "Physics First" in the ninth grade before biology or chemistry.7 This trend is consistent with the call to focus the science curriculum on a small number of basic concepts and ideas, and to instruct students in a more "meaningful way" leading to better understanding. Studies7-10 suggest that familiar everyday contexts (see Fig. 1) are useful in fostering qualitative understanding.

  9. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  10. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    PubMed

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.

  11. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health.

    PubMed

    Raichlen, David A; Alexander, Gene E

    2017-07-01

    The field of cognitive neuroscience was transformed by the discovery that exercise induces neurogenesis in the adult brain, with the potential to improve brain health and stave off the effects of neurodegenerative disease. However, the basic mechanisms underlying exercise-brain connections are not well understood. We use an evolutionary neuroscience approach to develop the adaptive capacity model (ACM), detailing how and why physical activity improves brain function based on an energy-minimizing strategy. Building on studies showing a combined benefit of exercise and cognitive challenge to enhance neuroplasticity, our ACM addresses two fundamental questions: (i) what are the proximate and ultimate mechanisms underlying age-related brain atrophy, and (ii) how do lifestyle changes influence the trajectory of healthy and pathological aging? Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  13. Basic autonomy as a fundamental step in the synthesis of life.

    PubMed

    Ruiz-Mirazo, Kepa; Moreno, Alvaro

    2004-01-01

    In the search for the primary roots of autonomy (a pivotal concept in Varela's comprehensive understanding of living beings), the theory of autopoiesis provided an explicit criterion to define minimal life in universal terms, and was taken as a guideline in the research program for the artificial synthesis of biological systems. Acknowledging the invaluable contribution of the autopoietic school to present biological thinking, we offer an alternative way of conceiving the most basic forms of autonomy. We give a bottom-up account of the origins of "self-production" (or self-construction, as we propose to call it), pointing out which are the minimal material and energetic requirements for the constitution of basic autonomous systems. This account is, indeed, committed to the project of developing a general theory of biology, but well grounded in the universal laws of physics and chemistry. We consider that the autopoietic theory was formulated in highly abstract terms and, in order to advance in the implementation of minimal autonomous systems (and, at the same time, make major progress in exploring the origins of life), a more specific characterization of minimal autonomous systems is required. Such a characterization will not be drawn from a review of the autopoietic criteria and terminology (à la Fleischaker) but demands a whole reformulation of the question: a proper naturalization of the concept of autonomy. Finally, we also discuss why basic autonomy, according to our account, is necessary but not sufficient for life, in contrast with Varela's idea that autopoiesis was a necessary and sufficient condition for it.

  14. [Research on basic questions of intellectual property rights of acupuncture and moxibustion].

    PubMed

    Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin

    2011-12-01

    Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.

  15. A basic recursion concept inventory

    NASA Astrophysics Data System (ADS)

    Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.

    2017-04-01

    Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.

  16. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGES

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  17. Establishing health benefits of bioactive food components: a basic research scientist's perspective

    USDA-ARS?s Scientific Manuscript database

    Bioactive food components or functional foods have recently received significant attention because of their widely touted positive effects beyond basic nutrition. However, a question continues to lurk: are these 'super foods' backed by sound science or simply an exaggerated portrayal of very small '...

  18. Investigating Graphical Representations of Slope and Derivative without a Physics Context

    ERIC Educational Resources Information Center

    Christensen, Warren M.; Thompson, John R.

    2012-01-01

    By analysis of student use of mathematics in responses to conceptual physics questions, as well as analogous math questions stripped of physical meaning, we have previously found evidence that students often enter upper-level physics courses lacking the assumed prerequisite mathematics knowledge and/or the ability to apply it productively in a…

  19. The Usability of a Commercial Game Physics Engine to Develop Physics Educational Materials: An Investigation

    ERIC Educational Resources Information Center

    Price, Colin B.

    2008-01-01

    Commercial computer games contain "physics engine" components, responsible for providing realistic interactions among game objects. The question naturally arises of whether these engines can be used to develop educational materials for high school and university physics education. To answer this question, the author's group recently conducted a…

  20. A Computerized Content Analysis of the Perceived Criterion Categories for the "Speech to Inform" of Inexperienced and Experienced Basic Course Students.

    ERIC Educational Resources Information Center

    Jones, Tom; Di Salvo, Vince

    A computerized content analysis of the "theory input" for a basic speech course was conducted. The questions to be answered were (1) What does the inexperienced basic speech student hold as a conceptual perspective of the "speech to inform" prior to his being subjected to a college speech class? and (2) How does that inexperienced student's…

  1. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  2. Light and optics conceptual evaluation findings from first year optometry students

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Lakshminarayanan, Vasudevan

    2014-07-01

    The Light and Optics Conceptual Evaluation (LOCE) was developed to examine conceptual understanding of basic geometric and physical optics for the Active Learning in Optics and Photonics program administered by UNESCO. This 50 item test (46 multiple choice, 4 ray-tracing short answer) was administered to entering students in the Optometry professional degree (OD) program. We wanted to determine how much of the physics/optics concepts from undergraduate physics courses (a pre-requisite for entry to the OD program) were retained. In addition, the test was administered after the first year students had taken a required course in geometric and visual optics as part of their first semester courses. The LOCE was completed by two consecutive classes to the program in 2010 (n=89) and 2011 (n=84). The tests were administered the first week of the term and the test was given without any prior notice. In addition, the test was administered to the class of 2010 students after they had completed the course in geometric and visual optics. The means of the test were 22.1 (SD=4.5; range: 12-35) and 21.3(SD=5.1; range: 11-35) for the two entering classes. There was no statistical significance between the two classes (t-test, p<0.05). Similarly there was no difference between the scores in terms of gender. The post-course test (administered during the first week of the second term) showed a statistically significant improvement (mean score went from 22.1 to 31.1, a 35% improvement). It should be noted that both groups of students performed worse in questions related to physical optics as well as lens imaging, while scoring best in questions related to refraction and reflection. These data should be taken into consideration when designing optics curricula for optometry (and other allied health programs such as opticianry or ophthalmology).

  3. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    PubMed

    Južnič, Stanislav

    2016-12-01

    One of the most important Mid-European professor with more than six thousand academic descendants was the leading Slovenian erudite Jurij Vega. In broader sense, Vega's and other applied sciences of the south of Holy Roman Empire of German Nationality were connected with the mercury mine of Idrija during the last half of millennia. The Idrija Mine used to be one of the two top European producers of mercury, the basic substance of atomistic alchemists. Idrija Mine contributions to the history of techniques, their examinations and approbations is comparable to the other Mid-European achievements. The peculiarities of Idrija mining environment where people valued mostly the applicative knowhow is put into the limelight. The applicative abilities of Idrija employers affected the broader surroundings including Vega's Jesuit teachers in nearby Ljubljana and the phenomena of comparatively many China-Based Jesuits connected with the area of modern Slovenia. The Jesuits' Mid-European education and networks are put into the limelight, as well as their adopted Chinese networks used for their bridging between Eastern and Western Sciences. The Western origin of the scientific-technologic-industrial revolution(s) with causes for their apparent nonexistence in Chinese frames is discussed as another Eurocentric rhetorical racist question which presumes the scientific-technologic-industrial revolution(s) as something good, positive, and therefore predominantly European. The Chinese ways into progress without those troublemaking revolutions is focused for the first time in historiography from combined scientific, moral, religious, and economic viewpoints. The Chinese contributions to particular areas of research in chemistry and physics is focused to find out the preferences and most frequent stages of (European) paradigms involved in the Chinese networks. Some predictions of future interests of Chinese chemistry and physics are provided. The Chinese Holistic Confucian distrust in atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  4. Improving School Bus Driver Performance.

    ERIC Educational Resources Information Center

    Farmer, Ernest

    This reference source is intended to assist the school bus driver training instructor in course preparation. Instructional units for program planning each contain pertinent course questions, a summary, and evaluation questions. Unit 1, "Introduction to the School Bus Driver Training Program," focuses on basic course objectives and…

  5. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

    ERIC Educational Resources Information Center

    Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

    2012-01-01

    In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

  6. Open problems in mathematical physics

    NASA Astrophysics Data System (ADS)

    Coley, Alan A.

    2017-09-01

    We present a list of open questions in mathematical physics. After a historical introduction, a number of problems in a variety of different fields are discussed, with the intention of giving an overall impression of the current status of mathematical physics, particularly in the topical fields of classical general relativity, cosmology and the quantum realm. This list is motivated by the recent article proposing 42 fundamental questions (in physics) which must be answered on the road to full enlightenment (Allen and Lidstrom 2017 Phys. Scr. 92 012501). But paraphrasing a famous quote by the British football manager Bill Shankly, in response to the question of whether mathematics can answer the Ultimate Question of Life, the Universe, and Everything, mathematics is, of course, much more important than that.

  7. Curriculum that incorporates good physics and good math -- AT THE SAME TIME!

    NASA Astrophysics Data System (ADS)

    Weisel, Derek

    2007-03-01

    Anyone with experience in physics education knows there is considerable consternation about how much trouble students can have during their first experience with physics. It is a common opinion that many students struggle in physics because of a weak math background. Recent research has shown that this is not always the case. Many students who have shown a tested proficiency in mathematics still struggle in physics. It is an important question to ask how a student who excels in mathematics can still struggle in physics. If this question can be answered it may open up new methods of instruction to aid all students. After discussion of this question, examples of curriculum that simultaneously meet common standards of physics and common standards of math will be shown.

  8. Portuguese Basic Courses.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic course in Brazilian Portuguese consists of 75 lessons in six volumes. Volume I is in two parts, with the dialogs, questions and exercises presented in Portuguese in the first part, and the intonation patterns and English translations presented in the second. The general format follows the Defense Language Institute format, employing…

  9. Using Every Pupil Response in Mathematics Instruction.

    ERIC Educational Resources Information Center

    Lauritzen, Carol

    1985-01-01

    Discusses the "Every Pupil Response" (EPR) strategy and its use in teaching basic facts, problem-solving, place value, and fractions. Basically, the technique involves children responding simultaneously to a question by holding up a card, using parts of their bodies, or stick figures. Advantages of EPR are noted. (JN)

  10. HEALTH AND NUTRITION LESSON PLANS AND STUDENT WORKSHEETS, ADULT BASIC EDUCATION.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    THIS MANUAL PROVIDES ADULT BASIC EDUCATION TEACHERS WITH LESSON PLANS IN HEALTH AND NUTRITION. EACH LESSON CONTAINS BACKGROUND MATERIAL OFFERING SPECIFIC INFORMATION ON THE SUBJECT OF EACH LESSON, AIMS, LESSON DEVELOPMENT, AND TWO STUDENT WORKSHEETS. DISCUSSION QUESTIONS ARE SUGGESTED TO ENCOURAGE THE GREATEST POSSIBLE STUDENT INVOLVEMENT. THE TEN…

  11. Basic Skills Achievement, 1981-82.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    The Austin Independent School District (AISD) office of Research and Evaluation presents Basic Skills Achievement, 1981-82 (BSA). The BSA answers the following questions: (1) How does AISD student achievement compare to student achievement nationwide? (2) How does AISD's 1981-82 student achievement compare to the achievement of students in past…

  12. Econosense: A Common Sense Approach to the Study of Economics.

    ERIC Educational Resources Information Center

    McPheron, Linda

    This student activity book and teacher's guide address specific economic terms and concepts correlated to specific student learning objectives. The concepts presented are those essential to any student developing a basic understanding of economics. Each lesson follows a specific format with a basic core of information, comprehension questions,…

  13. Reliability and validity of the instrument used in BRFSS to assess physical activity.

    PubMed

    Yore, Michelle M; Ham, Sandra A; Ainsworth, Barbara E; Kruger, Judy; Reis, Jared P; Kohl, Harold W; Macera, Caroline A

    2007-08-01

    State-level statistics of adherence to the physical activity objectives in Healthy People 2010 are derived from the Behavioral Risk Factor Surveillance System (BRFSS) data. BRFSS physical activity questions were updated in 2001 to include domains of leisure time, household, and transportation-related activity of moderate- and vigorous intensity, and walking questions. This article reports the reliability and validity of these questions. The BRFSS Physical Activity Study (BPAS) was conducted from September 2000 to May 2001 in Columbia, SC. Sixty participants were followed for 22 d; they answered the physical activity questions three times via telephone, wore a pedometer and accelerometer, and completed a daily physical activity log for 1 wk. Measures for moderate, vigorous, recommended (i.e., met the criteria for moderate or vigorous), and strengthening activities were created according to Healthy People 2010 operational definitions. Reliability and validity were assessed using Cohen's kappa (kappa) and Pearson correlation coefficients. Seventy-three percent of participants met the recommended activity criteria compared with 45% in the total U.S. population. Test-retest reliability (kappa) was 0.35-0.53 for moderate activity, 0.80-0.86 for vigorous activity, 0.67-0.84 for recommended activity, and 0.85-0.92 for strengthening. Validity (kappa) of the survey (using the accelerometer as the standard) was 0.17-0.22 for recommended activity. Validity (kappa) of the survey (using the physical activity log as the standard) was 0.40-0.52 for recommended activity. The validity and reliability of the BRFSS physical activity questions suggests that this instrument can classify groups of adults into the levels of recommended and vigorous activity as defined by Healthy People 2010. Repeated administration of these questions over time will help to identify trends in physical activity.

  14. Manpower information and the community mental health system.

    PubMed

    Kamis-Gould, E; Staines, G L

    1986-10-01

    The lack of knowledge about basic manpower issues in the community mental health system led the authors to devise five questions that address manpower issues of general interest to community mental health system managers. The questions concern the ratio of staff to population, the types of professionals on staff and their demographic characteristics, the amount of time staff spend on various activities, the cost of the work force, and the outcomes of services. The authors discuss how these questions have been considered in the literature, and they illustrate with analyses of data from a survey of staff of New Jersey's mental health agencies how the issues of number, type, and cost of staff can be explored. The authors believe that basic manpower information can contribute directly to the decisions of managers of mental health service systems.

  15. SU-E-E-05: Initial Experience On Physics Rotation of Radiological Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Williams, D; DiSantis, D

    Purpose: The new ABR core exam integrates physics into clinical teaching, with an emphasis on understanding image quality, image artifacts, radiation dose and patient safety for each modality and/or sub-specialty. Accordingly, physics training of radiological residents faces a challenge. A traditional teaching of physics through didactic lectures may not fully fulfill this goal. It is also difficult to incorporate physics teaching in clinical practice due to time constraints. A dedicated physics rotation may be a solution. This study is to evaluate a full week physics workshop developed for the first year radiological residents. Methods: The physics rotation took a fullmore » week. It included three major parts, introduction lectures, hand-on experiences and observation of technologist operation. An introduction of basic concepts was given to each modality at the beginning. Hand-on experiments were emphasized and took most of time. During hand-on experiments, residents performed radiation measurements, studied the relationship between patient dose and practice (i.e., fluoroscopy), investigated influence of acquisition parameters (i.g., kV, mAs) on image quality, and evaluated image quality using phantoms A physics test before and after the workshop was also given but not for comparison purpose. Results: The evaluation shows that the physics rotation during the first week of residency in radiology is preferred by all residents. The length of a full week of physics workshop is appropriate. All residents think that the intensive workshop can significantly benefit their coming clinical rotations. Residents become more comfortable regarding the use of radiation and counseling relevant questions such as a pregnant patient risk from a CE PE examination. Conclusion: A dedicated physics rotation, assisting with didactic lectures, may fulfill the requirements of physics of the new ABR core exam. It helps radiologists deeply understand the physics concepts and more efficiently use the medical physics in practice.« less

  16. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  17. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  18. Greek Undergraduate Physical Education Students' Basic Computer Skills

    ERIC Educational Resources Information Center

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  19. Fundamental Movement Skill Proficiency amongst Adolescent Youth

    ERIC Educational Resources Information Center

    O' Brien, Wesley; Belton, Sarahjane; Issartel, Johann

    2016-01-01

    Background: Literature suggests that physical education programmes ought to provide intense instruction towards basic movement skills needed to enjoy a variety of physical activities. Fundamental movement skills (FMS) are basic observable patterns of behaviour present from childhood to adulthood (e.g. run, skip and kick). Recent evidence indicates…

  20. Basic Stuff--Ideas for Implementation.

    ERIC Educational Resources Information Center

    Fox, Connie

    Use of the American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD) "Basic Stuff" (1981) series (which includes six texts explaining each concept and three texts illustrating their use in the elementary, middle, and secondary schools) is recommended for physical education teacher preparation programs. A study was undertaken…

  1. On Productive Knowledge and Levels of Questions.

    ERIC Educational Resources Information Center

    Andre, Thomas

    A model is proposed for memory that stresses a distinction between episodic memory for encoded personal experience and semantic memory for abstractors and generalizations. Basically, the model holds that questions influence the nature of memory representations formed during instruction, and that memory representation controls the way in which…

  2. Delayed Reinforcement of Operant Behavior

    ERIC Educational Resources Information Center

    Lattal, Kennon A.

    2010-01-01

    The experimental analysis of delay of reinforcement is considered from the perspective of three questions that seem basic not only to understanding delay of reinforcement but also, by implication, the contributions of temporal relations between events to operant behavior. The first question is whether effects of the temporal relation between…

  3. Attention Deficit Disorder. NICHCY Briefing Paper.

    ERIC Educational Resources Information Center

    Fowler, Mary

    This briefing paper uses a question-and-answer format to provide basic information about children with attention deficit disorder (ADD). Questions address the following concerns: nature and incidence of ADD; causes of ADD; signs of ADD (impulsivity, hyperactivity, disorganization, social skill deficits); the diagnostic ADD assessment; how to get…

  4. Psychology, the Population Explosion, and the Question of Freedom and Dignity.

    ERIC Educational Resources Information Center

    Platzek, Donna Brown

    This paper examines the question of why women want children from several disciplinary viewpoints including psychoanalysis; role learning; and economic, political, and religious aspects. Basically, however, childbearing motivations can be divided into four categories: altruistic, fatalistic, narcissistic, and instrumental. Children can fulfill a…

  5. Basic Questions for Introductory Sociology.

    ERIC Educational Resources Information Center

    Parmley, Ingram C.

    1980-01-01

    Looks at five questions that serve as the core of an introductory sociology course, presenting the essence of sociology without inundating the student with information: What is sociology? How do societies develop rules for living? What if the rules don't work? How are new rules developed? So what? (AYC)

  6. Topography Battles Surface Texture: An Experimental Study of Pool-riffle Formation

    NASA Astrophysics Data System (ADS)

    Chartrand, S. M.; Hassan, M. A.; Jellinek, M.

    2016-12-01

    Pool-riffles are perhaps the most common streambed shape found in streams and rivers, and not surprisingly, they are essential to salmon ecology, and are a central focus of many restoration actions. Yet, when an applied earth scientist or engineer is faced with developing a pool-riffle design, there is a lack of clear and rigorously developed design guidelines. Given the volumes of money spent annually within the restoration industry, this is a real problem. Recognition of this problem is growing, however, and an increasing level of attention has been directed to questions of pool-riffle formation in the past decade. At this point and given certain landscape characteristics, it is well established that streamwise gradients in channel width are associated with pool-riffles. Specifically, pools are associated with negative gradients in width, and riffles with positive gradients. Importantly, these associations have now been documented from field-derived data, as well as via experimental and numerical investigations. There is much to build from the present knowledge base, and central to this are questions related to (a) how pool-riffles evolve during the formative process, (b) what are the basic set of ingredients necessary for pool-riffle formation within systems characterized by relatively non-erodible channel margins, and (c) do pool-riffles persist, once formed, under a broad range of forcing conditions? We have completed four physical experiments examining the process and evolution of pool-riffle formation under a large range of upstream boundary, as well as physical channel conditions. We will report on two of the completed experiments. Our work will highlight two new non-dimensional channel evolution numbers, derived to help describe and characterize bedform development, as well as response to perturbations from near-equilibrium conditions. The channel evolution numbers lay the foundation for development of a new regime diagram, which quantifies the basic ingredients needed to drive pool-riffle formation, as well as formation of other types of gravel bedforms. We believe our work holds promise for application in identifying suitable conditions for pool-riffle construction, and natural maintenance over typical restoration project time frames.

  7. Knowledge about idiopathic scoliosis among students of physiotherapy.

    PubMed

    Ciazynski, D; Czernicki, K; Durmala, J

    2008-01-01

    The aim of the study was to determine the level of basic knowledge about idiopathic scoliosis (IS) among students of physiotherapy. The study included 37 students of Medical University of Silesia (17F and 20M aged 22-25, mean 22.6), attending the 3(rd) year of a 1(st) degree of physiotherapy. All students had credits in kinesiotherapy, including methods of conservative treatment of IS. Students were examined using a questionnaire, comprising general knowledge of IS, questions related to sagittal plane correction, influence of various physical activities on IS and known methods of conservative treatment. 81 students considered IS as 3-D deformity. 62.2% of those questioned would diagnose IS when the Cobb angle reaches 10 degrees . All students agreed that the aetiology of IS remains unknown. 54.1% considered forcible extensory exercises of back as favourable in IS. Questioned students mostly preferred swimming (94.6%), yoga (73.0%) and martial arts (32.4%) as beneficial to IS. The methods of conservative treatment which were known best were: Lehnert-Schroth-Weiss (94.6%), Klapp (91.9%), Majoch (89.2%) and Dobosiewicz (78.4%). The conclusions indicate that the average level of knowledge of idiopathic scoliosis among students of physiotherapy is unsatisfactory, despite the education programme including the SOSORT guidelines. Education in the field of scoliosis should be comprehensive and meet contemporary guidelines and standards.

  8. Your Scores in Basic Skills: Iowa Tests of Basic Skills. AISD Junior High Schools, School Year 1981-82. AISD Senior High Schools, School Year 1981-82.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX.

    Designed for junior high and high school students and their parents, this brochure explains the structure, function, and method for interpretation of the Iowa Tests of Basic Skills and the Sequential Tests of Educational Progress. A question and answer format is used to provide information on scope and purposes of the tests, meaning and accuracy…

  9. Your Child's Scores in Basic Skills: Iowa Tests of Basic Skills. AISD Kindergarten, School Year 1981-82. AISD Elementary Schools, School Year 1981-82.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX.

    Designed for parents of kindergarten and elementary school children in Austin, Texas, this brochure explains the structure and function of the Iowa Tests of Basic Skills. A question and answer format is used to provide information on the scope and purposes of the tests, grade level differences in testing, meaning and accuracy of the scores, and…

  10. Effectiveness of Active Learning Strategy in Improving the Acoustic Awareness Skills and Understanding What Is Heard by the Basic Stage Students in Jordan

    ERIC Educational Resources Information Center

    Al-Odwan, Yaser

    2016-01-01

    This research aims to get acquainted with the effectiveness of the active learning strategy in improving the acoustic awareness skills and understanding what is heard by the basic stage students in Jordan by answering the two following questions: This research has been applied to a sample of 60 students from the basic third grade in Al-Ahnaf Ben…

  11. Modelling of Cosmic Molecular Masers: Introduction to a Computation Cookbook

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrej M.; Gray, Malcolm D.

    2012-07-01

    Numerical modeling of molecular masers is necessary in order to understand their nature and diagnostic capabilities. Model construction requires elaboration of a basic description which allows computation, that is a definition of the parameter space and basic physical relations. Usually, this requires additional thorough studies that can consist of the following stages/parts: relevant molecular spectroscopy and collisional rate coefficients; conditions in and around the masing region (that part of space where population inversion is realized); geometry and size of the masing region (including the question of whether maser spots are discrete clumps or line-of-sight correlations in a much bigger region) and propagation of maser radiation. Output of the maser computer modeling can have the following forms: exploration of parameter space (where do inversions appear in particular maser transitions and their combinations, which parameter values describe a `typical' source, and so on); modeling of individual sources (line flux ratios, spectra, images and their variability); analysis of the pumping mechanism; predictions (new maser transitions, correlations in variability of different maser transitions, and the like). Described schemes (constituents and hierarchy) of the model input and output are based mainly on the experience of the authors and make no claim to be dogmatic.

  12. A thermodynamically general theory for convective vortices

    NASA Astrophysics Data System (ADS)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  13. Applying a laser-induced incandescence (LII) diagnostic to monitor nanoparticle synthesis in an atmospheric plasma, in situ

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Mitrani, James; Yeh, Yao-Wen; Shneider, Mikhail; Stratton, Brentley; Raitses, Yevgeny

    2016-09-01

    A DC arc discharge with a consumed graphite anode is commonly used for synthesis of carbon nanoparticles, including carbon nanotubes (CNTs) and graphene flakes. The graphite electrode is physically vaporized by high currents (20-60 A) in a buffer gas at 100-600 torr, leading to nanoparticle synthesis in a low temperature (>1 eV), plasma. Utilizing arc plasma synthesis technique has resulted in the synthesis of higher quality nanomaterials. However, the formation of nanoparticles in arc discharge plasmas is poorly understood. A particularly interesting question is where in the arc the nanoparticles nucleate and grow. In our current work we show the results of studying the formation of carbon nanotubes in an arc discharge, in situ, using laser-induced incandescence (LII). The results of LII are discussed in combination with ex situ measurements of the synthesized nanoparticles and modeling, to provide an insight into the physics behind nanoparticle synthesis in plasma. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  14. Analysis of granular flow in a pebble-bed nuclear reactor.

    PubMed

    Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z

    2006-08-01

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  15. Cosmology and fundamental physics with the Euclid satellite.

    PubMed

    Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom

    2018-01-01

    Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  16. Cosmology and fundamental physics with the Euclid satellite

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P.; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G.; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D.; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F.; Nunes, Nelson J.; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom

    2018-04-01

    Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  17. Dressed photons from the viewpoint of photon localization: the entrance to the off-shell science

    NASA Astrophysics Data System (ADS)

    Saigo, Hayato; Ojima, Izumi; Ohtsu, Motoichi

    2017-12-01

    In the present paper, a new aspect of the interplay is examined between mathematical-physical arguments and light-matter fusion technologies in terms of the concept of "effective mass", starting from a question: Who has seen a free photon? Owing to the general results due to Newton-Wigner and to Wightman, a position operator is absent for massless free particles with non-zero finite spins, and hence, we cannot observe free photons in any local space regions. To solve this paradox of "photon localization", the effective mass of a photon needs to be generated through the couplings of photons with matter. Here "polaritons" picture as a basic notion in optical and solid physics is shown to verify this viewpoint, which is seen to apply also to more general settings . Focusing on the role played by nanoparticles, we reach a new look at the notion of "dressed photons" as off-shell particles. The perspective above shows that essential mathematical structure of quantum field theory for the so-called elementary particles in subatomic scale can also be applied to certain phenomena in the nano-scale.

  18. Cosmology and Fundamental Physics with the Euclid Satellite.

    PubMed

    Amendola, Luca; Appleby, Stephen; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Di Porto, Cinzia; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Horst, Ole; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; March, Marisa; Majerotto, Elisabetta; Markovic, Katarina; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom

    2013-01-01

    Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  19. Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-02-07

    Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less

  20. An integrated strategy for the planetary sciences: 1995 - 2010

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.

  1. Dive into Scuba

    ERIC Educational Resources Information Center

    Coelho, Jeffrey; Fielitz, Lynn R.

    2006-01-01

    Scuba is a unique physical education activity that middle school and high school students can experience in physical education to provide them with the basic skills needed to enjoy the sport for many years to come. This article describes the basic scuba diving equipment, proper training and certification for instructors and students, facilities,…

  2. Using Assessment to Support Basic Instruction Programs in Physical Education

    ERIC Educational Resources Information Center

    Roberts, Thomas; Evans, Tom; Ormond, Frank

    2006-01-01

    College/University administrators have, for various reasons, scrutinized Physical Education basic instruction program (BIP) requirements for possible reduction. In an effort to defend these requirements, assessment should be undertaken to obtain objective and subjective data that measure a program's effectiveness. This study was conducted at a…

  3. Developing More Effective Curriculum Via "Basic Stuff."

    ERIC Educational Resources Information Center

    Heitmann, Helen M.

    Discussed is the design and development of a physical education curriculum, incorporating principles discussed in the "Basic Stuff" physical education series. Four tasks are suggested for planning the curriculum: (1) develop a unit for activity instruction, where the concepts inherent in the sport or activity skills may be identified; (2) develop…

  4. Solar neutrino spectroscopy

    NASA Astrophysics Data System (ADS)

    Wurm, Michael

    2017-04-01

    More than forty years after the first detection of neutrinos from the Sun, the spectroscopy of solar neutrinos has proven to be an on-going success story. The long-standing puzzle about the observed solar neutrino deficit has been resolved by the discovery of neutrino flavor oscillations. Today's experiments have been able to solidify the standard MSW-LMA oscillation scenario by performing precise measurements over the whole energy range of the solar neutrino spectrum. This article reviews the enabling experimental technologies: On the one hand multi-kiloton-scale water Cherenkov detectors performing measurements in the high-energy regime of the spectrum, on the other end ultrapure liquid-scintillator detectors that allow for a low-threshold analysis. The current experimental results on the fluxes, spectra and time variation of the different components of the solar neutrino spectrum will be presented, setting them in the context of both neutrino oscillation physics and the hydrogen fusion processes embedded in the Standard Solar Model. Finally, the physics potential of state-of-the-art detectors and a next generation of experiments based on novel techniques will be assessed in the context of the most interesting open questions in solar neutrino physics: a precise measurement of the vacuum-matter transition curve of electron-neutrino oscillation probability that offers a definitive test of the basic MSW-LMA scenario or the appearance of new physics; and a first detection of neutrinos from the CNO cycle that will provide new information on solar metallicity and stellar physics.

  5. Wind Chime Physics

    NASA Astrophysics Data System (ADS)

    Lohstreter, Pete; Taylor, Richard; Abbondanzio, Richard; Wyatt, Rachel

    2006-10-01

    The Hockaday School is a private all girls school in North Dallas. We are in our fifth year of teaching Physics to all ninth grade students. This activity was designed to get the students out of their seats and into the lab doing physics. Investigating the physics of wind chimes is an easy way to involve the students by designing an experiment, collecting data, analyzing data, finding relationships and making and testing predictions using the new equation. Two questions were posed. 1- To determine the best place to hold a steel pipe so that when it was hit with a mallet it would ring for the longest time. We were excited to see that the class results agreed extremely well with the textbook value of .22 times the pipe length. 2- To determine the relationship between period and length. This involved measuring a sound wave graph recorded with a microphone connected to their laptop computer. It is interesting to see that the frequency is not a linear function of length as we expect with strings and organ pipes. Skills used and developed include data collection, uncertainty in measurement, graphic analysis and equation manipulation. This activity is used to introduce the basic nature of vibrations and lead-in to the study of the wave nature of sound and light. From student interviews we are convinced that we have met our goals, and that we have laid a firm foundation for our students' further studies in physics.

  6. The Effects of a Physical Education Intervention to Support the Satisfaction of Basic Psychological Needs on the Motivation and Intentions to be Physically Active.

    PubMed

    Franco, Evelia; Coterón, Javier

    2017-10-01

    The aim of the study was to investigate the effects of an intervention to support the basic psychological needs on the satisfaction of these needs, intrinsic motivation, intention to be physically active and some enjoyment-related outcomes in Physical Education. The present study incorporated strategies presented by Standage and Ryan (2012) in a previous study. A quasi-experimental study was conducted with two groups (n experimental = 30; n control = 23) of 2nd year Secondary Education students aged between 13 and 15 (M = 13.35, SD = .62) by delivering 24 physical education classes. The teacher in the experimental group underwent prior and continual training. The results revealed that the students from the experimental group showed a significant increase in the perception of autonomy and competence. Furthermore, the experimental group showed a greater perception than the control group in the enjoyment related to learning and contents. These results provide information about the efficacy of an intervention programme based on the strategies presented by Standage and Ryan (2012) to foster satisfaction of basic psychological needs and facilitate support for basic psychological needs to promote the development of positive learning-related outcomes.

  7. Validity of selected physical activity questions in white Seventh-day Adventists and non-Adventists.

    PubMed

    Singh, P N; Tonstad, S; Abbey, D E; Fraser, G E

    1996-08-01

    The validity and reliability of selected physical activity questions were assessed in both Seventh-day Adventist (N = 131) and non-Adventist (N = 101) study groups. Vigorous activity questions similar to those used by others and new questions that measured moderate and light activities were included. Validation was external, comparing questionnaire data with treadmill exercise time, resting heart rate, and body mass index (kg.m-2), and internal, comparing data with other similar questions. Both Adventist and non-Adventist males showed significant age-adjusted correlations between treadmill time and a "Run-Walk-Jog Index" (R = 0.28, R = 0.48, respectively). These correlations increased substantially when restricting analysis to exercise speeds exceeding 3 mph (R = 0.39, R = 0.71, respectively). Frequency of sweating and a vigorous physical activity index also correlated significantly with treadmill time in males. Correlations were generally weaker in females. Moderate- and light-intensity questions were not correlated with physical fitness. Internal correlations R = 0.50-0.78) between the above three vigorous activity questions were significant in all groups, and correlations (R = 0.14-0.60) for light and moderate activity questions were also documented. Test-retest reliability coefficients were high for vigorous activity questions (R = 0.48-0.85) and for one set of moderate activity questions (R = 0.43-0.75). No important differences in validity and reliability were found between Adventist and non-Adventists, but the validity of vigorous activity measures was generally weaker in females.

  8. Basic Training for Skill Development.

    ERIC Educational Resources Information Center

    B.T.S.D. Review, 1974

    1974-01-01

    Profound changes in our socioeconomic structure seem to question the relevance of both "institutional" as well as "open school" forms of education. The educator is faced with the challenge of selecting a model, combining models, or devising a new one. Dealing with these fundamental questions, 10 articles have been selected for their potential…

  9. Unionizing: A Guide for Child Care Workers.

    ERIC Educational Resources Information Center

    Whitebook, Marcy; And Others

    Including excerpts from contracts protecting unionized child care workers, this booklet explains basic terminology and facts about unionizing and addresses child care workers' concerns. Section 1 answers commonly asked questions about unions and offers advice about how to answer parents' questions about workers' attempts to organize. Section 2…

  10. A Not so Trivial Pursuit.

    ERIC Educational Resources Information Center

    Magahay-Johnson, Wendy

    1985-01-01

    Describes procedures for designing trivia games to be used in teaching English as a second language. The students participate in designing the games, thereby gaining practice in the four basic language skills and the formation of yes-no questions, information questions, and statements. Provides examples for young intermediate ESL students. (SED)

  11. The Semantic-Pragmatics Interface and Island Constraints in Chinese

    ERIC Educational Resources Information Center

    Jin, Dawei

    2016-01-01

    This thesis is about strong island effects and intervention effects. Strong island effects are contexts where operator-variable dependencies cannot be established. The paradigmatic cases of strong island violations in Chinese occur in "why"-questions. This thesis explores a basic contrast: "why"-questions fail to be interpreted…

  12. Science 101: Can Electromagnetic Waves Affect Emotions?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2017-01-01

    The answer to this month's question, "Can electromagnetic waves affect emotions," is yes. Wherever there are electromagnetic (EM) waves (basically everywhere!), there is the potential for them directly or indirectly to affect the emotions. But what about the likely motivation behind the originally-posed question? Can EM waves affect your…

  13. Accessing Programs for Infants, Toddlers, and Preschoolers with Disabilities.

    ERIC Educational Resources Information Center

    Horne, Richard, Ed.

    1990-01-01

    Intended for use by parents of infants, toddlers and preschoolers, this guide presents, in question and answer format, basic information about early intervention and special education services. Questions about services for the period from birth through 2 years include the following: "What are early intervention services?""What is an…

  14. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    ERIC Educational Resources Information Center

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  15. Borrowing and Repaying Student Loans

    ERIC Educational Resources Information Center

    Hillman, Nicholas W.

    2015-01-01

    This essay synthesizes the most recent and rigorous research on student loan debt. It focuses on basic questions about who borrows, how much, and whether debt affects behaviors. Answers to these questions are necessary for informing federal student loan policymaking, yet the research findings are surprisingly mixed because of poor data quality,…

  16. Questioning the No-Touch Discourse in Physical Education from a Children's Rights Perspective

    ERIC Educational Resources Information Center

    Öhman, Marie; Quennerstedt, Ann

    2017-01-01

    In this paper we question the rationality of "no-touch policies" and offer an alternative approach to the matter of physical contact between teachers and students in the context of physical education (PE) in schools. Earlier research has drawn attention to how a discourse of child protection is starting to affect how physical contact is…

  17. Careers in Patent Law for Physics Majors

    ERIC Educational Resources Information Center

    Oliver, Douglas L.

    2010-01-01

    An important question that many undergraduate physics students ask is, "What can one do with a physics degree?" Of course there are many answers to this question. Often a general reference to becoming a lawyer is given as a possible answer. This paper is intended to explain the field of patent law and how a physics degree can lead to an…

  18. Basic needs and their predictors for intubated patients in surgical intensive care units.

    PubMed

    Liu, Jin-Jen; Chou, Fan-Hao; Yeh, Shu-Hui

    2009-01-01

    This study was conducted to investigate the basic needs and communication difficulties of intubated patients in surgical intensive care units (ICUs) and to identify predictors of the basic needs from the patient characteristics and communication difficulties. In this descriptive correlational study, 80 surgical ICU patients were recruited and interviewed using 3 structured questionnaires: demographic information, scale of basic needs, and scale of communication difficulties. The intubated patients were found to have moderate communication difficulties. The sense of being loved and belonging was the most common need in the intubated patients studied (56.00 standardized scores). A significantly positive correlation was found between communication difficulties and general level of basic needs (r = .53, P < .01), and another positive correlation was found between the length of stay in ICUs and the need for love and belonging (r = .25, P < .05). The basic needs of intubated patients could be significantly predicted by communication difficulties (P = .002), use of physical restraints (P = .010), lack of intubation history (P = .005), and lower educational level (P = .005). These 4 predictors accounted for 47% of the total variance in basic needs. The intubated patients in surgical ICUs had moderate basic needs and communication difficulties. The fact that the basic needs could be predicted by communication difficulties, physical restraints, and educational level suggests that nurses in surgical ICUs need to improve skills of communication and limit the use of physical restraints, especially in patients with a lower educational level.

  19. Use of olivine and plagioclase saturation surfaces for the petrogenetic modeling of recrystallized basic plutonic systems

    NASA Technical Reports Server (NTRS)

    Hanson, G. N.

    1983-01-01

    During petrogenetic studies of basic plutonic rocks, there are at least three major questions to be considered: (1) what were the relative proportions of cumulate crystals and intercumulus melt in a given sample? (2) what is the composition and variation in composition of the melts within the pluton? and (3) what is the original composition of the liquids, their source and evolution prior to the time of emplacement? Use of both saturation surfaces can place strong limits on the compositions of potential cumulate phases and intercumulus melts. Consideration of appropriate trace elements can indicate whether a sample is an orthocumulate, adcumulate or mesocumulate. Thus, when trace element and petrographic data are considered together with the saturation surfaces, it should be possible to begin to answer the three major questions given above, even for strongly recrystallized basic plutons.

  20. Neutrino physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haxton, Wick C.; Holstein, Barry R.; Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

    2000-01-01

    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers.

  1. Sport and Exercise Pedagogy and Questions about Learning

    ERIC Educational Resources Information Center

    Quennerstedt, Mikael; Öhman, Marie; Armour, Kathleen

    2014-01-01

    One important challenge ahead for sport and exercise pedagogy (SEP) researchers is to consider afresh questions about learning. Learning in the fields of sport, physical activity and physical education (PE) is a particularly complex business. Most existing theories of learning are defined cognitively, yet learning in sport and physical activity…

  2. Corked bats, juiced balls, and humidors: The physics of cheating in baseball

    NASA Astrophysics Data System (ADS)

    Nathan, Alan M.; Smith, Lloyd V.; Faber, Warren L.; Russell, Daniel A.

    2011-06-01

    Three questions of relevance to Major League Baseball are investigated from a physics perspective. Can a baseball be hit farther with a corked bat? Is there evidence that the baseball is more lively today than in earlier years? Can storing baseballs in a temperature- or humidity-controlled environment significantly affect home run production? These questions are subjected to a physics analysis, including an experiment and an interpretation of the data. The answers to the three questions are no, no, and yes, respectively.

  3. Support for New Physics Teachers

    NASA Astrophysics Data System (ADS)

    Adrian, Brian W.; Zollman, D.; Stevens, S.

    2006-12-01

    Teachers of physics can often lack the type of support they desperately need. The Physics Teaching Web Advisory (Pathway) is a dynamic digital library for physics teaching that is designed to offer such support. Carnegie Mellon University’s synthetic interview technology provides the foundation for a system that allows physics teachers to ask questions of a virtual mentor and get video responses. A log of the questions asked of our system provides a rich database of information about just what types of support teachers are requesting. This talk will present a summary of the common types of questions teachers ask. Such information is valuable as we design support systems for physics teachers, both new and experienced. In addition, recent progress and developments will be discussed. Supported by NSF grant numbers DUE-0226157, DUE-0226219, ESI-0455772 & ESI-0455813

  4. Oregon & Federal Basic Income Tax Return Preparation. Student's Manual 1981.

    ERIC Educational Resources Information Center

    Young, Donna, Ed.

    This student manual contains materials for a 20-session course in basic income tax preparation. Each session may include some or all of these components: a reading assignment, a vocabulary list, interview questions pertinent to that session's subject matter, informative/reference materials, problems to work out in class or at home, exercises, and…

  5. Basic Skills in Asian Studies: Japan.

    ERIC Educational Resources Information Center

    Hantula, James

    This publication contains 20 learning activities for developing basic skills while teaching about Japan at the secondary level. The activities are self-contained and each consists of a short description, followed by a five-item true or false test and five open-ended questions for student practice. The learning activities are followed by a…

  6. Basic Grammar in Use: Reference and Practice for Students of English.

    ERIC Educational Resources Information Center

    Murphy, Raymond

    This basic grammar book for beginning to low-intermediate level students of English contains 106 units. The units are divided into the following categories: Present; Past; Present Perfect; Passive; Future and Modals; Imperative; "There" and "It"; Verb Forms; Auxiliary Verbs; Negatives; Questions; "To" and "-ing"; Reported Speech; "Get" and "Go";…

  7. Teaching BASIC. A Step by Step Guide.

    ERIC Educational Resources Information Center

    Allen, M. F.

    This three-chapter guide provides simple explanations about BASIC programming for a teacher to use in a classroom situation, and suggests procedures for a "hands-on" course. Numerous examples are presented of the questions, problems, and level of understanding to expect from first-time, adult users (ages 13 and up). The course materials…

  8. French Basic Course. Units 13-24 Revised.

    ERIC Educational Resources Information Center

    Cossard, Monique; Salazar, Robert

    This self-instructional course is the second volume of the basic course in French. The material is divided into 12 chapters. Each of the first 11 chapters contains a dialogue, followed by notes concerning the dialogue, a list of useful expressions and vocabulary, vocabulary exercises, and questions on the dialogue. The subjects of the dialogues…

  9. Chapter 1 Basic Skills Improvement Program. An Information Booklet for Parents.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton.

    This information booklet for parents answers some of the questions parents often ask about their children's participation in basic skills improvement programs. It suggests ways in which parents can support and reinforce the school's role and offers suggestions for parent involvement and ideas for at-home activities to support skill development.…

  10. Effects of Increased Physical Activity on Motor Skills and Marks in Physical Education: An Intervention Study in School Years 1 through 9 in Sweden

    ERIC Educational Resources Information Center

    Ericsson, Ingegerd

    2011-01-01

    Background: Studies have shown that some children do not participate in sport or exercise because they did not establish early coordination and basic motor skills while at school. Basic motor skills form significant parts of the goals for students to achieve in the Swedish school subject Physical Education and Health (PEH). Aims: The aim was to…

  11. Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI.

    PubMed

    Hakky, Michael; Pandey, Shilpa; Kwak, Ellie; Jara, Hernan; Erbay, Sami H

    2013-08-01

    This article outlines artifactual findings commonly encountered in neuroradiologic MRI studies and offers clues to differentiate them from true pathology on the basis of their physical properties. Basic MR physics concepts are used to shed light on the causes of these artifacts. MRI is one of the most commonly used techniques in neuroradiology. Unfortunately, MRI is prone to image distortion and artifacts that can be difficult to identify. Using the provided case illustrations, practical clues, and relevant physical applications, radiologists may devise algorithms to troubleshoot these artifacts.

  12. Classical dense matter physics: some basic methods and results

    NASA Astrophysics Data System (ADS)

    Čelebonović, Vladan

    2002-07-01

    This is an introduction to the basic notions, some methods and open problems of dense matter physics and their applications in astrophysics. Experimental topics cover the range from the work of P. W. Bridgman to the discovery and basic results of use of the diamond anvil cell. On the theoretical side, the semiclassical method of P. Savić and R. Kašanin is described. The choice of these topics is conditioned by their applicability in astrophysics and the author's research experience. At the end of the paper is presented a list of some unsolved problems in dense matter physics and astrophysics, some (or all) of which could form a basis of future collaborations.

  13. Legislative and Regulatory Actions Needed to Deal with a Changing Domestic Telecommunications Industry.

    DTIC Science & Technology

    1981-09-24

    procedures? GAO recommends that the Congress address these questions by amending the Communications Act of 1934 to establish the basic framework to create...concerns with rate of return/rate base regulation 198 VII Basic procedures used in establishing rates of return 201 VIII Problems regarding AT&T’s rate...prompted a critical reexamination of the basic communications policy and regulatory methods con- tained in the Communications Act of 1934 (47 U.S.C

  14. A 21st Century Frontier for Discovery: The Physics of the Universe. A Strategic Plan for Federal Research at the Intersection of Physics and Astronomy

    DTIC Science & Technology

    2004-02-01

    the aggregation of matter (both dark and baryonic ) via application of this “3-D mass tomography” can place strong constraints on the nature of the...is Dark Matter ? 20 Question 2. What is the Nature of Dark Energy? 23 Question 3. How Did the Universe Begin? 25 Question 4. Did Einstein Have the... Matter at Exceedingly High Density and Temperature? 41 Question 9. Are There Additional Space-Time Dimensions? 43 Question 10. How Were the

  15. The Solar-Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Hargreaves, John Keith

    1995-05-01

    The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.

  16. Just caring: defining a basic benefit package.

    PubMed

    Fleck, Leonard M

    2011-12-01

    What should be the content of a package of health care services that we would want to guarantee to all Americans? This question cannot be answered adequately apart from also addressing the issue of fair health care rationing. Consequently, as I argue in this essay, appeal to the language of "basic," "essential," "adequate," "minimally decent," or "medically necessary" for purposes of answering our question is unhelpful. All these notions are too vague to be useful. Cost matters. Effectiveness matters. The clinical circumstances of a patient matters. But what we must ultimately determine is what we mutually agree are the just claims to needed health care of each American in a relatively complex range of clinical circumstances. Answering this question will require a public moral conversation, a fair process of rational democratic deliberation aimed at defining both just claims to needed health care and just limits.

  17. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  18. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  19. Properties and relative measure for quantifying quantum synchronization

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan

    2017-07-01

    Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.

  20. Weak interactions and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  1. Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Simeão Carvalho, Paulo

    2016-09-01

    The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.

  2. The behavior of the Higgs field in the new inflationary universe

    NASA Technical Reports Server (NTRS)

    Guth, Alan H.; Pi, So-Young

    1986-01-01

    Answers are provided to questions about the standard model of the new inflationary universe (NIU) which have raised concerns about the model's validity. A baby toy problem which consists of the study of a single particle moving in one dimension under the influence of a potential with the form of an upside-down harmonic oscillator is studied, showing that the quantum mechanical wave function at large times is accurately described by classical physics. Then, an exactly soluble toy model for the behavior of the Higgs field in the NIU is described which should provide a reasonable approximation to the behavior of the Higgs field in the NIU. The dynamics of the toy model is described, and calculative results are reviewed which, the authors claim, provide strong evidence that the basic features of the standard picture are correct.

  3. Interplay of rights, technology, and services explored.

    PubMed

    1999-09-01

    Recent developments in the field of reproductive health and family planning have featured key intersections among technology, services, and rights. In May 1999, the Population Council hosted a two-day meeting on rights, technology, and services in reproductive health to examine more deeply the philosophical underpinnings of the council's work. In many countries, planning pregnancies and exercising reproductive rights have been central tenets of feminist thinking and activism for decades. In other settings, fertility-regulation technologies were introduced primarily for the purpose of controlling population growth rather than facilitating the exercise of individual rights. Much of the critique of population programs has centered on violations of rights and the need to protect women in the process of testing and delivering reproductive technologies. Despite a diversity of opinions on the ethics and appropriateness of specific technologies, there is a growing consensus that women and men have a basic right to control their bodies, reproduction, and sexuality. In many places, however, people have faced barriers as they attempt to exercise these rights. Some obstacles are primarily economic, while others are physical or institutional in nature. During the meeting, participants raised many additional questions, and their exploration of these questions highlighted the ways that rights, technology, and service influence each other.

  4. Fitness

    MedlinePlus

    ... activity are? Check out this info: What is physical fitness? top Physical fitness means you can do ... for things like bending and stretching. What is physical activity? top Basically, physical activity is anything that ...

  5. Approaches to Changing the Physical Attributes of the Adult Learning Environment: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Fulton, Rodney D.

    A study surveyed 139 individuals to determine if differences in the way they approached the physical attributes of various learning environments could be attributed to either gender or age. Participants were Montana State University graduate students in education; adult basic education students in Bozeman, Montana; adult basic education faculty…

  6. Development and Optimisation of an In-Service Teacher Training Programme on Motivational Assessment in Physical Education

    ERIC Educational Resources Information Center

    Slingerland, Menno; Borghouts, Lars; Jans, Liesbeth; Weeldenburg, Gwen; van Dokkum, Gertjan; Vos, Steven; Haerens, Leen

    2017-01-01

    Although assessment practices are commonly part of the physical education (PE) curriculum they may often frustrate rather than support students' basic needs for autonomy, competence and relatedness. Nevertheless, assessment also provides various promising opportunities to support these basic needs and enhance learning in students. In order to…

  7. Student Physical Education Teachers' Well-Being: Contribution of Basic Psychological Needs

    ERIC Educational Resources Information Center

    Ciyin, Gülten; Erturan-Ilker, Gökçe

    2014-01-01

    This study adopted Self-Determination Theory tenets and aimed to explore whether student physical education (PE) teachers' satisfaction of the three basic psychological needs independently predicts well-being. 267 Turkish student PE teachers were recruited for the study. Two stepwise multiple regression analysis was performed in which each outcome…

  8. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  9. Exercise Self-Efficacy and Perceived Wellness among College Students in a Basic Studies Course

    ERIC Educational Resources Information Center

    Sidman, Cara L.; D'Abundo, Michelle Lee; Hritz, Nancy

    2009-01-01

    University basic studies courses provide a valuable opportunity for facilitating the knowledge, skills, and beliefs that develop healthy behaviors to last a lifetime. Belief in one's ability to participate in physical activity, exercise self-efficacy, is a psychological construct that has had a documented impact on physical activity. Although…

  10. Using Sport Education in a University Physical Activity Course

    ERIC Educational Resources Information Center

    Blocker, Danielle; Wahl-Alexander, Zachary

    2018-01-01

    At a majority of colleges and universities around the country, basic activity courses are taught predicated on teaching students basic skills and instilling healthy habits. The purpose of this article is to outline and describe a physical conditioning course that utilized the sport education (SE) model and emphasized outside engagement to instill…

  11. Top 10 Research Questions Related to Musculoskeletal Physical Fitness Testing in Children and Adolescents

    ERIC Educational Resources Information Center

    Plowman, Sharon Ann

    2014-01-01

    The purpose of this article is to bring attention to the 10 most pressing questions relevant to musculoskeletal physical fitness testing in children and adolescents. The goal is to stimulate research to answer these questions. The most pressing needs include establishing definitive links between valid, reliable, and feasible field test measures of…

  12. Effects of Re-Using a Conceptual Examination Question in Physics

    ERIC Educational Resources Information Center

    Sharma, Manjula D.; Sefton, Ian M.; Cole, Martyn; Whymark, Aaron; Millar, Rosemary M.; Smith, Andrew

    2005-01-01

    We report on a study of what happened when we recycled a conceptual examination question in a first-year university physics course. The question, which was used for three consecutive years, asked about an astronaut's experience of weighing in an orbiting space-craft. The original intention was to use a phenomenographic approach to look for…

  13. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Todd D.

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructuresmore » Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.« less

  14. [Modeling the academic performance of medical students in basic sciences and pre-clinical courses: a longitudinal study].

    PubMed

    Zúñiga, Denisse; Mena, Beltrán; Oliva, Rose; Pedrals, Nuria; Padilla, Oslando; Bitran, Marcela

    2009-10-01

    The study of predictors of academic performance is relevant for medical education. Most studies of academic performance use global ratings as outcome measure, and do not evaluate the influence of the assessment methods. To model by multivariate analysis, the academic performance of medical considering, besides academic and demographic variables, the methods used to assess students' learning and their preferred modes of information processing. Two hundred seventy two students admitted to the medical school of the Pontificia Universidad Católica de Chile from 2000 to 2003. Six groups of variables were studied to model the students' performance in five basic science courses (Anatomy, Biology, Calculus, Chemistry and Physics) and two pre-clinical courses (Integrated Medical Clinic I and IT). The assessment methods examined were multiple choice question tests, Objective Structured Clinical Examination and tutor appraisal. The results of the university admission tests (high school grades, mathematics and biology tests), the assessment methods used, the curricular year and previous application to medical school, were predictors of academic performance. The information processing modes influenced academic performance, but only in interaction with other variables. Perception (abstract or concrete) interacted with the assessment methods, and information use (active or reflexive), with sex. The correlation between the real and predicted grades was 0.7. In addition to the academic results obtained prior to university entrance, the methods of assessment used in the university and the information processing modes influence the academic performance of medical students in basic and preclinical courses.

  15. [The compatibility of housing needs and housing conditions and and its impact on experiencing attachment to a district].

    PubMed

    Hieber, A; Oswald, F; Wahl, H-W; Mollenkopf, H

    2005-08-01

    Based on the "complementary-congruence model" of person-environment (p-e) fit, this study focuses on housing in old age as an interaction between housing needs and housing conditions in urban settings. The research aims are: (1) To establish a set of housing-related p-e fit indices based on the relationship between environmental needs and existing conditions in different physical and social domains, and to describe housing among elders aged 51-80 years and in different urban districts with these indices. The study distinguishes between basic, higher-order and social needs relating to housing; (2) To explain outdoor place attachment as an indicator for quality of life in different urban districts with a set of predictors including these person-environment fit indices. Data were drawn from telephone-based interviews with 365 older adults (51-80 years) who were questioned about individual housing needs and housing conditions. Results revealed higher p-e fit scores in the domains of higher-order and social housing needs and conditions in the districts which were considered to be more pleasant but had poor access to the city and to public transportation. In contrast, age was more important in explaining differences in the domain of basic housing needs and conditions with higher p-e fit scores among older participants in all settings. In explaining outdoor place attachment, the fit between basic and social housing needs and conditions was important, but the higher-order fit did not play a role.

  16. Losing Touch--Teachers' Self-Regulation in Physical Education

    ERIC Educational Resources Information Center

    Öhman, Marie

    2017-01-01

    The question of physical interaction is especially relevant in school physical education, where a lot of the teaching and activities are based on body movements. However, the issue of "touching" has been questioned in recent years. This paper takes its starting point in the discourse of child protection and the growing anxiety around…

  17. Knowledge and Attitudes towards Children with Special Needs by Physical Education Students

    ERIC Educational Resources Information Center

    Mousouli, Maria; Kokaridas, Dimitrios; Angelopoulou-Sakadami, Nicoletta; Aristotelous, Maria

    2009-01-01

    The purpose of this study was to examine the knowledge and attitudes of physical education undergraduate students towards children with special needs. A questionnaire of seven questions was submitted to 140 physical education students. Questions concerned the knowledge about the different kinds of disability, the acceptance of children with…

  18. Frequently Asked Questions about ADHD and the Answers from the Internet.

    ERIC Educational Resources Information Center

    Loechler, Kathy

    1999-01-01

    Identifies useful Internet sites about attention-deficit hyperactivity disorder (ADHD) and the results of searching these sites to answer common questions concerning incidence of ADHD, basic information about Ritalin drug therapy, educational placement of students with ADHD, sources of information about special needs, and what parents can do at…

  19. Comprehensive School Reform: The Implementation Gap. Research Brief

    ERIC Educational Resources Information Center

    RAND Corporation, 2006

    2006-01-01

    Does Comprehensive School Reform (CSR) work? Research results have been mixed. Some studies have measured a modest improvement in student achievement; others have found no effect. A team of RAND researchers has approached the question of CSR's effectiveness by first focusing on an even more basic question: Has CSR been implemented? A shortcoming…

  20. Response: Training Doctoral Students to Be Scientists

    ERIC Educational Resources Information Center

    Pollio, David E.

    2012-01-01

    The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…

  1. 77 FR 64186 - Proposed Collection; Comment Request for Form 13614

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... 13614, Interview and Intake Sheet. DATES: Written comments should be received on or before December 17... INFORMATION: Title: Interview and Intake Sheet. OMB Number: 1545-1964. Form Number: Form 13614-C and 13614-C... questions to guide volunteers in asking taxpayers basic questions about themselves. The intake sheet is an...

  2. Flight Engineer. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) to be used by FAA testing centers and FAA-designated written test examiners when administering the flight engineer written test. The book can be used to test applicants in the following flight engineer knowledge areas: basic, turbojet powered, turbopropeller powered, and…

  3. Faith Informing Competitive Youth Athletes in Christian Schooling

    ERIC Educational Resources Information Center

    Hoven, Matt

    2016-01-01

    How do students use religious faith to inform their actions in competitive sport? This qualitative study critically reflects on this question based upon the thinking processes and experiences of 15-year-old participants in sports and, in turn, produces a basic conceptual framework toward the question at hand. Overall, students reported a complex,…

  4. Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.

    PubMed

    Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.

  5. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    PubMed Central

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed. PMID:22383617

  6. Levels of processing and picture memory: the physical superiority effect.

    PubMed

    Intraub, H; Nicklos, S

    1985-04-01

    Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed.

  7. [Acting in the framework of the nicotine addiction prevention--the level of knowledge amongst 6th year students of Wroclaw Medical University].

    PubMed

    Kurpas, Donata; Wojtal, Mariola; Bielska, Dorota; Rogalska, Monika; Sapilak, Bartosz; Steciwko, Andrzej

    2009-01-01

    It was stated explicitly that smoking was increasing the risk of the death about 25-40% because of cardiovascular diseases, about 30-40% because of malignant tumors and is causing about 70% of deaths from illness of the respiratory system (no cancerous). It was also proved that basic means increasing the effectiveness of taken attempts to limit the smoking were useful and easy to apply by every doctor independently of the medical specialty. An anonymous questionnaire containing questions on the subject of the realization of problems connected with the tobacco addiction in the route of medical studies was carried amongst 6th year students of the Medical Department of Wroclaw Medical University in the academic year 2008/2009. 210 students took part in the study. 62% of examined came from the provincial capital, the 11.4% from the town with the population above 100 hundred of inhabitants, 22.4% of towns with the population below 100 hundred of inhabitants and 3.8% of students--from country centers. Only 78% of students is claiming that problems concerning nicotinism were being brought up on the university. 56.7% of examined is judging that he is able to give an anti-smoking advice to a patient. The correct answer in the question about the Fagerströma test and describing physical addiction gave 47% of students, only 39.5% examined--in the question about the assessment of motivation test (the Schneider scale), and 37.2% of students responded to the question what is consists in minimum anti-tobacco intervention. An insufficient frequency of bringing up the problem of smoking on medical studies is visible harmfulness, a consequence is a lowering knowledge amongst students. Little over 3 of students is confirming students that problems concerning the nicotinism were being brought up during studies (mainly during classes in the field of internal medicine), however every sixth of examined students is declaring the knowledge in the case of the patient addicted to the nicotine and every fourth has the knowledge. The preparing graduates of the Medical Faculty for the participation in realization of basic schedules of the promotion of the health and the diseases prevention is developing unusually pessimistically towards above data, the fight against the nicotine addiction is filling one of the essential positions, independently on the medical specialty.

  8. Depression in women aged 75-89--predisposing factors and preventive measures.

    PubMed

    Chrzan, Renata; Karmowski, Andrzej; Pawelec, Małgorzata; Łatkowski, Krzysztof J; Karmowski, Mikołaj

    2012-01-01

    There are analyses showing the relationship between low and irregular physical activity and the risk of more frequent occurrences of depression symptoms in the future. There are studies that do not prove the connection between those two dependencies. The aim of this study was to find the relationship between physical activity before menopause and the occurrence of depression in senium. The study was comprised of 200 randomly selected women, aged 75-89 years, who were treated in the local department of general surgery and oncology from January to June 2009. The study used a 15-point Geriatric Depression Scale which is an integral part of the EASY care (Polish version 1999-2002) questionnaire to assess emotional efficiency, and the Questionnaire Survey for Research on Physical Activity in Older People which contains 8 questions. The results were statistically analyzed using a Student's test and basic probabilities calculations. The probability of depression in women aged 75-89 is 0.8. Increased physical activity in pre-menopausal women neither affects the level of depression, nor prevents it (p < 0.1). Depression was more common in people living alone, in which case the probability is 0.85. Postmenopausal women enjoy a beneficial impact on physical activity in the following areas: previous activity (p < 0.001), family support (p < 0.0001), GP support (p < 0.001), and television education (p < 0.001). Depression among elderly women is very common. In this study, depression was found in 80% of senior women. There is a relationship between depression and physical activity. Increased physical activity in premenopausal women neither affects the level of depression, nor prevents it. There was no correlation between age, weight, education, place of residence and depression. Depression was more common in people living alone.

  9. Within-Case and Cross-Case Analyses of Questions Posed by Fifth-Grade Students Working in Small Groups to Investigate Pendulum Motion

    NASA Astrophysics Data System (ADS)

    Tisel, James Michael

    The focus of this basic qualitative research is student questions in an unstructured inquiry setting. Case and cross-case analyses were conducted (Miles and Huberman, 1984) of the questions posed by fifth grade students working in laboratory groups of size three to five students as they investigated pendulum motion. To establish the conceptual framework for the study, literature was reviewed in the areas of cognitive theory (constructivism, conceptual change, and other theories), approaches to science, and the importance of student questions in the learning process. A review of group work, related studies of student questions and activities and relevant methods of qualitative research was also undertaken. The current study occupies the relatively unique position of being about the questions students posed to each other (not the teacher) at the outset of and throughout an unstructured inquiry activity with a minimum of teacher initiation or intervention. The focus is on finding out what questions students ask, when they ask them, what categories the questions fall into in relation to possible models of the scientific method, student motivation, and what role the questions play as the students take part in an inquiry activity. Students were video and/or audio-recorded as they did the investigation. They wrote down their questions during one-minute pauses that occurred at roughly eight-minute intervals. The groups were interviewed the next day about their experience. The recordings, question sheets, and interview accounts and recordings were analyzed by the researcher. Accounts of the experience of each group were prepared, and reiterated attempts were made to classify the questions as the main themes and categories emerged. It was found that students posed their key research question (most typically related to pendulum damping effects) midway through the first half of their activity, after having first met some competence and other needs in relation to measurement procedures and basic information. The main research question typically emerged gradually in an implicitly shared form. It was found that Deci and Ryan's self-determination theory (2000) with the core needs of competence, autonomy, and relatedness, served as a useful tool for categorizing and understanding the role of the questions. Basic questions about procedures in relation to gaining competence with measurement were considered by the researcher to be most prevalent. When compared to, for instance, Lawson's hypothetico-predictive model of doing science (2003a) it was noted that puzzling observations were not necessarily made at the outset, and key questions took place much later in the investigative process than what typical scientific models might suggest. Further, more focused research in the areas of self-determination theory in relation to student questions as they engage in inquiry could be of benefit in determining the motivations behind student questions. Educational programs that have, as their goal, authentic student inquiry should take into account that student research questions evolve over time as they meet various needs in the process of initiating their investigations.

  10. Advice to Mental Health Intervention for Recruits Based on an Investigation for Mental Status of Servicemen during Basic Military Training

    ERIC Educational Resources Information Center

    Hong-zheng, Li; Dan-min, Miao; Mei-ying, Lei; Xiao-yan, Chen; Xiao-bing, Liu

    2007-01-01

    Basic military training consists of highly regimented training in the context of fairly extreme psychosocial stressors, and some recruits suffered from rigorous disturbance in mind. Even if practical measures which include instructive psychological intervention have been taken to ameliorate the disturbance, some questions still have not been…

  11. Are Online Quizzes an Effective Tool for Mastering Basic Algebra?

    ERIC Educational Resources Information Center

    Read, Wayne; Higgins, Patrick

    2012-01-01

    On-line quizzes are used to help first year University Mathematics students identify weaknesses in their basic skills and improve them. Quizzes developed as a formative tool have been utilised at JCU [James Cook University] for eight years. However, before this research no-one has questioned the effectiveness of quizzes for this task. We present a…

  12. The Not So Common Sense: Differences in How People Judge Social and Political Life.

    ERIC Educational Resources Information Center

    Rosenberg, Shawn W.

    This interdisciplinary book challenges two basic assumptions that orient much contemporary social scientific thinking. Offering theory and empirical research, the book rejects the classic liberal view that people share a basic common sense or rationality; while at the same time, it questions the view of contemporary social theory that meaning is…

  13. Visual Basic Programming Impact on Cognitive Style of College Students: Need for Prerequisites

    ERIC Educational Resources Information Center

    White, Garry L.

    2012-01-01

    This research investigated the impact learning a visual programming language, Visual Basic, has on hemispheric cognitive style, as measured by the Hemispheric Mode Indicator (HMI). The question to be answered is: will a computer programming course help students improve their cognitive abilities in order to perform well? The cognitive styles for…

  14. Warning Signals: Basic Criteria for Tracking At-Risk Infants and Toddlers.

    ERIC Educational Resources Information Center

    Blackman, James

    Developed by a multidisciplinary group (convened by Project Zero to Three) of 17 experts in the identification and evaluation of high risk infants and young children, this manual presents basic criteria for tracking at risk infants and toddlers. The first section answers such questions about the criteria as the following: What is a tracking system…

  15. The Universal Basic Education Programme and Female Trafficking in South-South, Nigeria

    ERIC Educational Resources Information Center

    Ogonor, Bridget O.; Osunde, Austin U.

    2007-01-01

    The study investigated the impact of the Universal Basic Education (UBE) programme on the phenomenon of female trafficking in South-South Nigeria. To this end, six research questions were raised. These revolved around: (i) resource situation and adequacy of training provided for repatriated trafficked victims in the service provider centre; (ii)…

  16. Inclusive Classrooms: A Basic Qualitative Study of K-8 Urban Charter School Teachers

    ERIC Educational Resources Information Center

    Williams, Regina N.

    2017-01-01

    The rapid growth of charter schools has been accompanied with numerous questions related to special education such as whether or not charter schools and their unique missions can actually meet the needs of students with disabilities (Karp, 2012). This basic qualitative study explores the practices and procedures used by primary school teachers to…

  17. Inga Fischer-Hjalmars (1918-2008): Swedish Pharmacist, Humanist, and Pioneer Quantum Chemist

    ERIC Educational Resources Information Center

    Johansson, Adam Johannes

    2012-01-01

    A wide variety of questions can be asked about the molecules that compose the physical reality around us and constitute biological life. Some of these questions are answered by the science called biology, others find their answer in chemistry, whereas the answers to the most fundamental questions are only to be found in the theories of physics.…

  18. Physics 30 Program Machine-Scorable Open-Ended Questions: Unit 2: Electric and Magnetic Forces. Diploma Examinations Program.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This document outlines the use of machine-scorable open-ended questions for the evaluation of Physics 30 in Alberta. Contents include: (1) an introduction to the questions; (2) sample instruction sheet; (3) fifteen sample items; (4) item information including the key, difficulty, and source of each item; (5) solutions to items having multiple…

  19. Careers in Patent Law for Physics Majors

    NASA Astrophysics Data System (ADS)

    Oliver, Douglas L.

    2010-11-01

    An important question that many undergraduate physics students ask is, "What can one do with a physics degree?" Of course there are many answers to this question. Often a general reference to becoming a lawyer is given as a possible answer. This paper is intended to explain the field of patent law and how a physics degree can lead to an interesting and potentially lucrative career as a patent examiner, a patent agent, or a patent attorney. This information may be of interest to physics students as well as those who recruit or counsel physics students.

  20. Surveying college introductory physics students’ attitudes and approaches to problem solving

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Singh, Chandralekha

    2016-09-01

    Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.

  1. How Asking a Very Basic Research Question Led Us to a Model for at Least Three Diseases | Poster

    Cancer.gov

    By Howard Young Editor’s note: This article is adapted from Dr. Young’s January 12, 2015, post to the I am Intramural Blog of the Intramural Research Program. When I started this project, it was not my objective to develop a model for any specific disease, nor did I even suspect that the ultimate result would be some insight into autoimmune disease. The basic research question I was asking was why there are sequences in the 3? untranslated region (3?UTR) of the interferon-gamma (IFN-gamma) mRNA that are more highly conserved than in the coding region of the gene.

  2. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  3. Framework and Implementation for Improving Physics Essential Skills via Computer-Based Practice: Vector Math

    ERIC Educational Resources Information Center

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-01-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…

  4. Do US Medical Licensing Applications Treat Mental and Physical Illness Equivalently?

    PubMed

    Gold, Katherine J; Shih, Elizabeth R; Goldman, Edward B; Schwenk, Thomas L

    2017-06-01

    State medical licensing boards are responsible for evaluating physician impairment. Given the stigma generated by mental health issues among physicians and in the medical training culture, we were interested in whether states asked about mental and physical health conditions differently and whether questions focused on current impairment. Two authors reviewed physician medical licensing applications for US physicians seeking first-time licensing in 2013 in the 50 states and the District of Columbia. Questions about physical and mental health, as well as substance abuse, were identified and coded as to whether or not they asked about diagnosis and/or treatment or limited the questions to conditions causing physician impairment. Forty-three (84%) states asked questions about mental health conditions, 43 (84%) about physical health conditions, and 47 (92%) about substance use. States were more likely to ask for history of treatment and prior hospitalization for mental health and substance use, compared with physical health disorders. Among states asking about mental health, just 23 (53%) limited all questions to disorders causing functional impairment and just 6 (14%) limited to current problems. While most state medical licensing boards ask about mental health conditions or treatment, only half limited queries to disorders causing impairment. Differences in how state licensing boards assess mental health raise important ethical and legal questions about assessing physician ability to practice and may discourage treatment for physicians who might otherwise benefit from appropriate care.

  5. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  6. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Bobela, David C.; Yang, Ye

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  7. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE PAGES

    Chen, Chao; Bobela, David C.; Yang, Ye; ...

    2017-03-17

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  8. "Gym Class with Ed Fizz": Exploring Questionable Pedagogical Practices with Preservice Physical Education Teachers

    ERIC Educational Resources Information Center

    Robinson, Daniel B.; Gleddie, Doug

    2011-01-01

    Enabling preservice physical education teachers to critically consider questionable and taken-for-granted practices is an important component of a physical education teacher education (PETE) program. In an effort to offer a teaching and learning context in which to introduce such critical consciousness, the authors have included a staged physical…

  9. [Understanding questions: a specific difficulty in children with pragmatic communication and language disorders].

    PubMed

    Monfort, I; Monfort, M

    2010-03-03

    The question-answer schema is the basis for communicative interaction and is therefore a fundamental aim of the work carried out with children with severe communication and language impairment. Answering questions requires basic skills that enable the listener to identify intonation and facial expression, as well as skills in interpreting intentions and in understanding linguistic content. Some questions can rest on contextual-social keys and others may be based on lexical or structural keys. Some questions, however, call for a more complex understanding, such as 'what' and 'who' questions. Here, we propose an analysis of the skills involved in understanding questions and the consequences on intervention strategies. Intervention in understanding questions should combine different approaches (cognitive, social, linguistic) depending on the type of question, the specific difficulties the child has and the context.

  10. English-as-a-Second-Language Programs in Basic Skills Education Program 1. Appendix

    DTIC Science & Technology

    1984-01-01

    the Army? question understood (1) - gramatically correct (1) no rephrasing/repetition (1) 8. Why are you taking this English Language Course...question understood (1) gramatically correct (1) no rephrasing/repetition (1) 9. Do you think you will use English when you are no longer in the Arnfy...How will you use English?) question understood (1) - gramatically correct (1) -_ no rephrasing/repetition (1) E-4 Page 2 PATROL SCENE Now we want to show

  11. Asking Questions: Will Army Tactical Interrogation be Ready for War?

    DTIC Science & Technology

    1986-12-17

    still never answer the basic question: "Is there enough?" It is the interrogator portion of this question that this paper will address to provide a...tenative answer for the near to midrange future. Section II of this paper will examine the historical 2 AA 4 importance of interrogator derived...the former that this paper will concern itself. In addition to interrogators, there have historically existed, and there continue to exist today (almost

  12. Solar Physics - Plasma Physics Workshop

    NASA Technical Reports Server (NTRS)

    Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.

    1974-01-01

    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.

  13. Maintaining physical activity over time: the importance of basic psychological need satisfaction in developing the physically active self.

    PubMed

    Springer, Judy B; Lamborn, Susie D; Pollard, Diane M

    2013-01-01

    Drawing from self-determination theory, this study investigated adults' perceptions of the process of long-term maintenance of physical activity and how it may relate to their self-identity. Qualitative study included 22 in-depth interviews and participants' recorded personal reflective journals. Health/fitness facility in a Midwestern city. Purposeful sample of 12 adult (age range 29-73 years) members who had engaged in regular physical activity for at least 3 years. Data were collected on participants' perceptions of processes associated with physical activity maintenance. Grounded theory data analysis techniques were used to develop an understanding of participants' long-term physical activity adherence. RESULTS. Analysis revealed three themes organized around basic psychological need satisfaction: (1) Relatedness included receiving and giving support. (2) Competence included challenge and competition, managing weight, and strategies for health management. (3) Autonomy included confidence in the established routine, valuing fitness status, and feeling self-directed. The final theme of physically active self included the personal fit of an active lifestyle, identity as an active person, and attachment to physical activity as life enhancing. Our results suggest that long-term physical activity adherence may be strengthened by promotion of the individual's basic psychological need satisfaction. Adherence is most likely to occur when the value of participation becomes internalized over time as a component of the physically active self.

  14. The Physics of a Gymnastics Flight Element

    NASA Astrophysics Data System (ADS)

    Contakos, Jonas; Carlton, Les G.; Thompson, Bruce; Suddaby, Rick

    2009-09-01

    From its inception, performance in the sport of gymnastics has relied on the laws of physics to create movement patterns and static postures that appear almost impossible. In general, gymnastics is physics in motion and can provide an ideal framework for studying basic human modeling techniques and physical principles. Using low-end technology and basic principles of physics, we analyzed a high-end gymnastics skill competed in by both men and women. The comprehensive goal of the examination is to scientifically understand how a skill of this magnitude is actually physically possible and what must a gymnast do to successfully complete the skill. The examination is divided into three sections, each of which is comprehensive enough to be a separate assignment or small group project.

  15. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  16. Adding a Social Marketing Campaign to a School-Based Nutrition Education Program Improves Children's Dietary Intake: A Quasi-Experimental Study.

    PubMed

    Blitstein, Jonathan L; Cates, Sheryl C; Hersey, James; Montgomery, Doris; Shelley, Mack; Hradek, Christine; Kosa, Katherine; Bell, Loren; Long, Valerie; Williams, Pamela A; Olson, Sara; Singh, Anita

    2016-08-01

    Evidence supports the use of social marketing campaigns to improve nutrition knowledge and reinforce the effects of nutrition education programs. However, the additional effects of parent-focused social marketing with nutrition education have received little attention. Our aim was to assess the impact of the Iowa Nutrition Network's school-based nutrition education program (Building and Strengthening Iowa Community Support for Nutrition and Physical Activity [BASICS]) and the benefits of adding a multichannel social marketing intervention (BASICS Plus) to increase parent-directed communication. A quasi-experimental design with three study conditions compared a school-based nutrition education program (BASICS) with a school-based and social marketing intervention (BASICS Plus) and a no-treatment comparison group. The study included 1,037 third-grade students attending 33 elementary schools and their parents. Measures included parents' reports of their children's in-home consumption of fruits and vegetables (F/V) and use of low-fat/fat-free milk. Data on F/V were collected using a modified version of the University of California Cooperative Extension Food Behavior Checklist; and data on milk use were collected using two questions from the National Health and Nutrition Examination Survey. Multilevel, mixed-effect regression models that account for correlation within repeated measures and children within school were used to compare the mean change over time in the outcome variable for one study group with the mean change over time for another study group. Children in BASICS increased mean consumption of fruit by 0.16 cups (P=0.04) compared with children in the comparison group. Children in BASICS Plus increased mean consumption of fruit by 0.17 cups (P=0.03) and mean consumption of vegetables by 0.13 cups (P=0.02). Children in BASICS Plus were 1.3 times (P=0.05) more likely to use low-fat/fat-free milk than children in either the BASICS group or the comparison group. Gaining parents' attention and engaging them in healthy eating practices for their children can be a useful way to increase the effectiveness of school-based nutrition education programs. This study demonstrates the benefits of incorporating a parent-focused social marketing campaign in nutrition education interventions. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  17. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  18. From high dilutions to digital biology: the physical nature of the biological signal.

    PubMed

    Thomas, Yolène

    2015-10-01

    The memory of water was a radical idea that arose in the laboratory of Jacques Benveniste in the late 1980s. Twenty-five years have passed and yet the often angry debate on its merits continues despite the increasing number of scientists who have reported confirmation of the basic results. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. A parallel can be drawn between this debate on the memory of water, which presumes that the action of molecules is mediated by an electromagnetic phenomenon, and the often acrimonious debate on the transmission of nerve influxes via synaptic transfer of specific molecules, neurotransmitters. The latter debate began in 1921 with the first experiments by Loewi and was still active in 1949, 28 years later. A strong reluctance to accept research that questions basic aspects of long-accepted biochemical paradigms is to be expected. In this paper we will provide a brief summary of experiments relating to the memory of water: the earlier work on high dilutions (HD) and then the experiments, which followed and continue today, on digital biology. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  19. Children's Perceptions of Health and Illness: Images and Lay Concepts in Preadolescence

    ERIC Educational Resources Information Center

    Piko, Bettina F.; Bak, Judit

    2006-01-01

    Despite a growing body of research into children's concepts of illness, many basic questions still remain. This study aims to describe 8- to 11-year olds' lay beliefs of health, illness, health promotion and disease prevention. Children responded to open-ended questions about health and illness by drawing and writing their responses. Two primary…

  20. The Future of Family Business Education in UK Business Schools

    ERIC Educational Resources Information Center

    Collins, Lorna; Seaman, Claire; Graham, Stuart; Stepek, Martin

    2013-01-01

    Purpose: This practitioner paper aims to question basic assumptions about management education and to argue that a new paradigm is needed for UK business schools which embraces an oft neglected, yet economically vital, stakeholder group, namely family businesses. It seeks to pose the question of why we have forgotten to teach about family business…

  1. Application of Total Quality Management in Education

    ERIC Educational Resources Information Center

    Farooq, M. S.; Akhtar, M. S.; Ullah, S. Zia; Memon, R. A.

    2007-01-01

    The purpose of the paper is to analyzing thoughts of the modern management paradigm "Total Quality Management" (TQM), and its application in the field of education. The basic theme of TQM is participatory approach to address the question(s) of quality in business aswell as in the field of education. Reviewing fresh literature from the internet …

  2. CAT Model with Personalized Algorithm for Evaluation of Estimated Student Knowledge

    ERIC Educational Resources Information Center

    Andjelic, Svetlana; Cekerevac, Zoran

    2014-01-01

    This article presents the original model of the computer adaptive testing and grade formation, based on scientifically recognized theories. The base of the model is a personalized algorithm for selection of questions depending on the accuracy of the answer to the previous question. The test is divided into three basic levels of difficulty, and the…

  3. Rationale and Guidelines for a Pre-Crisis Curriculum to Prepare Healthy Preschool Children for Hospitalization.

    ERIC Educational Resources Information Center

    Poster, Elizabeth C.

    Questions associated with an alternative approach to preparing nursery and elementary school children for hospitalization are addressed, and the basic components of a pre-crisis curriculum are outlined in this paper. Questions broached focus on (1) the effectiveness of a general curriculum approach as opposed to a crisis approach to preparing…

  4. Attention-Deficit/Hyperactivity Disorder. NICHCY Briefing Paper. 3rd Edition.

    ERIC Educational Resources Information Center

    Fowler, Mary

    This briefing paper uses a question-and-answer format to provide basic information about children and adolescents with attention deficit/hyperactivity disorder (AD/HD). It is intended to help parents, teachers, and others interested in AD/HD know what to look for, what to do, and how to get help. Questions address the following concerns: nature…

  5. Question and Answer Guide to OCLC.

    ERIC Educational Resources Information Center

    Yen, Sidney S. C.

    The purpose of this guide is to provide basic factual information about the Ohio College Library Center (OCLC), its data base, its operation, and its functions. It is intended for libraries which have not yet participated in OCLC, but would be useful as a reference guide in all libraries. Presented in question and answer form, the guide consists…

  6. Credentialing School Based Teacher Educators: Bases for Decisioning. School Based Teacher Educators, Number 8.

    ERIC Educational Resources Information Center

    Houston, W. Robert; And Others

    The basic question addressed in this monograph is whether credentialing the preservice or inservice school based teacher educator is necessary and/or desirable. To study this question, a series of related issues were posed and investigated: (1) Is there a need for credentialing? (2) What institution would award the credential, and should…

  7. On-Line Search in the Science Classroom: Benefits and Possibilities.

    ERIC Educational Resources Information Center

    Wallace, Raven; Kupperman, Jeff

    This study addresses some basic questions about students' strategies for seeking and using information from the World Wide Web. The questions pertain to the effects of environment and attitudes on students' use of online resources to find information and the development of a typology of strategies. The focus of the study was on describing student…

  8. Be Your Own Boss: Introducing Entrepreneurship. Professional Development Series, No. 5.

    ERIC Educational Resources Information Center

    Persons, Edgar A.

    Suitable for use by teachers as an introductory unit on entrepreneurship, this booklet is organized around 10 basic questions that the aspiring entrepreneur should be able to answer. The following issues are covered in the questions: the suitability of the individual to the entrepreneur role and vice versa, the ability of the individual to make…

  9. From the Laboratory to the Classroom: The Effects of Equivalence-Based Instruction on Neuroanatomy Competencies

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Mylan, Sanaa E.; Brodsky, Julia; Pytte, Carolyn

    2016-01-01

    Equivalence-based instruction (EBI) has been used to successfully teach college-level concepts in research laboratories, but few studies have examined the results of such instruction on classroom performance. The current study answered a basic question about the ordering of training stimuli as well as an applied question regarding the effects of…

  10. The Young Astrophysicist: A Very Inexpensive Activity to Discuss Spectroscopy

    ERIC Educational Resources Information Center

    Brockington, Guilherme; Testoni, Leonardo André; Pietrocola, Maurício

    2015-01-01

    The continuing fascination of young people with celestial bodies leads them to pose challenging questions to their science teachers, such as how was the universe born? How were the stars formed? In this paper we present an extremely inexpensive but highly engaging activity to teach the basics of spectroscopy. Guided by the question "how do…

  11. Who Gets to See Published Research?

    ERIC Educational Resources Information Center

    Howard, Jennifer

    2012-01-01

    The battle over public access to federally financed research is heating up again. The basic question is this: When taxpayers help pay for scholarly research, should those taxpayers get to see the results in the form of free access to the resulting journal articles? Actions in Washington this month highlight how far from settled the question is,…

  12. Physiological Responses and Hedonics During Prolonged Physically Interactive Videogame Play.

    PubMed

    Santo, Antonio S; Barkley, Jacob E; Hafen, Paul S; Navalta, James

    2016-04-01

    This study was designed to assess physiologic responses and hedonics (i.e., liking) during prolonged physically interactive videogame play. Participants (n = 24) completed three 30-minute videogame conditions on separate days in a random order. During two of the conditions participants played physically interactive videogames (Nintendo of America, Inc. [Redmond, WA] "Wii™ Fit" "Basic Run" and "Basic Step"). During the third condition participants played a traditional/sedentary game ("Tanks!"), which required minimal physical movement for gameplay. Oxygen consumption (VO2) was assessed using indirect calorimetry throughout each condition and averaged every 5 minutes. Liking was assessed via visual analog scale at the 15- and 30-minute time points during each condition. Mean VO2 was significantly (P < 0.001) greater during "Basic Run" (16.14 ± 5.8 mL/kg/minute, 4.6 ± 1.7 metabolic equivalents [METs]) than either "Basic Step" (11.4 ± 1.7 mL/kg/minute, 3.3 ± 0.5 METs) or the traditional/sedentary videogame (5.39 ± 1.0 mL/kg/minute, 1.5 ± 0.1 METs). "Basic Step" was also greater (P < 0.001) than the traditional/sedentary game. VO2 did not significantly (P = 0.25) fluctuate across the 30-minute session for any game. In other words, participants maintained a consistent physiologic intensity throughout each 30-minute condition. There were no differences (P ≥ 0.20) across gaming conditions or time for liking. Participants achieved and maintained moderate-intensity physical activity (≥3.0 METs) during both 30-minute physically interactive videogame conditions. Furthermore, because liking was similar across all gaming conditions, participants may be willing to substitute the physically interactive videogames in place of the traditional/sedentary game.

  13. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  14. Can Clinical Scenario Videos Improve Dental Students' Perceptions of the Basic Sciences and Ability to Apply Content Knowledge?

    PubMed

    Miller, Cynthia Jayne; Metz, Michael James

    2015-12-01

    Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to apply basic science content to clinically important scenarios.

  15. Coupling Conceptual and Quantitative Problems to Develop Expertise in Introductory Physics Students

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2008-10-01

    We discuss the effect of administering conceptual and quantitative isomorphic problem pairs (CQIPP) back to back vs. asking students to solve only one of the problems in the CQIPP in introductory physics courses. Students who answered both questions in a CQIPP often performed better on the conceptual questions than those who answered the corresponding conceptual questions only. Although students often took advantage of the quantitative counterpart to answer a conceptual question of a CQIPP correctly, when only given the conceptual question, students seldom tried to convert it into a quantitative question, solve it and then reason about the solution conceptually. Even in individual interviews, when students who were only given conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual question into the corresponding quantitative problem by choosing appropriate variables, a majority of students were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling.

  16. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  17. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development Regulations... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  18. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  19. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  20. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  1. 24 CFR 882.404 - Physical condition standards; physical inspection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Physical condition standards; physical inspection requirements. 882.404 Section 882.404 Housing and Urban Development REGULATIONS... Procedures for Moderate Rehabilitation-Basic Policies § 882.404 Physical condition standards; physical...

  2. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  3. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  4. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  5. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  6. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  7. Teen Dating Violence (Physical and Sexual) Among US High School Students: Findings From the 2013 National Youth Risk Behavior Survey.

    PubMed

    Vagi, Kevin J; O'Malley Olsen, Emily; Basile, Kathleen C; Vivolo-Kantor, Alana M

    2015-05-01

    National estimates of teen dating violence (TDV) reveal high rates of victimization among high school populations. The Centers for Disease Control and Prevention's national Youth Risk Behavior Survey has provided often-cited estimates of physical TDV since 1999. In 2013, revisions were made to the physical TDV question to capture more serious forms of physical TDV and to screen out students who did not date. An additional question was added to assess sexual TDV. To describe the content of new physical and sexual TDV victimization questions first administered in the 2013 national Youth Risk Behavior Survey, to share data on the prevalence and frequency of TDV (including the first-ever published overall "both physical and sexual TDV" and "any TDV" national estimates using these new questions), and to assess associations of TDV experience with health-risk behaviors. Secondary data analysis of a cross-sectional survey of 9900 students who dated, from a nationally representative sample of US high school students, using the 2013 national Youth Risk Behavior Survey. Two survey questions separately assessed physical and sexual TDV; this analysis combined them to create a 4-level TDV measure and a 2-level TDV measure. The 4-level TDV measure includes "physical TDV only," "sexual TDV only," "both physical and sexual TDV," and "none." The 2-level TDV measure includes "any TDV" (either or both physical and sexual TDV) and "none." Sex-stratified bivariate and multivariable analyses assessed associations between TDV and health-risk behaviors. In 2013, among students who dated, 20.9% of female students (95% CI, 19.0%-23.0%) and 10.4% of male students (95% CI, 9.0%-11.7%) experienced some form of TDV during the 12 months before the survey. Female students had a higher prevalence than male students of physical TDV only, sexual TDV only, both physical and sexual TDV, and any TDV. All health-risk behaviors were most prevalent among students who experienced both forms of TDV and were least prevalent among students who experienced none (all P < .001). The 2013 TDV questions allowed for new prevalence estimates of TDV to be established that represent a more complete measure of TDV and are useful in determining associations with health-risk behaviors among youth exposed to these different forms of TDV.

  8. Does the Company of a Dog Influence Affective Response to Exercise? Using Ecological Momentary Assessment to Study Dog-Accompanied Physical Activity.

    PubMed

    Liao, Yue; Solomon, Olga; Dunton, Genevieve F

    2017-09-01

    This study used ecological momentary assessment (EMA), a real-time self-report strategy, to examine (1) whether dog owners were more likely to be physically active when they were with their dogs and (2) whether being with a dog amplifies positive and dampens negative affective response during physical activity. Electronic EMA surveys for 12 days. Free-living. Seventy-one adult dog owners. The EMA survey included 1 question about current activity, 3 questions about positive affect (Cronbach α = .837), 4 questions about negative affect (Cronbach α = .865), and 1 question about the presence of dog. Multilevel modeling. The company of a dog did not increase the likelihood of being active versus sedentary at any given EMA prompt. However, greater positive affect during physical activity was reported in the company of a dog. Negative affect did not differ between active and sedentary activity, regardless of being with a dog or not. This study demonstrates the utility of electronic EMA as a promising methodology to study dog-accompanied physical activity. Future studies may use EMA to collect further contextual information about dog-accompanied activity to inform the development of innovative physical activity interventions.

  9. The Role of School Culture and Basic Psychological Needs on Iranian Adolescents' Academic Alienation: A Multi-Level Examination

    ERIC Educational Resources Information Center

    Mahmoudi, Hojjat; Brown, Monica R.; Amani Saribagloo, Javad; Dadashzadeh, Shiva

    2018-01-01

    This aim of this current research was a multi-level analysis of the relationship between school culture, basic psychological needs, and adolescents' academic alienation. One thousand twenty-nine (N = 1,029) high school students from Qom City were randomly selected through a multi-phase cluster sampling method and answered questions regarding…

  10. Internal Interest or External Performing? A Qualitative Study on Motivation and Learning of 9th Graders in Thailand Basic Education

    ERIC Educational Resources Information Center

    Loima, Jyrki; Vibulphol, Jutarat

    2014-01-01

    This qualitative research was the first academic attempt to study and discuss the internal and external motivation in learning of students in basic education schools in Thailand. The study addressed two research questions to analyze similarities and differences in learning motivation or interest and teachers' enhancement or discouragement. 1) What…

  11. Evaluating the Effects of Basic Skills Mathematics Placement on Academic Outcomes of Community College Students

    ERIC Educational Resources Information Center

    Melguizo, Tatiana; Bo, Hans; Prather, George; Kim, Bo

    2011-01-01

    The main objective of the authors' proposed study is to evaluate the effectiveness of math placement policies for entering community college students on these students' academic success in math, and their transfer and graduation rates. The main research question that guides the proposed study is: What are the effects of various basic skills…

  12. Evaluation of Achievement of Universal Basic Education (UBE) in Delta State

    ERIC Educational Resources Information Center

    Osadebe, P. U.

    2014-01-01

    The study evaluated the objectives of the Universal Basic Education (UBE) programme in Delta State. It considered the extent to which each objective was achieved. A research question on the extent to which the UBE objectives were achieved guided the study. Two hypotheses were tested. A sample of 300 students was randomly drawn through the use of…

  13. The Practice and Challenges of Implementing Critical Thinking Skills in Omani Post-Basic EFL Classrooms

    ERIC Educational Resources Information Center

    Al-Kindi, Naeema Saleh; AL-Mekhlafi, Abdo Mohammed

    2017-01-01

    The purpose of the current study is to investigate post-basic English teachers' practice of critical thinking skills and the challenges they face while teaching skills in EFL classrooms. Three research questions were investigated to achieve this purpose: 1--To what extent do EFL teachers use classroom behaviors that nurture critical thinking at…

  14. Effect of Improvised Instructional Materials on Students' Achievement in Geometry at the Upper Basic Education Level in Makurdi Metropolis, Benue State, Nigeria

    ERIC Educational Resources Information Center

    Iji, C. O.; Ogbole, P. O.; Uka, N. K.

    2014-01-01

    Among all approaches aimed at reducing poor mathematics achievement among the students, adoption of appropriate methods of teaching appears to be more rewarding. In this study, improvised instructional materials were used to ascertain students' geometry achievement at the upper basic education one. Two research questions were asked with associated…

  15. The Federal Role and Chapter 1: Rethinking Some Basic Assumptions.

    ERIC Educational Resources Information Center

    Kirst, Michael W.

    In the 20 years since the major Federal program for the disadvantaged began, surprisingly little has changed from its original vision. It is now time to question some of the basic policies of Chapter 1 of the Education Consolidation and Improvement Act in view of the change in conceptions about the Federal role and the recent state and local…

  16. Processing of Basic Speech Acts Following Localized Brain Damage: A New Light on the Neuroanatomy of Language

    ERIC Educational Resources Information Center

    Soroker, N.; Kasher, A.; Giora, R.; Batori, G.; Corn, C.; Gil, M.; Zaidel, E.

    2005-01-01

    We examined the effect of localized brain lesions on processing of the basic speech acts (BSAs) of question, assertion, request, and command. Both left and right cerebral damage produced significant deficits relative to normal controls, and left brain damaged patients performed worse than patients with right-sided lesions. This finding argues…

  17. Adequacy of Material Resources Required for Effective Implementation of Upper Basic Education Business Studies Curriculum in Nigeria

    ERIC Educational Resources Information Center

    Okoli, B. E.; Okorie, Ogbonnaya

    2015-01-01

    This work is a descriptive survey of the adequacy of the material resources required for effective implementation of upper basic education business studies curriculum in Ebonyi State. Two research questions and two hypotheses guided the study. The entire population of two hundred and forty-one (241) business studies teachers were used for the…

  18. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  19. Structural violence in long-term, residential care for older people: Comparing Canada and Scandinavia

    PubMed Central

    Banerjee, Albert; Daly, Tamara; Armstrong, Pat; Szebehely, Marta; Armstrong, Hugh; LaFrance, Stirling

    2014-01-01

    Canadian frontline careworkers are six times more likely to experience daily physical violence than their Scandinavian counterparts. This paper draws on a comparative survey of residential careworkers serving older people across three Canadian provinces (Manitoba, Nova Scotia, Ontario) and four countries that follow a Scandinavian model of social care (Denmark, Finland, Norway, Sweden) conducted between 2005 and 2006. Ninety percent of Canadian frontline careworkers experienced physical violence from residents or their relatives and 43 percent reported physical violence on a daily basis. Canadian focus groups conducted in 2007 reveal violence was often normalized as an inevitable part of elder-care. We use the concept of “structural violence” (Galtung, 1969) to raise questions about the role that systemic and organizational factors play in setting the context for violence. Structural violence refers to indirect forms of violence that are built into social structures and that prevent people from meeting their basic needs or fulfilling their potential. We applied the concept to long-term residential care and found that the poor quality of the working conditions and inadequate levels of support experienced by Canadian careworkers constitute a form of structural violence. Working conditions are detrimental to careworker’s physical and mental health, and prevent careworkers from providing the quality of care they are capable of providing and understand to be part of their job. These conditions may also contribute to the violence workers experience, and further investigation is warranted. PMID:22204839

  20. A Basic Experiment on the Aerodynamics of Sniffing

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.; Kester, Douglas A.

    1999-11-01

    Our previous work (APS/DFD97:Ii1 and 98:FA10) used flow visualization to observe canine olfaction. The results raised some basic questions about the aerodynamics of sniffing, e.g. what flow rate is required, as a function of distance from a scent source, to acquire a detectable scent? Commercial sampler technology does not address such questions. A basic experiment was thus designed to investigate the aerodynamic phenomena and performance of sniffing. A stable thermal layer on a horizontal plane was used as a "scent" source per Reynolds Analogy. The detector was a thermocouple inside a sniffer tube. Flow patterns were observed by schlieren. Results show the importance of sniffer proximity to localize a scent source. A transient scent spike occurs at the sniff onset, followed by signal decline due to source depletion. Sniffing shows extreme sensitivity to disruptive air currents. Unstably-stratified scent sources (thermal plumes) are also considered. These results help us understand evolved sniffing behavior, and they suggest sampler design criteria for electronic-nose devices. (Research supported by DARPA.)

  1. Understanding MRI: basic MR physics for physicians.

    PubMed

    Currie, Stuart; Hoggard, Nigel; Craven, Ian J; Hadjivassiliou, Marios; Wilkinson, Iain D

    2013-04-01

    More frequently hospital clinicians are reviewing images from MR studies of their patients before seeking formal radiological opinion. This practice is driven by a multitude of factors, including an increased demand placed on hospital services, the wide availability of the picture archiving and communication system, time pressures for patient treatment (eg, in the management of acute stroke) and an inherent desire for the clinician to learn. Knowledge of the basic physical principles behind MRI is essential for correct image interpretation. This article, written for the general hospital physician, describes the basic physics of MRI taking into account the machinery, contrast weighting, spin- and gradient-echo techniques and pertinent safety issues. Examples provided are primarily referenced to neuroradiology reflecting the subspecialty for which MR currently has the greatest clinical application.

  2. Physical and cognitive doping in university students using the unrelated question model (UQM): Assessing the influence of the probability of receiving the sensitive question on prevalence estimation.

    PubMed

    Dietz, Pavel; Quermann, Anne; van Poppel, Mireille Nicoline Maria; Striegel, Heiko; Schröter, Hannes; Ulrich, Rolf; Simon, Perikles

    2018-01-01

    In order to increase the value of randomized response techniques (RRTs) as tools for studying sensitive issues, the present study investigated whether the prevalence estimate for a sensitive item [Formula: see text] assessed with the unrelated questionnaire method (UQM) is influenced by changing the probability of receiving the sensitive question p. A short paper-and-pencil questionnaire was distributed to 1.243 university students assessing the 12-month prevalence of physical and cognitive doping using two versions of the UQM with different probabilities for receiving the sensitive question (p ≈ 1/3 and p ≈ 2/3). Likelihood ratio tests were used to assess whether the prevalence estimates for physical and cognitive doping differed significantly between p ≈ 1/3 and p ≈ 2/3. The order of questions (physical doping and cognitive doping) as well as the probability of receiving the sensitive question (p ≈ 1/3 or p ≈ 2/3) were counterbalanced across participants. Statistical power analyses were performed to determine sample size. The prevalence estimate for physical doping with p ≈ 1/3 was 22.5% (95% CI: 10.8-34.1), and 12.8% (95% CI: 7.6-18.0) with p ≈ 2/3. For cognitive doping with p ≈ 1/3, the estimated prevalence was 22.5% (95% CI: 11.0-34.1), whereas it was 18.0% (95% CI: 12.5-23.5) with p ≈ 2/3. Likelihood-ratio tests revealed that prevalence estimates for both physical and cognitive doping, respectively, did not differ significantly under p ≈ 1/3 and p ≈ 2/3 (physical doping: χ2 = 2.25, df = 1, p = 0.13; cognitive doping: χ2 = 0.49, df = 1, p = 0.48). Bayes factors computed with the Savage-Dickey method favored the null ("the prevalence estimates are identical under p ≈ 1/3 and p ≈ 2/3") over the alternative ("the prevalence estimates differ under p ≈ 1/3 and p ≈ 2/3") hypothesis for both physical doping (BF = 2.3) and cognitive doping (BF = 5.3). The present results suggest that prevalence estimates for physical and cognitive doping assessed by the UQM are largely unaffected by the probability for receiving the sensitive question p.

  3. A Curriculum Guide for Electricity/Electronics.

    ERIC Educational Resources Information Center

    Rouse, Bill, Comp.

    This curriculum guide is designed to upgrade the secondary electrical trades program in Mississippi by broadening its scope to incorporate basic electronic principles. Covered in the individual chapters of the guide are the following courses: basic electricity (occupational information, basic physics, circuit fundamentals, resistance and Ohm's…

  4. The rainbow and the worm

    PubMed Central

    Hunt, Tam

    2013-01-01

    What is life? Many have asked this question, and no definitive answer is yet widely accepted. Is life something truly distinct from non-living stuff, as many dualists have suggested for millennia? Is there an élan vital that distinguishes living from dead stuff? Or is life about certain types of organization, metabolism, reproduction, goal-oriented behavior? None of these answers have yet won the debate. There is, however, an intriguing new set of ideas that have been developed by Mae-Wan Ho, a biophysicist and science activist (as she calls herself) based in London. Ho’s basic assertion is that life exists on a spectrum and is at its root organized, quantum coherent energy. Ho’s work attempts to bridge the gap between physics and biology by recognizing that there is no real gap at all—just a gap in current methods and habits of thinking. PMID:23795236

  5. Understanding glass formation and ion transport in polymeric ionic liquids using computer simulations

    NASA Astrophysics Data System (ADS)

    Patra, Tarak; Yang, Junhong; Cheng, Yiz; Simmons, David

    Polymeric ionic liquids (PILs) are very promising materials to enable more environmentally stable high density energy storage devices. Realization of PILs providing high environmental and mechanical stability while maximizing ion conductivity would be accelerated by an improved molecular level understanding of their structure and dynamics. Extensive evidence suggests that both mechanical properties and ion conductivity in anhydrous PILs are intimately related to the PIL's glass formation behavior. This represents a major challenge to the rational design of these materials, given that the basic nature of glass formation and its connection to molecular properties remains a substantial open question in polymer and condensed matter physics. Here we describe coarse-grained and atomistic molecular dynamics simulations probing the relationship between PIL architecture and interactions, glass formation behavior, and ion transport characteristics. These studies provide guidance towards the design of PILs with improved stability and ion conductivity for future energy applications.

  6. A definition of the degree of controllability - A criterion for actuator placement

    NASA Technical Reports Server (NTRS)

    Viswanathan, C. N.; Longman, R. W.; Likins, P. W.

    1979-01-01

    The unsolved problem of how to control the attitude and shape of future very large flexible satellite structures represents a challenging problem for modern control theory. One aspect of this problem is the question of how to choose the number and locations throughout the spacecraft of the control system actuators. Starting from basic physical considerations, this paper develops a concept of the degree of controllability of a control system, and then develops numerical methods to generate approximate values of the degree of controllability for any spacecraft. These results offer the control system designer a tool which allows him to rank the effectiveness of alternative actuator distributions, and hence to choose the actuator locations on a rational basis. The degree of controllability is shown to take a particularly simple form when the satellite dynamics equations are in modal form. Examples are provided to illustrate the use of the concept on a simple flexible spacecraft.

  7. Comets: Data, problems, and objectives

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.

  8. Maxwell’s demon in the quantum-Zeno regime and beyond

    NASA Astrophysics Data System (ADS)

    Engelhardt, G.; Schaller, G.

    2018-02-01

    The long-standing paradigm of Maxwell’s demon is till nowadays a frequently investigated issue, which still provides interesting insights into basic physical questions. Considering a single-electron transistor, where we implement a Maxwell demon by a piecewise-constant feedback protocol, we investigate quantum implications of the Maxwell demon. To this end, we harness a dynamical coarse-graining method, which provides a convenient and accurate description of the system dynamics even for high measurement rates. In doing so, we are able to investigate the Maxwell demon in a quantum-Zeno regime leading to transport blockade. We argue that there is a measurement rate providing an optimal performance. Moreover, we find that besides building up a chemical gradient, there can be also a regime where the feedback loop additionally extracts energy, which results from the energy non-conserving character of the projective measurement.

  9. Why is terrorism a man's business?

    PubMed

    Möller-Leimkühler, Anne Maria

    2018-04-01

    Terrorism, whether it is group-related or performed as lone actor terrorism, is a predominantly male phenomenon. Generally and throughout history, young males have been the main protagonists of criminal and political violence.This article aims to contribute, from different perspecives, to the question of what makes young men violent. These include neurobiological aspects, such as sex differences in the brain that predispose males to physical aggression and violence; gender role aspects, with regard to aggression and violence being basic components for demonstrating and reconstructing masculinity; demographic aspects of male youth bulges as potential breeding grounds for terrorism; aspects of group dynamics and identity fusion in the process of radicalization; and psychosocial characteristics of lone actor terrorists, which differ from group-related terrorists.It is concluded that in addition to ideological, political, economic, regional, demographic, or psychosocial causes, experiences of threatened masculinity may be an underlying factor and driving force for terrorism.

  10. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  11. In Search of Rationality in Human Longevity and Immortality

    PubMed Central

    Bhar, Gopal C.

    2016-01-01

    The human body is machine-like, but self-moving, self-regulating, and self-adjusting, governed by willpower and intelligence. Aging of the body is basically a maintenance problem and so it could perhaps be postponed by thorough and frequent maintenance. Aging brings on a cascade of ills and health problems leading to deterioration of physical, mental, emotional, and social dimensions of life. This paper deals with solution of the problem philosophically in the light of Indian scriptures without entering into traditional bioethical issues. With a meaningful reason for existence, life can be extended. Examining the scientific perspectives on aging, some common manipulations for its extension are discussed. These are calorie restriction, vitamin and antioxidant treatment, exercise and hormonal interventions, etc. Finally, the question of longevity is explored through pursuance of eternal value-based activity and spirituality in the tradition of Indian heritage. PMID:28031631

  12. Material Perception.

    PubMed

    Fleming, Roland W

    2017-09-15

    Under typical viewing conditions, human observers effortlessly recognize materials and infer their physical, functional, and multisensory properties at a glance. Without touching materials, we can usually tell whether they would feel hard or soft, rough or smooth, wet or dry. We have vivid visual intuitions about how deformable materials like liquids or textiles respond to external forces and how surfaces like chrome, wax, or leather change appearance when formed into different shapes or viewed under different lighting. These achievements are impressive because the retinal image results from complex optical interactions between lighting, shape, and material, which cannot easily be disentangled. Here I argue that because of the diversity, mutability, and complexity of materials, they pose enormous challenges to vision science: What is material appearance, and how do we measure it? How are material properties estimated and represented? Resolving these questions causes us to scrutinize the basic assumptions of mid-level vision.

  13. Mental state attribution and the gaze cueing effect.

    PubMed

    Cole, Geoff G; Smith, Daniel T; Atkinson, Mark A

    2015-05-01

    Theory of mind is said to be possessed by an individual if he or she is able to impute mental states to others. Recently, some authors have demonstrated that such mental state attributions can mediate the "gaze cueing" effect, in which observation of another individual shifts an observer's attention. One question that follows from this work is whether such mental state attributions produce mandatory modulations of gaze cueing. Employing the basic gaze cueing paradigm, together with a technique commonly used to assess mental-state attribution in nonhuman animals, we manipulated whether the gazing agent could see the same thing as the participant (i.e., the target) or had this view obstructed by a physical barrier. We found robust gaze cueing effects, even when the observed agent in the display could not see the same thing as the participant. These results suggest that the attribution of "seeing" does not necessarily modulate the gaze cueing effect.

  14. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila.

    PubMed

    Chakravarti, L; Moscato, E H; Kayser, M S

    2017-01-01

    Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans. © 2017 Elsevier Inc. All rights reserved.

  15. Much Ado About (Almost!) Nothing: The Experimental Study of Neutrino Masses and Mixing

    NASA Astrophysics Data System (ADS)

    Messier, Mark

    2009-11-01

    Neutrinos have been described by their discoverer Frederick Reines as ``the most tiny quantity of reality ever imagined by a human being.'' Yet these particles which verge on nothingness have had an enormous influence on the past and future evolution of the universe and are the subject of an increasingly active program of experimental physics. In this talk I will review some of the basic properties of neutrinos and summarize the recent results on neutrino masses and mixing from studies of neutrinos produced in the Sun, cosmic rays, reactors, and accelerators including searches for zero neutrino double beta decay. Looking ahead, I will outline the future course of experiments in the U.S., Asia, and Europe which will address the questions of the fundamental character of the neutrino, the hierarchy of their masses, and their matter anti-matter symmetries.

  16. Final Technical Report for Riedo Georgia Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riedo, Elisa

    Nanosheets, nanotubes, nanowires, and nanoparticles are gaining a large interest in the scientific community for their exciting properties, and they hold the potential to become building blocks in integrated nano-electronic and photonic circuits, nano-sensors, batteries electrodes, energy harvesting nano-systems, and nano-electro-mechanical systems (NEMS). While several experiments and theoretical calculations have revealed exciting novel phenomena in these nanostructures, many scientific and technological questions remain open. A fundamental objective guiding the study of nanoscale materials is understanding what are the new rules governing nanoscale properties and at what extent well-known physical macroscopic laws still apply in the nano-world. The vision of thismore » DoE research program is to understand the mechanical properties of nanoscale materials by exploring new experimental methods and theoretical models at the boundaries between continuum mechanics and atomistic models, with the overarching goal of defining the basic laws of mechanics at the nanoscale.« less

  17. Scaling in geology: landforms and earthquakes.

    PubMed Central

    Turcotte, D L

    1995-01-01

    Landforms and earthquakes appear to be extremely complex; yet, there is order in the complexity. Both satisfy fractal statistics in a variety of ways. A basic question is whether the fractal behavior is due to scale invariance or is the signature of a broadly applicable class of physical processes. Both landscape evolution and regional seismicity appear to be examples of self-organized critical phenomena. A variety of statistical models have been proposed to model landforms, including diffusion-limited aggregation, self-avoiding percolation, and cellular automata. Many authors have studied the behavior of multiple slider-block models, both in terms of the rupture of a fault to generate an earthquake and in terms of the interactions between faults associated with regional seismicity. The slider-block models exhibit a remarkably rich spectrum of behavior; two slider blocks can exhibit low-order chaotic behavior. Large numbers of slider blocks clearly exhibit self-organized critical behavior. Images Fig. 6 PMID:11607562

  18. The line-emitting gas in active galaxies - A probe of the nuclear engine

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain

    1993-01-01

    This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.

  19. History of Medical Physics.

    ERIC Educational Resources Information Center

    Laughlin, John S.

    1983-01-01

    Traces the development of basic radiation physics that underlies much of today's medical physics and looks separately at the historical development of two major subfields of medical physics: radiation therapy and nuclear medicine. Indicates that radiation physics has made important contributions to solving biomedical problems in medical…

  20. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    NASA Astrophysics Data System (ADS)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

Top