Sample records for basic plasma parameters

  1. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  2. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  3. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Nishioka, S.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less

  4. Effect of Reactor Design on the Plasma Treatment of NOx

    DTIC Science & Technology

    1998-10-01

    control parameter is the input energy density. Consequently, different reactor designs should yield basically the same plasma chemistry if the experiments are performed under identical gas composition and temperature conditions.

  5. The HelCat dual-source plasma device.

    PubMed

    Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-10-01

    The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.

  6. Prediction of plasma properties in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  7. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    PubMed

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  8. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff

    NASA Astrophysics Data System (ADS)

    Yaman, Necla; Özdoğan, Esen; Seventekin, Necdet; Ayhan, Hakan

    2009-05-01

    The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.

  9. Basic requirements for a 1000-MW(electric) class tokamak fusion-fission hybrid reactor and its blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori

    1994-08-01

    Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less

  10. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less

  11. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.

    2017-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.

  12. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  13. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    NASA Astrophysics Data System (ADS)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  14. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  15. First Report on Non-Thermal Plasma Reactor Scaling Criteria and Optimization Models

    DTIC Science & Technology

    1998-01-13

    decomposition chemistry of nitric oxide and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma ... chemistry , the target species properties, and the reactor operating parameters. System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.

  16. Superconducting applications in propulsion systems. Magnetic insulation for plasma propulsion devices

    NASA Technical Reports Server (NTRS)

    Gonzalez, Dora E.; Karr, Gerald R.

    1990-01-01

    The purpose of this paper is to review the status of knowledge of the basic concepts needed to establish design parameters for effective magnetic insulation. The objective is to estimate the effectiveness of the magnetic field in insulating the plasma, to calculate the magnitude of the magnetic field necessary to reduce the heat transfer to the walls sufficiently enough to demonstrate the potential of magnetically driven plasma rockets.

  17. TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Welzel, T.

    2009-05-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.

  18. The HelCat basic plasma science device

    NASA Astrophysics Data System (ADS)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  19. Progress Towards Spectroscopic Diagnostics of Plasma Parameters and Neutral Dynamics in Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Green, Jonathan; Schmitz, Oliver; Severn, Greg; van Ruremonde, Lars; Winters, Victoria

    2017-10-01

    The MARIA device at the UW-Madison is used primarily to investigate the dynamics and fueling of neutral particles in helicon discharges. A new systematic method is in development to measure key plasma and neutral particle parameters by spectroscopic methods. The setup relies on spectroscopic line ratios for investigating basic plasma parameters and extrapolation to other states using a collisional radiative model. Active pumping using a Nd:YAG pumped dye laser is used to benchmark and correct the underlying atomic data for the collisional radiative model. First results show a matching linear dependence between electron density and laser induced fluorescence on the magnetic field above 500G. This linear dependence agrees with the helicon dispersion relation and implies MARIA can reliably support the helicon mode and support future measurements. This work was funded by the NSF CAREER award PHY-1455210.

  20. Review and perspectives of electrostatic turbulence and transport studies in the basic plasma physics device TORPEX

    NASA Astrophysics Data System (ADS)

    Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian

    2012-10-01

    TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.

  1. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    NASA Astrophysics Data System (ADS)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  2. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  3. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    NASA Astrophysics Data System (ADS)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  4. Relativistic thermal plasmas - Effects of magnetic fields

    NASA Technical Reports Server (NTRS)

    Araki, S.; Lightman, A. P.

    1983-01-01

    Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.

  5. Plasma myelin basic protein assay using Gilford enzyme immunoassay cuvettes.

    PubMed

    Groome, N P

    1981-10-01

    The assay of myelin basic protein in body fluids has potential clinical importance as a routine indicator of demyelination. Preliminary details of a competitive enzyme immunoassay for this protein have previously been published by the author (Groome, N. P. (1980) J. Neurochem. 35, 1409-1417). The present paper now describes the adaptation of this assay for use on human plasma and various aspects of routine data processing. A commercially available cuvette system was found to have advantages over microtitre plates but required a permuted arrangement of sample replicates for consistent results. For dose interpolation, the standard curve could be fitted to a three parameter non-linear equation by regression analysis or linearised by the logit/log transformation.

  6. Surface Brightness Test and Plasma Redshift

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2006-03-01

    The plasma redshift of photons in a hot sparse plasma follows from basic axioms of physics. It has no adjustable parameters (arXiv:astro-ph/0406437). Both the distance-redshift relation and the magnitude-redshift relation for supernovae and galaxies are well-defined functions of the average electron densities in intergalactic space. We have previously shown that the predictions of the magnitude-redshift relation in plasma- redshift cosmology match well the observed relations for the type Ia supernovae (SNe). No adjustable parameters such as the time variable ``dark energy'' and ``dark matter'' are needed. We have also shown that plasma redshift cosmology predicts well the intensity and black body spectrum of the cosmic microwave background (CMB). Plasma redshift explains also the spectrum below and above the 2.73 K black body CMB, and the X-ray background. In the following, we will show that the good observations and analyses of the relation between surface brightness and redshift for galaxies, as determined by Allan Sandage and Lori M. Lubin in 2001, are well predicted by the plasma redshift. All these relations are inconsistent with cosmic time dilation and the contemporary big-bang cosmology.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Schaeffer, D. B.; Everson, E. T.

    Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparisonmore » to an analytical coupling parameter.« less

  8. Rogue waves in space dusty plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, N. A.; Mannan, A.; Mamun, A. A.

    2017-11-01

    The modulational instability of dust-acoustic (DA) waves (DAWs) and corresponding DA rogue waves (DARWs) in a realistic space dusty plasma system (containing inertial warm positively and negatively charged dust, isothermal ions, and super-thermal kappa distributed electrons) has been theoretically investigated. The nonlinear Schrödinger equation is derived by using a reductive perturbation method for this investigation. It is observed that the dusty plasma system under consideration supports two branches of modes, namely, fast and slow DA modes, and that both of these two modes can be stable or unstable depending on the sign of ratio of the dispersive and nonlinear coefficients. The numerical analysis has shown that the basic features (viz., stability/instability, growth rate, amplitude, and width of the rogue structures, etc.) of the DAWs associated with the fast DA modes are significantly modified by super-thermal parameter (κ) and other various plasma parameters. The results of our present investigation should be useful for understanding DARWs in space plasma systems, viz., mesosphere and ionosphere.

  9. Gravitational instability in isotropic MHD plasma waves

    NASA Astrophysics Data System (ADS)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  10. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    NASA Astrophysics Data System (ADS)

    Blandón, J. S.; Grisales, J. P.; Riascos, H.

    2017-06-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.

  11. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  12. Plasma medicine—current state of research and medical application

    NASA Astrophysics Data System (ADS)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  13. Rogue Waves in Multi-Ion Cometary Plasmas

    NASA Astrophysics Data System (ADS)

    Sreekala, G.; Manesh, M.; Neethu, T. W.; Anu, V.; Sijo, S.; Venugopal, C.

    2018-01-01

    The effect of pair ions on the formation of rogue waves in a six-component plasma composed of two hot and one colder electron component, hot ions, and pair ions is studied. The kappa distribution, which provides an unambiguous replacement for a Maxwellian distribution in space plasmas, is connected with nonextensive statistical mechanics and provides a continuous energy spectrum. Hence, the colder and one component of the hotter electrons is modeled by kappa distributions and the other hot electron component, by a q-nonextensive distribution. It is found that the rogue wave amplitude is different for various pair-ion components. The magnitude, however, increases with increasing spectral index and nonextensive parameter q. These results may be useful in understanding the basic characteristics of rogue waves in cometary plasmas.

  14. Local Neutral Density and Plasma Parameter Measurements in a Hollow Cathode Plume

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; MiKellides, Joannis; Watkins, Ron M.

    2006-01-01

    In order to understand the cathode and keeper wear observed during the Extended Life Test (ELT) of the DS1 flight spare NSTAR thruster and provide benchmarking data for a 2D cathode/cathode-plume model, a basic understanding of the plasma and neutral gas parameters in the cathode orifice and keeper region of the cathode plume must be obtained. The JPL cathode facility is instrumented with an array of Langmuir probe diagnostics along with an optical diagnostic to measure line intensity of xenon neutrals. In order to make direct comparisons with the present model, a flat plate anode arrangement was installed for these tests. Neutral density is deduced from the scanning probe data of the plasma parameters and the measured xenon line intensity in the optical regime. The Langmuir probes are scanned both axially, out to 7.0 cm downstream of the keeper, and radially to obtain 2D profile of the plasma parameters. The optical fiber is housed in a collimating stainless steel tube, and is scanned to view across the cathode plume along cuts in front of the keeper with a resolution of 1.5 mm. The radial intensities are unfolded using the Abel inversion technique that produces radial profiles of local neutral density. In this paper, detailed measurements of the plasma parameters and the local neutral densities will be presented in the cathode/keeper plume region for a 1.5 cm diameter NEXIS cathode at 25A of discharge current at several different strengths of applied magnetic field.

  15. Electromagnetic wave energy flow control with a tunable and reconfigurable coupled plasma split-ring resonator metamaterial: A study of basic conditions and configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.

    2016-05-28

    We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less

  16. Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.

  17. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    PubMed Central

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  18. Classifying the Basic Parameters of Ultraviolet Copper Bromide Laser

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S. G.; Iliev, I. P.; Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.

    2009-10-01

    The performance of deep ultraviolet copper bromide lasers is of great importance because of their applications in medicine, microbiology, high-precision processing of new materials, high-resolution laser lithography in microelectronics, high-density optical recording of information, laser-induced fluorescence in plasma and wide-gap semiconductors and more. In this paper we present a statistical study on the classification of 12 basic lasing parameters, by using different agglomerative methods of cluster analysis. The results are based on a big amount of experimental data for UV Cu+ Ne-CuBr laser with wavelengths 248.6 nm, 252.9 nm, 260.0 nm and 270.3 nm, obtained in Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences. The relevant influence of parameters on laser generation is also evaluated. The results are applicable in computer modeling and planning the experiments and further laser development with improved output characteristics.

  19. Axisymmetric Plasma Equilibria in General Relativity

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  20. Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher; Gekelman, Walter

    2012-10-01

    A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.

  1. Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.

    2017-10-01

    We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  2. Drift-based scrape-off particle width in X-point geometry

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Eich, T.

    2017-04-01

    The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.

  3. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  4. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  5. Implementation of atomic layer etching of silicon: Scaling parameters, feasibility, and profile control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.

    2016-05-15

    Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less

  6. Investigation of the electrical discharge parameters in electrodeless inductive lamps with a re-entrant coupler and magnetic core

    NASA Astrophysics Data System (ADS)

    Statnic, Eugen; Tanach, Valentin

    2006-08-01

    The inductively coupled fluorescent lamp with a cored induction coil placed in a re-entrant cavity is in fact a coaxial transformer operated in the radiofrequency range between 100 kHz and a few MHz. The magnetic coupling coefficient k between the primary coil and the plasma ring is relatively low because of the open magnetic circuit. The acting mutual inductance M enables us to quantify the interaction between the magnetic field produced by the primary coil current I1 and the opposing magnetic field produced by the powerful plasma current I2. A contra-electromotive force jωMI2 is induced in the induction coil L1, defining the primary voltage V1 = I1(R1 + jω L1) - jωMI2. The current I1 induces in the secondary conductive plasma the driving electromotive force jωMI1 supplying the secondary load consisting of the average plasma resistance R2 and the secondary inductance L2, according to the equation jωMI2 = I2(R2 + jωL2). It is the aim of this paper to find a model to determine k on the basis of the measured primary parameters V1, I1, P1, L1, R1 and finally all electrical inaccessible parameters, such as M, V2, I2, phiv2, L2, R2, in order to optimize the discharge and lamp efficacy. The complex characteristic of plasma inductance for this type of lamp is analysed and clarified. Some reflexive basic relations verifying the correctness of the inferred plasma parameters are also developed. The described experiments are related to a lamp working at about 2.6 MHz.

  7. Diagnostic study of multiple double layer formation in expanding RF plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  8. High Throughput Plasma Water Treatment

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  9. Measurement of low temperature plasma properties using non-invasive impedance measurements

    NASA Astrophysics Data System (ADS)

    Gillman, Eric; Amatucci, Bill; Tejero, Erik; Blackwell, David

    2017-10-01

    A plasma discharge can be modeled electrically as a combination of capacitors, resistors, and inductors. The plasma, much like an RLC circuit, will have resonances at particular frequencies. The location in frequency space of these resonances provides information about the plasma parameters. These resonances can be detected using impedance measurements, where the AC impedance of the plasma is measured by sweeping the frequency of an AC voltage applied to a sensor and determining the magnitude and phase of the measured current. In this work, an electrode used to sustain a glow discharge is also used as an impedance probe. The novelty of this method is that insertion of a physical probe, which can introduce perturbation and/or contamination, is not necessary. This non-invasive impedance probe method is used to measure the plasma discharge density in various regimes of plasma operation. Experimental results are compared to the basic circuit model results. The potential applications of this diagnostic method and regimes over which this measurement method is valid will be discussed.

  10. Ion acoustic solitons in magnetized collisional non-thermal dusty plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.

    2018-05-01

    The oblique propagation of ion-acoustic solitary waves (IASWs) is considered, in a magnetized non-thermal collisional dusty plasma, composed of non-Maxwelian κ-distributed electrons, inertial ions, and stationary dust. The reductive perturbation approach is adopted to derive the damped Korteweg de-Vries (dKdV) equation, and the dissipative oblique ion-acoustic wave properties are investigated in terms of different key plasma parameters via the numerical solution of the dKdV equation. The collisional effect, describing the ion-neutral collision in the plasma, is taken into account, and seen to influence the dynamics of IASWs significantly. The basic features of IASWs are observed to modify, and the polarity of the wave is seen to change due to the variation of dust to that of ion number density and also due to the variation of the supethermality index κ in the considered plasma system.

  11. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    PubMed

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. The interaction of intense subpicosecond laser pulses with underdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10 16 W/cm 2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L plasma ≥ 2L Rayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n o ≤ 0.05n cr). Specifically, themore » parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.« less

  13. Electronic processes in TTF-derived complexes studied by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Graja, Andrzej

    2001-09-01

    We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.

  14. Deciphering the kinetic structure of multi-ion plasma shocks

    DOE PAGES

    Keenan, Brett D.; Simakov, Andrei N.; Chacón, Luis; ...

    2017-11-15

    Here, strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments, including inertial confinement fusion implosions. However, their basic structure and its dependence on key parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies in that regard remain in the literature. In particular, the shock width's dependence on the Mach number has been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar shocks in D- 3He plasmas. Additionally, we derive and confirm with kineticmore » simulations a quantitative description of the dependence of the shock width on the Mach number and initial ion concentration.« less

  15. Deciphering the kinetic structure of multi-ion plasma shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Brett D.; Simakov, Andrei N.; Chacón, Luis

    Here, strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments, including inertial confinement fusion implosions. However, their basic structure and its dependence on key parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies in that regard remain in the literature. In particular, the shock width's dependence on the Mach number has been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar shocks in D- 3He plasmas. Additionally, we derive and confirm with kineticmore » simulations a quantitative description of the dependence of the shock width on the Mach number and initial ion concentration.« less

  16. Pulsed arc plasma jet synchronized with drop-on-demand dispenser

    NASA Astrophysics Data System (ADS)

    Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.

    2017-04-01

    This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.

  17. Electrical probe characteristic recovery by measuring only one time-dependent parameter

    NASA Astrophysics Data System (ADS)

    Costin, C.; Popa, G.; Anita, V.

    2016-03-01

    Two straightforward methods for recovering the current-voltage characteristic of an electrical probe are proposed. Basically, they consist of replacing the usual power supply from the probe circuit with a capacitor which can be charged or discharged by the probe current drained from the plasma. The experiment requires the registration of only one time-dependent electrical parameter, either the probe current or the probe voltage. The corresponding time-dependence of the second parameter, the probe voltage, or the probe current, respectively, can be calculated using an integral or a differential relation and the current-voltage characteristic of the probe can be obtained.

  18. Minority heating scenarios in ^4He(H) and ^3He(H) SST-1 plasmas

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Asim Kumar

    2018-01-01

    A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I plasma parameters which is basically L-mode plasma parameters having low ion temperature and magnetic field with the help of the ion cyclotron heating code TORIC combined with `steady state Fokker-Planck quasilinear' (SSFPQL) solver. As a minority species hydrogen has been used in ^3He and ^4He plasmas to make two species ^3He(H) and ^4He(H) plasmas to study the ion cyclotron wave absorption scenarios. The minority heating is predominant in ^3He(H) and ^4He(H) plasmas as minority resonance layers are not shielded by ion-ion resonance and cut-off layers in both cases, and it is better in ^4He(H) plasma due to the smooth penetration of wave through plasma-vacuum surface. In minority concentration up to 15%, it has been observed that minority ion heating is the principal heating mechanism compared to electron heating and heating due to mode conversion phenomena. Numerical analysis with the help of SSFPQL solver shows that the tail of the distribution function of the minority ion is more energetic than that of the majority ion and therefore, more anisotropic. Due to good coupling of the wave and predominance of the minority heating regime, producing energetic ions in the tail region of the distribution function, the ^4He(H) and ^3He(H) plasmas could be studied in-depth to achieve H-mode in two species of low-temperature plasma.

  19. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  20. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extractmore » the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.« less

  1. Higher Order Analysis of Turbulent Changes Found in the ELF Range Electric Field Plasma Before Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Kosciesza, M.; Blecki, J. S.; Parrot, M.

    2014-12-01

    We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.

  2. Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less

  3. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.

    2018-02-01

    We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

  4. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses.

    PubMed

    Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung

    2014-10-01

    Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

  5. Heated probe diagnostic inside of the gas aggregation nanocluster source

    NASA Astrophysics Data System (ADS)

    Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team

    2016-09-01

    Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.

  6. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  7. A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar

    This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.

  8. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less

  9. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied fields to find novel control knob and optimizing processing conditions.

  10. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  11. FRX-L Research Status and Plans

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Intrator, T. P.; Taccetti, J. M.; Furno, I. G.; Hsu, S. C.; Zhang, S. Y.; Degnan, J. H.; Grabowski, C.; Ruden, E. L.

    2003-10-01

    Our research plans for FRX-L, the field reversed configuration plasma injector at LANL for magnetized target fusion (MTF), have been planned for the next 4-year period. FRX-L has been successfully operating now for the last two years, although construction for both the machine and diagnostic sets is ongoing. Efforts in FY04 begin with continued improvements in the basic high density FRC parameters, through operation at increased magnetic fields and with the addition of a more effective main bank crowbar to reduce parasitic ringing in the high current main coil circuit. Translation experiments into a "fake" metal liner, perforated with diagnostic access ports, will start after designing and constructing the translation section. Another bank of capacitors will be added to power the additional guide and mirror coils. After demonstrating trapping of the plasma in the aluminum liner, and diagnosing sufficient plasma parameters (density, temperature, lifetime, purity), we will begin preparations for the integrated plasma/liner compression experiment at the Air Force Research Laboratory Shiva-Star machine in FY05. Construction of the new hardware will continue during FY06, and the first fusion-relevant demonstration of compression of plasma by an imploding metal liner is planned for FY07. Our MTF plans also include new initiatives with U of Washington, U of Wisconsin, and the University of New Mexico, in addition to ongoing theory ties to LLNL and GA.

  12. Super-soliton dust-acoustic waves in four-component dusty plasma using non-extensive electrons and ions distributions

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Abulwafa, Essam M.; Elhanbaly, Atalla A.

    2017-07-01

    Based on Sagdeev pseudo-potential and phase-portrait, the dynamics of four-component dust plasma with non-extensively distributed electrons and ions are investigated. Three distinct types of nonlinear waves, namely, soliton, double layer, and super-soliton, have been found. The basic features of such waves are high sensitivity to Mach number, non-extensive parameter, and dust temperature ratio. It is found that the multi-component plasma is a necessary condition for super-soliton's existence, having a wider amplitude and a larger width than the regular soliton. Super-solitons may also exist when the Sagdeev pseudo-potential curves admit at least four extrema and two roots. In our multi-component plasma system, the super-solitons can be found by increasing the Mach number and the non-extensive parameter beyond those of double-layers. On the contrary, the super-soliton can be produced by decreasing the dust temperature ratio. The conditions of the onset of such nonlinear waves and its merging to regular solitons have been studied. This work shows that the obtained nonlinear waves are found to exist only in the super-sonic Mach number regime. The obtained results may be of wide relevance in the field of space plasma and may also be helpful to better understand the nonlinear fluctuations in the Auroral-zone of the Earth's magnetosphere.

  13. Comparative analyses of plasma probe diagnostics techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godyak, V. A.; Alexandrovich, B. M.

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much asmore » an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.« less

  14. Comparative analyses of plasma probe diagnostics techniques

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-01

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  15. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  16. The Physics Basis of ITER Confinement

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2009-02-01

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode—the preferred confinement regime of ITER.

  17. The average solar wind in the inner heliosphere: Structures and slow variations

    NASA Technical Reports Server (NTRS)

    Schwenn, R.

    1983-01-01

    Measurements from the HELIOS solar probes indicated that apart from solar activity related disturbances there exist two states of the solar wind which might result from basic differences in the acceleration process: the fast solar wind (v 600 kms(-)1) emanating from magnetically open regions in the solar corona and the "slow" solar wind (v 400 kms(-)1) correlated with the more active regions and its mainly closed magnetic structures. In a comprehensive study using all HELIOS data taken between 1974 and 1982 the average behavior of the basic plasma parameters were analyzed as functions of the solar wind speed. The long term variations of the solar wind parameters along the solar cycle were also determined and numerical estimates given. These modulations appear to be distinct though only minor. In agreement with earlier studies it was concluded that the major modulations are in the number and size of high speed streams and in the number of interplanetary shock waves caused by coronal transients. The latter ones usually cause huge deviations from the averages of all parameters.

  18. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; MST Team

    2011-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with minimal external magnetization, (2) toroidal confinement physics, and (3) basic plasma physics is summarized. New tools and diagnostics are accessing physics barely studied in the RFP. Several diagnostic advances are important for ITER/burning plasma. A 1 MW neutral beam injector operates routinely for fast ion, heating, and transport investigations. Energetic ions are also created spontaneously by tearing mode reconnection, reminiscent of astrophysical plasmas. Classical confinement of impurity ions is measured in reduced-tearing plasmas. Fast ion slowing-down is also classical. Alfven-eigenmode-like activity occurs with NBI, but apparently not TAE. Stellarator-like helical structure appears in the core of high current plasmas, with improved confinement characteristics. FIR interferometry, Thomson scattering, and HIBP diagnostics are beginning to explore microturbulence scales, an opportunity to exploit the RFP's high beta and strong magnetic shear parameter space. A programmable power supply for the toroidal field flexibly explores scenarios from advanced inductive profile control to low current tokamak operation. A 1 MW 5.5 GHz source for electron Bernstein wave injection is nearly complete to investigate heating and current drive in over-dense plasmas. Supported by DOE and NSF.

  19. Low pressure characteristics of the multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Oberrath, Jens

    2014-10-01

    The term ``Active plasma resonance spectroscopy'' (APRS) denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. The basic idea dates back to the early days of discharge physics but has recently found renewed interest as an approach to industry-compatible plasma diagnostics: A radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded (with the same or another antenna or probe), and a mathematical model is used to determine plasma parameters like the electron density or the electron temperature. When the method is applied to low pressure plasmas (of a few Pa and lower), kinetic effects must be accounted for in the mathematical model. This contribution studies a particular realization of the APRS scheme, the geometrically and electrically symmetric Multipole Resonance Probe (MRP). It is shown that the resonances of the MRP exhibit a residual damping in the limit p --> 0 which cannot be explained by Ohmic dissipation but only by kinetic effects. Supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the PluTO project.

  20. uSIMPK. An Excel for Windows-based simulation program for instruction of basic pharmacokinetics principles to pharmacy students.

    PubMed

    Brocks, Dion R

    2015-07-01

    Pharmacokinetics can be a challenging topic to teach due to the complex relationships inherent between physiological parameters, mathematical descriptors and equations, and their combined impact on shaping the blood fluid concentration vs. time curves of drugs. A computer program was developed within Microsoft Excel for Windows, designed to assist in the instruction of basic pharmacokinetics within an entry-to-practice pharmacy class environment. The program is composed of a series of spreadsheets (modules) linked by Visual Basic for Applications, intended to illustrate the relationships between pharmacokinetic and in some cases physiological parameters, doses and dose rates and the drug blood fluid concentration vs. time curves. Each module is accompanied by a simulation user's guide, prompting the user to change specific independent parameters and then observe the impact of the change(s) on the drug concentration vs. time curve and on other dependent parameters. "Slider" (or "scroll") bars can be selected to readily see the effects of repeated changes on the dependencies. Topics covered include one compartment single dose administration (iv bolus, oral, short infusion), intravenous infusion, repeated doses, renal and hepatic clearance, nonlinear elimination, two compartment model, plasma protein binding and the relationship between pharmacokinetics and drug effect. The program has been used in various forms in the classroom over a number of years, with positive ratings generally being received from students for its use in the classroom. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Axisymmetric plasma equilibria in a Kerr metric

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  2. Characterization of plasma current quench during disruptions at HL-2A

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  3. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandemmore » type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.« less

  4. Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry

    NASA Astrophysics Data System (ADS)

    Patel, J.; Němcová, L.; Maguire, P.; Graham, W. G.; Mariotti, D.

    2013-06-01

    Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e.g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 μM to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au0 atoms, leading to nucleation growth of the AuNPs.

  5. Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole.

    PubMed

    Matsui, Kazuki; Tsume, Yasuhiro; Takeuchi, Susumu; Searls, Amanda; Amidon, Gordon L

    2017-04-03

    Weakly basic drugs exhibit a pH-dependent dissolution profile in the gastrointestinal (GI) tract, which makes it difficult to predict their oral absorption profile. The aim of this study was to investigate the utility of the gastrointestinal simulator (GIS), a novel in vivo predictive dissolution (iPD) methodology, in predicting the in vivo behavior of the weakly basic drug dipyridamole when coupled with in silico analysis. The GIS is a multicompartmental dissolution apparatus, which represents physiological gastric emptying in the fasted state. Kinetic parameters for drug dissolution and precipitation were optimized by fitting a curve to the dissolved drug amount-time profiles in the United States Pharmacopeia apparatus II and GIS. Optimized parameters were incorporated into mathematical equations to describe the mass transport kinetics of dipyridamole in the GI tract. By using this in silico model, intraluminal drug concentration-time profile was simulated. The predicted profile of dipyridamole in the duodenal compartment adequately captured observed data. In addition, the plasma concentration-time profile was also predicted using pharmacokinetic parameters following intravenous administration. On the basis of the comparison with observed data, the in silico approach coupled with the GIS successfully predicted in vivo pharmacokinetic profiles. Although further investigations are still required to generalize, these results indicated that incorporating GIS data into mathematical equations improves the predictability of in vivo behavior of weakly basic drugs like dipyridamole.

  6. The radial electric field dynamics in the neoclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novakovskii, S.V.; Liu, C.S.; Sagdeev, R.Z.

    1997-12-01

    A numerical simulation and analytical theory of the radial electric field dynamics in low collisional tokamak plasmas are presented. An initial value code {open_quotes}ELECTRIC{close_quotes} has been developed to solve the ion drift kinetic equation with a full collisional operator in the Hirshman{endash}Sigmar{endash}Clarke form together with the Maxwell equations. Different scenarios of relaxation of the radial electric field toward the steady-state in response to sudden and adiabatic changes of the equilibrium temperature gradient are presented. It is shown, that while the relaxation is usually accompanied by the geodesic acoustic oscillations, during the adiabatic change these oscillations are suppressed and only themore » magnetic pumping remains. Both the collisional damping and the Landau resonance interaction are shown to be important relaxation mechanisms. Scalings of the relaxation rates versus basic plasma parameters are presented. {copyright} {ital 1997 American Institute of Physics.}« less

  7. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    NASA Astrophysics Data System (ADS)

    Koepke, Mark

    2008-07-01

    The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.

  8. Electron density in surface barrier discharge emerging at argon/water interface: quantification for streamers and leaders

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš

    2018-02-01

    Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm-3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.

  9. BMSW - Fast Solar Wind Monitor - three years in orbit: Status and prospects

    NASA Astrophysics Data System (ADS)

    Prech, Lubomir; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Vaverka, Jakub; Cermak, Ivo; Chesalin, Lev S.; Gavrilova, Elena

    Fast Solar Wind Monitor BMSW is an instrument flown as a part of the PLASMA-F complex onboard the Russian Spektr-R radioastronomical spacecraft. The spacecraft was launched on July 18, 2011. During the COSPAR-2014 Assembly meeting, the instrument is supposed to celebrate three successful years in operation. With a set of 6 Faraday’s cups, the instrument has a unique time resolution --- 0.5--1 s for a full energy spectrum (96 energy steps) and 31~ms for basic solar wind plasma parameters directing the instrument to study of fast solar wind discontinuities including interplanetary shocks, a fast variability of proton and alpha particle parameters, and to study of solar wind turbulence up to the ion kinetic scales. The measurement technique, its implementation, and ground data processing are discussed in the contribution. The performance of the instrument design and electronics are presented. We discuss heritage of this instrument utilized in design of future instruments being prepared for the further projects as Luna-Glob.

  10. First Plasma Results from the Levitated Dipole Experiment

    NASA Astrophysics Data System (ADS)

    Garnier, Darren T.

    2005-04-01

    On August 13, 2004, the first plasma physics experiments were conducted using the Levitated Dipole Experiment(LDX)http://www.psfc.mit.edu/ldx/. LDX was built at MIT's Plasma Science and Fusion Center as a joint research project of Columbia University and MIT. LDX is a first-of-its-kind experiment incorporating three superconducting magnets and exploring the physics of high-temperature plasma confined by dipole magnetic fields, similar to planetary magnetospheres. It will test recent theories that suggest that stable, high-β plasma can be confined without good curvature or magnetic shear, instead using plasma compressibility to provide stability. (Plasma β is the ratio of plasma pressure to magnetic pressure.) In initial experiments, 750 kA of current was induced in the dipole coil which was physically supported in the center of the 5 m diameter vacuum chamber. Deuterium plasma discharges, lasting from 4 to 10 seconds, were formed with multi-frequency ECRH microwave heating of up to 6.2 kW. Each plasma contained a large fraction of energetic and relativistic electrons that created a significant pressure that caused outward expansion of the magnetic field. Reconstruction of the magnetic equilibrium from external magnetic diagnostics indicate local peak plasma β 7 %. Along with an overview of the LDX device, results from numerous diagnostics operating during this initial supported campaign measuring the basic plasma parameters will be presented. In addition, observations of instabilities leading to rapid plasma loss and the effects of changing plasma compressibility will be explored.

  11. Qualitative dynamical analysis of chaotic plasma perturbations model

    NASA Astrophysics Data System (ADS)

    Elsadany, A. A.; Elsonbaty, Amr; Agiza, H. N.

    2018-06-01

    In this work, an analytical framework to understand nonlinear dynamics of plasma perturbations model is introduced. In particular, we analyze the model presented by Constantinescu et al. [20] which consists of three coupled ODEs and contains three parameters. The basic dynamical properties of the system are first investigated by the ways of bifurcation diagrams, phase portraits and Lyapunov exponents. Then, the normal form technique and perturbation methods are applied so as to the different types of bifurcations that exist in the model are investigated. It is proved that pitcfork, Bogdanov-Takens, Andronov-Hopf bifurcations, degenerate Hopf and homoclinic bifurcation can occur in phase space of the model. Also, the model can exhibit quasiperiodicity and chaotic behavior. Numerical simulations confirm our theoretical analytical results.

  12. High density circuit technology, part 3

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.

  13. Uncertainty propagation by using spectral methods: A practical application to a two-dimensional turbulence fluid model

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Milanese, Lucio; Ricci, Paolo

    2017-10-01

    To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.

  14. TOPICAL REVIEW: Plasma assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  15. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  16. Antihypertensive effects of continuous oral administration of nattokinase and its fragments in spontaneously hypertensive rats.

    PubMed

    Fujita, Mitsugu; Ohnishi, Katsunori; Takaoka, Shinsaku; Ogasawara, Kazuya; Fukuyama, Ryo; Nakamuta, Hiromichi

    2011-01-01

    To determine whether the antihypertensive effect of nattokinase is associated with the protease activity of this enzyme, we compared nattokinase with the fragments derived from nattokinase, which possessed no protease activity, in terms of the effect on hypertension in spontaneously hypertensive rats (SHR). In the continuous oral administration test, the groups were given a basic diet alone (control), the basic diet containing nattokinase (0.2, 2.6 mg/g diet) or the basic diet containing the fragments derived from nattokinase (0.2, 0.6 mg/g diet). The group fed the basic diet containing high-dosage nattokinase (2.6 mg/g diet) showed significant reductions in systolic blood pressure (SBP), diastolic blood pressure (DBP) and plasma fibrinogen level, compared with control group and no influence on activities of renin and angiotensin-converting enzyme (ACE, EC 3.4.15.1), and plasma angiotensin II level in the renin-angiotensin system. The treatment of the basic diet containing high-dosage fragments (0.6 mg/g diet) significantly decreased SBP, DBP and plasma angiotensin II level in plasma but the treatment did not influence on plasma fibrinogen level. These results suggest that nattokinase and its fragments are different from each other in the mechanism to reduce hypertension. Nattokinase, retained its protease activity after absorbance across the intestines, may decrease blood pressure through cleavage of fibrinogen in plasma. The fragments, which absorbed as nattokinase-degradation products, prevents the elevation of plasma angiotensin II level to suppress hypertension.

  17. Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line

    NASA Astrophysics Data System (ADS)

    Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.

    2004-11-01

    Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.

  18. Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2013-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.

  19. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  20. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use will be discussed.

  1. Exciting Alfven Waves using Modulated Electron Heating by High Power Microwaves

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2014-10-01

    Experiments exploring the physics of ionospheric modification with intense perpendicular propagating waves (k-> ⊥B->0) on the Large Plasma Device (LaPD) at UCLA have been upgraded with the addition of a high power rapidly pulsed microwave source. The plasma is irradiated with ten pulses (250 kW X-band) near the upper-hybrid frequency. The pulses are modulated at a frequency of a fraction (0.1-1.0) of fci (ion cyclotron frequency). Based on a previous single-pulse experiment, the modulated electron heating may drive a large amplitude shear Alfvén wave (f

  2. Global modelling of plasma-wall interaction in reversed field pinches

    NASA Astrophysics Data System (ADS)

    Bagatin, M.; Costa, S.; Ortolani, S.

    1989-04-01

    The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.

  3. A case study of the aurora, high-latitude ionosphere, and particle precipitation during near-steady state conditions

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Anger, C. D.; Shepherd, G. G.; Weber, E. J.; Wagner, R. A.

    1978-01-01

    An Isis 2 pass studied in related experiments was singled out for a detailed examination of the particle fluxes, optical emissions, and ionospheric parameters observed during a quiescent period (late recovery) between two substorms. Since both long-duration measurements (aircraft) and transient snapshot (spacecraft) data are available, space and time effects can, on a macroscopic level, be separated. The latitudinal morphology observed by the satellite is found to be basically spatial in nature. It is suggested that the observed particle fluxes can be explained in terms of precipitation from the quiet time plasma sheet without intervening acceleration. The agreement of the observed optical emissions and ionospheric parameters with the electron fluxes is discussed.

  4. How do classical particle-field systems become unstable? - The last physics problem that Ronald Davidson studied

    NASA Astrophysics Data System (ADS)

    Qin, Hong

    2016-10-01

    Many of the classical particle-field systems in (neutral and nonneutral) plasma physics and accelerator physics become unstable when the system parameters vary. How do these instabilities happen? It turns out, very interestingly, that all conservative systems become unstable by the same mechanism, i.e, the resonance between a positive- and a negative-action modes. And this is the only route that a stable system can become unstable. In this talk, I will use several examples in plasma physics and accelerator physics with finite and infinite degrees of freedom to illustrate the basic physical picture and the rigorous theoretical structure of the process. The features at the transition between stable and unstable regions in the parameter space are the fundamental characteristics of the underlying real Hamiltonian system and complex G-Hamiltonian system. The resonance between a positive- and a negative-action modes at the transition is the Krein collision well-known to mathematicians. Research supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  5. Basic Properties of Plasma-Neutral Coupling in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Goodman, Michael

    2015-04-01

    Plasma-neutral coupling (PNC) in the solar atmosphere concerns the effects of collisions between charged and neutral species’. It is most important in the chromosphere, which is the weakly ionized, strongly magnetized region between the weakly ionized, weakly magnetized photosphere and the strongly ionized, strongly magnetized corona. The charged species’ are mainly electrons, protons, and singly charged heavy ions. The neutral species’ are mainly hydrogen and helium. The resistivity due to PNC can be several orders of magnitude larger than the Spitzer resistivity. This enhanced resistivity is confined to the chromosphere, and provides a highly efficient dissipation mechanism unique to the chromosphere. PNC may play an important role in many processes such as heating and acceleration of plasma; wave generation, propagation, and dissipation; magnetic reconnection; maintaining the near force-free state of the corona; and limiting mass flux into the corona. It might play a major role in chromospheric heating, and be responsible for the existence of the chromosphere as a relatively thin layer of plasma that emits a net radiative flux 10-100 times greater than that of the overlying corona. The required heating rate might be generated by Pedersen current dissipation triggered by the rapid increase of magnetization with height in the lower chromosphere, where most of the net radiative flux is emitted. Relatively cool regions of the chromosphere might be regions of minimal Pedersen current dissipation due to smaller magnetic field strength or perpendicular current density. This talk will discuss PNC from an MHD point of view, and focus on the basic parameters that determine its effectiveness. These parameters are ionization fraction, magnetization, and the electric field that drives current perpendicular to the magnetic field. By influencing this current and the electric field that drives it, PNC directly influences the rate at which energy is exchanged between the electromagnetic field and particles. In this way, PNC can have a strong influence on the energetics of a process that involves the conversion of magnetic energy into particle energy, which subsequently appears as radiation, waves, bulk flow, and heating.

  6. Better VPS Fabrication of Crucibles and Furnace Cartridges

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Zimmerman, Frank R.; O'Dell, J. Scott; McKechnie, Timothy N.

    2003-01-01

    An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.

  7. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  8. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  9. The onset of plasma potential locking

    DOE PAGES

    Hopkins, Matthew M.; Yee, Benjamin T.; Baalrud, Scott D.; ...

    2016-06-22

    In this study, we provide insight into the role and impact that a positively biased electrode (anode) has on bulk plasma potential. Using two-dimensional Particle-in-Cell simulations, we investigate the plasma potential as an anode transitions from very small (“probe” mode) to large (“locking” mode). Prior theory provides some guidance on when and how this transition takes place. Initial experimental results are also compared. The simulations demonstrate that as the surface area of the anode is increased transitions in plasma potential and sheath polarity occur, consistent with experimental observations and theoretical predictions. It is expected that understanding this basic plasma behaviormore » will be of interest to basic plasma physics communities, diagnostic developers, and plasma processing devices where control of bulk plasma potential is important.« less

  10. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  11. Plasma in dentistry: a review of basic concepts and applications in dentistry.

    PubMed

    Kim, Jae-Hoon; Lee, Mi-Ae; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-01-01

    Plasma-related technologies are essential in modern industries. Recently, plasma has attracted increased attention in the biomedical field. This paper provides a basic knowledge of plasma and a narrative review of plasma applications in dentistry. To review plasma applications in dentistry, an electronic search in PubMed, SCOPUS and Google scholar up to December 2012 was done. This was followed by extensive hand searching using reference lists from relevant articles. There have been attempts to apply plasma technology in various fields of dentistry including surface modifications of dental implants, adhesion, caries treatment, endodontic treatment and tooth bleaching. Although many studies were in early stages, the potential value of plasma for dental applications has been demonstrated. To enlarge the scope of plasma applications and put relevant research to practical use, interdisciplinary research with participation of dental professionals is required.

  12. Study of array plasma antenna parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kumar, Prince

    2018-04-01

    This paper is aimed to investigate the array plasma antenna parameters to help the optimization of an array plasma antenna. Single plasma antenna is transformed into array plasma antenna by changing the operating parameters. The re-configurability arises in the form of striations, due to transverse bifurcation of plasma column by changing the operating parameters. Each striation can be treated as an antenna element and system performs like an array plasma antenna. In order to achieve the goal of this paper, three different configurations of array plasma antenna (namely Array 1, Array 2 and Array 3) are simulated. The observations are made on variation in antenna parameters like resonance frequency, radiation pattern, directivity and gain with variation in length and number of antenna elements for each array plasma antenna. Moreover experiments are also performed and results are compared with simulation. Further array plasma antenna parameters are also compared with monopole plasma antenna parameters. The study of present paper invoke the array plasma antenna can be applied for steering and controlling the strength of Wi-Fi signals as per requirement.

  13. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch.

    PubMed

    Nozaki, Sachiko; Yamaguchi, Masayuki; Lefèvre, Gilbert

    2016-07-01

    Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Instabilities and transport in Hall plasmas with ExB drift

    NASA Astrophysics Data System (ADS)

    Smolyakov, Andrei

    2016-10-01

    Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.

  15. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1990-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  16. Heat sink effects on weld bead: VPPA process

    NASA Technical Reports Server (NTRS)

    Steranka, Paul O., Jr.

    1989-01-01

    An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.

  17. Randomised clinical trial of an intensive intervention in the primary care setting of patients with high plasma fibrinogen in the primary prevention of cardiovascular disease

    PubMed Central

    2012-01-01

    Background We have studied the possible effects of an intensive lifestyle change program on plasma fibrinogen levels, in patients with no cardiovascular disease, with elevated levels of fibrinogen, normal cholesterol levels, and a moderate estimated risk of coronary heart disease (CHD) and we have also analysed whether the effect on fibrinogen is independent of the effect on lipids. Results This clinical trial was controlled, unblinded and randomized, with parallel groups, done in 13 Basic Health Areas (BHA) in l'Hospitalet de Llobregat (Barcelona) and Barcelona city. The study included 436 patients, aged between 35 and 75 years, with no cardiovascular disease, elevated levels of fibrinogen (> 300 mg/dl), cholesterol < 250 mg/dl, 218 of whom received a more intensive intervention consisting of advice on lifestyle and treatment. The follow-up frequency of the intervention group was every 2 months. The other 218 patients followed their standard care in the BHAs. Fibrinogen, plasma cholesterol and other clinical biochemistry parameters were assessed. The evaluation of the baseline characteristics of the patients showed that both groups were homogenous. Obesity and hypertension were the most prevalent risk factors. After 24 months of the study, statistically significant changes were seen between the adjusted means of the two groups, for the following parameters: fibrinogen, plasma cholesterol, systolic and diastolic blood pressure and body mass index. Conclusion Intensive intervention to achieve lifestyle changes has shown to be effective in reducing some of the estimated CHD factors. However, the effect of intensive intervention on plasma fibrinogen levels did not correlate with the variations in cholesterol. Trial Registration ClinicalTrials.gov: NCT01089530 PMID:22381072

  18. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture.

    PubMed

    Yoshida, Ryu; Cheng, Mingyu; Murray, Martha M

    2014-02-01

    Tissue engineering is one new strategy being developed to treat ACL ruptures. One such approach is bio-enhanced ACL repair, where a suture repair is supplemented with a bio-active scaffold containing platelets. However, the optimal concentration of platelets to stimulate ACL healing is not known. We hypothesized that increasing platelet concentrations in the scaffold would enhance critical cell behaviors. Porcine ACL fibroblasts were obtained from explant culture and suspended in platelet poor plasma (PPP), 1× platelet-rich plasma (PRP), 3× PRP, 5× PRP, or phosphate buffered saline (PBS). The cell suspensions were cultured in a 3D collagen scaffold. Cellular metabolism (MTT assay), apoptosis (TUNEL assay), and gene expression for type I and type III collagen were measured. 1× PRP significantly outperformed 5× PRP in all parameters studied: Type I and III collagen gene expression, apoptosis prevention, and cell metabolism stimulation. ACL fibroblasts cultured with 1× PRP had the highest type I and type III collagen gene expression. 1× PRP and PPP groups had the highest cell metabolism and lowest apoptosis rates. Concentration of platelets had significant effects on the behavior of ACL fibroblasts; thus, it is an important parameter that should be specified in clinical or basic science studies. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Estimations of Kappa parameter using quasi-thermal noise spectroscopy: Applications on Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Martinović, M.

    2017-12-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.

  20. Structure and hemocompatibility of nanocrystalline titanium nitride produced under glow-discharge conditions

    NASA Astrophysics Data System (ADS)

    Sowińska, Agnieszka; Czarnowska, Elżbieta; Tarnowski, Michał; Witkowska, Justyna; Wierzchoń, Tadeusz

    2018-04-01

    Significant efforts are being made towards developing novel antithrombotic materials. The purpose of the presented study was to characterize two variants of nitrided surface layers produced on alloy Ti-6Al-4V in different areas of low-temperature plasma - at the plasma potential (TiNp) or at the cathode potential (TiNc). The layers were characterized in terms of their microstructure, surface topography and wettability, and platelet response to the environment of different pH. The produced layers were of the TiN + Ti2N + αTiN-type, but the layer produced at the plasma potential was thinner, smoother and had lower surface free energy compared with that produced at the cathode potential. Biological evaluation demonstrated more fibrinogen buildup, less platelet adhesion and aggregation, and fewer strongly activated platelets on the TiNp surface compared with those parameters on the TiNc surface and on the titanium alloy in its initial state. Interestingly, both surface types were significantly resistant to fibrinogen adsorption and platelet adhesion in the environment of lower pH. In conclusion, the nitrided surface layer produced at the plasma potential is a promising material and this basic information is critical for further development of hemocompatible materials.

  1. [Distribution of chemical elements in whole blood and plasma].

    PubMed

    Barashkov, G K; Zaĭtseva, L I; Kondakhchan, M A; Konstantinova, E A

    2003-01-01

    The distribution factor (Fd) of 35 elements of plasma and whole blood in 26 healthy men and women was detected by ICP-OES. Usilig this parameter the elements were subdivided in 3 pools. 9 of them have Fd higher than 1.5 ("elements of plasma"-Ag, Ca, Cu, In, Li, Na, Se, Si, Sr); 6 have lower than 0.5 ("elements of blood cells"-Fe, K, Mn, Ni, V, Zn), other 20-about 1 ("blood elements"). Fd of all elements depends on ionic radius. Elements of 2nd sub-groups of all groups of Mendeleev's periodic table ("heavy metals") depend on the similar law: "with growing of ionic radius the concentration of elements in plasma enhances". In alkaline metals Fd depends on the opposite law:" with growing of ionic radius of alkaline metal the quantity of elements in blood cells enhance". Dependence of Fd on the value of atomic mass in periods or in exterior electronic cloud (s-, p-, d-, f-) was not established. The table of distribution of all detected elements in whole blood in relation to 8 macroelements (Ca, Mg, K, Na, S, P, Fe, Zn,) is presented, as a basic diagnostic criteria in metal-ligand homeostasis disturbance.

  2. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Wallace, J.; Brookhart, M.; Clark, M.; Collins, C.; Ding, W. X.; Flanagan, K.; Khalzov, I.; Li, Y.; Milhone, J.; Nornberg, M.; Nonn, P.; Weisberg, D.; Whyte, D. G.; Zweibel, E.; Forest, C. B.

    2014-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ˜14 m3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (MA2=(v/vA)2>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  3. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  4. Foundations of low-temperature plasma physics—an introduction

    NASA Astrophysics Data System (ADS)

    von Keudell, A.; Schulz-von der Gathen, V.

    2017-11-01

    The use of plasmas as a reactive mixture of ions, electrons and neutrals is at the core of numerous technologies in industry, enabling applications in microelectronics, automotives, packaging, environment and medicine. Recently, even the use of plasmas in medical applications has made great progress. The dominant character of a plasma is often its non equilibrium nature with different temperatures for the individual species in a plasma, the ions, electrons and neutrals. This opens up a multitude of reaction pathways which are inaccessible to conventional methods in chemistry, for example. The understanding of plasmas requires expertise in plasma physics, plasma chemistry and in electrical engineering. This first paper in a series of foundation papers on low temperature plasma science is intended to provide the very basics of plasmas as a common starting point for the more in-depth discussion of particular plasma generation methods, plasma modeling and diagnostics in the other foundation papers. In this first paper of the series, the common terminology, definitions and main concepts are introduced. The covered aspects start with the basic definitions and include further plasma equilibria, particle collisions and transport, sheaths and discharge breakdowns.

  5. Two-step voltage dual electromembrane extraction: A new approach to simultaneous extraction of acidic and basic drugs.

    PubMed

    Asadi, Sakine; Nojavan, Saeed

    2016-06-07

    In the present work, acidic and basic drugs were simultaneously extracted by a novel method of high efficiency herein referred to as two-step voltage dual electromembrane extraction (TSV-DEME). Optimizing effective parameters such as composition of organic liquid membrane, pH values of donor and acceptor solutions, voltage and duration of each step, the method had its figures of merit investigated in pure water, human plasma, wastewater, and breast milk samples. Simultaneous extraction of acidic and basic drugs was done by applying potentials of 150 V and 400 V for 6 min and 19 min as the first and second steps, respectively. The model compounds were extracted from 4 mL of sample solution (pH = 6) into 20 μL of each acceptor solution (32 mM NaOH for acidic drugs and 32 mM HCL for basic drugs). 1-Octanol was immobilized within the pores of a porous hollow fiber of polypropylene, as the supported liquid membrane (SLM) for acidic drugs, and 2-ethyle hexanol, as the SLM for basic drugs. The proposed TSV-DEME technique provided good linearity with the resulting correlation coefficients ranging from 0.993 to 0.998 over a concentration range of 1-1000 ng mL(-1). The limit of detections of the drugs were found to range within 0.3-1.5 ng mL(-1), while the corresponding repeatability ranged from 7.7 to 15.5% (n = 4). The proposed method was further compared to simple dual electromembrane extraction (DEME), indicating significantly higher recoveries for TSV-DEME procedure (38.1-68%), as compared to those of simple DEME procedure (17.7-46%). Finally, the optimized TSV-DEME was applied to extract and quantify model compounds in breast milk, wastewater, and plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter

    NASA Astrophysics Data System (ADS)

    Zhao, Yinjian

    2018-05-01

    A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.

  7. Magnetosonic solitons in space plasmas: dark or bright solitons?

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Onishchenko, O. G.; Balikhin, M. A.; Stenflo, L.; Shukla, P. K.

    2007-12-01

    The nonlinear theory of large-amplitude magnetosonic (MS) waves in highβ space plasmas is revisited. It is shown that solitary waves can exist in the form of `bright' or `dark' solitons in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion, which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived.It takes into account general plasma equilibria, such as the Dory-Guest-Harris (DGH) or Kennel-Ashour-Abdalla (KA) loss-cone equilibria, as well as distributions with a power-law velocity dependence that can be modelled by κdistributions. It is shown that in a bi-Maxwellian plasma the dispersion is negative, i.e. the phase velocity decreases with an increase of the wavenumber. This means that the solitary solution in this case has the form of a `bright' soliton with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas, such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to existing satellite wave observations is outlined.

  8. Magnetosonic Solitons in Non-Maxwellian Space Plasmas

    NASA Astrophysics Data System (ADS)

    Pokhotelov, O. A.; Balikhin, M.; Onishchenko, O. G.

    2006-12-01

    The nonlinear theory of large-amplitude magnetosonic (MS) waves in high-beta space plasmas is developed. It is shown that solitary waves can exist in the form of magnetic humps and holes in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion velocity distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived. It takes into account general plasma equilibria such as the Dory-Guest-Harris or Kennel- Ashour-Abdalla loss cone equilibria, as well as distributions with a power law velocity dependence that can be modelled by kappa-distributions. It is shown that in Maxwellian and bi-Maxwellian plasmas the dispersion is negative, i.e. the phase velocity decreases with an increase of the wave number. This means that the solitary solution in this case has the form of a magnetic hump with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to experimental observations is outlined

  9. On the rogue waves propagation in non-Maxwellian complex space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com; Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz

    2015-11-15

    The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that themore » RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.« less

  10. Stability: Conservation laws, Painlevé analysis and exact solutions for S-KP equation in coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.; Moawad, S. M.; Wael, Shrouk

    The propagation of nonlinear waves in unmagnetized strongly coupled dusty plasma with Boltzmann distributed electrons, iso-nonthermal distributed ions and negatively charged dust grains is considered. The basic set of fluid equations is reduced to the Schamel Kadomtsev-Petviashvili (S-KP) equation by using the reductive perturbation method. The variational principle and conservation laws of S-KP equation are obtained. It is shown that the S-KP equation is non-integrable using Painlevé analysis. A set of new exact solutions are obtained by auto-Bäcklund transformations. The stability analysis is discussed for the existence of dust acoustic solitary waves (DASWs) and it is found that the physical parameters have strong effects on the stability criterion. In additional to, the electric field and the true Mach number of this solution are investigated. Finally, we will study the physical meanings of solutions.

  11. Nano-Disperse Borides and Carbides: Plasma Technology Production, Specific Properties, Economic Evaluation

    NASA Astrophysics Data System (ADS)

    Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-04-01

    The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.

  12. Effects of ramp reset pulses on the address discharge in a shadow mask plasma display panel

    NASA Astrophysics Data System (ADS)

    Yang, Lanlan; Tu, Yan; Zhang, Xiong; Jiang, Youyan; Zhang, Jian; Wang, Baoping

    2007-05-01

    A two-dimensional self-consistent numerical simulation model is used to analyse the effects of the ramp reset pulses on the address discharge in a shadow mask plasma display panel (SM-PDP). Some basic parameters such as the slope of the ramp pulse and the terminal voltage of the ramp reset period are varied to investigate their effects. The simulation results illustrate that the wall voltage is mainly decided by the terminal voltage and the firing voltage at the end of the ramp reset period. Moreover, the variation of the ramp slope will also bring a few modifications to the wall voltage. The priming particles in the beginning of the addressing period are related to the slope of the ramping down voltage pulse. The simulation results can help us optimize the driving scheme of the SM-PDP.

  13. Effect of carvedilol and nebivolol on oxidative stress-related parameters and endothelial function in patients with essential hypertension.

    PubMed

    Zepeda, Ramiro J; Castillo, Rodrigo; Rodrigo, Ramón; Prieto, Juan C; Aramburu, Ivonne; Brugere, Solange; Galdames, Katia; Noriega, Viviana; Miranda, Hugo F

    2012-11-01

    Oxidative stress and endothelial dysfunction have been associated with essential hypertension (EH) mechanisms. The purpose of this study was to evaluate the effect of carvedilol and nebivolol on the oxidative stress-related parameters and endothelial function in patients with EH. The studied population included 57 patients, either sex, between 30 and 75 years of age, with mild-to-moderate EH complications. Participants were randomized to receive either carvedilol (12.5 mg) (n = 23) or nebivolol (5 mg) (n = 21) for 12 weeks. Measurements included; 24-hr ambulatory blood pressure (BP), flow-mediated dilatation, levels of nitric oxide estimated as nitrite - a nitric oxide metabolite ( NO₂) - in plasma, and oxidative stress-related parameters in plasma and erythrocyte. EH patients who were treated with nebivolol or carvedilol showed systolic BP reductions of 17.4 and 19.9 mmHg, respectively, compared with baseline values (p < 0.01). Diastolic BP was reduced by 13.7 and 12.8 mmHg after the treatment with ebivolol and carvedilol, respectively (p < 0.01) (fig. 2B). Nebivolol and carvedilol showed 7.3% and 8.1% higher endothelium-dependent dilatation in relation to baseline values (p < 0.05). Ferric-reducing ability of plasma (FRAP) and reduced glutathione/oxidized glutathione (GSSH) ratio showed 31.5% and 29.6% higher levels in the carvedilol group compared with basal values; however, nebivolol-treated patients did not show significant differences after treatment. On the other hand, the NO₂ plasma concentration was not modified by the administration of carvedilol. However, nebivolol enhanced these levels in 62.1% after the treatment. In conclusion, this study demonstrated the antihypertensive effect of both beta-blockers. However, carvedilol could mediate these effects by an increase in antioxidant capacity and nebivolol through the raise in NO₂ concentration. Further studies are needed to determine the molecular mechanism of these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  14. Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Longqing, E-mail: yi@uni-duesseldorf.de; State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800; Pukhov, Alexander

    When a high-contrast ultra-relativistic (>10{sup 20} W/cm{sup 2}) laser beam enters a micro-sized plasma waveguide, the pulse energy is coupled into waveguide modes, which significantly modifies the interaction between the electrons and electromagnetic wave. Electrons pulled out from the walls of the waveguide form a dense helical bunch inside the channel and are efficiently accelerated by the transverse magnetic modes to hundreds of MeV. The asymmetry in the transverse electric and magnetic fields drives strong oscillations, which lead to the emission of bright, well-collimated, hard X-rays. In this paper, we present our study on the underlying physics in the aforementioned processmore » using 3D particle-in-cell simulations. The mechanism of electron acceleration and the dependence of radiation properties on different laser plasma parameters are addressed. An analytic model and basic scalings for X-ray emission are also presented by considering the lowest optical modes in the waveguide, which is adequate to describe the basic phenomenon. In addition, the effects of high-order modes as well as laser polarization are also qualitatively discussed. The considered X-ray source has promising features, potentially making it a competitive candidate for a future tabletop synchrotron source.« less

  15. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  16. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  17. Laboratory reconnection experiments

    NASA Astrophysics Data System (ADS)

    Grulke, Olaf

    Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen

    The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less

  19. The potential influence of CO2, as an agent for euthanasia, on the pharmacokinetics of basic compounds in rodents.

    PubMed

    Angus, Derek W; Baker, James A; Mason, Rona; Martin, Iain J

    2008-02-01

    Rodent tissue distribution and pharmacokinetic studies were performed on basic compounds Org A and Org B in support of central nervous system drug discovery programs. A consistent observation from these studies was that drug concentrations in plasma obtained by cardiac puncture after CO(2) euthanasia were markedly higher compared with those from other sampling methods (serial sampling, isoflurane anesthesia, or cervical dislocation). Further investigations demonstrated that CO(2) euthanasia led to a reduction in blood pH in both rats and mice, which was not observed with the other sampling methods. The use of CO(2) euthanasia resulted in a decrease in the brain/plasma ratio of Org B, largely as a result of increased plasma concentrations. The pharmacokinetics of a basic drug, raloxifene, in rat were also influenced by sampling technique. CO(2) euthanasia before sampling, resulted in a 2- to 3-fold increase in the area under the drug concentration-time curve, a decrease in plasma clearance, and a decrease in the steady-state volume of distribution compared with isoflurane anesthesia. It is proposed that a decrease in the pH of blood relative to that of other tissues, as a consequence of CO(2) exposure, results in a redistribution of basic compounds out of the tissues, leading to higher concentrations in plasma.

  20. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  1. Design of a dee vacuum vessel for Doublet III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, L.G.

    1983-04-01

    The Doublet III tokamak is to be modified wherein the original 'doublet' plasma containment vacuum vessel will be exchanged with one of a large dee-shaped cross section. The basic dimensions of the dee vessel will allow plasmas of 1.7-m major radius, 0.7-m minor radius, and a vertical elongation of 1.8. Installation of a large dee vessel in Doublet III is made possible by the demountable toroidal field coils and the large, low-ripple volume they include. Ripple at the plasma edge will be less than one percent. The plasma parameters affecting the design of the vessel will be reviewed including plasmamore » current, power, disruption time, allowable error field, impurity control techniques, pulse length, and limiter schemes. A driving requirement for the design of the vessel is to maximize the access to the plasma for auxiliary heating (both neutral beam injection and radio frequency heating), diagnostics, developmental component and material testing, and pumping. The dee vessel is structurally designed along the same lines as the present vessel: an Inconel 625, all-welded, continuous chamber in a corrugated sandwich construction. An overview of the vessel design and its solutions to the design criteria will be presented. An overview will also be presented of the entire modification project which includes replacement of some coils, and addition of support structure, limiters and vessel armor, and power system components.« less

  2. A Comprehensive Software and Database Management System for Glomerular Filtration Rate Estimation by Radionuclide Plasma Sampling and Serum Creatinine Methods.

    PubMed

    Jha, Ashish Kumar

    2015-01-01

    Glomerular filtration rate (GFR) estimation by plasma sampling method is considered as the gold standard. However, this method is not widely used because the complex technique and cumbersome calculations coupled with the lack of availability of user-friendly software. The routinely used Serum Creatinine method (SrCrM) of GFR estimation also requires the use of online calculators which cannot be used without internet access. We have developed user-friendly software "GFR estimation software" which gives the options to estimate GFR by plasma sampling method as well as SrCrM. We have used Microsoft Windows(®) as operating system and Visual Basic 6.0 as the front end and Microsoft Access(®) as database tool to develop this software. We have used Russell's formula for GFR calculation by plasma sampling method. GFR calculations using serum creatinine have been done using MIRD, Cockcroft-Gault method, Schwartz method, and Counahan-Barratt methods. The developed software is performing mathematical calculations correctly and is user-friendly. This software also enables storage and easy retrieval of the raw data, patient's information and calculated GFR for further processing and comparison. This is user-friendly software to calculate the GFR by various plasma sampling method and blood parameter. This software is also a good system for storing the raw and processed data for future analysis.

  3. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C. M.; Brookhart, M.; Collins, C.

    2014-01-15

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ∼14 m{sup 3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB{sub 6}) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressuremore » Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB{sub 6} cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M{sub A}{sup 2}=(v/v{sub A}){sup 2}>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.« less

  4. Baseline health parameters and species comparisons among free-ranging Atlantic sharpnose (Rhizoprionodon terraenovae), bonnethead (Sphyrna tiburo), and spiny dogfish (Squalus acanthias) sharks in Georgia, Florida, and Washington, USA.

    PubMed

    Haman, Katherine H; Norton, Terry M; Thomas, Austen C; Dove, Alistair D M; Tseng, Florina

    2012-04-01

    Sharks are of commercial, research, conservation, and exhibition importance but we know little regarding health parameters and population status for many species. Here we present health indicators and species comparisons for adults of three common wild-caught species: 30 Atlantic sharpnose sharks (Rhizoprionodon terraenovae) and 31 bonnethead sharks (Sphyrna tiburo) from the western Atlantic, and 30 spiny dogfish sharks (Squalus acanthias) from the eastern Pacific. All animals were captured during June-July 2009 and 2010. Median values and preliminary reference intervals were calculated for hematology, plasma biochemistry, trace nutrients, and vitamin A, E, and D concentrations. Significant differences, attributable to physiologic differences among the species, were found in the basic hematologic and plasma biochemistry variables. Significant species differences in arsenic and selenium plasma concentrations were found and appear to coincide with diet and habitat variability among these three species. Vitamin E was significantly higher in the bonnethead shark, again related to the foraging ecology and ingestion of plant material by this species. The Atlantic sharpnose had significantly higher vitamin A concentrations, supported by the higher proportion of teleosts in the diet. Vitamin D was below the limit of quantification in all three species. These preliminary reference intervals for health variables can be used to assess and monitor the population health and serve as indicators of nutritional status in these populations of wild elasmobranchs.

  5. Study of plasma parameters in a pulsed plasma accelerator using triple Langmuir probe

    NASA Astrophysics Data System (ADS)

    Borthakur, S.; Talukdar, N.; Neog, N. K.; Borthakur, T. K.

    2018-01-01

    A Triple Langmuir Probe (TLP) has been used to study plasma parameters of a transient plasma produced in a newly developed Pulsed Plasma Accelerator system. In this experiment, a TLP with a capacitor based current mode biasing circuit was used that instantaneously gives voltage traces in an oscilloscope which are directly proportional to the plasma electron temperature and density. The electron temperature (Te) and plasma density (ne) of the plasma are measured with the help of this probe and found to be 24.13 eV and 3.34 × 1021/m3 at the maximum energy (-15 kV) of the system, respectively. An attempt was also made to analyse the time-dependent fluctuations in plasma parameters detected by the highly sensitive triple probe. In addition to this, the variation of these parameters under different discharge voltages was studied. The information obtained from these parameters is the initial diagnostics of a new device which is to be dedicated to study the impact of high heat flux plasma stream upon material surfaces inside an ITER like tokamak.

  6. 3D Global Two-Fluid Simulations of Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin; Rogers, Barrett; Ricci, Paolo

    2012-10-01

    3D global two-fluid simulations are presented in an ongoing effort to identify and understand the physics of instabilities that arise in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. The LAPD, with its wide range of tunable parameters and device configurations, is ideally suited for studying space and laboratory plasmas. Moreover, the highly detailed and reproducible measurements of the LAPD lend themselves amicably to comparisons with simulations. Ongoing modeling is done using a modified version of the Global Braginskii Solver (GBS) [1] that models the plasma from source to edge region in a fully 3D two-fluid code. The reduced Braginskii equations are solved on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping and are parallelized on Dartmouth's Discovery cluster. Recent progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and it is now possible to vary the potential on the front and side walls. Preliminary results, seen from the density and temperature profiles, show that the low frequency Kelvin Helmholtz instability still dominates the turbulence in the device.[4pt] [1] B. Rogers and P. Ricci. Phys. Rev. Lett. 104:225002, 2010

  7. The Basic Plasma Science Facility: a platform for studying plasma processes relevant to space and astrophysical settings

    NASA Astrophysics Data System (ADS)

    Carter, T. A.

    2017-10-01

    The Basic Plasma Science Facility at UCLA is a national user facility for studies of fundamental processes in magnetized plasmas. The centerpiece is the Large Plasma Device, a 20 m, magnetized linear plasma device. Two hot cathode plasma sources are available. A Barium Oxide coated cathode produces plasmas with n 1012 cm-3, Te 5 eV, Ti < 1 eV with magnetic field from 400G-2kG. This low- β plasma has been used to study fundamental processes, including: dispersion and damping of kinetic and inertial Alfvén waves, flux ropes and magnetic reconnection, three-wave interactions and parametric instabilities of Alfvén waves, turbulence and transport, and interactions of energetic ions and electrons with plasma waves. A new Lanthanum Hexaboride (LaB6) cathode is now available which produces significantly higher densities and temperatures: n < 5 ×1013 cm-3, Te 12 eV, Ti 6 eV. This higher pressure plasma source enabled the observation of laser-driven collisionless magnetized shocks and, with lowered magnetic field, provides magnetized plasmas with β approaching or possibly exceeding unity. This opens up opportunities for investigating processes relevant to the solar wind and astrophysical plasmas. BaPSF is jointly supported by US DOE and NSF.

  8. Characterization of plasma processing induced charging damage to MOS devices

    NASA Astrophysics Data System (ADS)

    Ma, Shawming

    1997-12-01

    Plasma processing has become an integral part of the fabrication of integrated circuits and takes at least 30% of whole process steps since it offers advantages in terms of directionality, low temperature and process convenience. However, wafer charging during plasma processes is a significant concern for both thin oxide damage and profile distortion. In this work, the factors affecting this damage will be explained by plasma issues, device structure and oxide quality. The SPORT (Stanford Plasma On-wafer Real Time) charging probe was developed to investigate the charging mechanism of different plasma processes including poly-Si etching, resist ashing and PECVD. The basic idea of this probe is that it simulates a real device structure in the plasma environment and allows measurement of plasma induced charging voltages and currents directly in real time. This measurement is fully compatible with other charging voltage measurement but it is the only one to do in real-time. Effect of magnetic field induced plasma nonuniformity on spatial dependent charging is well understood by this measurement. In addition, the plasma parameters including ion current density and electron temperature can also be extracted from the probe's plasma I-V characteristics using a dc Langmuir probe like theory. It will be shown that the MOS device tunneling current from charging, the dependence on antenna ratio and the etch uniformity can all be predicted by using this measurement. Moreover, the real-time measurement reveals transient and electrode edge effect during processing. Furthermore, high aspect ratio pattern induced electron shading effects can also be characterized by the probe. On the oxide quality issue, wafer temperature during plasma processing has been experimentally shown to be critical to charging damage. Finally, different MOS capacitor testing methods including breakdown voltage, charge-to-breakdown, gate leakage current and voltage-time at constant current bias were compared to find the optimum method for charging device reliability testing.

  9. Multidimensional electron beam-plasma instabilities in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Gremillet, L.; Dieckmann, M. E.

    2010-12-15

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, themore » basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell-Juettner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.« less

  10. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  11. Transport in a field aligned magnetized plasma/neutral gas boundary: the end of the plasma

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher Michael

    The objective of this dissertation is to characterize the physics of a boundary layer between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. A series of experiments are performed at the Enormous Toroidal Plasma Device (ETPD) at UCLA to study this field aligned Neutral Boundary Layer (NBL) at the end of the plasma. A Lanthanum Hexaboride (LaB6) cathode and semi-transparent anode creates a magnetized, current-free helium plasma which terminates on a neutral helium gas without touching any walls. Probes are inserted into the plasma to measure the basic plasma parameters and study the transport in the NBL. The experiment is performed in the weakly ionized limit where the plasma density (ne) is much less than the neutral density (nn) such that ne/nn < 5%. The NBL is characterized by a field-aligned electric field which begins at the point where the plasma pressure equilibrates with the neutral gas pressure. Beyond the pressure equilibration point the electrons and ions lose their momentum by collisions with the neutral gas and come to rest. An electric field is established self consistently to maintain a current-free termination through equilibration of the different species' stopping rates in the neutral gas. The electric field resembles a collisional quasineutral sheath with a length 10 times the electron-ion collision length, 100 times the neutral collision length, and 10,000 times the Debye length. Collisions with the neutral gas dominate the losses in the system. The measured plasma density loss rates are above the classical cross-field current-free ambipolar rate, but below the anomalous Bohm diffusion rate. The electron temperature is below the ionization threshold of the gas, 2.2 eV in helium. The ions are in thermal equilibrium with the neutral gas. A generalized theory of plasma termination in a Neutral Boundary Layer is applied to this case using a two-fluid, current-free, weakly ionized transport model. The electron and ion momentum equations along the field are combined in a generalized Ohm's law which predicts the axial electric field required to maintain a current-free termination. The pressure balance criteria for termination and the predicted electric field are confirmed over a scaling of plasma parameters. The experiment and the model are relevant for studying NBLs in other systems, such as the atmospheric termination of the aurora or detached gaseous divertors. A steady state modified ambipolar system is measured in the ETPD NBL. The drift speeds associated with these currents are a small fraction of the plasma flow speeds and the problem is treated as a perturbation to the termination model. The current-free condition on the model is relaxed to explain the presence of the divergence free current.

  12. Observations of nonlinear and nonuniform kink dynamics in a laboratory flux rope

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Feng, Y.; Swan, H.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A plasma column with axial magnetic field and current has helically twisted field lines. When current density in the column exceeds the kink instability threshold this magnetic configuration becomes unstable. Flux ropes in the solar wind and some solar prominences exhibit this topology, with their dynamics strongly and nonlinearly coupled to the ratio of axial current to magnetic field. The current-driven kink mode is ubiquitous in laboratory plasmas and well suited to laboratory study. In the Reconnection Scaling Experiment (RSX), nonlinear stability properties beyond the simple perturbative kink model are observed and readily diagnosed. We use a plasma gun to generate a single plasma column 0.50 m in length, in which we then drive an axial plasma current at the limit of marginal kink stability. With plasma current maintained at this threshold, we observe a deformation to a new dynamic equilibrium with finite gyration amplitude, where the currents and magnetic fields that support the force balance have surprising axial structure. Three dimensional measurements of magnetic field, plasma density, plasma potential, and ion flow velocity in the deformed plasma column show variation in the axial direction of the instability parameter and in the terms of the momentum equation. Likewise the pitch of the kink is measured to be nonuniform over the column length. In addition there is a return current antiparallel to the driven plasma current at distances up to 0.30 m from the gun that also modifies the force balance. These axial inhomogeneities, which are not considered in the model of an ideal kink, may be the terms that allow the deformed equilibrium of the RSX plasma to exist. Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    NASA Astrophysics Data System (ADS)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and we compare their time-averaged and statistical properties with experimental data. Finally, we discuss future developments including the possibility of closing the magnetic field lines and of performing magnetic reconnection experiments.

  14. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.

  15. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  16. Turbulence in laboratory and natural plasmas: Connecting the dots

    NASA Astrophysics Data System (ADS)

    Jenko, Frank

    2015-11-01

    It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.

  17. Update on the Fire (solar probe) mission study

    NASA Technical Reports Server (NTRS)

    Jones, W. Veron; Forman, Miriam A.

    1995-01-01

    Since mid-1994 the U.S. and Russia have been studying the technical feasibility of a joint solar probe mission as part of the 'Fire and Ice' concept to explore close to the Sun, and Pluto, together. In the current concept of the 'Fire' mission, separate spacecraft built by each country would be launched together, fly by Jupiter to shed orbital angular momentum and achieve a solar polar orbit, and arrive 3.6 years later at 4 and 10 R(sub s). The Fire mission would measure basic parameters of the modes of energy and momentum flow and transfer to the coronal plasma that are not observable remotely. Specifically, measurement of magnetic fields, waves, suprathermal particles, and critical features of the plasma particle composition and distribution function would be made from 4 to 30 R(sub s) where the solar wind is known to be accelerated. In addition, the Fire spacecraft should image coronal structures unambiguously and relate the underlying and flown-through structures to plasma characteristics measured in situ. Each country is developing a backup plan to pursue the solar probe objectives alone if the other side is unable to carry out its mission.

  18. Applications of minimal physiologically-based pharmacokinetic models

    PubMed Central

    Cao, Yanguang

    2012-01-01

    Conventional mammillary models are frequently used for pharmacokinetic (PK) analysis when only blood or plasma data are available. Such models depend on the quality of the drug disposition data and have vague biological features. An alternative minimal-physiologically-based PK (minimal-PBPK) modeling approach is proposed which inherits and lumps major physiologic attributes from whole-body PBPK models. The body and model are represented as actual blood and tissue usually total body weight) volumes, fractions (fd) of cardiac output with Fick’s Law of Perfusion, tissue/blood partitioning (Kp), and systemic or intrinsic clearance. Analyzing only blood or plasma concentrations versus time, the minimal-PBPK models parsimoniously generate physiologically-relevant PK parameters which are more easily interpreted than those from mam-millary models. The minimal-PBPK models were applied to four types of therapeutic agents and conditions. The models well captured the human PK profiles of 22 selected beta-lactam antibiotics allowing comparison of fitted and calculated Kp values. Adding a classical hepatic compartment with hepatic blood flow allowed joint fitting of oral and intravenous (IV) data for four hepatic elimination drugs (dihydrocodeine, verapamil, repaglinide, midazolam) providing separate estimates of hepatic intrinsic clearance, non-hepatic clearance, and pre-hepatic bioavailability. The basic model was integrated with allometric scaling principles to simultaneously describe moxifloxacin PK in five species with common Kp and fd values. A basic model assigning clearance to the tissue compartment well characterized plasma concentrations of six monoclonal antibodies in human subjects, providing good concordance of predictions with expected tissue kinetics. The proposed minimal-PBPK modeling approach offers an alternative and more rational basis for assessing PK than compartmental models. PMID:23179857

  19. Plasma Parameters From Reentry Signal Attenuation

    DOE PAGES

    Statom, T. K.

    2018-02-27

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  20. Plasma Parameters From Reentry Signal Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statom, T. K.

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  1. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    NASA Astrophysics Data System (ADS)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  2. Evolution of plasma characteristics for weak X-ray brightenings seen by SphinX during recent deep minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Sylwester, Barbara; Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Phillips, Kenneth

    Very high sensitivity of SphinX soft X-ray spectrophotometer aboard Coronas-Photon allows to observe spectra of small X-ray brightenings(microflares), many of them with maximum intensities well below the GOES or RHESSI sensitivity thresholds. Hundreds of such small flare-like events have been observed in the period between March and November 2009 with energy resolution better than 0.5 keV. The spectra have been measured in the energy range extending above 1 keV. In this study we investigate the time variability of basic plasma parameters: temperature T and emission measure EM for a number of these weak flare-like events and discuss respective evolutionary patterns on the EM-T diagnostic diagrams. For some of these events, unusual behavior is observed, different from this characteristic for a "normal" flares of higher maximum intensities. Physical scenarios providing possible explanation of such unusual evolutionary patterns will be discussed.

  3. Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors

    NASA Technical Reports Server (NTRS)

    Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.

    1985-01-01

    Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.

  4. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  5. Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion

    NASA Astrophysics Data System (ADS)

    Xie, Kan; Martinez, Rafael A.; Williams, John D.

    2014-04-01

    This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current-voltage (C-V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day-night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ˜11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C-V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25-40 V, discharge currents in the range of 1-2.5 A, and low xenon gas flows of 2-4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C-V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C-V curves is within 5% at low electron-emission currents (0-2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C-V behaviour at electron-emission currents over 2 A, are further highlighted and discussed.

  6. Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S.; Belyakov, V. A.

    The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet systemmore » and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).« less

  7. Direct nuclear-powered lasers

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1983-01-01

    The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.

  8. Overview of the preliminary design of the ITER plasma control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.

    An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less

  9. Plasma Waves in the Magnetosheath of Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, Robert J.

    1996-01-01

    Research supported by this grant is divided into three basic topics of investigation. These are: (1) Plasma waves in the Venus magnetosheath, (2) Plasma waves in the Venus foreshock and solar wind, (3) plasma waves in the Venus nightside ionosphere and ionotail. The main issues addressed in the first area - Plasma waves in the Venus magnetosheath - dealt with the wave modes observed in the magnetosheath and upper ionosphere, and whether these waves are a significant source of heating for the topside ionosphere. The source of the waves was also investigated. In the second area - Plasma waves in the Venus foreshock and solar wind, we carried out some research on waves observed upstream of the planetary bow shock known as the foreshock. The foreshock and bow shock modify the ambient magnetic field and plasma, and need to be understood if we are to understand the magnetosheath. Although most of the research was directed to wave observations on the dayside of the planet, in the last of the three basic areas studied, we also analyzed data from the nightside. The plasma waves observed by the Pioneer Venus Orbiter on the nightside continue to be of considerable interest since they have been cited as evidence for lightning on Venus.

  10. Overview of the preliminary design of the ITER plasma control system

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  11. Overview of the preliminary design of the ITER plasma control system

    DOE PAGES

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; ...

    2017-09-11

    An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less

  12. Platelet-Rich Plasma with Basic Fibroblast Growth Factor for Treatment of Wrinkles and Depressed Areas of the Skin.

    PubMed

    Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei

    2015-11-01

    There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.

  13. Cold Plasma Welding System for Surgical Skin Closure: In Vivo Porcine Feasibility Assessment.

    PubMed

    Harats, Moti; Lam, Amnon; Maller, Michael; Kornhaber, Rachel; Haik, Josef

    2016-09-29

    Cold plasma skin welding is a novel technology that bonds skin edges through soldering without the use of synthetic materials or conventional wound approximation methods such as sutures, staples, or skin adhesives. The cold plasma welding system uses a biological solder applied to the edges of a skin incision, followed by the application of cold plasma energy. The objectives of this study were to assess the feasibility of a cold plasma welding system in approximating and fixating skin incisions compared with conventional methods and to evaluate and define optimal plasma welding parameters and histopathological tissue response in a porcine model. The cold plasma welding system (BioWeld1 System, IonMed Ltd, Yokneam, Israel) was used on porcine skin incisions using variable energy parameters. Wound healing was compared macroscopically and histologically to incisions approximated with sutures. When compared to sutured skin closure, cold plasma welding in specific system parameters demonstrated comparable and favorable wound healing results histopathologically as well as macroscopically. No evidence of epidermal damage, thermal or otherwise, was encountered in the specified parameters. Notably, bleeding, infection, and wound dehiscence were not detected at incision sites. Skin incisions welded at extreme energy parameters presented second-degree burns. Implementation of cold plasma welding has been shown to be feasible for skin closure. Initial in vivo results suggest cold plasma welding might provide equal, if not better, healing results than traditional methods of closure.

  14. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposedmore » electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where "two-fluid" refers to modeling independent dynamics of electron and ion species without full kinetic effects. In collaboration with scientist Ping Zhu, who received separate support, it was found that the rule-of-thumb criteria on stabilizing interchange has caveats that depend on the plasma density and temperature profiles. This work was published in [Zhu, Schnack, Ebrahimi, et al., Phys. Rev. Lett. 101, 085005 (2008)]. An investigation of general nonlinear relaxation with fluid models was partially supported by the TDTFS study and led to the publication [Khalzov, Ebrahimi, Schnack, and Mirnov, Phys. Plasmas 19, 012111 (2012)]. Work specific to the RFP included an investigation of interchange at large plasma pressure and support for applications [for example, Scheffel, Schnack, and Mirza, Nucl. Fusion 53, 113007 (2013)] of the DEBS code [Schnack, Barnes, Mikic, Harned, and Caramana, J. Comput. Phys. 70, 330 (1987)]. Finally, the principal investigator over most of the award period, Dalton Schnack, supervised a numerical study of modeling magnetic island suppression [Jenkins, Kruger, Hegna, Schnack, and Sovinec, Phys. Plasmas 17, 12502 (2010)].« less

  15. EXPERIMENTS WITH PLASMA RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfven, H.; Lindberg, L.; Mitlid, P.

    1960-03-01

    The construction of a coaxial plasma gun is described. At its output end the gun is provided with a radial magnetic field, which is trapped by the plasma. The plasma from the gun is studied by photographic and magnetic methods. It is demonstrated that the gun produces magnetized plasma rings with the same basic structure as the rings obtained in toroidal pinch experiments. When the plasma rings are formed, the magnetic field lines from the gun break, a result which is of interest from a theoretical point of view. (auth)

  16. Ultra-Sensitive Elemental Analysis Using Plasmas 3.For Understanding an Inductively Coupled Plasma Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Sakata, Kenichi

    Aplasma-interface is considered the most mysterious part of an inductively coupled plasma mass spectrometer system in terms of understanding its operational mechanism. After a brief explanation of the basic structure of the inductively coupled plasma mass spectrometer and how it works, the plasma-interface is discussed in regard to its complex operation and approaches to investigating its behavior. In particular, the position and shape of the plasma boundary seem to be important to understand the instrument's sensitivity.

  17. Simulation of Self-consistent Radio Wave Artificial Ionospheric Turbulence Pumping and Damping

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    The numerical simulations of the action of self-consistent incident powerful electromagnetic wave absorption arising in the regions of artificial plasma turbulence excitation at formation, saturation and relaxation stages of turbulent structures (Kochetov, A.V., Mironov, V.A., Te-rina, G.I., Bubukina V. N, Physica D, Nonlinear phenomena, 2001, 152-153, 723) to reflection index dynamics are carried out. The nonlinear Schrüdinger equation in inhomogeneous plasma layer with incident electromagnetic wave pumping and backscattered radiation damping (Ko-chetov, et al, Adv. Space Res., 2002, 29, 1369 and 2006, 38, 2490) is extended with the imagi-nary part of plasma dielectric constant (volume damping), which is should be taken into account in strong electromagnetic field plasma regions and results the energy transformation from elec-tromagnetic waves to plasma ones at resonance interaction (D.V. Shapiro, V.I. Shevchenko, in Handbook of Plasma Physics 2, eds. A.A Galeev, R.N. Sudan. Elsevier, Amsterdam, 1984). The volume damping reproduces the basic energy transformation peculiarities: hard excitation, nonlinearity, hysteresis (A.V. Kochetov, E. Mjoelhus, Proc. of IV Intern. Workshop "SMP", Ed. A.G. Litvak, Vol.2, N. Novgorod, 2000, 491). Computer modeling demonstrates that the amplitude and period of reflection index oscillations at the formation stage slowly depend on damping parameters of turbulent plasma regions. The transformation from complicated: quasi-periodic and chaotic dynamics, to quasi-stationary regimes is shown at the saturation stage. Transient processes time becomes longer if the incident wave amplitude and nonlinear plasma response increase, but damping decreases. It is obtained that the calculated reflection and absorption index dynamics at the beginning of the saturation stage agrees qualitatively to the experimental results for ionosphere plasma modification study (Thide B., E.N. Sergeev, S.M. Grach, et. al., Phys. Rev. Lett., 2005, 95, 255002). The work was supported in part by RFBR grant 09-02-01150-a.

  18. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.

    2015-07-01

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.

  19. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru; Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  20. United States Air Force Summer Research Program -- 1993. Volume 7. Armstrong Laboratory

    DTIC Science & Technology

    1993-12-01

    formulation, absorption, plasma binding affinity, biomembrane barriers, and relative extraction by the specific organ of the body concerned with...simultaneously administered or a drug may "interact" with itself. The concomitant administration of phenobarbital and warfarin results in lower plasma ... plasma protein which binds to basic lipophilic drugs including propranolol, meperidine, quinidine, and chlorpromazine. If a variation in the plasma

  1. Optimal Parameters for Intervertebral Disk Resection Using Aqua-Plasma Beams.

    PubMed

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Yushin; Kim, Nack Hwan; Lee, Sangheon; Kawai, Christina; Hong, Youngki

    2018-06-14

     A minimally invasive procedure for intervertebral disk resection using plasma beams has been developed. Conventional parameters for the plasma procedure such as voltage and tip speed mainly rely on the surgeon's personal experience, without adequate evidence from experiments. Our objective was to determine the optimal parameters for plasma disk resection.  Rate of ablation was measured at different procedural tip speeds and voltages using porcine nucleus pulposi. The amount of heat formation during experimental conditions was also measured to evaluate the thermal safety of the plasma procedure.  The ablation rate increased at slower procedural speeds and higher voltages. However, for thermal safety, the optimal parameters for plasma procedures with minimal tissue damage were an electrical output of 280 volts root-mean-square (V rms ) and a procedural tip speed of 2.5 mm/s.  Our findings provide useful information for an effective and safe plasma procedure for disk resection in a clinical setting. Georg Thieme Verlag KG Stuttgart · New York.

  2. Profiling of sperm proteins and association of sperm PDC-109 with bull fertility.

    PubMed

    Somashekar, Lakshminarayana; Selvaraju, Sellappan; Parthipan, Sivashanmugam; Ravindra, Janivara Parameswaraiah

    2015-01-01

    The composition of sperm proteins influences the fertilizing ability of sperm and hence the present study was conducted (i) to profile sperm proteins expression patterns in bulls of differing fertility index and (ii) to identify and relate the abundant sperm proteins with bull fertility. The semen samples were collected from Holstein-Friesian bulls (n = 12) varying in conception rate (CR) (high/low). The frozen semen straws (three ejaculates, from each bull) were used to study (a) sperm kinetic parameters, (b) plasmalemma integrity, (c) mitochondrial membrane potential, and (d) chromatin distribution. Three bulls were randomly selected from each group (n = 3) and the neat sperm pellets were subjected to percoll purification, followed by protein isolation using 0.1% Triton X100. The sperm kinetic parameters, plasmalemma integrity, mitochondrial membrane potential, and the chromatin distribution did not differ significantly between groups. The number of acidic (pI; 3.1-5.6, 37%) and basic (pI; 7.9-10.0, 27%) proteins and their pattern of expression varied significantly (p < 0.05) between high and low fertile bulls. The abundant sperm protein spots in 2D-gel electrophoresis (2DE) were identified as seminal plasma protein PDC-109 (i.e., protein with N-terminus aspartic acid, D and carboxy terminus cystine, having 109 amino acids) and its isoform and spermadhesin-1 (SPADH1). The western blot analysis confirmed the presence of PDC-109 isoform proteins at 15.4 kDa (pI 5.3 and 5.5). The seminal plasma protein PDC-109 was abundant in the low fertile when compared to the high fertile group (p < 0.05). This study suggests that the imbalance in acidic and basic sperm proteins may influence sperm fertility and sperm PDC-109 levels above a certain threshold affects bull fertility.

  3. Applications of Pulsed Power in Advanced Oxidation and Reduction Processes for Pollution Control

    DTIC Science & Technology

    1993-06-01

    electrical driver pulse width and rise time, electrical drive circuit coupling to plasma cells, and the role of UV light in the plasma chemistry and...will permit industrial service. Basic understanding of the plasma chemistry has evolved to the point where trends and equipment scaling can be

  4. Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Maekawa, T.; Igami, H.

    2005-09-26

    A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less

  5. The circuit parameters measurement of the SABALAN-I plasma focus facility and comparison with Lee Model

    NASA Astrophysics Data System (ADS)

    Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.

    The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.

  6. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikia, Partha, E-mail: partha.008@gmail.com; Institute of Physics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago; Saikia, Bipul Kumar

    2016-04-15

    We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO{sub 2} films. The parameters of the hydrogen-added Ar/O{sub 2} plasma influence the properties and the structural phases of the deposited TiO{sub 2} film. Therefore, the variation of plasma parameters such as electron temperature (T{sub e}), electron density (n{sub e}), ion density (n{sub i}), degree of ionization of Ar and degree of dissociation of H{sub 2} as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma.more » On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO{sub 2} film.« less

  7. Double plasma resonance instability as a source of solar zebra emission

    NASA Astrophysics Data System (ADS)

    Benáček, J.; Karlický, M.

    2018-03-01

    Context. The double plasma resonance (DPR) instability plays a basic role in the generation of solar radio zebras. In the plasma, consisting of the loss-cone type distribution of hot electrons and much denser and colder background plasma, this instability generates the upper-hybrid waves, which are then transformed into the electromagnetic waves and observed as radio zebras. Aims: In the present paper we numerically study the double plasma resonance instability from the point of view of the zebra interpretation. Methods: We use a 3-dimensional electromagnetic particle-in-cell (3D PIC) relativistic model. We use this model in two versions: (a) a spatially extended "multi-mode" model and (b) a spatially limited "specific-mode" model. While the multi-mode model is used for detailed computations and verifications of the results obtained by the "specific-mode" model, the specific-mode model is used for computations in a broad range of model parameters, which considerably save computational time. For an analysis of the computational results, we developed software tools in Python. Results: First using the multi-mode model, we study details of the double plasma resonance instability. We show how the distribution function of hot electrons changes during this instability. Then we show that there is a very good agreement between results obtained by the multi-mode and specific-mode models, which is caused by a dominance of the wave with the maximal growth rate. Therefore, for computations in a broad range of model parameters, we use the specific-mode model. We compute the maximal growth rates of the double plasma resonance instability with a dependence on the ratio between the upper-hybrid ωUH and electron-cyclotron ωce frequency. We vary temperatures of both the hot and background plasma components and study their effects on the resulting growth rates. The results are compared with the analytical ones. We find a very good agreement between numerical and analytical growth rates. We also compute saturation energies of the upper-hybrid waves in a very broad range of parameters. We find that the saturation energies of the upper-hybrid waves show maxima and minima at almost the same values of ωUH/ωce as the growth rates, but with a higher contrast between them than the growth rate maxima and minima. The contrast between saturation energy maxima and minima increases when the temperature of hot electrons increases. Furthermore, we find that the saturation energy of the upper-hybrid waves is proportional to the density of hot electrons. The maximum saturated energy can be up to one percent of the kinetic energy of hot electrons. Finally we find that the saturation energy maxima in the interval of ωUH/ωce = 3-18 decrease according to the exponential function. All these findings can be used in the interpretation of solar radio zebras.

  8. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  9. Current Interruption and Particle Beam Generation by a Plasma Focus.

    DTIC Science & Technology

    1982-11-30

    Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions...results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a...strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device. (Author)

  10. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Y.; Suzuki, T.; Takechi, M.

    2015-07-15

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less

  11. Confinement control mechanism for two-electron Hulthen quantum dots in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-05-01

    In this study, for the first time, the energies of two-electron Hulthen quantum dots (TEHQdots) embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential under the combined influence of electric and magnetic fields are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. To do this, the four different forms of the MGECSC potential, which set through the different cases of the potential parameters, are taken into consideration. We propose that plasma environments form considerable quantum mechanical effects for quantum dots and other atomic systems and that plasmas are important experimental arguments. In this study, by considering the quantum dot parameters, the external field parameters, and the plasma screening parameters, a control mechanism of the confinement on energies of TEHQdots and the frequency of the radiation emitted by TEHQdots as a result of any excitation is discussed. In this mechanism, the behaviors, similarities, the functionalities of the control parameters, and the influences of plasmas on these quantities are explored.

  12. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  13. Comparative studies on drug binding to the purified and pharmaceutical-grade human serum albumins: Bridging between basic research and clinical applications of albumin.

    PubMed

    Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza

    2015-09-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  14. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  15. Laboratory Simulations of CME-Solar Wind Interactions Using a Coaxial Gun and Background Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B. H.; Zhang, Y.; Fisher, D.; Gilmore, M.

    2016-12-01

    Understanding and predicting solar coronal mass ejections (CMEs) is of critical importance for mitigating their disruptive behavior on ground- and space-based technologies. While predictive models of CME propagation and evolution have relied primarily on sparse in-situ data along with ground and satellite images for validation purposes, emerging laboratory efforts have shown that CME-like events can be created with parameters applicable to the solar regime that may likewise aid in predictive modeling. A modified version of the coaxial plasma gun from the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. 52, 53 (2007)] will be used in conjunction with the Helicon-Cathode (HelCat) basic plasma science device in order to observe the magnetic characteristics of CMEs as they propagate through the solar wind. The evolution of these interactions will be analyzed using a multi-tip Langmuir probe array, a 33-position B-dot probe array, and a high speed camera. The results of this investigation will be used alongside the University of Michigan's BATS-R-US 3-D MHD numerical code, which will be used to perform simulations of the coaxial plasma gun experiment. The results of these two approaches will be compared in order to validate the capabilities of the BATS-R-US code as well as to further our understanding of magnetic reconnection and other processes that take place as CMEs propagate through the solar wind. The details of the experimental setup as well as the analytical approach are discussed.

  16. A hybrid approach to advancing quantitative prediction of tissue distribution of basic drugs in human

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, Patrick, E-mail: patrick-poulin@videotron.ca; Ekins, Sean; Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201

    A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. Thismore » correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.« less

  17. Plasmablasts and plasma cells: reconsidering teleost immune system organization.

    PubMed

    Ye, Jianmin; Kaattari, Ilsa; Kaattari, Stephen

    2011-12-01

    Comparative immunologists have expended extensive efforts in the characterization of early fish B cell development; however, analysis of the post-antigen induction stages of antibody secreting cell (ASC) differentiation has been limited. In contrast, work with murine ASCs has resolved the physically and functionally distinct cells known as plasmablasts, the short-lived plasma cells and long-lived plasma cells. Teleost ASCs are now known to also possess comparable subpopulations, which can greatly differ in such basic functions as lifespan, antigen sensitivity, antibody secretion rate, differentiative potential, and distribution within the body. Understanding the mechanisms by which these subpopulations are produced and distributed is essential for both basic understanding in comparative immunology and practical vaccine engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Plasma Processing of Materials

    DTIC Science & Technology

    1985-02-22

    inert gas or in a reduced pressure environment) one can obtain rapidly solidified metastable (i.e., amorphous, microcrystalline, and supersaturated...integrated circuits dnd thus is an area of’vital : importance to our electronics industry. Applications utilizing noble gas plasmas, such as ion-plating...phenomena and probably will not benefit -ubstantially from acditional basic research. Applications utilizing molecular gas plasmas, where reactive species

  19. Ionospheric Research with Miniaturized Plasma Sensors Aboard FalconSAT-3

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Herrero, F. A.; Chun, F. K.; McHarg, M. G.

    2003-12-01

    Investigations into a novel technique to measure ionosphere-thermosphere parameters have culminated in the Flat Plasma Spectrometer (FLAPS) experiment, presently under development through a collaboration between NASA Goddard Space Flight Center (GSFC) and the U. S. Air Force Academy (USAFA). FLAPS is capable of providing measurements of the full neutral wind vector, full ion-drift velocity vector, neutral and ion temperatures, and deviations from thermalization. In addition, coarse mass spectroscopy is possible using an energy analysis technique. The suite of instruments is comprised of a set of 16 individual neutral and ion analyzers, each of which is designed to perform a specific function. Advances in miniaturization technology have enabled a design in which the 16-sensor suite resides on a circular microchannel plate with an effective area of 25 cm2. The FLAPS electronics package, consisting of low voltage and high voltage power supplies, a microprocessor, and Application Specific Integrated Circuit (ASIC) amplifiers, requires a volume of 290 cm3, power of 1.5 W, and a mass of 500 g. The suite requires a +5V regulated power line from the spacecraft, and the telemetry interface is a 5.0 V TTL-compatible serial connection. Data collection rates vary from 1 to 1000 (192 Byte) spectra per second. The motivation for the FLAPS experiment is driven by objectives that fall into both basic science and technology demonstration categories. Scientifically, there is strong interest in the effects of ionosphere-thermosphere coupling and non-thermalized plasma on the processes associated with equatorial F-region ionospheric plasma bubbles. These bubbles have been known to scintillate transionospheric propagation of radio waves, often resulting in disruptions of space-based communication and navigation systems. FLAPS investigations will assist in quantifying the impact of various processes on the instigation or suppression of plasma bubbles; certain outstanding questions include 1) What is the relevance of meridional winds in suppression of plasma bubble growth? 2) What role does a velocity space instability driven by non-thermalized plasma play in the generation of small scale (<1 km) bubbles? 3) What process is responsible for turbulence in plasma beyond the edges of a bubble structure? Technologically, the need for small yet capable instruments arises from the desire to make multipoint in situ measurements of "microscopic" plasma parameters to provide insight into "macroscopic" phenomena. Examples include coherency of spatial boundaries of large-scale ( ˜100 km) plasma bubbles, three dimensional structure of the equatorial wind and temperature anomaly, and vertical velocity gradients in the low latitude ionosphere. This paper provides an overview of the experiment motivation and instrument design of the FLAPS experiment.

  20. 2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falewicz, R.; Rudawy, P.; Murawski, K.

    Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters ofmore » the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.« less

  1. Dependence of the source performance on plasma parameters at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  2. Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma

    NASA Astrophysics Data System (ADS)

    Alipour, Ramin; Ghanbari, Mohamad R.

    2018-04-01

    Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.

  3. Oblique propagation of solitary waves in weakly relativistic magnetized plasma with kappa distributed electrons in the presence of negative ions

    NASA Astrophysics Data System (ADS)

    Salmanpoor, H.; Sharifian, M.; Gholipour, S.; Borhani Zarandi, M.; Shokri, B.

    2018-03-01

    The oblique propagation of nonlinear ion acoustic solitary waves (solitons) in magnetized collisionless and weakly relativistic plasma with positive and negative ions and super thermal electrons has been examined by using reduced perturbation method to obtain the Korteweg-de Vries equation that admits an obliquely propagating soliton solution. We have investigated the effects of plasma parameters like negative ion density, electrons temperature, angle between wave vector and magnetic field, ions velocity, and k (spectral index in kappa distribution) on the amplitude and width of solitary waves. It has been found out that four modes exist in our plasma model, but the analysis of the results showed that only two types of ion acoustic modes (fast and slow) exist in the plasma and in special cases only one mode could be propagated. The parameters of plasma for these two modes (or one mode) determine which one is rarefactive and which one is compressive. The main parameter is negative ions density (β) indicating which mode is compressive or rarefactive. The effects of the other plasma parameters on amplitude and width of the ion acoustic solitary waves have been studied. The main conclusion is that the effects of the plasma parameters on amplitude and width of the solitary wave strongly depend on the value of the negative ion density.

  4. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men

    PubMed Central

    Yao, Qi; Fan, Kai; Wang, Guo-Hong; Feng, Rui-Xiang; Liang, Yuan-Jiao; Chen, Li; Ge, Yi-Feng; Yao, Bing

    2016-01-01

    Objective This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters. Methods 631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT), estradiol (E2) and SHBG levels were detected. Results Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P < 0.001), while only seminal plasma TG was positively related to them (P < 0.05). For lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042). There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV), sperm concentration (SC), total sperm count (TSC), sperm motility, progressive motility (PR) and total normal-progressively motile sperm counts (TNPMS). Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012), both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002), and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051). Conclusion The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility. PMID:26726884

  5. Comparing the effects of sucrose and high-fructose corn syrup on lipid metabolism and the risk of cardiovascular disease in male rats.

    PubMed

    Sadowska, Joanna; Bruszkowska, Magda

    2017-01-01

    The objective of this study was to compare, in an animal model, the effect of different sugar types (sucrose vs. high-fructose corn syrup 55%) consumed as 10% by weight of the diet (11.6% of daily caloric intake) on the amount of food consumed, body weight, fatty tissue deposits, concentrations of selected lipids, and atherogenic indices of blood plasma. Material and method. The experiment was carried out on 30 5-month-old Wistar male rats, fed three differ- ent diets, containing, amongst other foods, (1) ground unrefined cereal grains, (2) sucrose, (3) high-fructose corn syrup. Results. Weight gains in animals on sucrose or high-fructose corn syrup diets were higher than those con- suming basic feed, but the effect was not associated with perivisceral fat accumulation. It has been found that all the atherogenic indices (Castelli’s Risk Index I, Castelli’s Risk Index II, Atherogenic Index of Plasma, Atherogenic Coefficient) were statistically significantly higher in animals on a high-fructose corn syrup diet compared to both the control group and those on a sucrose diet. Conclusion. The effect of the 55% high-fructose corn syrup on the tested parameters of lipid metabolism was not equivalent to that of sucrose. Using HFCS-55 instead of sucrose has an adverse effect on blood lipid parameters, while weight gains and peri-organ fat deposits are comparable. Moreover, the obtained results confirm that tested animals were susceptible to the adverse effects of sugars added to their diet, even in small amounts. This emphasises the need to precisely control the amount of added sugars in. nd. The objective of this study was to compare, in an animal model, the effect of different sugar types (sucrose vs. high-fructose corn syrup 55%) consumed as 10% by weight of the diet (11.6% of daily caloric intake) on the amount of food consumed, body weight, fatty tissue deposits, concentrations of selected lipids, and atherogenic indices of blood plasma. Material and method. The experiment was carried out on 30 5-month-old Wistar male rats, fed three differ- ent diets, containing, amongst other foods, (1) ground unrefined cereal grains, (2) sucrose, (3) high-fructose corn syrup. Weight gains in animals on sucrose or high-fructose corn syrup diets were higher than those con- suming basic feed, but the effect was not associated with perivisceral fat accumulation. It has been found that all the atherogenic indices (Castelli’s Risk Index I, Castelli’s Risk Index II, Atherogenic Index of Plasma, Atherogenic Coefficient) were statistically significantly higher in animals on a high-fructose corn syrup diet compared to both the control group and those on a sucrose diet. The effect of the 55% high-fructose corn syrup on the tested parameters of lipid metabolism was not equivalent to that of sucrose. Using HFCS-55 instead of sucrose has an adverse effect on blood lipid parameters, while weight gains and peri-organ fat deposits are comparable. Moreover, the obtained results confirm that tested animals were susceptible to the adverse effects of sugars added to their diet, even in small amounts. This emphasises the need to precisely control the amount of added sugars in the diet.

  6. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    which must be added a 1.5 month salary to A. Bugayev for assistance in laser and optic techniques. 2 Part II Technical report Plasma-induced phase shift...two-wavelength heterodyne interferometry applied to atmospheric pressure air plasma 11.1 .A. Plasma-induced phase shift - Electron density...a driver, since the error on the frequency leads to an error on the phase shift. (c) Optical elements Mirrors Protected mirrors must be used to stand

  7. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    PubMed

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Scaling of plasma-body interactions in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Capon, C. J.; Brown, M.; Boyce, R. R.

    2017-04-01

    This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.

  9. Anthropometric, functional capacity, and oxidative stress changes in Brazilian community-living elderly subjects. A longitudinal study.

    PubMed

    Moreira, Priscila Lucelia; Correa, Camila Renata; Corrente, José Eduardo; Martin, Luis Cuadrado; Boas, Paulo Jose Fortes Villas; Ferreira, Ana Lucia Anjos

    2016-01-01

    To examine the changes and relationships among anthropometric, functional and plasma oxidative stress markers in elderly. longitudinal study. measurements in 2008 and 2010. 103 community-dwelling men and women aged 67-92. Anthropometric parameters [waist, hip, arm and calf circumferences; waist-hip ratio, triceps skinfold thickness and others], basic (ADL) and instrumental activities of daily living (IADL)] and plasma oxidative stress markers (α-tocopherol, β-carotene and malondialdehyde) were assessed in 2008 and 2010. ADL, IADL, body weight, skinfold thickness and circumferences of calf and arm decreased and waist and waist-hip ratio increased from 2008 to 2010. α-Tocopherol decreased and malondialdehyde plasma levels increased during the study period. In multiple logistic regression analyses, increased age (OR=1.12; IC: 1.02-1.23; p=0.02), female gender (OR=8.43; IC: 1.23-57.58; p=0.03), hypertension (OR=0.22; IC: 0.06-0.79; p=0.02), arthritis/arthrosis (OR=0.09; IC: 0.009-0.87; p=0.04) and depression (OR=0.20; IC: 0.04-1.03; p=0.05) were independent risk factors for functional decline. Fat reduction, muscle loss, central obesity increase, functional decline and worsening of plasma oxidative stress were observed during 2-year follow-up. Some of the risk factors that were identified could be modified to help prevent functional decline in elderly. The factors deserving attention include hypertension, arthritis/arthrosis and depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup

    2016-10-01

    Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5

  11. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  12. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  13. Effect of ion beam on the characteristics of ion acoustic Gardner solitons and double layers in a multicomponent superthermal plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Nimardeep; Singh, Kuldeep; Saini, N. S.

    2017-09-01

    The nonlinear propagation of ion acoustic solitary waves (IASWs) is investigated in an unmagnetized plasma composed of a positive warm ion fluid, two temperature electrons obeying kappa type distribution and penetrated by a positive ion beam. The reductive perturbation method is used to derive the nonlinear equations, namely, Korteweg-de Vries (KdV), modified KdV (mKdV), and Gardner equations. The characteristic features of both compressive and rarefactive nonlinear excitations from the solution of these equations are studied and compared in the context with the observation of the He+ beam in the polar cap region near solar maximum by the Dynamics Explorer 1 satellite. It is observed that the superthermality and density of cold electrons, number density, and temperature of the positive ion beam crucially modify the basic properties of compressive and rarefactive IASWs in the KdV and mKdV regimes. It is further analyzed that the amplitude and width of Gardner solitons are appreciably affected by different plasma parameters. The characteristics of double layers are also studied in detail below the critical density of cold electrons. The theoretical results may be useful for the observation of nonlinear excitations in laboratory and ion beam driven plasmas in the polar cap region near solar maximum and polar ionosphere as well in Saturn's magnetosphere, solar wind, pulsar magnetosphere, etc., where the population of two temperature superthermal electrons is present.

  14. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    PubMed

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  15. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around themore » number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.« less

  16. Analytical approach to impurity transport studies: Charge state dynamics in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurygin, V. A.

    2006-08-15

    Ionization and recombination of plasma impurities govern their charge state kinetics, which is imposed upon the dynamics of ions that implies a superposition of the appropriate probabilities and causes an impurity charge state dynamics. The latter is considered in terms of a vector field of conditional probabilities and presented by a vector charge state distribution function with coupled equations of the Kolmogorov type. Analytical solutions of a diffusion problem are derived with the basic spatial and temporal dimensionless parameters. Analysis shows that the empirical scaling D{sub A}{proportional_to}n{sub e}{sup -1} [K. Krieger, G. Fussmann, and the ASDEX Upgrade Team, Nucl. Fusionmore » 30, 2392 (1990)] can be explained by the ratio of the diffusive and kinetic terms, D{sub A}/(n{sub e}a{sup 2}), being used instead of diffusivity, D{sub A}. The derived time scales of charge state dynamics are given by a sum of the diffusive and kinetic times. Detailed simulations of charge state dynamics are performed for argon impurity and compared with the reference modeling.« less

  17. Interaction study of aspirin or clopidogrel on pharmacokinetics of donepezil hydrochloride in rats by HPLC-fluorescence detection.

    PubMed

    Wada, Mitsuhiro; Nishiwaki, Junichiro; Yamane, Tomoko; Ohwaki, Yuichi; Aboul-Enein, Hassan Y; Nakashima, Kenichiro

    2007-06-01

    The present study aims to investigate the possibility of interaction of aspirin (Asp) or clopidogrel (CG) on donepezil (DP) hydrochloride in rats by HPLC-fluorescence detection. The separation of DP was achieved in ca. 13 min without interference of Asp and CG on the chromatogram. DP levels in rat plasma with a single administration of DP (5 mg/kg, i.p., group I) and those with a co-administration of Asp (200 mg/kg, p.o., group II or 200 mg/kg, i.p., group III) or CG (5 mg/kg, p.o., group IV) were monitored. The DP concentrations determined in rat plasma ranged from 25.0 to 336.1 ng/mL. Pharmacokinetic parameters for these groups were calculated and compared with one another. No significant difference was observed on the comparison of group I with other groups except for the mean resident time of group IV (p = 0.012). These basic findings may help clinical inference when DP is co-administered with Asp and CG to human. Copyright 2007 John Wiley & Sons, Ltd.

  18. [Blood gas and acid-base changes and rhythmologic tolerance of acetate and bicarbonate hemodialysis using a standard dialyser with high sodium and control of ultrafiltration].

    PubMed

    Westeel, P F; Coevoet, B; Bens, J L; Neuville, M; Morinière, P; Fievet, P; Dkhissi, H; Fournier, A

    1983-01-01

    In order to demonstrate a possible superiority of bicarbonate dialysis (HDB) over acetate dialysis (HDA) in conditions of standard dialysis (4 hours on a 1 m2 cuprophan dialyser) but with a bath rich in sodium (143 mEq/l) and control of ultrafiltration, we have compared 2 sequences of 3 runs of HDA and HDB with these conditions in 8 patients as regards their acido-basic and cardiologic parameters (continuous monitoring of ECG by Holter, regular measurement of blood pressure). Acid base balance study in AHD led to the distinction of 2 groups according to wether their plasma bicarbonate increased or decreased during the run. Rythmological tolerance was the same in BHD and AHD, wether all patients or both groups were considered. Heart rate was however slightly but significantly higher during AHD than during BHD, in the patients whose plasma bicarbonate decreased. In conclusion, the benefit of HDB is not remarkable when HDA is performed not only in standard conditions but also with a bath rich in sodium and with control of ultrafiltration.

  19. Plasma Assisted ISRU at Mars

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Kuhl, Christopher A.; Templeton, Justin D.

    2005-01-01

    NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization (ISRU) technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.

  20. On the accuracy of estimation of basic pharmacokinetic parameters by the traditional noncompartmental equations and the prediction of the steady-state volume of distribution in obese patients based upon data derived from normal subjects.

    PubMed

    Berezhkovskiy, Leonid M

    2011-06-01

    The steady-state and terminal volumes of distribution, as well as the mean residence time of drug in the body (V(ss), V(β), and MRT) are the common pharmacokinetic parameters calculated using the drug plasma concentration-time profile C(p) (t) following intravenous (i.v. bolus or constant rate infusion) drug administration. These calculations are valid for the linear pharmacokinetic system with central elimination (i.e., elimination rate being proportional to drug concentration in plasma). Formally, the assumption of central elimination is not normally met because the rate of drug elimination is proportional to the unbound drug concentration at elimination site, although equilibration between systemic circulation and the site of clearance for majority of small molecule drugs is fast. Thus, the assumption of central elimination is practically quite adequate. It appears reasonable to estimate the extent of possible errors in determination of these pharmacokinetic parameters due to the absence of central elimination. The comparison of V(ss), V(β), and MRT calculated by exact equations and the commonly used ones was made considering a simplified physiologically based pharmacokinetic model. It was found that if the drug plasma concentration profile is detected accurately, determination of drug distribution volumes and MRT using the traditional noncompartmental calculations of these parameters from C(p) (t) yields the values very close to that obtained from exact equations. Though in practice, the accurate measurement of C(p) (t), especially its terminal phase, may not always be possible. This is particularly applicable for obtaining the distribution volumes of lipophilic compounds in obese subjects, when the possibility of late terminal phase at low drug concentration is quite likely, specifically for compounds with high clearance. An accurate determination of V(ss) is much needed in clinical practice because it is critical for the proper selection of drug treatment regimen. For that reason, we developed a convenient method for calculation of V(ss) in obese (or underweight) subjects. It is based on using the V(ss) values obtained from pharmacokinetic studies in normal subjects and the physicochemical properties of drug molecule. A simple criterion that determines either the increase or decrease of V(ss) (per unit body weight) due to obesity is obtained. The accurate determination of adipose tissue-plasma partition coefficient is crucial for the practical application of suggested method. Copyright © 2011 Wiley-Liss, Inc.

  1. Correlation Between the Magnetic Field and Plasma Parameters at 1 AU

    NASA Astrophysics Data System (ADS)

    Yang, Zicai; Shen, Fang; Zhang, Jie; Yang, Yi; Feng, Xueshang; Richardson, Ian G.

    2018-02-01

    The physical parameters of the solar wind observed in-situ near 1 AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature, T, and velocity, V, and the negative correlation between density, N, and velocity, V, are well known. However, the magnetic field intensity, B, does not appear to be well correlated with any individual plasma parameter. In this article, we discuss previously under-reported correlations between B and the combined plasma parameters √{N V2} as well as between B and √{NT}. These two correlations are strong during periods of corotating interaction regions and high-speed streams, and moderate during intervals of slow solar wind. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure.

  2. Experimental investigation of effective parameters on signal enhancement in spark assisted laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hassanimatin, M. M.; Tavassoli, S. H.

    2018-05-01

    A combination of electrical spark and laser induced breakdown spectroscopy (LIBS), which is called spark assisted LIBS (SA-LIBS), has shown its capability in plasma spectral emission enhancement. The aim of this paper is a detailed study of plasma emission to determine the effect of plasma and experimental parameters on increasing the spectral signal. An enhancement ratio of SA-LIBS spectral lines compared with LIBS is theoretically introduced. The parameters affecting the spectral enhancement ratio including ablated mass, plasma temperature, the lifetime of neutral and ionic spectral lines, plasma volume, and electron density are experimentally investigated and discussed. By substitution of the effective parameters, the theoretical spectral enhancement ratio is calculated and compared with the experimental one. Two samples of granite as a dielectric and aluminum as a metal at different laser pulse energies are studied. There is a good agreement between the calculated and the experimental enhancement ratio.

  3. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  4. Use of a novel cation-exchange restricted-access material for automated sample clean-up prior to the determination of basic drugs in plasma by liquid chromatography.

    PubMed

    Chiap, P; Rbeida, O; Christiaens, B; Hubert, Ph; Lubda, D; Boos, K S; Crommen, J

    2002-10-25

    A new kind of silica-based restricted-access material (RAM) has been tested in pre-columns for the on-line solid-phase extraction (SPE) of basic drugs from directly injected plasma samples before their quantitative analysis by reversed-phase liquid chromatography (LC), using the column switching technique. The outer surface of the porous RAM particlescontains hydrophilic diol groups while sulphonic acid groups are bound to the internal surface, which gives the sorbent the properties of a strong cation exchanger towards low molecular mass compounds. Macromolecules such as proteins have no access to the internal surface of the pre-column due to their exclusion from the pores and are then flushed directly out. The retention capability of this novel packing material has been tested for some hydrophilic basic drugs, such as atropine, fenoterol, ipratropium, procaine, sotalol and terbutaline, used as model compounds. The influence of the composition of the washing liquid on the retention of the analytes in the pre-column has been investigated. The elution profiles of the different compounds and the plasma matrix as well as the time needed for the transfer of the analytes from the pre-column to the analytical column were determined in order to deduce the most suitable conditions for the clean-up step and develop on-line methods for the LC determination of these compounds in plasma. The cationic exchange sorbent was also compared to another RAM, namely RP-18 ADS (alkyl diol silica) sorbent with respect to retention capability towards basic analytes.

  5. Fundamentals of Plasma Physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul M.

    2008-07-01

    Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.

  6. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  7. Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells

    PubMed Central

    Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-01-01

    In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research. PMID:29286412

  8. Basic Research in Plasma Medicine - A Throughput Approach from Liquids to Cells.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Niessner, Felix; Gerling, Torsten; Weltmann, Klaus-Dieter; Wende, Kristian

    2017-11-17

    In plasma medicine, ionized gases with temperatures close to that of vertebrate systems are applied to cells and tissues. Cold plasmas generate reactive species known to redox regulate biological processes in health and disease. Pre-clinical and clinical evidence points to beneficial effects of plasma treatment in the healing of chronic ulcer of the skin. Other emerging topics, such as plasma cancer treatment, are receiving increasing attention. Plasma medical research requires interdisciplinary expertise in physics, chemistry, and biomedicine. One goal of plasma research is to characterize plasma-treated cells in a variety of specific applications. This includes, for example, cell count and viability, cellular oxidation, mitochondrial activity, cytotoxicity and mode of cell death, cell cycle analysis, cell surface marker expression, and cytokine release. This study describes the essential equipment and workflows required for such research in plasma biomedicine. It describes the proper operation of an atmospheric pressure argon plasma jet, specifically monitoring its basic emission spectra and feed gas settings to modulate reactive species output. Using a high-precision xyz-table and computer software, the jet is hovered in millisecond-precision over the cavities of 96-well plates in micrometer-precision for maximal reproducibility. Downstream assays for liquid analysis of redox-active molecules are shown, and target cells are plasma-treated. Specifically, melanoma cells are analyzed in an efficient sequence of different consecutive assays but using the same cells: measurement of metabolic activity, total cell area, and surface marker expression of calreticulin, a molecule important for the immunogenic cell death of cancer cells. These assays retrieve content-rich biological information about plasma effects from a single plate. Altogether, this study describes the essential steps and protocols for plasma medical research.

  9. Plasma Electrolyte Distributions in Humans-Normal or Skewed?

    PubMed

    Feldman, Mark; Dickson, Beverly

    2017-11-01

    It is widely believed that plasma electrolyte levels are normally distributed. Statistical tests and calculations using plasma electrolyte data are often reported based on this assumption of normality. Examples include t tests, analysis of variance, correlations and confidence intervals. The purpose of our study was to determine whether plasma sodium (Na + ), potassium (K + ), chloride (Cl - ) and bicarbonate [Formula: see text] distributions are indeed normally distributed. We analyzed plasma electrolyte data from 237 consecutive adults (137 women and 100 men) who had normal results on a standard basic metabolic panel which included plasma electrolyte measurements. The skewness of each distribution (as a measure of its asymmetry) was compared to the zero skewness of a normal (Gaussian) distribution. The plasma Na + distribution was skewed slightly to the right, but the skew was not significantly different from zero skew. The plasma Cl - distribution was skewed slightly to the left, but again the skew was not significantly different from zero skew. On the contrary, both the plasma K + and [Formula: see text] distributions were significantly skewed to the right (P < 0.01 zero skew). There was also a suggestion from examining frequency distribution curves that K + and [Formula: see text] distributions were bimodal. In adults with a normal basic metabolic panel, plasma potassium and bicarbonate levels are not normally distributed and may be bimodal. Thus, statistical methods to evaluate these 2 plasma electrolytes should be nonparametric tests and not parametric ones that require a normal distribution. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  10. Properties of the ion-ion hybrid resonator in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, George J.

    2015-10-06

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less

  11. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  12. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  13. Study on electrostatic and electromagnetic probes operated in ceramic and metallic depositing plasmas

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Bienholz, S.; Lapke, M.; Awakowicz, P.

    2014-04-01

    This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density ne and electron temperature Te. The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S11| parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment.

  14. Plasma physics of extreme astrophysical environments.

    PubMed

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.

  15. Novel test-bed facility for PSI issues in fusion reactor conditions on the base of next generation QSPA plasma accelerator

    NASA Astrophysics Data System (ADS)

    Garkusha, I. E.; Chebotarev, V. V.; Herashchenko, S. S.; Makhlaj, V. A.; Kulik, N. V.; Ladygina, M. S.; Marchenko, A. K.; Petrov, Yu. V.; Staltsov, V. V.; Shevchuk, P. V.; Solyakov, D. G.; Yelisyeyev, D. V.

    2017-11-01

    In this report a concept of a new generation QSPA with external B-field up to 2 T has been discussed. A novel test-bed facility, which was recently constructed in Kharkov IPP NSC KIPT, has been described. It allows for a new level of plasma stream parameters and its wide variation in new QSPA-M device, as well as possible combination of steady-state and pulsed plasma loads to the materials during the exposures. First plasma is recently obtained. Careful optimization of the operational regimes of the plasma accelerator’s functional components and plasma dynamics in the magnetic system of QSPA-M device has started approaching step by step the necessary level of plasma parameters and their effective variation. The relevant results on plasma stream characterization are presented. Energy density distributions in plasma stream have been measured with calorimetry. Spectroscopy and probe technique have also been applied for plasma parameters measurements. The obtained results demonstrate the ability of QSPA-M to reproduce the ELM impacts in fusion reactor, both in terms of heat load and particle flux to the surface.

  16. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  17. PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Dust Acoustic Solitary Waves in Saturn F-ring's Region

    NASA Astrophysics Data System (ADS)

    E. K., El-Shewy; M. I. Abo el, Maaty; H. G., Abdelwahed; M. A., Elmessary

    2011-01-01

    Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nh0, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nh0, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.

  18. Environment parameters and basic functions for floating-point computation

    NASA Technical Reports Server (NTRS)

    Brown, W. S.; Feldman, S. I.

    1978-01-01

    A language-independent proposal for environment parameters and basic functions for floating-point computation is presented. Basic functions are proposed to analyze, synthesize, and scale floating-point numbers. The model provides a small set of parameters and a small set of axioms along with sharp measures of roundoff error. The parameters and functions can be used to write portable and robust codes that deal intimately with the floating-point representation. Subject to underflow and overflow constraints, a number can be scaled by a power of the floating-point radix inexpensively and without loss of precision. A specific representation for FORTRAN is included.

  19. Research briefing on contemporary problems in plasma science

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.

  20. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    NASA Astrophysics Data System (ADS)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  1. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    NASA Astrophysics Data System (ADS)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  2. Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition

    NASA Astrophysics Data System (ADS)

    Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.

    2017-08-01

    Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.

  3. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    NASA Astrophysics Data System (ADS)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  4. Spectroscopic studies of the parameters of plasma jets during their propagation in the background plasma on the PF-3 facility

    NASA Astrophysics Data System (ADS)

    Dan'ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.

    2017-04-01

    This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.

  5. Influence of collective nonideal shielding on fusion reaction in partially ionized classical nonideal plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.

  6. A technique for plasma velocity-space cross-correlation

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean; Skiff, Fred

    2018-05-01

    An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.

  7. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    PubMed

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  8. Molecular Diffusion in Plasma Membranes of Primary Lymphocytes Measured by Fluorescence Correlation Spectroscopy.

    PubMed

    Staaf, Elina; Bagawath-Singh, Sunitha; Johansson, Sofia

    2017-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique for studying the diffusion of molecules within biological membranes with high spatial and temporal resolution. FCS can quantify the molecular concentration and diffusion coefficient of fluorescently labeled molecules in the cell membrane. This technique has the ability to explore the molecular diffusion characteristics of molecules in the plasma membrane of immune cells in steady state (i.e., without processes affecting the result during the actual measurement time). FCS is suitable for studying the diffusion of proteins that are expressed at levels typical for most endogenous proteins. Here, a straightforward and robust method to determine the diffusion rate of cell membrane proteins on primary lymphocytes is demonstrated. An effective way to perform measurements on antibody-stained live cells and commonly occurring observations after acquisition are described. The recent advancements in the development of photo-stable fluorescent dyes can be utilized by conjugating the antibodies of interest to appropriate dyes that do not bleach extensively during the measurements. Additionally, this allows for the detection of slowly diffusing entities, which is a common feature of proteins expressed in cell membranes. The analysis procedure to extract molecular concentration and diffusion parameters from the generated autocorrelation curves is highlighted. In summary, a basic protocol for FCS measurements is provided; it can be followed by immunologists with an understanding of confocal microscopy but with no other previous experience of techniques for measuring dynamic parameters, such as molecular diffusion rates.

  9. Two-dimensional modulated ion-acoustic excitations in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.

    2017-09-01

    Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.

  10. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  11. Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  12. Basic PK/PD principles of drug effects in circular/proliferative systems for disease modelling.

    PubMed

    Jacqmin, Philippe; McFadyen, Lynn; Wade, Janet R

    2010-04-01

    Disease progression modelling can provide information about the time course and outcome of pharmacological intervention on the disease. The basic PK/PD principles of proliferative and circular systems within the context of modelling disease progression and the effect of treatment thereupon are illustrated with the goal to better understand/predict eventual clinical outcome. Circular/proliferative systems can be very complex. To facilitate the understanding of how a dosing regimen can be defined in such systems we have shown the derivation of a system parameter named the Reproduction Minimum Inhibitory Concentration (RMIC) which represents the critical concentration at which the system switches from growth to extinction. The RMIC depends on two parameters (RMIC = (R(0) - 1) x IC(50)): the basic reproductive ratio (R(0)) a fundamental parameter of the circular/proliferative system that represents the number of offspring produced by one replicating species during its lifespan, and the IC(50), the potency of the drug to inhibit the proliferation of the system. The RMIC is constant for a given system and a given drug and represents the lowest concentration that needs to be achieved for eradication of the system. When exposure is higher than the RMIC, success can be expected in the long term. Time varying inhibition of replicating species proliferation is a natural consequence of the time varying inhibitor drug concentrations and when combined with the dynamics of the circular/proliferative system makes it difficult to predict the eventual outcome. Time varying inhibition of proliferative/circular systems can be handled by calculating the equivalent effective constant concentration (ECC), the constant plasma concentration that would give rise to the average inhibition at steady state. When ECC is higher than the RMIC, eradication of the system can be expected. In addition, it is shown that scenarios that have the same steady state ECC whatever the dose, dosage schedule or PK parameters have also the same average R (0) in the presence of the inhibitor (i.e. R (0-INH)) and therefore lead to the same outcome. This allows predicting equivalent active doses and dosing schedules in circular and proliferative systems when the IC(50) and pharmacokinetic characteristics of the drugs are known. The results from the simulations performed demonstrate that, for a given system (defined by its RMIC), treatment success depends mainly on the pharmacokinetic characteristics of the drug and the dosing schedule.

  13. Report of Workshop on Repetitive Opening Switches

    DTIC Science & Technology

    1981-06-01

    needed. This work must also pay close attention to the poorly understood plasma chemistry in these switches and develop models for discharges and dis...circuit model. Inclusion of plasma chemistry . 2. Compile and measure (when need- ed) fundamental data such as rate coefficients, cross-sec- tions, etc...Include plasma chemistry effects in the code. Conduct literature search. Carry out basic measurements for gas- es and gas mixtures under con

  14. Note: Characterization of the plasma parameters of a capillary discharge-produced plasma channel waveguide to guide an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi; Yugami, Noboru; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kanagawa, Saitama 332-0012

    2010-04-15

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Nomarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 400 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  15. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less

  17. Observations on the ponderomotive force

    NASA Astrophysics Data System (ADS)

    Burton, D. A.; Cairns, R. A.; Ersfeld, B.; Noble, A.; Yoffe, S.; Jaroszynski, D. A.

    2017-05-01

    The ponderomotive force is an important concept in plasma physics and, in particular, plays an important role in many aspects of the theory of laser plasma interactions including current concerns like wakefield acceleration and Raman amplification. The most familiar form of this gives a force on a charged particle that is proportional to the slowly varying gradient of the intensity of a high frequency electromagnetic field and directed down the intensity gradiant. For a field amplitude simply oscillating in time there is a simple derivation of this formula, but in the more general case of a travelling wave the problem is more difficult. Over the years there has been much work on this using Hamiltonian or Lagrangian averaging techniques, but little or no investigation of how well these theories work. Here we look at the very basic problem of a particle entering a region with a monotonically increasing electrostatic field amplitude and being reflected. We show that the equation of motion derived from a widely quoted ponderomotive potential only agrees with the numerically computed orbit within a restricted parameter range and that outside this range it shows features which are inconsistent with any ponderomotive potential quadratic in the field amplitude. Since the ponderomotive force plays a fundamental role in a variety of problems in plasma physics we think that it is important to point out that even in the simplest of configurations standard theories may not be accurate.

  18. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  19. An electrothermal plasma model considering polyethylene and copper ablation based on ignition experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangbo; Li, Xingwen; Hang, Yuhua; Yang, Weihong

    2018-06-01

    In order to study the characteristics of electrothermal plasma interaction with energetic materials, especially the ignition ability, a novel model considering polyethylene and copper ablation is developed, and an ignition experiment system is set up. The parameters of the plasma and the surface conditions of the energetic materials are measured in the testing. The results show the measured first peak pressure to be ~2.2 MPa, the second peak pressure to be ~3.9 MPa, and the visible flame velocity to be ~2000 m s‑1. Circular pits of the order of microns and nanometers in size are observed on the surface of the energetic materials. Further, the parameters of the plasma, including static pressure, total pressure, density, temperature, velocity, copper concentration and PE concentration, are calculated and analyzed by the established model, under discharge currents of 9 kA. The simulation is similar to those of experimental results. A shock wave is observed in the experiment and is presented in the calculations; it plays an important role in the performance of the plasma in the nozzle region, where the parameters of the plasma variation trends are very complex. With the aim of obtaining the overall performance of the plasma, the coupling characteristics of multiple parameters must be taken into account, in accordance with the developed electrothermal plasma model.

  20. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study.

    PubMed

    Ameling, Sabine; Kacprowski, Tim; Chilukoti, Ravi Kumar; Malsch, Carolin; Liebscher, Volkmar; Suhre, Karsten; Pietzner, Maik; Friedrich, Nele; Homuth, Georg; Hammer, Elke; Völker, Uwe

    2015-10-14

    Non-cellular blood circulating microRNAs (plasma miRNAs) represent a promising source for the development of prognostic and diagnostic tools owing to their minimally invasive sampling, high stability, and simple quantification by standard techniques such as RT-qPCR. So far, the majority of association studies involving plasma miRNAs were disease-specific case-control analyses. In contrast, in the present study, plasma miRNAs were analysed in a sample of 372 individuals from a population-based cohort study, the Study of Health in Pomerania (SHIP). Quantification of miRNA levels was performed by RT-qPCR using the Exiqon Serum/Plasma Focus microRNA PCR Panel V3.M covering 179 different miRNAs. Of these, 155 were included in our analyses after quality-control. Associations between plasma miRNAs and the phenotypes age, body mass index (BMI), and sex were assessed via a two-step linear regression approach per miRNA. The first step regressed out the technical parameters and the second step determined the remaining associations between the respective plasma miRNA and the phenotypes of interest. After regressing out technical parameters and adjusting for the respective other two phenotypes, 7, 15, and 35 plasma miRNAs were significantly (q < 0.05) associated with age, BMI, and sex, respectively. Additional adjustment for the blood cell parameters identified 12 and 19 miRNAs to be significantly associated with age and BMI, respectively. Most of the BMI-associated miRNAs likely originate from liver. Sex-associated differences in miRNA levels were largely determined by differences in blood cell parameters. Thus, only 7 as compared to originally 35 sex-associated miRNAs displayed sex-specific differences after adjustment for blood cell parameters. These findings emphasize that circulating miRNAs are strongly impacted by age, BMI, and sex. Hence, these parameters should be considered as covariates in association studies based on plasma miRNA levels. The established experimental and computational workflow can now be used in future screening studies to determine associations of plasma miRNAs with defined disease phenotypes.

  1. Correlation between the plasma characteristics and the surface chemistry of plasma-treated polymers through partial least-squares analysis.

    PubMed

    Mavadat, Maryam; Ghasemzadeh-Barvarz, Massoud; Turgeon, Stéphane; Duchesne, Carl; Laroche, Gaétan

    2013-12-23

    We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.

  2. Some Basic Concepts of Wave-Particle Interactions in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    1997-01-01

    The physical concepts of wave-particle interactions in a collisionless plasma are developed from first principles. Using the Lorentz force, starting with the concepts of gyromotion, particle mirroring and the loss-cone, normal and anomalous cyclotron resonant interactions, pitch-angle scattering, and cross-field diffusion are developed.

  3. Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.

    2017-12-01

    The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

  4. Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.

    2012-05-01

    Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.

  5. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  6. Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.

    2016-01-01

    In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.

  7. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  8. Mathematical Model Of Variable-Polarity Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1996-01-01

    Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.

  9. The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma

    NASA Astrophysics Data System (ADS)

    Ai, Xing; He, Xiao-Shan; Huang, Jing-Lin; He, Zhi-Bing; Du, Kai; Chen, Guo

    2018-03-01

    Glow discharge polymer (GDP) films were fabricated using plasma-enhanced chemical vapor deposition. The main purpose of this work was to explore the correlations of plasma parameters with the surface morphology and chemical structure of GDP films. The intensities of main positive ions and ion energy as functions of axial distances in T2B/H2 plasma were diagnosed using energy-resolved mass spectrometry. The surface morphology and chemical structure were characterized as functions of axial distances using a scanning electron microscope and Fourier transform infrared spectroscopy, respectively. As the axial distance increases, both the intensities of positive ions and high energy ions decreases, and dissociation weakens while polymerization enhances. This leads to the weakening of the cross-linking structure of GDP films and the formation of dome defects on films. Additionally, high energy ions could introduce a strong etching effect to form etching pits. Therefore, an axial distance of about 20 mm was found to be the optimal plasma parameter to prepare the defect-free GDP films. These results could help one to find the optimal plasma parameters for GDP film deposition.

  10. Enhancement of output power in a two-section periodical circular waveguide structure using magnetized plasma and a relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Hasanbeigi, A.; Ashrafi, A.; Mehdian, H.

    2018-02-01

    In the present paper, the excitation of electromagnetic wave by relativistic electron beam, as a radiation source, in a two-section periodical plasma waveguide is investigated. The dispersion relation of TM wave is derived and then solved numerically. Next, the effect of plasma, as an extra controlling parameter, on this radiation source is investigated. Results show that the presence of magnetized plasma can lead to significant increase in output power and it can be an extra parameter for tuning the frequency by varying the plasma density.

  11. Properties and parameters of the electron beam injected into the mirror magnetic trap of a plasma accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, V. V., E-mail: temple18@mail.ru; Novitsky, A. A.; Vinnichenko, L. A.

    2016-03-15

    The parameters of the injector of an axial plasma beam injected into a plasma accelerator operating on the basis of gyroresonance acceleration of electrons in the reverse magnetic field are determined. The trapping of the beam electrons into the regime of gyroresonance acceleration is numerically simulated by the particle- in-cell method. The optimal time of axial injection of the beam into a magnetic mirror trap is determined. The beam parameters satisfying the condition of efficient particle trapping into the gyromagnetic autoresonance regime are found.

  12. Two-electrons quantum dot in plasmas under the external fields

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-02-01

    In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.

  13. Basic research in solar physics

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1991-01-01

    This grant, dating back more than 20 years has supported a variety of investigations of the chromospheres and coronae of the Sun and related cool stars by the Principal Investigator, his postdocs and graduate students, and colleagues at other institutions. This work involved studies of radiative transfer and spectral line formation theory, and the application of these techniques to the analysis of spectra obtained from space and ground-based observatories in the optical, ultraviolet, x-ray and radio portions of the spectrum. Space observations have included the analysis of spectra from OSO-7, Skylab, SMM, and the HRTS rocket experiments. Recent work has concentrated on the interaction of magnetic fields, plasma and radiation in the outer atmospheres of the Sun and other magnetically active stars with different fundamental parameters. Our study of phenomena common to the Sun and stars, the 'solar-stellar connection', can elucidate the fundamental physics, because spatially-resolved observations of the Sun provide us with the 'groundtruth,' while interpretation of stellar data permit us to isolate those parameters critical to stellar activity. Recently, we have studied the differences in physical properties between solar regions of high magnetic flux density and the surrounding plasma. High-resolution CN and CO spectroheliograms have been used to model the thermal inhomogeneities driven by unstable CO cooling, and we have analyzed spatially resolved UV spectra from HRTS to model the thermal structure and energy balance of small-scale structures. The study of nonlinear relations between atmospheric radiative losses and the photospheric magnetic flux density has been continued. We have also proposed a new model for the decay of plages by random walk diffusion of magnetic flux. Our analysis of phenomena common to the Sun and stars included the application of available spectroscopic diagnostics, establishing evidence that the atmospheres of the least active stars are heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.

  14. The distribution of radio plasma in time and space.

    PubMed

    Blundell, Katherine M

    2005-03-15

    The influence of jet-ejected plasma has been an important theme of this meeting; I draw attention to the prevalence of jet-ejected plasma, in particular that which has not been properly accounted for in the past. There are three strands to this paper: important emission which is prominent only at the lowest radio frequencies; relic radio plasma which must exist if even the most basic aspects of radio source evolutionary models are correct; and evidence that some 'radio-quiet' quasars could be FR-I radio sources.

  15. Freak oscillation in a dusty plasma.

    PubMed

    Zhang, Heng; Yang, Yang; Hong, Xue-Ren; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2017-05-01

    The freak oscillation in one-dimensional dusty plasma is studied numerically by particle-in-cell method. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the rogue waves in dusty plasma. Additionally, the application scope of the analytical solution of the rogue wave described by the NLSE is given.

  16. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.

    PubMed

    Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R

    2006-05-19

    An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.

  17. Final Technical Report for Grant DE-FG02-04ER54795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlino, Robert L

    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less

  18. Scattering of magnetic mirror trapped electrons by an Alfven wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.; Karavaev, A. V.; Shao, X.; Sharma, A. S.

    2010-12-01

    Highly energetic particles from large solar flares or other events can be trapped in the Earth’s magnetic mirror field and pose a danger to intricate space satellites. Aiming for artificially de-trapping these particles, an experimental and theoretical study of the interactions of a shear Alfven wave with electrons trapped in a magnetic mirror was performed on the Large Plasma Device (LaPD) at UCLA, with critical parameter ratios matched in the lab plasma to those in space. The experiment was done in a quiescent afterglow plasma with ne≈5×1011cm-3, Te≈0.5eV, B0≈1000G, L=18m, and diameter=60cm. A magnetic mirror was established in LaPD (mirror ratio≈1.5, Lmirror≈3m). An electron population with large v⊥ (E⊥≈1keV) was introduced by microwave heating at upper-hybrid frequency with a 2.45GHz pulsed microwave source at up to 5kW. A shear Alfven wave with arbitrary polarization (fwave≈0.5fci , Bwave/B0≈0.5%) was launched by a Rotating Magnetic Field (RMF) antenna axially 2m away from the center of the mirror. It was observed that the Alfven wave effectively eliminated the trapped electrons. A diagnostic probe was developed for this experiment to measure electrons with large v⊥ in the background plasma. Plasma density and temperature perturbations from the Alfven wave were observed along with electron scattering. Computer simulations tracking single particle motion with wave field are ongoing. In these the Alfven wave’s effect on the electrons pitch angle distribution by a Monte-Carlo method is studied. Planned experiments include upgrading the microwave source for up to 100kW pulses to make electrons with higher transverse energy and longer mirror trapping time. This work is supported by The Office of Naval Research under a MURI award. Work was done at the Basic Plasma Science Facility which is supported by DOE and NSF.

  19. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  20. Simulating plasma production from hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Fletcher, Alex; Close, Sigrid; Mathias, Donovan

    2015-09-01

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.

  1. Simulating plasma production from hypervelocity impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid; Mathias, Donovan

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-producedmore » plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.« less

  2. Simulations of Control Schemes for Inductively Coupled Plasma Sources

    NASA Astrophysics Data System (ADS)

    Ventzek, P. L. G.; Oda, A.; Shon, J. W.; Vitello, P.

    1997-10-01

    Process control issues are becoming increasingly important in plasma etching. Numerical experiments are an excellent test-bench for evaluating a proposed control system. Models are generally reliable enough to provide information about controller robustness, fitness of diagnostics. We will present results from a two dimensional plasma transport code with a multi-species plasma chemstry obtained from a global model. [1-2] We will show a correlation of external etch parameters (e.g. input power) with internal plasma parameters (e.g. species fluxes) which in turn are correlated with etch results (etch rate, uniformity, and selectivity) either by comparison to experiment or by using a phenomenological etch model. After process characterization, a control scheme can be evaluated since the relationship between the variable to be controlled (e.g. uniformity) is related to the measurable variable (e.g. a density) and external parameter (e.g. coil current). We will present an evaluation using the HBr-Cl2 system as an example. [1] E. Meeks and J. W. Shon, IEEE Trans. on Plasma Sci., 23, 539, 1995. [2] P. Vitello, et al., IEEE Trans. on Plasma Sci., 24, 123, 1996.

  3. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  4. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.

    PubMed

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.

  5. Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics

    PubMed Central

    Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel

    2009-01-01

    A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696

  6. Arbitrary electron acoustic waves in degenerate dense plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  7. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  8. Global parameter optimization of a Mather-type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-12-01

    Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.

  9. Increased coagulation and fibrinolytic potential of solvent-detergent plasma: a comparative study between Omniplasma and fresh frozen plasma.

    PubMed

    van Beers, J J B C; van Egmond, L T; Wetzels, R J H; Verhezen, P W M; Beckers, E A M; van Oerle, R; Spronk, H M H; Straat, R J M H E; Henskens, Y M C

    2016-07-01

    In this study, differences in levels of proteins involved in coagulation and fibrinolysis were compared between fresh frozen (quarantine plasma) and Omniplasma. Furthermore, thawing conditions and plasma stability after thawing were studied. 10 Omniplasma and 10 quarantine plasma units were used to study different procoagulation, anticoagulation and fibrinolytic parameters. Analysis took place at different time-points during plasma storage at 2-6°C. At baseline, significant reduced levels of factor V, free protein S, α2-antiplasmin and tPA-induced ROTEM lysis time were observed in Omniplasma as compared to quarantine plasma. Moreover, thrombin generation, IXa-AT complex levels and factor XIa were significantly increased in Omniplasma. The majority of the parameters studied remained stable in Omniplasma 48 h after thawing, with the exception of factor VIII (decrease) and IXa-AT (increase). Our results suggest an increased coagulation potential, presumingly as a result of contact activation during the production process and also, an increased fibrinolytic potential in Omniplasma. The stability of Omniplasma, based upon the different parameters studied, is comparable to Q-plasma. A maximum post-thawing time of 48 hfor Omniplasma can be suggested. © 2016 International Society of Blood Transfusion.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, George J.; Maggs, James E.

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events,more » i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.« less

  11. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  12. A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime

    NASA Astrophysics Data System (ADS)

    Joshi, Garima; Ravi, G.; Mukherjee, S.

    2018-06-01

    A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of < 1 mm. The plasma is produced by a multifilamentary cathode and external magnetic field by Helmholtz coils, both designed and constructed in-house. The plasma parameters can be measured by Langmuir probes and electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.

  13. An Extension of the Partial Credit Model with an Application to the Measurement of Change.

    ERIC Educational Resources Information Center

    Fischer, Gerhard H.; Ponocny, Ivo

    1994-01-01

    An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)

  14. Establishment and Assessment of Plasma Disruption and Warning Databases from EAST

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Robert, Granetz; Xiao, Bingjia; Li, Jiangang; Yang, Fei; Li, Junjun; Chen, Dalong

    2016-12-01

    Disruption database and disruption warning database of the EAST tokamak had been established by a disruption research group. The disruption database, based on Structured Query Language (SQL), comprises 41 disruption parameters, which include current quench characteristics, EFIT equilibrium characteristics, kinetic parameters, halo currents, and vertical motion. Presently most disruption databases are based on plasma experiments of non-superconducting tokamak devices. The purposes of the EAST database are to find disruption characteristics and disruption statistics to the fully superconducting tokamak EAST, to elucidate the physics underlying tokamak disruptions, to explore the influence of disruption on superconducting magnets and to extrapolate toward future burning plasma devices. In order to quantitatively assess the usefulness of various plasma parameters for predicting disruptions, a similar SQL database to Alcator C-Mod for EAST has been created by compiling values for a number of proposed disruption-relevant parameters sampled from all plasma discharges in the 2015 campaign. The detailed statistic results and analysis of two databases on the EAST tokamak are presented. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2014GB103000)

  15. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  16. THOR Fluxgate Magnetometer (MAG)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Eastwood, Jonathan; Magnes, Werner; Valavanoglou, Aris; Carr, Christopher M.; O'Brien, Helen L.; Narita, Yasuhito; Delva, Magda; Chen, Christopher H. K.; Plaschke, Ferdinand; Soucek, Jan

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The goal of the Fluxgate Magnetometer (MAG) is to measure the DC to low frequency ambient magnetic field. The design of the magnetometer consists of two tri-axial sensors and the related magnetometer electronics; the electronics are hosted on printed circuit boards in the common electronics box of the fields and wave processor (FWP). A fully redundant two sensor system mounted on a common boom and the new miniaturized low noise design based on MMS and Solar Orbiter instruments enable accurate measurement throughout the region of interest for THOR science. The usage of the common electronics hosted by FWP guarantees to fulfill the required timing accuracy with other fields measurements. These improvements are important to obtain precise measurements of magnetic field, which is essential to estimate basic plasma parameters and correctly identify the spatial and temporal scales of the turbulence. Furthermore, THOR MAG provides high quality data with sufficient overlap with the Search Coil Magnetometer (SCM) in frequency space to obtain full coverage of the wave forms over all the frequencies necessary to obtain the full solar wind turbulence spectrum from MHD to kinetic range with sufficient accuracy.

  17. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    NASA Astrophysics Data System (ADS)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  18. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, J.K.; Smith, C.L.

    The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more thanmore » one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.« less

  20. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    NASA Astrophysics Data System (ADS)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  1. Titanium Hydroxide - a Volatile Species at High Temperature

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species.

  2. A generic testbed for the design of plasma spectrometer control software with application to the THOR-CSW solar wind instrument

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Gamby, Emmanuel; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent; Marcucci, Federica; Brienza, Daniele

    2017-04-01

    Modern plasma spectrometers require intelligent software that is able to exploit their capabilities to the fullest. While the low-level control of the instrument and basic tasks such as performing the basic measurement, temperature control, and production of housekeeping data are to be done by software that is executed on an FPGA and/or processor inside the instrument, higher level tasks such as control of measurement sequences, on-board moment calculation, beam tracking decisions, and data compression, may be performed by the instrument or in the payload data processing unit. Such design decisions, as well as an assessment of the workload on the different processing components, require early prototyping. We have developed a generic simulation testbed for the design of plasma spectrometer control software that allows an early evaluation of the level of resources that is needed at each level. Early prototyping can pinpoint bottlenecks in the design allowing timely remediation. We have applied this tool to the THOR Cold Solar Wind (CSW) plasma spectrometer. Some examples illustrating the usefulness of the tool are given.

  3. New thermodynamical force in plasma phase space that controls turbulence and turbulent transport.

    PubMed

    Itoh, Sanae-I; Itoh, Kimitaka

    2012-01-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.

  4. Temperature anisotropy instabilities stimulated by the interplay of the core and halo electrons in space plasmas

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Shaaban, S. M.; Fichtner, H.; Poedts, S.

    2018-02-01

    Two central components are revealed by electron velocity distributions measured in space plasmas, a thermal bi-Maxwellian core and a bi-Kappa suprathermal halo. A new kinetic approach is proposed to characterize the temperature anisotropy instabilities driven by the interplay of core and halo electrons. Suggested by the observations in the solar wind, direct correlations of these two populations are introduced as co-variations of the key parameters, e.g., densities, temperature anisotropies, and (parallel) plasma betas. The approach involving correlations enables the instability characterization in terms of either the core or halo parameters and a comparative analysis to depict mutual effects. In the present paper, the instability conditions are described for an extended range of plasma beta parameters, making the new dual approach relevant for a wide variety of space plasmas, including the solar wind and planetary magnetospheres.

  5. Experimental results on current-driven turbulence in plasmas - a survey

    NASA Astrophysics Data System (ADS)

    de Kluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.

  6. Effect of microwave argon plasma on the glycosidic and hydrogen bonding system of cotton cellulose.

    PubMed

    Prabhu, S; Vaideki, K; Anitha, S

    2017-01-20

    Cotton fabric was processed with microwave (Ar) plasma to alter its hydrophilicity. The process parameters namely microwave power, process gas pressure and processing time were optimized using Box-Behnken method available in the Design Expert software. It was observed that certain combinations of process parameters improved existing hydrophilicity while the other combinations decreased it. ATR-FTIR spectral analysis was used to identify the strain induced in inter chain, intra chain, and inter sheet hydrogen bond and glycosidic covalent bond due to plasma treatment. X-ray diffraction (XRD) studies was used to analyze the effect of plasma on unit cell parameters and degree of crystallinity. Fabric surface etching was identified using FESEM analysis. Thus, it can be concluded that the increase/decrease in the hydrophilicity of the plasma treated fabric was due to these structural and physical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    PubMed Central

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-01-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481

  8. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-11-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.

  9. Parametric study of a pin-plane probe in moderately magnetized plasma

    NASA Astrophysics Data System (ADS)

    Binwal, S.; Gandhi, S.; Kabariya, H.; Karkari, S. K.

    2015-12-01

    The application of a planar Langmuir probe in magnetized plasma is found to be problematic due to significant perturbation of plasma along the magnetic field lines intercepting the probe surface. This causes the Ampere-Volts ‘I e(U)’ characteristics of the probe to deviate from its usual exponential law; in conjunction the electron saturation current I es is significantly reduced. Moreover estimating the electron temperature T e by considering the entire semi-log plot of I e(U) gives ambiguous values of T e. To address this problem, Pitts and Stangeby developed a formula for the reduction factor for I es. This formula depends on a number of uncertain parameters, namely; the ion temperature T +, electron cross-field diffusion coefficient {{D}\\bot ,\\text{e}} and the local potential hill V h estimated by applying a floating pin probe in the vicinity of the planar probe. Due to implicit dependence of these parameters on T e, the resulting analysis is not straightforward. This paper presents a parametric study of different parameters that influence the characteristics of a planar probe in magnetized plasma. For this purpose a pin-plane probe is constructed and applied in the magnetized plasma column. A comprehensive discussion is presented that highlights the practical methodology of using this technique for extracting useful information of plasma parameters in magnetized plasmas.

  10. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  11. Inductive Electron Heating Revisited

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.

    1996-11-01

    Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.

  12. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field measurements in a polar orbit at 500 km altitude.

  13. Theoretical performance of plasma driven railguns

    NASA Astrophysics Data System (ADS)

    Thio, Y. C.; McNab, I. R.; Condit, W. C.

    1983-07-01

    The overall efficiency of a railgun launch system is the product of efficiencies of its subsystems: prime mover, energy storage, pulse forming network, and accelerator. In this paper, the efficiency of the accelerator is examined in terms of the processes occurring in the accelerator. The principal loss mechanisms include Joule heating in the plasma, in the rails, kinetic energy of the driving plasma and magnetic energy remaining in the accelerator after projectile exit. The mass of the plasma and the atomic weight of the ionic species are important parameters in determining the energy loss in the plasma. Techniques are developed for selecting these parameters of minimize this loss.

  14. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V.; Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  15. Impact of Testosterone, Zinc, Calcium and Magnesium Concentrations on Sperm Parameters in Subfertile Men

    NASA Astrophysics Data System (ADS)

    Aydemir, Birsen; Kiziler, Ali Riza; Onaran, Ilhan; Alici, Bülent; Özkara, Hamdi; Akyolcu, Mehmet Can

    2007-04-01

    To investigate the impact of testosterone, zinc, calcium and magnesium concentrations in serum and seminal plasma on sperm parameters. There were significant decrease in sperm parameters, serum and seminal plasma zinc levels in subfertile males. It indicates zinc has a essential role in male infertility; the determination the level of zinc during infertility investigation is recommended.

  16. The degree of mutual anisotropy of biological liquids polycrystalline nets as a parameter in diagnostics and differentiations of hominal inflammatory processes

    NASA Astrophysics Data System (ADS)

    Angelsky, O. V.; Ushenko, Yu. A.; Balanetska, V. O.

    2011-09-01

    To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of the complex degree of mutual anisotropy distributions of blood plasma is effective during the diagnostics and differentiation of an acute inflammatory processes as well as acute and gangrenous appendicitis.

  17. Middle atmosphere electrodynamics: Report of the workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar Terrestrial Coupling

    NASA Technical Reports Server (NTRS)

    Maynard, N. C. (Editor)

    1979-01-01

    Significant deficiencies exist in the present understanding of the basic physical processes taking place within the middle atmosphere (the region between the tropopause and the mesopause), and in the knowledge of the variability of many of the primary parameters that regulate Middle Atmosphere Electrodynamics (MAE). Knowledge of the electrical properties, i.e., electric fields, plasma characteristics, conductivity and currents, and the physical processes that govern them is of fundamental importance to the physics of the region. Middle atmosphere electrodynamics may play a critical role in the electrodynamical aspects of solar-terrestrial relations. As a first step, the Workshop on the Role of the Electrodynamics of the Middle Atmosphere on Solar-Terrestrial Coupling was held to review the present status and define recommendations for future MAE research.

  18. Refractive index measurement for biomaterial samples by total internal reflection.

    PubMed

    Jin, Y L; Chen, J Y; Xu, L; Wang, P N

    2006-10-21

    The refractive index of biological tissue is a fundamental parameter in applications of optical diagnosis and laser treatments. In the present work, the refractive indices and thermo-optic coefficients of some basic biomaterials, such as blood plasma, haemoglobin solution and lipid membrane, were studied by the method of total internal reflection at the wavelengths of 532 and 632.8 nm that are the most frequently used laser wavelengths in the biomedical field. The effects of the sample concentration and the temperature on refractive index were measured, and empirical relationships were summarized, accompanied by a theoretical explanation based on molecular polarization theory. The results provide some fundamental data for the refractive indices of these biomaterials under variant conditions, and also demonstrate that the total internal reflection method is a feasible and reliable way to measure the refractive indices of biological samples.

  19. Optimization of air plasma reconversion of UF6 to UO2 based on thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Tundeshev, Nikolay; Karengin, Alexander; Shamanin, Igor

    2018-03-01

    The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the paper. Calculation of burning parameters of gas-air mixtures is carried out and the compositions of mixtures obtained via energy-efficient conversion of DUHF in air plasma are determined. With the help of plasma-chemical conversion, thermodynamic modeling optimal composition of UF6-H2-Air mixtures and its burning parameters, the modes for production of uranium dioxide in the condensed phase are determined. The results of the conducted researches can be used for creation of technology for plasma-chemical conversion of DUHF in the form of air-gas mixtures with hydrogen.

  20. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  1. Head-on collision between positron acoustic waves in homogeneous and inhomogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Ali, M. Hossain

    2018-05-01

    The head-on collision between positron acoustic solitary waves (PASWs) as well as the production of rogue waves (RWs) in homogeneous and PASWs in inhomogeneous unmagnetized plasma systems are investigated deriving the nonlinear evolution equations. The plasmas are composed of immobile positive ions, mobile cold and hot positrons, and hot electrons, where the hot positrons and hot electrons are assumed to follow the Kappa distributions. The evolution equations are derived using the appropriate coordinate transformation and the reductive perturbation technique. The effects of concentrations, kappa parameters of hot electrons and positrons, and temperature ratios on the characteristics of PASWs and RWs are examined. It is found that the kappa parameters and temperature ratios significantly modify phase shifts after head-on collisions and RWs in homogeneous as well as PASWs in inhomogeneous plasmas. The amplitudes of the PASWs in inhomogeneous plasmas are diminished with increasing kappa parameters, concentration and temperature ratios. Further, the amplitudes of RWs are reduced with increasing charged particles concentration, while it enhances with increasing kappa- and temperature parameters. Besides, the compressive and rarefactive solitons are produced at critical densities from KdV equation for hot and cold positrons, while the compressive solitons are only produced from mKdV equation for both in homogeneous and inhomogeneous plasmas.

  2. Effects of oral powder electrolyte administration on packed cell volume, plasma chemistry parameters, and incidence of colic in horses participating in a 6-day 162-km trail ride

    PubMed Central

    Walker, Wade T.; Callan, Robert J.; Hill, Ashley E.; Tisher, Kelly B.

    2014-01-01

    This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model. PMID:25082992

  3. Effects of oral powder electrolyte administration on packed cell volume, plasma chemistry parameters, and incidence of colic in horses participating in a 6-day 162-km trail ride.

    PubMed

    Walker, Wade T; Callan, Robert J; Hill, Ashley E; Tisher, Kelly B

    2014-08-01

    This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model.

  4. Plasma cholinesterase activity of rats, western grey kangaroos, alpacas, sheep, cattle, and horses.

    PubMed

    Mayberry, Chris; Mawson, Peter; Maloney, Shane K

    2015-01-01

    Plasma cholinesterase activity levels of various species may be of interest to toxicologists or pathologists working with chemicals that interfere with the activity of plasma cholinesterase. We used a pH titration method to measure the plasma cholinesterase activity of six mammalian species. Plasma cholinesterase activity varied up to 50-fold between species: sheep (88 ± 45 nM acetylcholine degraded per ml of test plasma per minute), cattle (94 ± 35), western grey kangaroos (126 ± 92), alpaca (364 ± 70), rats (390 ± 118) and horses (4539 ± 721). We present a simple, effective technique for the assay of plasma cholinesterase activity levels from a range of species. Although labour-intensive, it requires only basic laboratory equipment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  6. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  7. The Plasma Archipelago: Plasma Physics in the 1960s

    NASA Astrophysics Data System (ADS)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  8. Cross-section analysis of the Magnum-PSI plasma beam using a 2D multi-probe system

    NASA Astrophysics Data System (ADS)

    Costin, C.; Anita, V.; Ghiorghiu, F.; Popa, G.; De Temmerman, G.; van den Berg, M. A.; Scholten, J.; Brons, S.

    2015-02-01

    The linear plasma generator Magnum-PSI was designed for the study of plasma-surface interactions under relevant conditions of fusion devices. A key factor for such studies is the knowledge of a set of parameters that characterize the plasma interacting with the solid surface. This paper reports on the electrical diagnosis of the plasma beam in Magnum-PSI using a multi-probe system consisting of 64 probes arranged in a 2D square matrix. Cross-section distributions of floating potential and ion current intensity were registered for a hydrogen plasma beam under various discharge currents (80-175 A) and magnetic field strengths (0.47-1.41 T in the middle of the coils). Probe measurements revealed a high level of flexibility of plasma beam parameters with respect to the operating conditions.

  9. Studies on plasma profiles and its effect on dust charging in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhay, M.

    2010-02-01

    Plasma profiles and its influence on dust charging are studied in hydrogen plasma. The plasma is produced in a high vacuum device by a hot cathode discharge method and is confined by a cusped magnetic field cage. A cylindrical Espion advanced Langmuir probe having 0.15 mm diameter and 10.0 mm length is used to study the plasma parameters for various discharge conditions. Optimum operational discharge parameters in terms of charging of the dust grains are studied. The charge on the surface of the dust particle is calculated from the capacitance model and the current by the dust grains is measured by the combination of a Faraday cup and an electrometer. Unlike our previous experiments in which dust grains were produced in-situ, here a dust dropper is used to drop the dust particles into the plasma.

  10. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  11. ECRH launching scenario in FFHR-d1

    NASA Astrophysics Data System (ADS)

    Yanagihara, Kota; Kubo, Shin; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Tsujimura, Tohru; Makino, Ryohhei

    2016-10-01

    ECRH is promising as a principal heating system in a prototype helical reactor FFHR-d1 where the heating power of 80 MW is required to bring the plasma parameter to break even condition. To generate the plasma and bring it to ignition condition in FFHR-d1, it is effective to heat the under/over-dense plasma with normal ECRH or Electron Bernstein Wave (EBW). Normal ECRH is well established but heating via EBW need sophisticated injection control. EBW can be excited via the O(ordinary)-X(extraordinary)-B(EBW) mode conversion process by launching the ordinary wave from the low field side to plasma cut-off layer with optimum injection angle, and the range of injection angle to get high OXB mode conversion rate is called OXB mode conversion window. Since the window position can change as the plasma parameter, it is necessary to optimize the injection angle so as to aim the window in response to the plasma parameters. Candidates of antenna positions are determined by optimum injection points on the plasma facing wall calculated by the injection angle. Given such picked up area, detailed analysis using ray-tracing calculations and engineering antenna design will be performed.

  12. Metabolism of plasma cholesterol and lipoprotein parameters are related to a higher degree of insulin sensitivity in high HDL-C healthy normal weight subjects.

    PubMed

    Leança, Camila C; Nunes, Valéria S; Panzoldo, Natália B; Zago, Vanessa S; Parra, Eliane S; Cazita, Patrícia M; Jauhiainen, Matti; Passarelli, Marisa; Nakandakare, Edna R; de Faria, Eliana C; Quintão, Eder C R

    2013-11-22

    We have searched if plasma high density lipoprotein-cholesterol (HDL-C) concentration interferes simultaneously with whole-body cholesterol metabolism and insulin sensitivity in normal weight healthy adult subjects. We have measured the activities of several plasma components that are critically influenced by insulin and that control lipoprotein metabolism in subjects with low and high HDL-C concentrations. These parameters included cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), lecithin cholesterol acyl transferase (LCAT), post-heparin lipoprotein lipase (LPL), hepatic lipase (HL), pre-beta-₁HDL, and plasma sterol markers of cholesterol synthesis and intestinal absorption. In the high-HDL-C group, we found lower plasma concentrations of triglycerides, alanine aminotransferase, insulin, HOMA-IR index, activities of LCAT and HL compared with the low HDL-C group; additionally, we found higher activity of LPL and pre-beta-₁HDL concentration in the high-HDL-C group. There were no differences in the plasma CETP and PLTP activities. These findings indicate that in healthy hyperalphalipoproteinemia subjects, several parameters that control the metabolism of plasma cholesterol and lipoproteins are related to a higher degree of insulin sensitivity.

  13. Basic mechanisms governing solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1976-01-01

    The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

  14. Current-free double layers: A review

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2011-12-01

    During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon double-layer thrusters (HDLTs) to the accelerations of ions in space and astrophysical plasmas are summarized.

  15. Survey of thermal plasma ions in Saturn's magnetosphere utilizing a forward model

    NASA Astrophysics Data System (ADS)

    Wilson, R. J.; Bagenal, F.; Persoon, A. M.

    2017-07-01

    The Cassini Plasma Spectrometer instrument gathered thermal ion data at Saturn from 2004 to 2012, predominantly observing water group ions and protons. Plasma parameters, with uncertainties, for those two ion species are derived using a forward model of anisotropic convected Maxwellians moving at a shared velocity. The resulting data set is filtered by various selection criteria to produce a survey of plasma parameters derived within 10° of the equator at radial distances of 5.5 to 30 RS (1 RS = Saturn's radius). The previous 2008 work used a simpler method and had just 150 records over 5 orbits; this comprehensive survey has 9736 records over all 9 years. We present the results of this survey and compare them with a previous survey derived from numerical moments, highlighting the differences between the reported densities and temperatures from the two methods. Radial profiles of the plasma parameters in the inner and middle magnetospheres out to ≈22RS are stable year by year, but variable at distances larger than 23 RS near the magnetopause. New results include proton densities increasing in the near magnetopause region, suggestive of plasma mixing; evidence for the global electric field in Saturn's inner magnetosphere extends out to ≈15RS; no evidence for supercorotating plasma nor the middle magnetosphere "plasma cam" feature is present; the thermal plasma β is found to exceed unity at equatorial distances greater than 15 RS.

  16. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma.

    PubMed

    Baier, Matthias; Janssen, Traute; Wieler, Lothar H; Ehlbeck, Jörg; Knorr, Dietrich; Schlüter, Oliver

    2015-09-01

    From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Pattern formation and self-organization in plasmas interacting with surfaces

    NASA Astrophysics Data System (ADS)

    Trelles, Juan Pablo

    2016-10-01

    Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse emerging applications ranging from nanomaterial synthesis to medicine, show marked sensitivity to pattern formation and a broadened range of controlling parameters. The results related to the characteristics of the patterns, such as their geometric configuration and static or dynamic nature; as well as their controlling factors, including gas composition, driving voltage and current, electrode cooling, and imposed gas flow, are summarized and discussed. The article finalizes with an outlook of the research area, including theoretical, computational, and experimental needs to advance the field.

  18. Real time closed loop control of an Ar and Ar/O2 plasma in an ICP

    NASA Astrophysics Data System (ADS)

    Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.

    2006-10-01

    Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.

  19. Quantum Shielding Effects on the Eikonal Collision Cross Section in Strongly Coupled Two-temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-05-01

    The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.

  20. Plasma etching of polymers like SU8 and BCB

    NASA Astrophysics Data System (ADS)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  1. A Study of Ignition Effects on Thruster Performance of a Multi-Electrode Capillary Discharge Using Visible Emission Spectroscopy Diagnostics

    DTIC Science & Technology

    2009-09-01

    observed today, it is discussed further in Section 1.1. In addition to the work done in propulsion with coaxial electro thermal pulse plasma thrusters (PPTs...initial plasma conditions. The literature supported these findings for more basic laboratory capillaries, but the effect on a thruster device was unknown...An in- depth investigation of different ignition systems were conducted for a capillary discharge based pulsed plasma thruster. In addition to

  2. FAST TRACK COMMUNICATION: Effects of Penning ionization on the discharge patterns of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhu, Wen-Chao; Zhu, Xi-Ming; Pu, Yi-Kang

    2010-09-01

    Atmospheric pressure plasma jets, generated in a coaxial dielectric barrier discharge configuration, have been investigated with different flowing gases. Discharge patterns in different tube regions were compared in the flowing gases of helium, neon and krypton. To explain the difference of these discharge patterns, a theoretical analysis is presented to reveal the possible basic processes. A comparison of experimental and theoretical results identifies that Penning ionization is mainly responsible for the discharge patterns of helium and neon plasma jets.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sourav; Das, Tushar Kanti; Chatterjee, Prasanta

    The influence of exchange-correlation potential, quantum Bohm term, and degenerate pressure on the nature of solitary waves in a quantum semiconductor plasma is investigated. It is found that an amplitude and a width of the solitary waves change with variation of different parameters for different semiconductors. A deformed Korteweg-de Vries equation is obtained for propagation of nonlinear waves in a quantum semiconductor plasma, and the effects of different plasma parameters on the solution of the equation are also presented.

  4. Scaling relations for a needle-like electron beam plasma from the self-similar behavior in beam propagation

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei

    2017-10-01

    Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.

  5. Spatial measurement in rotating magnetic field plasma acceleration method by using two-dimensional scanning instrument and thrust stand

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Yano, K.; Kuwahara, D.; Shinohara, S.

    2018-04-01

    A two-dimensional scanning probe instrument has been developed to survey spatial plasma characteristics in our electrodeless plasma acceleration schemes. In particular, diagnostics of plasma parameters, e.g., plasma density, temperature, velocity, and excited magnetic field, are essential for elucidating physical phenomena since we have been concentrating on next generation plasma propulsion methods, e.g., Rotating Magnetic Field plasma acceleration method, by characterizing the plasma performance. Moreover, in order to estimate the thrust performance in our experimental scheme, we have also mounted a thrust stand, which has a target type, on this movable instrument, and scanned the axial profile of the thrust performance in the presence of the external magnetic field generated by using permanent magnets, so as to investigate the plasma captured in a stand area, considering the divergent field lines in the downstream region of a generation antenna. In this paper, we will introduce the novel measurement instrument and describe how to measure these parameters.

  6. Application of Platelet-Rich Plasma to Disorders of the Knee Joint

    PubMed Central

    Mandelbaum, Bert R.; McIlwraith, C. Wayne

    2013-01-01

    Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674

  7. The HelCat Helicon-Cathode Device at UNM

    NASA Astrophysics Data System (ADS)

    Cyrin, Bricette; Watts, Christopher; Gilmore, Mark; Hayes, Tiffany; Kelly, Ralph; Leach, Christopher; Lynn, Alan; Sanchez, Andrew; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-11-01

    The HelCat helicon-cathode device is a dual-source linear plasma device for investigating a wide variety of basic plasma phenomena. HelCat is 4 m long, 50 cm diameter, with axial magnetic field < 2.2 kG. An RF helicon source is at one end of the device, and a thermionic BaO-Ni cathode is at the other end. Current research topics include the relationship of turbulence to sheared plasma flows, deterministic chaos, Alfv'en wave propagation and damping, and merging plasma interaction. We present an overview of the ongoing research, and focus on recent results of merging helicon and cathode plasma. We will present some really cool movies.

  8. Plasma RNA integrity analysis: methodology and validation.

    PubMed

    Wong, Blenda C K; Lo, Y M Dennis

    2006-09-01

    The detection of cell-free RNA in plasma and serum of human subjects has found increasing applications in the field of medical diagnostics. However, many questions regarding the biology of circulating RNA remain to be addressed. One issue concerns the molecular nature of these circulating RNA species. We have recently developed a simple and quantitative method to investigate the integrity of plasma RNA. Our results have suggested that cell-free RNA in plasma is generally present as fragmented molecules instead of intact transcripts, with a predominance of 5' fragments. In this article, we summarize the basic principles in the experimental design for plasma RNA integrity analysis and highlight some of the important technical considerations for this type of investigation.

  9. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the main Maxwellian distribution (the bump-on-the-tail distribution function). For a range of parameters in these non-Maxwellian distributions, we compute the current collection to the probes. We compare the distribution function that was assumed a priori with the distribution function one would infer when applying standard triple probe theory to analyze the collected currents. For the assumed class of non-Maxwellian distribution functions this serves to illustrate the effect a non-Maxwellian plasma would have on results interpreted using the equilibrium triple probe current collection theory, allowing us to state the magnitudes of these deviations as a function of the assumed distribution function properties.

  10. Numerical simulation of the plasma thermal disturbances during ionospheric modification experiments at the SURA heating facility

    NASA Astrophysics Data System (ADS)

    Belov, Alexey; Huba, J. D.

    indent=1cm We present the results of numerical simulation of the near-Earth plasma disturbances produced by resonant heating of the ionospheric F-region by high-power HF radio emission from the SURA facility. The computational model is based on the modified version of the SAMI2 code (release 1.00). The model input parameters are appropriated to the conditions of the SURA-DEMETER experiment. In this work, we study the spatial structure and temporal characteristics of stimulated large-scale disturbances of the electron number density and temperature. It is shown that the stimulated disturbances are observed throughout the ionosphere. Disturbances are recorded both in the region below the pump wave reflection level and in the outer ionosphere (up to 3000 km). At the DEMETER altitude, an increase in the ion number density is stipulated by the oxygen ions O (+) , whereas the number density of lighter H (+) ions decreases. A typical time of the formation of large-scale plasma density disturbances in the outer ionosphere is 2-3 min. After the heater is turned off, the disturbances relaxation time is approximately 30 min. The simulation results are important for planning future promising experiments on the formation of ionospheric artificial density ducts. This work was supported by the Russian Foundation for Basic Research (project No. 12-02-00747-a), and the Government of the Russian Federation (contract No. 14.B25.31.0008).

  11. Cortisol response to waterborne 4-nonylphenol exposure leads to increased brain POMC and HSP70 mRNA expressions and reduced total antioxidant capacity in juvenile sole (Solea solea).

    PubMed

    Palermo, Francesco Alessandro; Cocci, Paolo; Nabissi, Massimo; Polzonetti-Magni, Alberta; Mosconi, Gilberto

    2012-11-01

    4-Nonylphenol (4-NP) is a breakdown product of alkylphenolpolyethoxylates and can be found in almost all environmental water matrices. 4-NP can act as environmental stressor on fish, typically causing modulation of hypothalamic-pituitary-interrenal axis (HPI). To examine the effects of the xenoestrogen 4-NP or 17β-estradiol (E2) on induction of stress response mechanisms by evaluating the levels of proopiomelanocortin (POMC) mRNA, heat shock protein 70 (HSP70) mRNA and plasma cortisol, we exposed juvenile sole (Solea solea), under static condition for 7 day, to either 10(-6) or 10(-8) M 4-NP, or 10(-8) M E2. In addition, plasma cortisol titers were correlated to the total antioxidant capacity (TAC), one of the oxidative stress parameters. 4-NP treatments resulted in high levels of POMC mRNA, HSP70 mRNA and plasma cortisol. On the contrary, E2 basically down-regulated POMC expression. Moreover, elevated cortisol levels in fish exposed to the highest dose of 4-NP were accompanied by low TAC. These results suggest that 4-NP modulates the sole HPI axis inducing a cortisol-mediated stress response. Specifically, we suggest that 4-NP affects brain POMC mRNA levels via non-estrogen receptor (ER)-mediated mechanism further supporting the ability of 4-NP to target multiple receptor systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Flowing Magnetized Plasma experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Si, Jiahe

    2006-10-01

    Results from the Flowing Magnetized Plasma experiment at Los Alamos are summarized. Plasmas are produced using a modified coaxial plasma gun with a center electrode extending into a cylindrical vacuum tank with 0.75 m in radius and 4.5 m long. The basic diagnostics are Bdot probes for edge and internal magnetic field, Mach probes and Doppler spectroscopy for plasma flow in the axial and azimuthal directions, and Langmuir probes for plasma floating potential, electron density and temperature. We have found two different plasma flow patterns associated with distinct IV characteristics of the coaxial plasma gun, indicating axial flow is strongly correlated with the plasma ejection from the plasma gun. Global electromagnetic oscillations at frequencies below ion cyclotron frequency are observed, indicating that familiar waves at these frequencies, e.g. Alfven wave or drift wave, are strongly modified by the finite plasma beta. We eliminate the possibility of ion sound waves since the ion and electron temperatures are comparable, and therefore, ion sound waves are strongly Landau damped.

  13. Effect of plasma-rich in platelet-derived growth factors on peri-implant bone healing: An experimental study in canines

    PubMed Central

    Birang, Reza; Torabi, Alireza; Shahabooei, Mohammad; Rismanchian, Mansour

    2012-01-01

    Background: Tissue engineering principles can be exploited to enhance alveolar and peri-implant bone reconstruction by applying such biological factors as platelet-derived growth factors. The objective of the present study is to investigate the effect of autologous plasma-rich in growth factors (on the healing of peri-implant bone in canine mandible). Materials and Methods: In this prospective experimental animal study, two healthy canines of the Iranian mix breed were selected. Three months after removing their premolar teeth on both sides of the mandible, 12 implants of the Osteo Implant Corporationsystem, 5 mm in diameter and 10 mm in length, were selected to be implanted. Plasma rich in growth factors (PRGF) were applied on six implants while the other six were used as plain implants without the plasma. The implants were installed in osteotomy sites on both sides of the mandible to be removed after 4 weeks with the surrounding bones using a trephine bur. Mesio-distal sections and implant blocks, 50 μ in diameter containing the peri-implant bone, were prepared By basic fuchin toluidine-bluefor histological and histomorphometric evaluation by optical microscope. The data were analyzed using Mann-Whitney Test (P<0.05). Results: The bone trabeculae and the type of bone generation in PRGF and control groups had no statistically significant differences (P=0.261, P=0.2) although the parameters showed higher measured values in the PRGF group. However, compared to the control, application of PRGF had significantly increased bone-to-implant contact (P=0.028) Conclusion: Based on the results, it may be concluded that application of PRGF on the surface of implant may enhance bone-to-implant contact. PMID:22363370

  14. Kinetic sensitivity of a receptor-binding radiopharmaceutical: Technetium-99m galactosyl-neoglycoalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, D.R.; Woodle, E.S.; Stadalnik, R.C.

    1989-09-01

    Kinetic sensitivity is the ability of a physiochemical parameter to alter the time-activity curve of a radiotracer. The kinetic sensitivity of liver and blood time-activity data resulting from a single bolus injection of ({sup 99m}Tc)galactosyl-neoglycoalbumin (( Tc)NGA) into healthy pigs was examined. Three parameters, hepatic plasma flow scaled as flow per plasma volume, ligand-receptor affinity, and total receptor concentration, were tested using (Tc)NGA injections of various molar doses and affinities. Simultaneous measurements of plasma volume (iodine-125 human serum albumin dilution), and hepatic plasma flow (indocyanine green extraction) were performed during 12 (Tc)NGA studies. Paired data sets demonstrated differences (P(chi v2)more » less than 0.01) in liver and blood time-activity curves in response to changes in each of the tested parameters. We conclude that the (Tc)NGA radiopharmacokinetic system is therefore sensitive to hepatic plasma flow, ligand-receptor affinity, and receptor concentration. In vivo demonstration of kinetic sensitivity permits delineation of the physiologic parameters that determine the biodistribution of a radiopharmaceutical. This delineation is a prerequisite to a valid analytic assessment of receptor biochemistry via kinetic modeling.« less

  15. Characterization of DC Magnetron Sputtering Plasma Used for Deposition of Amorphous Carbon Nitride

    NASA Astrophysics Data System (ADS)

    Camps, Enrique; Escobar-Alarcón, Luis; López, J.; Zambrano, G.; Prieto, P.

    2006-12-01

    Amorphous carbon nitride (a-CNx) thin films are attractive due to their potential applications, in different areas. This material can be hard and used as a protective coating, or can be soft and porous and used as the active element in gas sensors, it can also be used as a radiation detector due to its thermoluminescent response. The use of this material for one or another application, will depend on the material's structure, which can be changed by changing the deposition parameters. When using the d.c. magnetron sputtering technique it means mainly the change of discharge power, type of Ar/N2 gas mixture, and the working gas pressure. The variation of these deposition parameters has an important influence on the characteristics of the plasma formed in the discharge. In this work we studied the plasma characteristics, such as the type of excited species, plasma density, and electron temperature under different deposition conditions, using Optical Emission Spectroscopy (OES), and a single Langmuir probe. These parameters were correlated with the properties of a-CNx films deposited under those characterized regimes, in order to establish the role that the plasma parameters play on the formation of the different structures of CNx films.

  16. Plasma gasification of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, G.W.; Tsangaris, A.V.

    1995-12-31

    Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less

  17. Plasma chemistry reference values from captive red-legged partridges (Alectoris rufa).

    PubMed

    Rodríguez, P; Tortosa, F S; Millán, J; Gortázar, C

    2004-08-01

    1. Haematological and plasma biochemical parameters of 66 captive red-legged partridges (Alectoris rufa) of both sexes were analysed in order to determine reference values, taking sex and age into account. 2. There were no statistically significant differences in haematocrit, plasma glucose content or creatine kinase activity either with age or between sexes. 3. Plasma cholesterol concentrations showed differences between sexes, whereas the plasma concentrations of urea, uric acid and creatinine were significantly affected by age. 4. Plasma triglyceride and total protein concentrations were affected by both sex and age. 5. A peak at 6 months old in those parameters related to protein metabolism, such as urea, uric acid and creatinine may be related to the end of the growing period and the start of ovulation after moulting.

  18. Dusty (complex) plasmas: recent developments, advances, and unsolved problems

    NASA Astrophysics Data System (ADS)

    Popel, Sergey

    The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.

  19. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  20. Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community.

    PubMed

    Hahn, David W; Omenetto, Nicoló

    2010-12-01

    Laser-induced breakdown spectroscopy (LIBS) has become a very popular analytical method in the last decade in view of some of its unique features such as applicability to any type of sample, practically no sample preparation, remote sensing capability, and speed of analysis. The technique has a remarkably wide applicability in many fields, and the number of applications is still growing. From an analytical point of view, the quantitative aspects of LIBS may be considered its Achilles' heel, first due to the complex nature of the laser-sample interaction processes, which depend upon both the laser characteristics and the sample material properties, and second due to the plasma-particle interaction processes, which are space and time dependent. Together, these may cause undesirable matrix effects. Ways of alleviating these problems rely upon the description of the plasma excitation-ionization processes through the use of classical equilibrium relations and therefore on the assumption that the laser-induced plasma is in local thermodynamic equilibrium (LTE). Even in this case, the transient nature of the plasma and its spatial inhomogeneity need to be considered and overcome in order to justify the theoretical assumptions made. This first article focuses on the basic diagnostics aspects and presents a review of the past and recent LIBS literature pertinent to this topic. Previous research on non-laser-based plasma literature, and the resulting knowledge, is also emphasized. The aim is, on one hand, to make the readers aware of such knowledge and on the other hand to trigger the interest of the LIBS community, as well as the larger analytical plasma community, in attempting some diagnostic approaches that have not yet been fully exploited in LIBS.

  1. Flush-mounted probe diagnostics for argon glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less

  2. Probing a dusty magnetized plasma with self-excited dust-density waves

    NASA Astrophysics Data System (ADS)

    Tadsen, Benjamin; Greiner, Franko; Piel, Alexander

    2018-03-01

    A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.

  3. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.

    2006-09-15

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with themore » magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field.« less

  4. Analysis of X-Ray Line Spectra from a Transient Plasma Under Solar Flare Conditions - Part Three - Diagnostics for Measuring Electron Temperature and Density

    NASA Astrophysics Data System (ADS)

    Sylwester, J.; Mewe, R.; Schrijver, J.

    1980-06-01

    In this paper, the third in a series dealing with plasmas out of equilibrium we present quantitative methods of analysis of non-stationary flare plasma parameters. The method is designed to be used for the interpretation of the SMM XRP Bent Crystal Spectrometer spectra. Our analysis is based on measurements of 11 specific lines in the 1.77-3.3 Å range. Using the proposed method we are able to derive information about temperature, density, emission measure, and other related parameters of the flare plasma. It is shown that the measurements, to be made by XRP can give detailed information on these parameters and their time evolution. The method is then tested on some artificial flares, and proves to be useful and accurate.

  5. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201604004), and the National University Science and Technology Innovation Project of China (Grant Nos. 201610718014 and cx16018).

  6. Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Dolores, E-mail: diaz.dolores@gene.com; Ford, Kevin A.; Hartley, Dylan P.

    Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstratedmore » by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd > 3 l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd = 1.0 l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins. -- Highlights: ► Lower pKa for a small molecule: reduced tissue drug levels and toxicity. ► New analysis tools to assess electrostatic effects and ionization are presented. ► Chemical and PK drivers of toxicity can be leveraged to improve safety.« less

  7. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  8. How does a probe inserted into the discharge influence the plasma structure?

    NASA Astrophysics Data System (ADS)

    Yordanov, D.; Lishev, St.; Shivarova, A.

    2016-05-01

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by the results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.

  9. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, Chi Yung

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  10. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  11. Laser-plasma-based linear collider using hollow plasma channels

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2016-03-03

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  12. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  13. Digital Microwave System Design Guide.

    DTIC Science & Technology

    1984-02-01

    traffic analysis is a continuous effort, setting parameters for subsequent stages of expansion after the system design is finished. 2.1.3 Quality of...operational structure of the user for whom he is providing service. 2.2.3 Quality of Service. In digital communications, the basic performance parameter ...the basic interpretation of system performance is measured in terms of a single parameter , throughput. Throughput can be defined as the number of

  14. Tornado-like transport in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Poulos, Matthew; van Compernolle, Bart; Morales, George

    2017-10-01

    Recent heat transport experiments conducted in the LAPD device at UCLA in which avalanche events have been previously documented have also lead to the identification of a new tornado-like transport phenomenon. These tornados occur much earlier than the avalanches events, essentially in the interval following the application of the bias voltage that causes the injection of an electron beam from a ring-shaped LaB6 cathode into the afterglow of a cold, magnetized plasma. The tornados exhibit a low-frequency (4 kHz) (much lower than drift-waves), spiraling, global eigenmode whose transient behavior is responsible for significant radial transport well outside the heated region. Detailed experimental observations are compared with a Braginskii transport code that includes the effects of ExB convection induced by the spiraling global eigenmode. New insights are gained into the necessary modifications of classical transport to accurately simulate the spiraling effects and the possible interaction with avalanches. This work is supported by the NSF/DOE partnership in basic plasma science and engineering, Grant Number 1619505, and is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF. Sponsored by DOE/NSF at BaPSF and NSF 1619505.

  15. The effects of copper on blood and biochemical parameters of rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Dethloff, G.M.; Schlenk, D.; Khan, S.; Bailey, H.C.

    1999-01-01

    Metals are released into aquatic systems from many sources, often at sublethal concentrations. The effects of sublethal concentrations of metals on fish are not entirely understood. The objective of this study was to determine the hematological and biochemical effects of a range of copper concentrations (6.4, 16.0, 26.9 ??g Cu/L) on rainbow trout (Oncorhynchus mykiss) over a prolonged period of time. Trout were exposed to copper, and, at intervals of 3, 7, 14, and 21 days, selected parameters were evaluated. Hemoglobin, hematocrit, plasma glucose, and plasma cortisol levels were elevated in trout exposed to 26.9 ??g Cu/L at day 3 and then returned to levels comparable to control fish. Plasma protein and lactate levels were not significantly altered in trout from any copper treatment. Hepatic copper concentration and hepatic metallothionein mRNA expression were consistently elevated in trout exposed to 26.9 ??g Cu/L. Both of these parameters stabilized by day 3, with only hepatic copper concentration showing a further increase at day 21. Hepatic copper concentration and hepatic metallothionein mRNA expression appear to be robust indicators of copper exposure. Most blood-based parameters evaluated appear to be associated with a transitory, nonspecific stress response. The return of elevated hematological and biochemical parameters to control levels after 3 days and thestabilization of hepatic metallothionein mRNA expression and copper concentration over a similar time period suggested acclimation to dissolved copper at 26.9 ??g/L. Further analysis of the data on blood-based parameters indicated that certain parameters (hemoglobin, hematocrit, plasma glucose, plasma cortisol) may be useful in field monitoring.

  16. Microplasmas, a platform technology for a plethora of plasma applications

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2017-08-01

    Publications describing microplasmas, which are commonly defined as plasmas with at least one dimension in the submillimeter range, began to appear to the scientific literature about 20 years ago. As discussed in a recent review by Schoenbach and Becker [1], interest and activities in basic microplasma research as well as in the use of microplasma for a variety of application has increased significatly over the past 20 years. The number of papers devoted to basic microplasma science increased by an order of magnitude between 1995 and 2015, a count that excludes publications dealing exclusively with technological applications of microplasmas, where the microplasma is used solely as a tool. In reference [1], the authors limited the topical coverage largely to the status of microplasma science and our understanding of the physics principles that enable microplasma operation and further stated that the rapid proliferation of microplasma applications made it impossible to cover both basic microplasma science and their application in a single review article.

  17. Getting Ready for BepiColombo: A Modeling Approach to Infer the Solar Wind Plasma Parameters Upstream of Mercury from Magnetic Field Observations

    NASA Astrophysics Data System (ADS)

    Fatemi, S.; Poirier, N.; Holmström, M.; Wieser, M.; Barabash, S.

    2018-05-01

    We have developed a model to infer the solar wind plasma parameters upstream of Mercury from magnetic field observations in Mercury's magnetosphere. This is important for observations by MESSENGER and the future mission to Mercury, BepiColombo.

  18. Using the tools of the trade to understand plasma interactions at Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret G.

    2017-10-01

    For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ, modifications of the simulation, such as changed boundary conditions, can improve agreement and provide more convincing insight into the properties of the systems.

  19. Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.

    2009-11-01

    The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.

  20. Impact of plasma viscosity on microcirculatory flow after traumatic haemorrhagic shock: A prospective observational study.

    PubMed

    Naumann, David N; Hazeldine, Jon; Bishop, Jon; Midwinter, Mark J; Harrison, Paul; Nash, Gerard; Hutchings, Sam D

    2018-05-19

    Preclinical studies report that higher plasma viscosity improves microcirculatory flow after haemorrhagic shock and resuscitation, but no clinical study has tested this hypothesis. We investigated the relationship between plasma viscosity and sublingual microcirculatory flow in patients during resuscitation for traumatic haemorrhagic shock (THS). Sublingual video-microscopy was performed for 20 trauma patients with THS as soon as feasible in hospital, and then at 24 h and 48 h. Values were obtained for total vessel density, perfused vessel density, proportion of perfused vessels, microcirculatory flow index (MFI), microcirculatory heterogeneity index (MHI), and Point of Care Microcirculation (POEM) scores. Plasma viscosity was measured using a Wells-Brookfield cone and plate micro-viscometer. Logistic regression analyses examined relationships between microcirculatory parameters and plasma viscosity, adjusting for covariates (systolic blood pressure, heart rate, haematocrit, rate and volume of fluids, and rate of noradrenaline). Higher plasma viscosity was not associated with improved microcirculatory parameters. Instead, there were weakly significant associations between higher plasma viscosity and lower (poorer) MFI (p = 0.040), higher (worse) MHI (p = 0.033), and lower (worse) POEM scores (p = 0.039). The current study did not confirm the hypothesis that higher plasma viscosity improves microcirculatory flow dynamics in patients with THS. Further clinical investigations are warranted to determine whether viscosity is a physical parameter of importance during resuscitation of these patients.

  1. Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1991-01-01

    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized.

  2. Propagation of cylindrical ion acoustic waves in a plasma with q-nonextensive electrons with nonthermal distribution

    NASA Astrophysics Data System (ADS)

    El-Depsy, A.; Selim, M. M.

    2016-12-01

    The propagation of ion acoustic waves (IAWs) in a cylindrical collisionless unmagnetized plasma, containing ions and electrons is investigated. The electrons are considered to be nonextensive and follow nonthermal distribution. The reductive perturbation technique (RPT) is used to obtain a nonlinear cylindrical Kadomtsev-Petviashvili (CKP) evolution equation. This equation is solved analytically. The effects of plasma parameters on the IAWs characteristics are discussed in details. Both compressive and rarefactive solitons are found to be created in the proposed plasma system. The profile of IAWs is found to depend on the nonextensive and nonthermal parameters. The present study is useful for understanding IAWs in the regions where mixed electron distribution in space, or laboratory plasmas, exist.

  3. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them inmore » detail.« less

  4. Effect of growth parameters on crystallinity and properties of ZnO films grown by plasma assisted MOCVD

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M. M.; Sacchetti, A.; Capezzuto, P.; Bruno, G.; Malandrino, G.; Fragalà, I. L.

    2007-07-01

    Thin films of ZnO have been grown by plasma assisted metal-organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O 2 plasma and the Zn(TTA)•tmed (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N',N'-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.

  5. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  6. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.

    2017-01-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85 %- 87 % extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  7. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System.

    PubMed

    Turnbull, D; Goyon, C; Kemp, G E; Pollock, B B; Mariscal, D; Divol, L; Ross, J S; Patankar, S; Moody, J D; Michel, P

    2017-01-06

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  8. Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.

    PubMed

    Strelkov, V V; Ganeev, R A

    2017-09-04

    We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.

  9. A comparative study of radiofrequency antennas for Helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Lancellotti, V.

    2015-04-01

    Since Helicon plasma sources can efficiently couple power and generate high-density plasma, they have received interest also as spacecraft propulsive devices, among other applications. In order to maximize the power deposited into the plasma, it is necessary to assess the performance of the radiofrequency (RF) antenna that drives the discharge, as typical plasma parameters (e.g. the density) are varied. For this reason, we have conducted a comparative analysis of three Helicon sources which feature different RF antennas, namely, the single-loop, the Nagoya type-III and the fractional helix. These antennas are compared in terms of input impedance and induced current density; in particular, the real part of the impedance constitutes a measure of the antenna ability to couple power into the plasma. The results presented in this work have been obtained through a full-wave approach which (being hinged on the numerical solution of a system of integral equations) allows computing the antenna current and impedance self-consistently. Our findings indicate that certain combinations of plasma parameters can indeed maximize the real part of the input impedance and, thus, the deposited power, and that one of the three antennas analyzed performs best for a given plasma. Furthermore, unlike other strategies which rely on approximate antenna models, our approach enables us to reveal that the antenna current density is not spatially uniform, and that a correlation exists between the plasma parameters and the spatial distribution of the current density.

  10. Solar wind: Internal parameters driven by external source

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    A new concept interpreting solar wind parameters is suggested. The process of increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. Thus, the solar wind is unique from the point of view of thermodynamics of irreversible processes. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of interplanetary plasma must be very far from the thermodynamic equilibrium. Plasma internal energy is contained mainly in non-degenerate forms (plasma waves, resonant plasma oscillations, electric currents). Microscopic oscillating electric fields in the solar wind plasma should be about 1 V/m. It allows one to describe the solar wind by simple dissipative MHD equations with small effective mean free path (required for hydrodynamical description), low value of electrical conductivity combined with very big apparent thermal conductivity (required for observed solar wind acceleration). These internal parameters are interrelated only due to their origin: they are externally driven. Their relation can change during the interaction of solar wind plasma with an obstacle (planet, spacecraft). The concept proposed can be verified by the special electric field measurements, not ruining the primordial plasma state.

  11. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)).

    PubMed

    Dobiásová, M; Frohlich, J

    2001-10-01

    To evaluate if logarithm of the ratio of plasma concentration of triglycerides to HDL-cholesterol (Log[TG/HDL-C]) correlates with cholesterol esterification rates in apoB-lipoprotein-depleted plasma (FER(HDL)) and lipoprotein particle size. We analyzed previous data dealing with the parameters related to the FER(HDL) (an indirect measure of lipoprotein particle size). In a total of 1433 subjects from 35 cohorts with various risk of atherosclerosis (cord plasma, children, healthy men and women, pre- and postmenopausal women, patients with hypertension, type 2 diabetes, dyslipidemia and patients with positive or negative angiography findings) were studied. The analysis revealed a strong positive correlation (r = 0.803) between FER(HDL) and Log(TG/HDL-C). This parameter, which we propose to call "atherogenic index of plasma" (AIP) directly related to the risk of atherosclerosis in the above cohorts. We also confirmed in a cohort of 35 normal subjects a significant inverse correlation of LDL size with FER(HDL) (r = -0.818) and AIP (r = -0.776). Values of AIP correspond closely to those of FER(HDL) and to lipoprotein particle size and thus could be used as a marker of plasma atherogenicity.

  12. Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation.

    PubMed

    Baghshahi, H; Riasi, A; Mahdavi, A H; Shirazi, A

    2014-12-01

    Clove bud (Syzygium aromaticum) extract was added at concentrations of 0, 35, 75, and 115 μg/ml to ovine semen extenders in order to investigate the antioxidant activities of clove bud extract and its effects on semen quality parameters after cryopreservation of ram spermatozoa. The basic extender was composed of Tris, egg yolk, and glycerol. Two other extenders were prepared by substitution of egg yolk with either LDL or egg yolk+SDS. The DPPH inhibition test was employed to assess the antioxidant activity of clove bud extract. Results showed that, compared to vitamin E, clove bud extract had a higher antioxidant activity. Better sperm motility and movement characteristics (P<0.05) were observed in the semen diluted with medium containing egg yolk+SDS than in that containing egg yolk and LDL. Progressive motility and movement characteristics of the sperm were significantly improved (P<0.05) by adding 35 and/or 75 μg/ml of clove bud extract to semen extenders. Sperm viability and plasma membrane integrity were also higher (P<0.05) in the semen exposed to medium containing egg yolk+SDS and 75 μg of clove buds extract after cryopreservation processes. Higher levels of clove bud extract, however, had adverse effects on all the sperm quality parameters and significantly reduced (P<0.05) the motility, movement parameters, viability, and plasma membrane integrity of ovine sperm. It was concluded that the clove bud extract had an antioxidant potential that makes it useful for addition to semen extenders and that the best results are obtained with a maximum clove bud extract of 75 μg/ml. Moreover, the combination of egg yolk and a detergent was found to improve sperm quality after the cooling and freeze-thawing processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.

  14. Influence of seminal plasma on fresh and post-thaw parameters of stallion epididymal spermatozoa.

    PubMed

    Heise, A; Thompson, P N; Gerber, D

    2011-02-01

    Fresh and post-thaw parameters (motility, morphology and viability) of stallion epididymal spermatozoa that have been and have not been exposed to seminal plasma were evaluated, and directly compared to fresh and post-thaw parameters of ejaculated spermatozoa. Six sperm categories of each stallion (n=4) were evaluated for motility, morphology and viability. These categories were fresh ejaculated spermatozoa (Fr-E), fresh epididymal spermatozoa that had been exposed to seminal plasma (Fr-SP+), fresh epididymal spermatozoa that had never been exposed to seminal plasma (Fr-SP-), frozen-thawed ejaculated spermatozoa (Cr-E), frozen-thawed epididymal spermatozoa that had been exposed to seminal plasma prior to freezing (Cr-SP+) and frozen-thawed epididymal spermatozoa that had never been exposed to seminal plasma (Cr-SP-). Results show that seminal plasma stimulates initial motility of fresh epididymal stallion spermatozoa while this difference in progressive motility is no longer present post-thaw; and that progressive motility of fresh or frozen-thawed ejaculated stallion spermatozoa is not always a good indicator for post-thaw progressive motility of epididymal spermatozoa. This study shows that seminal plasma has a positive influence on the incidence of overall sperm defects, midpiece reflexes and distal cytoplasmic droplets in frozen-thawed stallion epididymal spermatozoa while the occurance of midpiece reflexes is likely to be linked to distal cytoplasmic droplets. Furthermore, seminal plasma does not have an influence on viability of fresh and frozen-thawed morphologically normal epididymal spermatozoa. We recommend the retrograde flushing technique using seminal plasma as flushing medium to harvest and freeze stallion epididymal spermatozoa. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1998-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the present proposal is to determine as many plasma parameters in that region as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters are then used to constrain solar wind models.

  16. Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Dubolazov, O. V.; Karachevtcev, A. O.; Zabolotna, N. I.

    2011-05-01

    To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.

  17. Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Dubolazov, A. V.; Karachevtcev, A. O.; Zabolotna, N. I.

    2011-09-01

    To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.

  18. Sonochemotherapy: from bench to bedside

    PubMed Central

    Lammertink, Bart H. A.; Bos, Clemens; Deckers, Roel; Storm, Gert; Moonen, Chrit T. W.; Escoffre, Jean-Michel

    2015-01-01

    The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy. PMID:26217226

  19. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field

    NASA Astrophysics Data System (ADS)

    Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  20. The structure of the plasma sheet-lobe boundary in the Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Orsini, S.; Candidi, M.; Formisano, V.; Balsiger, H.; Ghielmetti, A.; Ogilvie, K. W.

    1982-01-01

    The structure of the magnetotail plasma sheet-plasma lobe boundary was studied by observing the properties of tailward flowing O+ ion beams, detected by the ISEE 2 plasma experiment inside the boundary during three time periods. The computed value of the north-south electric field component as well as the O+ parameters are shown to change at the boundary. The results are related to other observations made in this region. The O+ parameters and the Ez component behavior are shown to be consistent with that expected from the topology of the electric field lines in the tail as mapped from the ionosphere.

  1. Kinetic Alfvén solitary and rogue waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Bains, A. S.; Li, Bo; Xia, Li-Dong

    2014-03-01

    We investigate the small but finite amplitude solitary Kinetic Alfvén waves (KAWs) in low β plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter κ, plasma β, and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfvénic, compressive solitons are supported. We then extend the study to examine kinetic Alfvén rogue waves by deriving a nonlinear Schrödinger equation from the KdV equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermality whereas the opposite is true when the plasma β increases. The findings of this study may find applications to low β plasmas in astrophysical environments where particles are superthermally distributed.

  2. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  3. Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: Field profile optimization

    NASA Astrophysics Data System (ADS)

    Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram

    2018-04-01

    The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.

  4. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  5. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  6. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understandingmore » the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.« less

  7. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  8. High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Erofeev, Vasily I.; Erofeev

    2014-04-01

    The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).

  9. Ideal and resistive plasma resistive wall modes and control: linear and nonlinear

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2004-11-01

    Our recent work* on control of linear and nonlinear resistive wall modes (RWM) showed that if there is an ideal plasma mode and a resistive plasma mode, and if the beta limit for the latter is lower (as is typical), then nonlinear resistive wall modes behave basically as nonlinear tearing-like modes locked to the wall. We investigate here the effect of plasma rotation sufficient to stabilize the resistive-plasma RWM but not the ideal plasma RWM. We also review results** showing the effect of normal and poloidal magnetic field sensing, and describe a simple model which is amenable to analytic solution, and which makes previously obtained simulation results transparent. *J. Finn and L. Chacon, 'Control of linear and nonlinear resistive wall modes', Phys. Plas 11, 1866 (2004). **J. Finn, 'Control of resistive wall modes in a cylindrical tokamak with radial and poloidal magnetic field sensors', to appear in Phys. Plasmas, 2004.

  10. Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-01-05

    The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less

  11. The Dense Plasma Focus Group of IFAS at Argentina: A brief history and recent direction of the investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanese, Maria Magdalena; CONICET - 7000 Tandil

    2006-12-04

    This is a short review of the research done by the Dense Plasma Focus Group (GPDM) presently working in Tandil, Argentina, from its origin, more than three decades ago, as part of the Plasma Physics Laboratory of Buenos Aires University (the first one in Latin-America where experiments in plasma focus have been made) up to the present. The interest has been mainly experimental studies on plasma focus and, in general, fast electrical discharges. The plasma focus has extensively been studied as neutron producer, including its possibility to play a role in nuclear fusion. It was also researched not only formore » basic plasma studies, but also for other important applications. Conception, design, construction and study of devices and diagnostics suitable for each application have been made on basis of developed criteria.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by themore » results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.« less

  13. Effect of vitamin D treatments on plasma metabolism and immune parameters of healthy dairy cows.

    PubMed

    Yue, Yuan; Hymøller, Lone; Jensen, Søren Krogh; Lauridsen, Charlotte

    2018-06-01

    The objective of this study was to investigate the possible beneficial effect of vitamin D repletion on certain immune parameters of vitamin D insufficient dairy cows. Twenty dairy cows in late lactation were treated daily with vitamin D in five different ways: sunlight exposure (SUN), D 2 supplementation combined with sunlight exposure (D2SUN), D 2 supplementation (D2), D 3 supplementation (D3), and D 2 and D 3 supplementation combined (D2D3). The cows had very low vitamin D levels at d 0 because of the vitamin D deprivation before the study. After 1 month of vitamin D repletion, all cows had plasma 25(OH)D levels within the normal range. Total 25(OH)D concentration was significantly higher in SUN, D2SUN and D2D3 than D2 or D3 at the end of the study. However, milk yield, as well as protein and fat content of the milk, was not influenced by vitamin D treatments. There was no difference obtained in the measured immune parameters: Leucocyte populations, somatic cell count, immunoglobulin concentrations in plasma and milk, and antigen-stimulated cytokine productions did not change in response to vitamin D repletion or difference in vitamin D sources, and no relations to plasma 25(OH)D levels were identified. Despite the fact that plasma 25(OH)D increased from a very low level to normal range, the present study did not show any effect of vitamin D repletion on the tested immune parameters of healthy dairy cows. Therefore, in this study, it was concluded that repletion to physiologically normal plasma 25-hydroxyvitamin D levels of vitamin D-depleted healthy dairy cows had no influence on immune parameters.

  14. Charging of the Van Allen Probes: Theory and Simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Denton, M.

    2017-12-01

    The electrical charging of spacecraft has been a known problem since the beginning of the space age. Its consequences can vary from moderate (single event upsets) to catastrophic (total loss of the spacecraft) depending on a variety of causes, some of which could be related to the surrounding plasma environment, including emission processes from the spacecraft surface. Because of its complexity and cost, this problem is typically studied using numerical simulations. However, inherent unknowns in both plasma parameters and spacecraft material properties can lead to inaccurate predictions of overall spacecraft charging levels. The goal of this work is to identify and study the driving causes and necessary parameters for particular spacecraft charging events on the Van Allen Probes (VAP) spacecraft. This is achieved by making use of plasma theory, numerical simulations, and on-board data. First, we present a simple theoretical spacecraft charging model, which assumes a spherical spacecraft geometry and is based upon the classical orbital-motion-limited approximation. Some input parameters to the model (such as the warm plasma distribution function) are taken directly from on-board VAP data, while other parameters are either varied parametrically to assess their impact on the spacecraft potential, or constrained through spacecraft charging data and statistical techniques. Second, a fully self-consistent numerical simulation is performed by supplying these parameters to CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC simulations remove some of the assumptions of the theoretical model and also capture the influence of the full geometry of the spacecraft. The CPIC numerical simulation results will be presented and compared with on-board VAP data. This work will set the foundation for our eventual goal of importing the full plasma environment from the LANL-developed SHIELDS framework into CPIC, in order to more accurately predict spacecraft charging.

  15. Evaluation of Magnetic Diagnostics for MHD Equilibrium Reconstruction of LHD Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontag, Aaron C; Hanson, James D.; Lazerson, Sam

    2011-01-01

    Equilibrium reconstruction is the process of determining the set of parameters of an MHD equilibrium that minimize the difference between expected and experimentally observed signals. This is routinely performed in axisymmetric devices, such as tokamaks, and the reconstructed equilibrium solution is then the basis for analysis of stability and transport properties. The V3FIT code [1] has been developed to perform equilibrium reconstruction in cases where axisymmetry cannot be assumed, such as in stellarators. The present work is focused on using V3FIT to analyze plasmas in the Large Helical Device (LHD) [2], a superconducting, heliotron type device with over 25 MWmore » of heating power that is capable of achieving both high-beta ({approx}5%) and high density (>1 x 10{sup 21}/m{sup 3}). This high performance as well as the ability to drive tens of kiloamperes of toroidal plasma current leads to deviations in the equilibrium state from the vacuum flux surfaces. This initial study examines the effectiveness of using magnetic diagnostics as the observed signals in reconstructing experimental plasma parameters for LHD discharges. V3FIT uses the VMEC [3] 3D equilibrium solver to calculate an initial equilibrium solution with closed, nested flux surfaces based on user specified plasma parameters. This equilibrium solution is then used to calculate the expected signals for specified diagnostics. The differences between these expected signal values and the observed values provides a starting {chi}{sup 2} value. V3FIT then varies all of the fit parameters independently, calculating a new equilibrium and corresponding {chi}{sup 2} for each variation. A quasi-Newton algorithm [1] is used to find the path in parameter space that leads to a minimum in {chi}{sup 2}. Effective diagnostic signals must vary in a predictable manner with the variations of the plasma parameters and this signal variation must be of sufficient amplitude to be resolved from the signal noise. Signal effectiveness can be defined for a specific signal and specific reconstruction parameter as the dimensionless fractional reduction in the posterior parameter variance with respect to the signal variance. Here, {sigma}{sub i}{sup sig} is the variance of the ith signal and {sigma}{sub j}{sup param} param is the posterior variance of the jth fit parameter. The sum of all signal effectiveness values for a given reconstruction parameter is normalized to one. This quantity will be used to determine signal effectiveness for various reconstruction cases. The next section will examine the variation of the expected signals with changes in plasma pressure and the following section will show results for reconstructing model plasmas using these signals.« less

  16. Electromagnetic Safety of Spacecraft During Active Experiments with the Use of Plasma Accelerators and Ion Injectors

    NASA Astrophysics Data System (ADS)

    Plokhikh, Andrey; Popov, Garri; Shishkin, Gennady; Antropov, Nikolay; Vazhenin, Nikolay; Soganova, Galina

    Works under the development and application of stationary and pulsed plasma accelerators of charged particles conducted at the Moscow Aviation Institute and Research Institute of Applied Mechanics and Electrodynamics during over 40 years, active experiments on board meteorological rockets, artificial Earth satellites and "Mir" orbital station including [1], allowed to obtain data on the influence of pulsed and continuous plasma injection with the given parameters on the drop of energetic particles out of the radiation belts, efficiency of artificial excitation and propagation of electromagnetic waves in ELF and VLF ranges, and evolution of artificial plasma formations in different regions of ionosphere. Variation of the near-spacecraft electromagnetic environment related to the operation of plasma injectors was registered during active experiments along with the global electrodynamic processes. The measured electromagnetic fields are of rather high intensity and occupy frequency spectrum from some Hz to tens of GHz that may be of definite danger for the operation of spacecraft and its onboard systems. Analysis for the known test data is presented in the paper and methods are discussed for the diagnostics and modeling under laboratory conditions of radiative processes proceeding at the operation of plasma accelerators and ion injectors used while making active space experiments. Great attention is paid to the methodological and metrological bases for making radio measurements in vacuum chambers, design concept and hardware configuration of ground special-purpose instrumentation scientific complexes [2]. Basic requirements are formulated for the measurements and analysis of electromagnetic fields originating during the operation of plasma accelerators, including the radiative induced and conductive components inside the spacecraft, as well as the wave emission and excitation outside the spacecraft, in the ionosphere including. Measurement results for the intrinsic electromagnetic emission of stationary and pulsed plasma injectors and of the electric propulsions developed on their basis are discussed. Predictive estimates are presented for the influence of originating electromagnetic fields and emissions on the electromagnetic safety of spacecraft and its systems and for the reliability of communication with ground command and tracking stations, and recommendations are given on the reduction of destructive effects. 1. S. Avdyushin, I. Podgorny, G. Popov, A. Porotnikov, "Plasma Accelerator Use for Studying Physical Processes in Space." Plasma Accelerators and Ion Injectors, Nauka, 1984. 2. A. Plokhikh, "Peculiarities of Radio Measurements in the Metal Vacuum Chambers." Vestnik moskovskogo aviatsionnogo instituta. v. 11, No. 2, 2004, pp. 66-78.

  17. The association between lipid parameters and obesity in university students.

    PubMed

    Hertelyova, Z; Salaj, R; Chmelarova, A; Dombrovsky, P; Dvorakova, M C; Kruzliak, P

    2016-07-01

    Abdominal obesity is associated with high plasma triglyceride and with low plasma high-density lipoprotein cholesterol levels. Objective of the study was to find an association between plasma lipid and lipoprotein levels and anthropometric parameters in abdominal obesity in Slovakian university students. Lipid profile and anthropometric parameters of obesity were studied in a sample of 419 probands, including 137 men and 282 women. Males had higher values of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and very low-density lipoprotein cholesterol (VLDL-C) than females, but these differences were not significant. Females had significantly (P < 0.05) higher TC and HDL-C (P < 0.001) than males. In comparison, all anthropometric parameters in the males were significantly (P < 0.001) higher than in the females. A positive correlation between non-HDL-C, TG, VLDL-C and anthropometric parameters (BMI, WC, WHR, WHtR) was found at P < 0.001. LDL was positively correlated with BMI, WCF, WHtR and TC with BMI, WHtR at P < 0.001. We also observed a correlation between TC-WCF and LDL-WHR at P < 0.01. A negative correlation was found between HDL and all monitored anthropometric parameters at P < 0.001. On the other hand, no correlation between TC and WHR was detected. This study shows an association between plasma lipid and lipoprotein levels and anthropometric parameters in abdominal obesity in young people, predominantly university students.

  18. Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D

    DOE PAGES

    Hollmann, Eric M.; Commaux, Nicolas; Eidietis, Nicholas; ...

    2017-06-12

    Here, controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-­wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z, but peaks at intermediate Z ~ 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly wellmore » correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-­20× less than expected, suggesting that the RE energy dissipation at low Z is not fully understood.« less

  19. Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, Eric M.; Commaux, Nicolas; Eidietis, Nicholas

    Here, controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-­wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z, but peaks at intermediate Z ~ 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly wellmore » correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-­20× less than expected, suggesting that the RE energy dissipation at low Z is not fully understood.« less

  20. Integrin-like proteins are localized to plasma membrane fractions, not plastids, in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Swatzell, L. J.; Edelmann, R. E.; Makaroff, C. A.; Kiss, J. Z.

    1999-01-01

    Integrins are a large family of integral membrane proteins that function in signal transduction in animal systems. These proteins are conserved in vertebrates, invertebrates, and fungi. Evidence from previous research suggests that integrin-like proteins may be present in plants as well, and that these proteins may function in signal transduction during gravitropism. In past studies, researchers have used monoclonal and polyclonal antibodies to localize beta 1 integrin-like proteins in plants. However, there is a disparity between data collected from these studies, especially since molecular weights obtained from these investigations range from 55-120 kDa for integrin-like proteins. To date, a complete investigation which employs all three basic immunolabeling procedures, immunoblotting, immunofluorescence microscopy, and immunogold labeling, in addition to extensive fractionation and exhaustive controls, has been lacking. In this paper, we demonstrate that use of a polyclonal antibody against the cytoplasmic domain of avian beta 1-integrin can produce potential artifacts in immunolocalization studies. However, these problems can be eliminated through use of starchless mutants or proper specimen preparation prior to electrophoresis. We also show that this antibody, when applied within the described parameters and with careful controls, identifies a large (100 kDa) integrin-like protein that is localized to plasma membrane fractions in Arabidopsis.

  1. Two-temperature equilibration in warm dense hydrogen measured with x-ray scattering from the LCLS

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Sciences Collaboration

    2017-10-01

    Understanding the properties of warm dense hydrogen plasmas is critical for modeling stellar and planetary interiors, as well as for inertial confinement fusion (ICF) experiments. Of central importance are the electron-ion collision and equilibration times that determine the microscopic properties in a high energy density state. Spectrally and angularly resolved x-ray scattering measurements from fs-laser heated hydrogen have resolved the picosecond evolution and energy relaxation from a two-temperature plasma towards thermodynamic equilibrium in the warm dense matter regime. The interaction of rapidly heated cryogenic hydrogen irradiated by a 400 nm, 5x1017 W/cm2 , 70 fs-laser is visualized with ultra-bright 5.5 kev x-ray pulses from the Linac Coherent Light (LCLS) source in 1 Hz repetition rate pump-probe setting. We demonstrate that the energy relaxation is faster than many classical binary collision theories that use ad hoc cutoff parameters used in the Landau-Spitzer determination of the Coulomb logarithm. This work was supported by the DOE Office of Science, Fusion Energy Science under contract No. SF00515 and supported under FWP 100182 and DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, contract DE-AC02-76SF00515.

  2. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  3. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  4. Neutral particle dynamics in a high-power RF source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia.bg; Paunska, Ts.; Shivarova, A.

    2015-04-08

    Previous studies on the spatial discharge structure in the SPIDER source of negative hydrogen/deuterium ions carried out at low applied power are extended towards description of the discharge maintenance under the conditions of the actual rf power deposition of 100 kW planned for a single driver of the source. In addition to the expected higher electron density, the results show strong increase of the electron temperature and of the temperatures of the neutral species (hydrogen atoms and molecules). In the discussions, not only the spatial distribution of the plasma parameters but also that of the fluxes in the discharge (particlemore » and energy fluxes) is involved. The obtained results come in confirmation of basic concepts for low-pressure discharge maintenance: (i) mutually related electron density and temperature as a display of the generalized Schottky condition, (ii) discharge behavior governed by the fluxes, i.e. strong nonlocality in the discharge, and (iii) a non-ambipolarity in the discharge regime, which originates from shifted maxima of the electron density and temperature and shows evidence in a vortex electron flux and in a dc current in a rf discharge, the latter resulting from a shift in the positions of the maxima of the electron density and plasma potential.« less

  5. Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.

    PubMed

    Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo

    2008-08-01

    We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.

  6. Identification of individualised empirical models of carbohydrate and insulin effects on T1DM blood glucose dynamics

    NASA Astrophysics Data System (ADS)

    Cescon, Marzia; Johansson, Rolf; Renard, Eric; Maran, Alberto

    2014-07-01

    One of the main limiting factors in improving glucose control for type 1 diabetes mellitus (T1DM) subjects is the lack of a precise description of meal and insulin intake effects on blood glucose. Knowing the magnitude and duration of such effects would be useful not only for patients and physicians, but also for the development of a controller targeting glycaemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound and individualised multi-input single-output (MISO) models of the glucose metabolism in T1DM able to reflect the basic dynamical features of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system identification and exploits a database in which meals and insulin boluses are separated in time, allowing the unique identification of the model parameters.

  7. Dust particle radial confinement in a dc glow discharge.

    PubMed

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2013-01-01

    A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.

  8. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  9. Developments in the kinetic theories of ion and electron swarms in the 1960s and 70s

    NASA Astrophysics Data System (ADS)

    Skullerud, H. R.

    2017-04-01

    The two decades between 1960 to 1980 saw quite a fantastic development in diverse areas in physics, and so also in the quantitative theoretical treatment and deeper understanding of the behaviour of isolated electrons and ions in gases—that is ‘charged particle swarm physics’. The evolution in swarm theory was strongly correlated with the contemporary advances in computer technology and the emergence of new and accurate experimental methods for finding charged particle transport parameters, as drift velocities, diffusion coefficients and reaction rates, and also with developments in neighbouring fields as plasma physics and the physics of electronic and molecular collisions. In 1960, low energy electron behaviour could already be calculated with reasonable accuracy in the so-called two-term approximation, while ion behaviour could only be treated at weak electric fields. By 1980, reasonably complete theories had been developed for perhaps most cases in interest—which is reflected in a number of reviews, books and journal articles published in the early 1980s. We will present a journey through the developments in this period and the basic theories behind the Boltzmann equation and Maxwell’s transfer equations. We will also indicate how the interaction between different studies of the same basic processes have led to the elimination of shortcomings and a better understanding.

  10. The Paradox of ApoA5 Modulation of Triglycerides: Evidences from Clinical and Basic Research

    PubMed Central

    Garelnabi, Mahdi; Lor, Kenton; Jin, Jun; Chai, Fei; Santanam, Nalini

    2012-01-01

    Apolipoprotein A5 (ApoA5) is a key regulator of plasma triglycerides (TG), although its plasma concentration is very low compared to other known apoproteins. Over the years, researchers have attempted to elucidate the molecular mechanisms by which ApoA5 regulates plasma TG in vivo. Though still under debate, two theories broadly describe how ApoA5 modulates TG levels: (i) ApoA5 enhances the catabolism of TG-rich lipoproteins and (ii) it inhibits the rate of production of very low-density lipoprotein (VLDL), the major carrier of TGs. This review will summarize the basic and clinical studies that have attempted to describe the importance of ApoA5 in TG metabolism. Population studies conducted in various countries have demonstrated an association between single nucleotide polymorphisms (SNPs) in ApoA5 and the increased risk to cardiovascular disease and metabolic syndrome (including diabetes and obesity). ApoA5 is also highly expressed during liver regeneration and is an acute phase protein associated with HDL which was independent of its effects on TG metabolism. Conclusion Despite considerable evidences available from clinical and basic research studies, on the role of ApoA5 in TG metabolism and its indirect link to metabolic diseases, additional investigations are needed to understand the paradoxical role of this important apoprotein shown modulated by diet and from it polymorphism variants. PMID:23000317

  11. A Numerical Study of the Non-Ideal Behavior, Parameters, and Novel Applications of an Electrothermal Plasma Source

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh

    Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An ablation-free capillary discharge computer code has been developed to model plasma flow and acceleration of pellets for fusion fueling in magnetic fusion reactors. Two case studies with and without ablation, including different source configurations have been studied here. Velocities necessary for fusion fueling have been achieved. New additions made to the code model incorporate radial heat and energy transfer and move ETFLOW towards being a 2-D model of the plasma flow. This semi 2-D approach gives a view of the behavior of the plasma inside the capillary as it is affected by important physical parameters such as radial thermal heat conduction and their effect on wall ablation.

  12. Scientific Reports of Plasma Medicine and its Mechanism for Therapy in Plasma Bioscience Research Center

    NASA Astrophysics Data System (ADS)

    Choi, Eun Ha

    2015-09-01

    Scientific reports of plasma medicine and its basic mechanism for therapy will be introduced, especially, performed in Plasma Bioscience Research Center, Korea. We have investigated enhanced anticancer effect of monocytes and macrophages activated by nonthermal plasma which act as immune-modulator on these immune cells. Further, we investigated the action of the nanosecond pulsed plasma activated media (NPPAM) on the lung cancer cells and its DNA oxidation pathway. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signaling cascade. We also studied DNA oxidation by extracting DNA from treated cancer cell and analyzed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes.

  13. Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.

    NASA Technical Reports Server (NTRS)

    Vahala, G.

    1972-01-01

    The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.

  14. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    DOE PAGES

    Turnbull, D.; Goyon, C.; Kemp, G. E.; ...

    2017-01-05

    Here, we report the first complete set of measurements of a laser-plasma optical system’s refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstrationmore » of a laser-plasma polarizer with 85$-$87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.« less

  15. ICRF Mode Conversion Flow Drive Experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Reinke, M. L.; Rice, J. E.; Wukitch, S. J.; Granetz, R.; Greenwald, M.; Hubbard, A. E.; Marmar, E. S.; Podpaly, Y. A.; Porkolab, M.; Tsujii, N.; Wolfe, S.

    2011-12-01

    We have carried out a detailed study of the dependence of ICRF mode conversion flow drive (MCFD) on plasma and RF parameters. The flow drive efficiency is found to depend strongly on the 3He concentration in D(3He) plasmas, a key parameter separating the ICRF minority heating regime and mode conversion regime. At +90 ° antenna phasing (waves in the co-Ip direction) and dipole phasing, the driven flow is in the co-Ip direction, and the change of the rotation velocity increases with both PRF and Ip, and scales unfavorably vs. plasma density and antenna frequency. When MCFD is applied to I-mode plasmas, the plasma rotation increases until the onset of MHD modes triggered by large sawtooth crashes. Very high performance I-mode plasmas with HITER98,y2˜1.4 and Te0˜8 keV have been obtained in these experiments.

  16. Study of the structural and thermal properties of plasma treated jute fibre

    NASA Astrophysics Data System (ADS)

    Sinha, E.; Rout, S. K.; Barhai, P. K.

    2008-08-01

    Jute fibres ( Corchorus olitorius), were treated with argon cold plasma for 5, 10 and 15 min. Structural macromolecular parameters of untreated and plasma treated fibres were investigated using small angle X-ray scattering (SAXS), and the crystallinity parameters of the same fibres were determined by using X-ray diffraction (XRD). Differential scanning calorimetry (DSC) was used to study the thermal behavior of the untreated and treated fibres. Comparison and analysis of the results confirmed the changes in the macromolecular structure after plasma treatment. This is due to the swelling of cellulosic particles constituting the fibres, caused by the bombardment of high energetic ions onto the fibre surface. Differential scanning calorimetry data demonstrated the thermal instability of the fibre after cold plasma treatment, as the thermal degradation temperature of hemicelluloses and cellulose was found lowered than that of raw fibre after plasma treatment.

  17. Theoretical and experimental studies of a planar inductive coupled rf plasma source as the driver in simulator facility (ISTAPHM) of interactions of waves with the edge plasma on tokamaks

    NASA Astrophysics Data System (ADS)

    Ghanei, V.; Nasrabadi, M. N.; Chin, O.-H.; Jayapalan, K. K.

    2017-11-01

    This research aims to design and build a planar inductive coupled RF plasma source device which is the driver of the simulator project (ISTAPHM) of the interactions between ICRF Antenna and Plasma on tokamak by using the AMPICP model. For this purpose, a theoretical derivation of the distribution of the RF magnetic field in the plasma-filled reactor chamber is presented. An experimental investigation of the field distributions is described and Langmuir measurements are developed numerically. A comparison of theory and experiment provides an evaluation of plasma parameters in the planar ICP reactor. The objective of this study is to characterize the plasma produced by the source alone. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature, electron-ion collision frequency, particle fluxes and their velocities, stochastic frequency, skin depth and electron energy distribution functions) as function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes. The plasma is currently produced only by the planar ICP. The exact goal of these experiments is that the produced plasma by external source can exist as a plasma representative of the edge of tokamaks.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Christopherson, A. R.; Spears, B. K.

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusionmore » experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.« less

  19. Modeling of a bimetallic eccentric cylindrical plasma waveguide based on a transmission line for TEM-mode

    NASA Astrophysics Data System (ADS)

    Golharani, Saeedeh; Jazi, Bahram; Jahanbakht, Sajad; Moeini-Nashalji, Azam

    2018-07-01

    In this paper, a plasma waveguide made of two eccentric cylindrical metallic walls have been studied according to the theory of transmission lines. The inductance per unit length L, the capacitance per unit length C, the resistance per unit length R and the shunt conductance per unit length G are obtained. The graphs of variations of the mentioned parameters vs. geometrical dimensions of waveguide are investigated. This investigations have been done for two different types of plasma waveguide. At first stage, plasma region will be considered in cold and collisional approximation and in second stage, a drift plasma in cold collisionless approximation will be considered. Also, graphs of phase velocity variation vs. the main parameters of the waveguide are presented.

  20. Production of photoionized plasmas in the laboratory with x-ray line radiation

    NASA Astrophysics Data System (ADS)

    White, S.; Irwin, R.; Warwick, J. R.; Gribakin, G. F.; Sarri, G.; Keenan, F. P.; Riley, D.; Rose, S. J.; Hill, E. G.; Ferland, G. J.; Han, B.; Wang, F.; Zhao, G.

    2018-06-01

    In this paper we report the experimental implementation of a theoretically proposed technique for creating a photoionized plasma in the laboratory using x-ray line radiation. Using a Sn laser plasma to irradiate an Ar gas target, the photoionization parameter, ξ =4 π F /Ne , reached values of order 50 ergcm s-1 , where F is the radiation flux in ergc m-2s-1 . The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the x-ray drive. However, the technique is extendable to higher-energy laser systems to create plasmas with parameters relevant to benchmarking codes used to model astrophysical objects.

  1. Identification of seismic activity sources on the subsatellite track by ionospheric plasma disturbances detected with the Sich-2 onboard probes

    NASA Astrophysics Data System (ADS)

    Shuvalov, Valentin A.; Lazuchenkov, Dmitry N.; Gorev, Nikolai B.; Kochubei, Galina S.

    2018-01-01

    Using a cylindrical Langmuir probe and the authors' proprietary two-channel pressure transducer, ionospheric plasma parameter distributions along the orbit of the Sich-2 satellite (Ukraine, 2011-2012) were measured. This paper is concerned with identifying the space-time location of ionospheric plasma disturbance sources, including the epicenters of actual earthquakes (before or during the satellite flyover) and incipient earthquakes on the subsatellite track, from the measured distributions of the electron density and temperature and the neutral particle temperature along the satellite orbit. To do this, the measured ionospheric plasma parameter distributions are connected to the coordinates on the subsatellite track. It is shown that local disturbances in the electron density and temperature and neutral particle temperature distributions in the satellite orbit in the ionosphere may serve as indicators of seismic activity on the subsatellite track. The epicenters of incipient earthquakes may be set off from other plasma parameter disturbance sources associated with seismic activity using information provided by special monitoring and survey centers that monitor the current seismic situation.

  2. Plasma biochemistry values in emperor geese (Chen canagica) in Alaska: comparisons among age, sex, incubation, and molt.

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, D.J.; Schmutz, J.A.

    2009-01-01

    Reduced populations of emperor geese (Chen canagica), a Bering Sea endemic, provided the need to assess plasma biochemistry values as indicators of population health. A precursory step to such an investigation was to evaluate patterns of variability in plasma biochemistry values among age, sex, and reproductive period. Plasma from 63 emperor geese was collected on their breeding grounds on the Yukon-Kuskokwim Delta in western Alaska, USA. The geese sampled included 18 incubating adult females captured, in mid June, on their nests by using bow nets, and 30 adults and 15 goslings captured in corral traps in late July and early August, when the adults were molting their wing feathers and the goslings were 5-6 weeks old. Plasma was evaluated for 15 biochemical parameters, by comparing results among age, sex, and sampling period (incubation versus wing-feather molt). Ten of the 15 biochemical parameters assayed differed among adults during incubation, the adults during molt, and the goslings at molt, whereas sex differences were noted in few parameters.

  3. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  4. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases monotonously with increasing WO{sub 3} content. • Interaction parameter decreases monotonously with increasing WO{sub 3} content. • Glasses with high WO{sub 3}contents is regarded as a floppy network system.« less

  5. Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team

    2018-05-01

    In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.

  6. Online plasma calculator

    NASA Astrophysics Data System (ADS)

    Wisniewski, H.; Gourdain, P.-A.

    2017-10-01

    APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.

  7. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  8. Spatial confinement effects on spectroscopic and morphological studies of nanosecond laser-ablated Zirconium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-12-01

    Spatial confinement effects on plasma parameters and surface morphology of laser ablated Zr (Zirconium) are studied by introducing a metallic blocker. Nd:YAG laser at various fluencies ranging from 8 J cm-2 to 32 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6 mm, 8 mm and 10 mm from the target surface. It is revealed from LIBS analysis that both plasma parameters i.e. excitation temperature and electron number density increase with increasing laser fluence due to enhancement in energy deposition. It is also observed that spatial confinement offered by metallic blocker is responsible for the enhancement of both electron temperature and electron number density of Zr plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 12,600 K and 14 × 1017 cm-3 respectively whereas, these values are enhanced to 15,000 K and 21 × 1017 cm-3 in the presence of blocker. The physical mechanisms responsible for the enhancement of Zr plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning Electron Microscope (SEM) analysis was performed to explore the surface morphology of laser ablated Zr. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters for surface structuring.

  9. Association of prolidase activity, oxidative parameters, and presence of atrial fibrillation in patients with mitral stenosis.

    PubMed

    Rabus, Murat; Demirbag, Recep; Yildiz, Ali; Tezcan, Orhan; Yilmaz, Remzi; Ocak, A Riza; Alp, Mete; Erel, Ozcan; Aksoy, Nurten; Yakut, Cevat

    2008-07-01

    Mitral stenosis (MS) is a common cause of atrial fibrillation (AF). Oxidative stress and inflammation factors were shown to be involved in atrial remodeling. The study aim was to compare the oxidative parameters and prolidase activity in severe MS patients with and without AF. The study population was comprised of 33 patients with MS and sinus rhythm (group I), 27 patients with MS and AF (group II), and 25 healthy controls (group III). Plasma prolidase activity, total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) were determined. Additionally, we measured tissue TOS and TAC in patients with mitral valve replacement. TAC and OSI were higher, but TOS and prolidase were lower in patients with MS than control (all p <0.001). These parameters were similar in group I and group II (ANOVA p >0.05). Tissue TAC was significantly lower in group II than group I (0.015 +/- 0.01 vs. 0.026 +/- 0.01 mmol Trolox equiv/L, p = 0.014), tissue TOS was similar between groups I and II (0.24 +/- 0.06 vs. 0.22 +/- 0.05 mmol Trolox equiv/L, p = 0.161). Presence of AF was correlated with systolic blood pressure, left atrial diameter, plasma TAC, tissue TAC, plasma TOS, plasma OSI, and plasma prolidase activity. Tissue TAC level (beta = -0.435, p = 0.006) and left atrial diameter (beta = 0.460, p = 0.003) were independently related with presence of AF in patients with MS. This study suggested that the presence of AF in patients with severe MS may be associated with the plasma prolidase activity, tissue and plasma oxidative parameters.

  10. Electromagnetic-wave propagation in unmagnetized plasmas

    NASA Astrophysics Data System (ADS)

    Gregoire, D. J.; Santoru, J.; Schumacher, R. W.

    1992-03-01

    This final report describes an investigation of electromagnetic-wave propagation in unmagnetized plasmas and its application to the reduction of the radar cross section (RCS) of a plasma-filled enclosure. We have demonstrated RCS reduction of 20 to 25 dB with a prototype system at the radar range at Hughes Aircraft's Microwave Products Division in Torrance. The prototype consists of a sealed ceramic enclosure with a microwave reflector and a plasma generator inside it. When the plasma is present, the RCS is significantly reduced over a frequency range of 4 to 14 GHz. As part of the program, we also investigated the basic-plasma-physics issues relating to the absorption and refraction of electromagnetic (EM) waves in collisional plasmas. We demonstrated absorption as high as 63 dB in a section of plasma-loaded C-band rectangular waveguide. We also developed a theoretical model for the plasma cloaking process that includes scattering contributions from the plasma-vacuum interface, partial reflections from the plasma, and collisional absorption in the plasma. The theoretical model is found to be in reasonable agreement with the experimental results and can be used to confidently design future plasma cloaking systems.

  11. Low-energy plasma-cathode electron gun with a perforated emission electrode

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  12. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  13. Stability study: Transparent conducting oxides in chemically reactive plasmas

    NASA Astrophysics Data System (ADS)

    Manjunatha, Krishna Nama; Paul, Shashi

    2017-12-01

    Effect of plasma treatment on transparent conductive oxides (TCOs) including indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO) and aluminium-doped zinc oxide (AZO) are discussed. Stability of electrical and optical properties of TCOs, when exposed to plasma species generated from gases such as hydrogen and silane, are studied extensively. ITO and FTO thin films are unstable and reduce to their counterparts such as Indium and Tin when subjected to plasma. On the other hand, AZO is not only stable but also shows superior electrical and optical properties. The stability of AZO makes it suitable for electronic applications, such as solar cells and transistors that are fabricated under plasma environment. TCOs exposed to plasma with different fabrication parameters are used in the fabrication of silicon nanowire solar cells. The performance of solar cells, which is mired by the plasma, fabricated on ITO and FTO is discussed with respect to plasma exposure parameters while showing the advantages of using chemically stable AZO as an ideal TCO for solar cells. Additionally, in-situ diagnostic tool (optical emission spectroscopy) is used to monitor the deposition process and damage caused to TCOs.

  14. Modeling plasma-assisted growth of graphene-carbon nanotube hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari, Aarti

    2016-08-15

    A theoretical model describing the growth of graphene-CNT hybrid in a plasma medium is presented. Using the model, the growth of carbon nanotube (CNT) on a catalyst particle and thereafter the growth of the graphene on the CNT is studied under the purview of plasma sheath and number density kinetics of different plasma species. It is found that the plasma parameter such as ion density; gas ratios and process parameter such as source power affect the CNT and graphene dimensions. The variation in growth rates of graphene and CNT under different plasma power, gas ratios, and ion densities is analyzed.more » Based on the results obtained, it can be concluded that higher hydrocarbon ion densities and gas ratios of hydrocarbon to hydrogen favor the growth of taller CNTs and graphene, respectively. In addition, the CNT tip radius reduces with hydrogen ion density and higher plasma power favors graphene with lesser thickness. The present study can help in better understanding of the graphene-CNT hybrid growth in a plasma medium.« less

  15. The thermal X-ray flare plasma. [on sun

    NASA Technical Reports Server (NTRS)

    Moore, R.; Mckenzie, D. L.; Svestka, Z.; Widing, K. G.; Dere, K. P.; Antiochos, S. K.; Dodson-Prince, H. W.; Hiei, E.; Krall, K. R.; Krieger, A. S.

    1980-01-01

    Following a review of current observational and theoretical knowledge of the approximately 10 to the 7th K plasma emitting the thermal soft X-ray bursts accompanying every H alpha solar flare, the fundamental physical problem of the plasma, namely the formation and evolution of the observed X-ray arches, is examined. Extensive Skylab observations of the thermal X-ray plasmas in two large flares, a large subflare and several compact subflares are analyzed to determine plasma physical properties, deduce the dominant physical processes governing the plasma and compare large and small flare characteristics. Results indicate the density of the thermal X-ray plasma to be higher than previously thought (from 10 to the 10th to 10 to the 12th/cu cm for large to small flares), cooling to occur radiatively as much as conductively, heating to continue into the decay phase of large flares, and the mass of the thermal X-ray plasma to be supplied primarily through chromospheric evaporation. Implications of the results for the basic flare mechanism are indicated.

  16. Mapping the Solar Wind from its Source Region into the Outer Corona

    NASA Technical Reports Server (NTRS)

    Esser, Ruth

    1997-01-01

    Knowledge of the radial variation of the plasma conditions in the coronal source region of the solar wind is essential to exploring coronal heating and solar wind acceleration mechanisms. The goal of the proposal was to determine as many plasma parameters in the solar wind acceleration region and beyond as possible by coordinating different observational techniques, such as Interplanetary Scintillation Observations, spectral line intensity observations, polarization brightness measurements and X-ray observations. The inferred plasma parameters were then used to constrain solar wind models.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in; Singh, Omveer; Dahiya, Raj P.

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  18. Statistical Modeling Studies of Iron Recovery from Red Mud Using Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Swagat, S. Rath; Archana, Pany; Jayasankar, K.; Ajit, K. Mitra; C. Satish, Kumar; Partha, S. Mukherjee; Barada, K. Mishra

    2013-05-01

    Optimization studies of plasma smelting of red mud were carried out. Reduction of the dried red mud fines was done in an extended arc plasma reactor to recover the pig iron. Lime grit and low ash metallurgical (LAM) coke were used as the flux and reductant, respectively. 2-level factorial design was used to study the influence of all parameters on the responses. Response surface modeling was done with the data obtained from statistically designed experiments. Metal recovery at optimum parameters was found to be 79.52%.

  19. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    NASA Astrophysics Data System (ADS)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  20. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  1. Morphology of zirconia particles exposed to D.C. arc plasma jet

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1987-01-01

    Zirconia particles were sprayed into water with an arc plasma gun in order to determine the effect of various gun operating parameters on their morphology. The collected particles were examined by XRD and SEM techniques. A correlation was established between the content of spherical (molten) particles and the operating parameters by visual inspection and regression analysis. It was determined that the composition of the arc gas and the power input were the predominant parameters that affected the melting of zirconia particles.

  2. Cylindrical stationary striations in surface wave produced plasma columns of argon

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Kulkarni, Sanjay V.; Bora, Dhiraj

    2007-12-01

    Striations are a good example of manifestation of a glow discharge. In the present investigation, stationary striations in the surface wave produced plasma column are formed. Physical parameters (length, number, etc.) of such striations can be controlled by operating parameters. With the help of bifurcation theory, experimental results are explained by considering two-step ionization in the surface wave discharge mechanism in argon gas. It is also observed that the bifurcation parameter is a function of input power, working pressure, and tube radius.

  3. Diagnostic value of plasma morphology in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Sergeeva, Yuliya V.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatiana P.

    2006-08-01

    Blood plasma can be considered as a special water system with self-organization possibilities. Plasma slides as the results of wedge dehydration reflect its stereochemical interaction and their study can be used in diagnostic processes. 46 patients with coronary heart disease were studied. The main group was formed of men in age ranged from 54 to 72 years old with stable angina pectoris of II and III functional class (by Canadian classification) (n=25). The group of compare was of those who was hospitalized with diagnosis of acute coronary syndrome, men in age range 40-82. Clinical examination, basic biochemical tests and functional plasma morphology characteristics were studied. A number of qualitative and quantitative differences of blood plasma morphology of patients with chronic and acute coronary disease forms was revealed.

  4. The Predictive Power of Electronic Polarizability for Tailoring the Refractivity of High Index Glasses Optical Basicity Versus the Single Oscillator Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.

    Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less

  5. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field.

    PubMed

    Patel, A D; Sharma, M; Ramasubramanian, N; Ganesh, R; Chattopadhyay, P K

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10 -5 -1 × 10 -3 mbar, achieving plasma densities ranging from 10 9 to 10 11 cm -3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δI isat /I isat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  6. Laser-driven two-electron quantum dot in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-06-01

    We have investigated the energies of two-electron parabolic quantum dots (TEPQdots) embedded in plasmas characterized by more general exponential cosine screened Coulomb (MGECSC) potential under the action of a monochromatic, linearly polarized laser field by solving the corresponding Schrödinger equation numerically via the asymptotic iteration method. The four different cases of the MGECSC potential constituted by various sets of the potential parameters are reckoned in modeling of the interactions in the plasma environments which are Debye and quantum plasmas. The plasma environment is a remarkable experimental argument for the quantum dots and the interactions in plasma environments are different compared to the interactions in an environment without plasma and the screening specifications of the plasmas can be controlled through the plasma parameters. These findings constitute our major motivation in consideration of the plasma environments. An appreciable confinement effect is made up by implementing the laser field on the TEPQdot. The influences of the laser field on the system are included by using the Ehlotzky approximation, and then Kramers-Henneberger transformation is carried out for the corresponding Schrödinger equation. The influences of the ponderomotive force on two-electron quantum dots embedded in plasmas are investigated. The behaviours, the similarities and the functionalities of the laser field, the plasma environment, and the quantum dot confinement are also scrutinized. In addition, the role of the plasma environments in the mentioned analysis is also discussed in detail.

  7. Lipid and other plasma markers are associated with anxiety, depression, and fatigue.

    PubMed

    Lieberman, Harris R; Kellogg, Mark D; Kramer, F Matthew; Bathalon, Gaston P; Lesher, Larry L

    2012-03-01

    Few peripheral metabolites have been shown to be associated with mood in healthy individuals or patients with central nervous system diseases. During military basic combat training (BCT), mood state, physical performance and body composition substantially improve, providing an opportunity to examine relationships between mood and nutritional and hormonal biomarkers. Thirty-five females enrolled in U.S. Marine BCT, an intense physically and mentally challenging 12-week course, were studied. Every 4 weeks, mood was assessed with the Profile of Mood States (POMS), as were nutritional, metabolic and hormonal plasma markers. Mood and fitness improved over BCT, and there were substantial changes in biochemical markers. Multiple regression demonstrated that, in combination, cholesterol (HDL, LDL), fructosamine, triglycerides, free fatty acids (FFA), dehydroepiandrosterone-sulfate (DHEA-S), ACTH, and substance P accounted for 44% of variation in anxiety, 40% confusion, 37% fatigue, 27% depression and 40% in total mood (p < .0001). Increased HDL, FFA, DHEA-S, and substance P were associated with degraded mood (p < .05). Increased LDL, triglycerides, fructosamine, and ACTH were associated with improved mood (p < .05). Other markers, including glucose, cortisol, and C-reactive protein were not associated with mood. Normal human mood state was associated with 8 plasma markers. Increased HDL and lower LDL, which are associated with improved cardiovascular status, were associated with negative affect. Fructosamine and substance P, not previously known to be related to mood, were associated with it. We are not aware of any biological parameters that in aggregate predict such a substantial proportion of variation in normal mood.

  8. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  9. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  10. Plasmon resonances, anomalous transparency, and reflectionless absorption in overdense plasmas

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.; Sternberg, N.

    2018-03-01

    The structure of the surface and standing wave resonances and their coupling in the configuration of the overdense plasma slab with a single diffraction grating are studied, using impedance matching techniques. Analytical criteria and exact expressions are obtained for plasma and diffraction grating parameters which define resonance conditions for absolute transparency in the ideal plasma and reflectionless absorption in a plasma with dissipation.

  11. The pH dependence of silicon-iron interaction in rats.

    PubMed

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  12. A simple model of fluid flow and electrolyte balance in the body

    NASA Technical Reports Server (NTRS)

    White, R. J.; Neal, L.

    1973-01-01

    The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.

  13. Optimal Equilibria and Plasma Parameter Evolutions for the Ignitor Experiment*

    NASA Astrophysics Data System (ADS)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    2011-10-01

    In view of the operation of the Ignitor machine in both the H and the I-regime, optimal equilibrium configurations that can sustain plasma currents Ip up to 10 MA with a double X-point have been identified. In fact, the emergence of the I-regime in double X-point configurations has not been observed experimentally yet. The characteristics of the magnetic equilibrium configurations that can be produced play a crucial role in the performance of the machine. Therefore, particular care has been devoted to the study of plasma equilibria relevant to the main phases of the discharge evolution. A series of simulations to be utilized for the control of the relevant (sub-ignited) plasma parameters has been carried out using the JETTO transport code considering different values of the plasma current and, correspondingly, of the magnetic field. Special attention has been devoted to non-igniting experiments with Ip = 5 MA and BT = 8 T, where BT is the toroidal magnetic field, as they can be performed with much better duty cycles and longer duration than experiments aimed at reaching the most extreme plasma parameters and ignition in particular. The results of the relevant analyses with a discussion of the adopted transport coefficients is presented. * Sponsored in part by ENEA and the U.S. DOE.

  14. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja

    2016-07-15

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma–liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current–voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N{sub 2}, and N{sub 2}{sup +} in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency,more » and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma–liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.« less

  15. Method for defect free keyhole plasma arc welding

    NASA Technical Reports Server (NTRS)

    Harwig, Dennis D. (Inventor); Hunt, James F. (Inventor); Ryan, Patrick M. (Inventor); Fisher, Walter J. (Inventor)

    1993-01-01

    A plasma arc welding process for welding metal of increased thickness with one pass includes operating the plasma arc welding apparatus at a selected plasma gas flow rate, travel speed and arc current, to form a weld having a penetration ratio to weld height to weld width, and maintaining the penetration ratio at less than 0.74. Parameters for the plasma gas flow rate, travel speed and arc current are adjusted to a steady state condition during a start up period and maintained during the steady state condition to complete a weld. During a terminal stopping period, the travel speed is stopped and instantaneously replaced by filler wire which adds material to fill the keyhole that had been formed by the welding process. Parameters are subsequently adjusted during the stopping period to terminate the weld in a sound manner.

  16. Projection par plasma de depots de dioxyde de titane: Contribution a l'etude de leurs microstructures et proprietes electriques

    NASA Astrophysics Data System (ADS)

    Branland, Nadege

    2002-04-01

    The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.

  17. Experiment and simulation on one-dimensional plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Ouyang, Ji-Ting, E-mail: jtouyang@bit.edu.cn

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend onmore » the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.« less

  18. Relationships between carapace sizes and plasma major and trace element status in captive hawksbill sea turtles (Eretmochelys imbricata).

    PubMed

    Suzuki, Kazuyuki; Noda, Jun; Yanagisawa, Makio; Kawazu, Isao; Sera, Kouichiro; Fukui, Daisuke; Asakawa, Mitsuhiko; Yokota, Hiroshi

    2012-12-01

    The aim of this study was to evaluate the relationships between carapace parameters as indicators of age and plasma elements in 25 captive hawksbill sea turtles. Particle-induced X-ray emission allowed detection of 23 trace and major elements. There were significant but weak correlations between the virtual carapace surface area and plasma bromide (r = -0.552, P<0.01), phosphorus (r = 0.547, P<0.01), lead (r =-0.434, P<0.05) and strontium (r = 0.599, P<0.01), while there were no significant correlations with other elements. These results suggest that major and trace plasma elements in captive sea turtles show almost no variation with carapace parameters, suggesting that the increase in plasma elements seen in wild sea turtles might be the result of marine pollution.

  19. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  20. Plasma-water interactions at atmospheric pressure in a dc microplasma

    NASA Astrophysics Data System (ADS)

    Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide

    2013-09-01

    Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.

  1. Comparison of Cannabinoid Concentrations in Plasma, Oral Fluid and Urine in Occasional Cannabis Smokers After Smoking Cannabis Cigarette.

    PubMed

    Marsot, Amélie; Audebert, Christine; Attolini, Laurence; Lacarelle, Bruno; Micallef, Joelle; Blin, Olivier

    A randomized cross-over, double blind placebo controlled study of smoked cannabis was carried out on occasional cannabis smokers. The objective of this research was to describe the pharmacokinetic parameters of THC and its metabolites in plasma, oral fluid and urine, from samples obtained simultaneously to provide estimations of THC and metabolites concentrations after smoking a cannabis cigarette. Blood, oral fluid and urine samples were collected until up to 72 h after smoking the cannabis cigarette (4% of delta-9-tetrathydrocannabinol (THC)). THC, 11-OH-THC and THC-COOH were analyzed by gas-chromatography-mass spectrometry. Pharmacokinetic parameters were estimated from these data. Eighteen male healthy adults participated in the study. In total, 560 plasma, 288 oral fluid and 448 urine samples were quantified for cannabinoids. Plasma, oral fluid and urine pharmacokinetic parameters were calculated. A wide range of median THC Cmax (1.6-160.0 µg/L and 55.4-123120.0 µg/L in plasma and oral fluid, respectively), 11-OH-THC Cmax (0-11.1 µg/L in plasma) and THC-COOH Cmax (1.0-56.3 µg/L in plasma) was observed. When expressed as a percentage of the total available THC dose, and corrected for molar equivalents, mean percentage of total THC dose excreted was 1.9 +/-2.5 % with range of 0.2-7.5%. This high inter-individual variability was also observed on other calculated pharmacokinetic parameters. Prediction of plasma THC concentration from THC oral fluid concentration or from THC-COOH urinary concentrations is not feasible due to the large variations observed. The results from this study support the assumption that a positive oral fluid THC result or a positive urine fluid result are indicative of a recent cannabis exposure. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  2. Effect of Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide on Clinical Periodontal Parameters, Markers of Systemic Inflammation, and Morphology of Gingival Tissues in Patients with Periodontitis

    PubMed Central

    Žekonis, Gediminas; Žekonis, Jonas; Gleiznys, Alvydas; Noreikienė, Viktorija; Balnytė, Ingrida; Šadzevičienė, Renata; Narbutaitė, Julija

    2016-01-01

    Background Various studies have shown that non-surgical periodontal treatment is correlated with reduction in clinical parameters and plasma levels of inflammatory markers. The aim of this study was to evaluate the effect of long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide as maintenance therapy followed by non-surgical periodontal treatment on clinical parameters, plasma levels of inflammatory markers, and morphological changes in gingival tissues of patients with periodontitis. Material/Methods In total, 43 patients with chronic periodontitis were randomly allocated to long-term maintenance therapy. The patients’ periodontal status was assessed using clinical parameters of approximal plaque index, modified gingival index, bleeding index, pocket probing depth, and plasma levels of inflammatory markers (high-sensitivity C-reactive protein and white blood cell count) at baseline and after 1, 2, and 3 years. The morphological status of gingival tissues (immediately after supragingival irrigation) was assessed microscopically. Results Complete data were obtained on 34 patients. A highly statistically significant and consistent reduction was observed in all long-term clinical parameters and plasma levels of inflammatory markers. Morphological data showed abundant spherical bubbles in gingival tissues. Conclusions 1. The present study showed that non-surgical periodontal treatment with long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide improved clinical periodontal status and plasma levels of inflammatory markers and may be a promising method in periodontology. 2. We found that supragingival irrigation with aerosolized 0.5% hydrogen peroxide created large numbers of spherical bubbles in gingival tissues. PMID:27743448

  3. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    NASA Astrophysics Data System (ADS)

    Moritzer, E.; Leister, C.

    2014-05-01

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.

  4. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  5. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOEpatents

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  6. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters

    PubMed Central

    Catalani, Elisabetta; Amadori, Massimo; Vitali, Andrea; Bernabucci, Umberto; Nardone, Alessandro

    2010-01-01

    The study was aimed at assessing whether the peri-parturient period is associated with changes of intracellular and plasma inducible heat shock proteins (Hsp) 72 kDa molecular weight in dairy cows, and to establish possible relationships between Hsp72, metabolic, and immunological parameters subjected to changes around calving. The study was carried out on 35 healthy peri-parturient Holstein cows. Three, two, and one week before the expected calving, and 1, 2, 3, 4, and 5 weeks after calving, body conditions score (BCS) was measured and blood samples were collected to separate plasma and peripheral blood mononuclear cells (PBMC). Concentrations of Hsp72 in PBMC and plasma increased sharply after calving. In the post-calving period, BCS and plasma glucose declined, whereas plasma nonesterified fatty acids (NEFA) and tumor necrosis factor-alpha increased. The proliferative responses of PBMC to lipopolysaccharide (LPS) declined progressively after calving. The percentage of PBMC expressing CD14 receptors and Toll-like receptors (TLR)-4 increased and decreased in the early postpartum period, respectively. Correlation analysis revealed significant positive relationships between Hsp72 and NEFA, and between PBMC proliferation in response to LPS and the percentage of PBMC expressing TLR-4. Conversely, significant negative relationships were found between LPS-triggered proliferation of PBMC and both intracellular and plasma Hsp72. Literature data and changes of metabolic and immunological parameters reported herein authorize a few interpretative hypotheses and encourage further studies aimed at assessing possible cause and effect relationships between changes of PBMC and circulating Hsp72, metabolic, and immune parameters in dairy cows. PMID:20349286

  7. Therapeutic plasma exchange: a technical and operational review.

    PubMed

    Kaplan, Andre A

    2013-02-01

    Therapeutic plasma exchange (TPE) is an extracorporeal blood purification technique designed for the removal of large molecular weight substances. Examples of these substances include pathogenic autoantibodies, immune complexes, cryoglobulins, myeloma light chains, endotoxin and cholesterol containing lipoproteins. The basic premise of the treatment is that removal of these substances will allow for the reversal of the pathologic processes related to their presence. This review will cover the techniques for performing TPE, the kinetics of the removal of large molecules from the plasma and the benefits and risks of the different types of replacement fluids. Copyright © 2013 Wiley Periodicals, Inc.

  8. Plasma pharmacy - physical plasma in pharmaceutical applications.

    PubMed

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  9. Plasma levels and diagnostic utility of VEGF, MMP-2 and TIMP-2 in the diagnostics of breast cancer patients.

    PubMed

    Ławicki, Sławomir; Zajkowska, Monika; Głażewska, Edyta Katarzyna; Będkowska, Grażyna Ewa; Szmitkowski, Maciej

    2017-03-01

    We investigated plasma levels and diagnostic utility of vascular endothelial growth factor VEGF, matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2) in comparison to cancer antigen 15-3 (CA 15-3). Plasma levels of tested parameters were determined using enzyme-linked immunosorbent assay (ELISA) while CA 15-3 with chemiluminescent microparticle immunoassay (CMIA). The plasma levels of VEGF, TIMP-2 showed significantly higher than CA 15-3 values of the diagnostic sensitivity, the predictive values of positive and negative test results (PPV, NPV) and the area under the receiver-operating characteristics (ROC) curve (AUC) in early stages of breast cancer (BC). The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, NPV and AUC, especially in the combination with VEGF (83%; 72%; 0.888) and TIMP-2 (83%; 72%; 0.894). The highest values were obtained for combination of all three parameters (93%; 85%; 0.923). These findings suggest the usefulness of the tested parameters in the diagnosis of BC, especially VEGF and TIMP-2 with CA 15-3 in early stages of BC, which could be a new diagnostic panel.

  10. The effect of the geomagnetic field on negative voltage spheres in the ionospheric plasma: Fluid simulation

    NASA Astrophysics Data System (ADS)

    Ma, T.-Z.; Schunk, R. W.

    1994-07-01

    Experiments involving the interaction of spherical conducting objects biases with hight voltages in the Low-Earth-Orbit (LEO) environment have been conducted and designed. In these experiments, both positive and negative voltages have been applied to the spheres. Previously, there have been theoretical and numerical studies of positive voltage spheres in plasmas with and without magnetic fields. There also have been studies of negative voltage objects in unmagnetized plasmas. Here, we used a fluid model to study the plasma response to a negative voltage sphere immersed in a magnetized plasma. Our main purpose was to investigate the role of the magnetic field during the early-time interaction between the negative voltage sphere and the ambient plasma in the LEO environment. In this study, different applied voltages, magnetic field strengths, and rise-times of the applied voltages were considered. It was found that with the strength of the geomagnetic field the ions are basically not affected by the magnetic field on the time scale of hundreds of plasma periods considered in this study. The ion density distribution around the sphere and the collected ion flux by the sphere are basically the same as in the case without the magnetic field. The electron motion is strongly affected by the magnetic field. One effect is to change the nature of the electron over-shoot oscillation from regular to somewhat turbulent. Although the electrons move along the magnetic field much more easily than across the magnetic field, some redirection effect causes the electron density to distribute as if the magnetic field effect is minimal. The sheath struture and the electric field around the sphere tend to be spherical. A finite rise-time of the applied voltage reduces the oscillatory activities and delays the ion acceleration. However, the effect of the rise-time depends on both the duration of the rise-time and the ion plasma period.

  11. Jets in a strongly coupled anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Fadafan, Kazem Bitaghsir; Morad, Razieh

    2018-01-01

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N=4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma.

  12. Ion beams extraction and measurements of plasma parameters on a multi-frequencies microwaves large bore ECRIS with permanent magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozaki, Dai; Kiriyama, Ryutaro; Takenaka, Tomoya

    2012-11-06

    We have developed an all-permanent magnet large bore electron cyclotron resonance ion source (ECRIS) for broad ion beam processing. The cylindrically comb-shaped magnetic field configuration is adopted for efficient plasma production and good magnetic confinement. To compensate for disadvantages of fixed magnetic configuration, a traveling wave tube amplifier (TWTA) is used. In the comb-shaped ECRIS, it is difficult to achieve controlling ion beam profiles in the whole inside the chamber by using even single frequency-controllable TWTA (11-13GHz), because of large bore size with all-magnets. We have tried controlling profiles of plasma parameters and then those of extracted ion beams bymore » launching two largely different frequencies simultaneously, i.e., multi-frequencies microwaves. Here we report ion beam profiles and corresponding plasma parameters under various experimental conditions, dependence of ion beams against extraction voltages, and influence of different electrode positions on the electron density profile.« less

  13. Improved Characteristics of Laser Source of Ions Using a Frequency Mode Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaydarov, R. T.

    2008-04-07

    We used a mass-spectrometric method to investigate the characteristics of laser-produced plasma ions depending on the nature of the target and on the parameters of the laser radiation. Experiments are carried out on porous Y{sub 2}O{sub 3} targets with different densities {rho}, subjected to a laser radiation, where the laser works in a frequency mode (v = l-12 Hz). We found that the laser frequency has a significant effect on the parameters of plasma ions: with increasing the frequency of the laser the charge, energy and intensity of ions increase for a given parameters of the target. This effect ismore » more pronounced for small densities of the target. We related these two effects to a non-linear ionization process in the plasma due to the formation of dense plasma volume inside the sample absorbing the laser radiation and to the change of the focusing conditions in the case of the frequency mode laser.« less

  14. Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2013-08-15

    Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less

  15. Ion densities in Titan's ionosphere, multi-instrument case study

    NASA Astrophysics Data System (ADS)

    Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Coates, A. J.; Andrews, D. J.; Vigren, E.; Mandt, K. E.; Waite, J. H., Jr.

    2015-10-01

    The Cassini s/c in-situ plasma measurements of Titan's ionosphere by Radio and Plasma Wave Science (RPWS) Langmuir Probe (LP), Cassini Plasma Spectrometer (CAPS) Electron (ELS) and Ion Beam (IBS) are combined for selected flybys (T16, T29, T40& T56) to further constrain plasma parameters of ionosphere at altitudes 880-1400 km.

  16. The effects of feed-borne Fusarium mycotoxins and glucomannan in turkey poults based on specific and non-specific parameters.

    PubMed

    Devreese, Mathias; Girgis, George N; Tran, Si-Trung; De Baere, Siegrid; De Backer, Patrick; Croubels, Siska; Smith, Trevor K

    2014-01-01

    An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins and a yeast derived glucomannan mycotoxin adsorbent (GMA) on selected specific and non-specific parameters in turkey poults. Two hundred and forty 1-day-old male turkey poults were fed the experimental diets for twelve weeks. Experimental diets were formulated with control grains, control grains+0.2% GMA, naturally-contaminated grains, or naturally-contaminated grains+0.2% GMA. Deoxynivalenol (DON) was the major contaminant of the contaminated grains and concentrations varied from 4.0 to 6.5 mg/kg in the contaminated diets. Non-specific parameters measured included: performance parameters, plasma biochemistry profiles, morphometry and CD8(+) T-lymphocyte counts in the duodenum. Plasma concentrations of DON and de-epoxydeoxynivalenol (DOM-1) were used as specific parameters. Performance parameters and plasma biochemistry were altered by the feeding of contaminated diets and GMA but this was not consistent throughout the trial. The feeding of contaminated diets reduced duodenal villus height and apparent villus surface area. This effect was prevented by GMA supplementation. The feeding of contaminated diets elevated total duodenal CD8(+) T-lymphocyte counts but this effect was not prevented by GMA. No significant differences were seen in plasma concentrations of DON and DOM-1 comparing birds fed contaminated and contaminated+GMA diets suggesting that GMA did not prevent DON absorption under these conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Plasma density perturbation caused by probes at low gas pressure

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Godyak, Valery

    2017-09-01

    An analysis of plasma parameter perturbations caused by a spherical probe immersed into a spherical plasma is presented for arbitrary collisionality and arbitrary ratios of probe to plasma dimensions. The plasma was modeled by the fluid plasma equations with ion inertia and nonlinear ion friction force that dominate plasma transport at low gas pressures. Significant depletion of the plasma density around the probe surface has been found. The area of plasma depletion coincides with the sensing area of different kinds of magnetic and microwave probes and will therefore lead to errors in data inferred from measurements with such probes.

  18. Ion behaviour in pulsed plasma regime by means of Time-resolved energy mass spectroscopy (TREMS) applied to an industrial radiofrequency Plasma Immersion Ion Implanter PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrere, M.; Kaeppelin, V.; Torregrosa, F.

    2006-11-13

    In order to face the requirements for P+/N junctions requested for < 45 nm ITRS nodes, new doping techniques are studied. Among them Plasma Immersion Ion Implantation (PIII) has been largely studied. IBS has designed and developed its own PIII machine named PULSION registered . This machine is using a pulsed plasma. As other modem technological applications of low pressure plasma, PULSION registered needs a precise control over plasma parameters in order to optimise process characteristics. In order to improve pulsed plasma discharge devoted to PIII, a nitrogen pulsed plasma has been studied in the inductively coupled plasma (ICP) ofmore » PULSION registered and an argon pulsed plasma has been studied in the helicon discharge of the laboratory reactor of LPIIM (PHYSIS). Measurements of the Ion Energy Distribution Function (IEDF) with EQP300 (Hidden) have been performed in both pulsed plasma. This study has been done for different energies which allow to reconstruct the IEDF resolved in time (TREMS). By comparing these results, we found that the beginning of the plasma pulse, named ignition, exhaust at least three phases, or more. All these results allowed us to explain plasma dynamics during the pulse while observing transitions between capacitive and inductive coupling. This study leads in a better understanding of changes in discharge parameters as plasma potential, electron temperature, ion density.« less

  19. Efficacy determinants of subcutaneous microdose glucagon during closed-loop control.

    PubMed

    Russell, Steven J; El-Khatib, Firas H; Nathan, David M; Damiano, Edward R

    2010-11-01

    During a previous clinical trial of a closed-loop blood glucose (BG) control system that administered insulin and microdose glucagon subcutaneously, glucagon was not uniformly effective in preventing hypoglycemia (BG<70 mg/dl). After a global adjustment of control algorithm parameters used to model insulin absorption and clearance to more closely match insulin pharmacokinetic (PK) parameters observed in the study cohort, administration of glucagon by the control system was more effective in preventing hypoglycemia. We evaluated the role of plasma insulin and plasma glucagon levels in determining whether glucagon was effective in preventing hypoglycemia. We identified and analyzed 36 episodes during which glucagon was given and categorized them as either successful or unsuccessful in preventing hypoglycemia. In 20 of the 36 episodes, glucagon administration prevented hypoglycemia. In the remaining 16, BG fell below 70 mg/dl (12 of the 16 occurred during experiments performed before PK parameters were adjusted). The (dimensionless) levels of plasma insulin (normalized relative to each subject's baseline insulin level) were significantly higher during episodes ending in hypoglycemia (5.2 versus 3.7 times the baseline insulin level, p=.01). The relative error in the control algorithm's online estimate of the instantaneous plasma insulin level was also higher during episodes ending in hypoglycemia (50 versus 30%, p=.003), as were the peak plasma glucagon levels (183 versus 116 pg/ml, p=.007, normal range 50-150 pg/ml) and mean plasma glucagon levels (142 versus 75 pg/ml, p=.02). Relative to mean plasma insulin levels, mean plasma glucagon levels tended to be 59% higher during episodes ending in hypoglycemia, although this result was not found to be statistically significant (p=.14). The rate of BG descent was also significantly greater during episodes ending in hypoglycemia (1.5 versus 1.0 mg/dl/min, p=.02). Microdose glucagon administration was relatively ineffective in preventing hypoglycemia when plasma insulin levels exceeded the controller's online estimate by >60%. After the algorithm PK parameters were globally adjusted, insulin dosing was more conservative and microdose glucagon administration was very effective in reducing hypoglycemia while maintaining normal plasma glucagon levels. Improvements in the accuracy of the controller's online estimate of plasma insulin levels could be achieved if ultrarapid-acting insulin formulations could be developed with faster absorption and less intra- and intersubject variability than the current insulin analogs available today. © 2010 Diabetes Technology Society.

  20. Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.

    2012-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.

Top