Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido
2009-01-01
Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.
Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.
ERIC Educational Resources Information Center
Ochiai, Ei-Ichiro
1988-01-01
Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)
Transparent Conducting Oxides: Status and Opportunities in Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutts, T. J.; Perkins, J. D.; Ginley, D.S.
1999-08-01
In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less
NASA Technical Reports Server (NTRS)
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
Lin, Feng; Tong, Xin; Wang, Yanan; Bao, Jiming; Wang, Zhiming M
2015-12-01
Graphene oxide (GO) liquid crystals (LCs) are macroscopically ordered GO flakes dispersed in water or polar organic solvents. Since the first report in 2011, GO LCs have attracted considerable attention for their basic properties and potential device applications. In this review, we summarize recent developments and present a comprehensive understanding of GO LCs via many aspects ranging from the exfoliation of GO flakes from graphite, to phases and phase transitions under various conditions, the orientational responses of GO under external magnetic and electric fields, and finally Kerr effect and display applications. The emphasis is placed on the unique and basic properties of GO and their ordered assembly. We will also discuss challenges and issues that need to be overcome in order to gain a more fundamental understanding and exploit full device potentials of GO LCs.
NASA Technical Reports Server (NTRS)
King, J. C.
1975-01-01
The general orbit-coverage problem in a simplified physical model is investigated by application of numerical approaches derived from basic number theory. A system of basic and general properties is defined by which idealized periodic coverage patterns may be characterized, classified, and delineated. The principal common features of these coverage patterns are their longitudinal quantization, determined by the revolution number R, and their overall symmetry.
Iterated Hamiltonian type systems and applications
NASA Astrophysics Data System (ADS)
Tiba, Dan
2018-04-01
We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.
Some Basic Techniques in Bioimpedance Research
NASA Astrophysics Data System (ADS)
Martinsen, Ørjan G.
2004-09-01
Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.
Mass Uncertainty and Application For Space Systems
NASA Technical Reports Server (NTRS)
Beech, Geoffrey
2013-01-01
Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.
Amniotic therapeutic biomaterials in urology: current and future applications.
Oottamasathien, Siam; Hotaling, James M; Craig, James R; Myers, Jeremy B; Brant, William O
2017-10-01
To examine the rationale and applications of amniotic tissue augmentation in urological surgery. Published literature in English-language was reviewed for basic science and clinical use of amniotic or amnion-chorionic tissue in genitourinary tissues. Basic science and animal studies support the likely benefit of clinical applications of amnion-derived tissues in a variety of urologic interventions. The broad number of properties found in amniotic membrane, coupled with its immunologically privileged status presents a number of future applications in the urological surgical realm. These applications are in their clinical infancy and suggest that further studies are warranted to investigate the use of these products in a systematic fashion.
[Research on basic questions of intellectual property rights of acupuncture and moxibustion].
Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin
2011-12-01
Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.
Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications.
Maldonado-Camargo, Lorena; Unni, Mythreyi; Rinaldi, Carlos
2017-01-01
Iron oxide nanoparticles are of interest in a wide range of biomedical applications due to their response to applied magnetic fields and their unique magnetic properties. Magnetization measurements in constant and time-varying magnetic field are often carried out to quantify key properties of iron oxide nanoparticles. This chapter describes the importance of thorough magnetic characterization of iron oxide nanoparticles intended for use in biomedical applications. A basic introduction to relevant magnetic properties of iron oxide nanoparticles is given, followed by protocols and conditions used for measurement of magnetic properties, along with examples of data obtained from each measurement, and methods of data analysis.
Influence of Additives on Masonry and Protective Paints’ Quality
NASA Astrophysics Data System (ADS)
Kostiunina, I. L.; Vyboishchik, A. V.
2017-11-01
The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.
Kim, Jeong Yun; Hwang, Tae Gyu; Woo, Sung Wun; Lee, Jae Moon; Namgoong, Jin Woong; Yuk, Sim Bum; Chung, Sei-Won; Kim, Jae Pil
2017-04-06
A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.
ERIC Educational Resources Information Center
Cadart-Ricard, Odette
The problem of meaning in cross-cultural situations, resulting from differing patterns of thought, requires comprehension of the basic rules or patterns of these thought systems. This comprehension can be sought through Vygotsky's unit of analysis, a unit being a product of analysis which, unlike elements, retains all the basic properties of the…
Thermoelectricity for future sustainable energy technologies
NASA Astrophysics Data System (ADS)
Weidenkaff, Anke
2017-07-01
Thermoelectricity is a general term for a number of effects describing the direct interconversion of heat and electricity. Thermoelectric devices are therefore promising, environmental-friendly alternatives to conventional power generators or cooling units. Since the mid-90s, research on thermoelectric properties and their applications has steadily increased. In the course of years, the development of high-temperature resistant TE materials and devices has emerged as one of the main areas of interest focusing both on basic research and practical applications. A wide range of innovative and cost-efficient material classes has been studied and their properties improved. This has also led to advances in synthesis and metrology. The paper starts out with thermoelectric history, basic effects underlying thermoelectric conversion and selected examples of application. The main part focuses on thermoelectric materials including an outline of the design rules, a review on the most common materials and the feasibility of improved future high-temperature thermoelectric converters.
NASA Technical Reports Server (NTRS)
Gagliani, J.
1978-01-01
Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Myers, Michael K.
2011-01-01
This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.
Synthesis and size classification of metal oxide nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Atsumi, Takashi; Jeyadevan, Balachandran; Sato, Yoshinori; Tamura, Kazuchika; Aiba, Setsuya; Tohji, Kazuyuki
2004-12-01
Magnetic nanoparticles are considered for biomedical applications, such as the medium in magnetic resonance imaging, hyperthermia, drug delivery, and for the purification or classification of DNA or virus. The performance of magnetic nanoparticles in biomedical application such as hyperthermia depends very much on the magnetic properties, size and size distribution. We briefly described the basic idea behind their use in drug delivery, magnetic separation and hyperthermia and discussed the prerequisite properties magnetic particles for biomedical applications. Finally reported the synthesis and classification scheme to prepare magnetite (Fe3O4) nanoparticles with narrow size distribution for magnetic fluid hyperthermia.
Hakky, Michael; Pandey, Shilpa; Kwak, Ellie; Jara, Hernan; Erbay, Sami H
2013-08-01
This article outlines artifactual findings commonly encountered in neuroradiologic MRI studies and offers clues to differentiate them from true pathology on the basis of their physical properties. Basic MR physics concepts are used to shed light on the causes of these artifacts. MRI is one of the most commonly used techniques in neuroradiology. Unfortunately, MRI is prone to image distortion and artifacts that can be difficult to identify. Using the provided case illustrations, practical clues, and relevant physical applications, radiologists may devise algorithms to troubleshoot these artifacts.
Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials.
Wang, Feng; Wang, Zhenxing; Jiang, Chao; Yin, Lei; Cheng, Ruiqing; Zhan, Xueying; Xu, Kai; Wang, Fengmei; Zhang, Yu; He, Jun
2017-09-01
2D layered semiconducting materials (2DLSMs) represent the thinnest semiconductors, holding many novel properties, such as the absence of surface dangling bonds, sizable band gaps, high flexibility, and ability of artificial assembly. With the prospect of bringing revolutionary opportunities for electronic and optoelectronic applications, 2DLSMs have prospered over the past twelve years. From materials preparation and property exploration to device applications, 2DLSMs have been extensively investigated and have achieved great progress. However, there are still great challenges for high-performance devices. In this review, we provide a brief overview on the recent breakthroughs in device optimization based on 2DLSMs, particularly focussing on three aspects: device configurations, basic properties of channel materials, and heterostructures. The effects from device configurations, i.e., electrical contacts, dielectric layers, channel length, and substrates, are discussed. After that, the affect of the basic properties of 2DLSMs on device performance is summarized, including crystal defects, crystal symmetry, doping, and thickness. Finally, we focus on heterostructures based on 2DLSMs. Through this review, we try to provide a guide to improve electronic and optoelectronic devices of 2DLSMs for achieving practical device applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
User Manual for the Data-Series Interface of the Gr Application Software
Donovan, John M.
2009-01-01
This manual describes the data-series interface for the Gr Application software. Basic tasks such as plotting, editing, manipulating, and printing data series are presented. The properties of the various types of data objects and graphical objects used within the application, and the relationships between them also are presented. Descriptions of compatible data-series file formats are provided.
A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.
Xia, Tingting; Liu, Wanqian; Yang, Li
2017-06-01
Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…
Gaussian content as a laser beam quality parameter.
Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal
2011-08-01
We propose the Gaussian content (GC) as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is especially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode laser and a single-mode fiber are elaborated as application examples. The measurement of the GC and its conservation upon propagation are experimentally confirmed.
Polyimide foams provide thermal insulation and fire protection
NASA Technical Reports Server (NTRS)
Rosser, R. W.
1972-01-01
Chemical reactions to produce polyimide foams for application as thermal insulation and fire prevention materials are discussed. Thermal and physical properties of the polyimides are described. Methods for improving basic formulations to produce desired qualitites are included.
Concept of Quantum Geometry in Optoelectronic Processes in Solids: Application to Solar Cells.
Nagaosa, Naoto; Morimoto, Takahiro
2017-07-01
The concept of topology is becoming more and more relevant to the properties and functions of electronic materials including various transport phenomena and optical responses. A pedagogical introduction is given here to the basic ideas and their applications to optoelectronic processes in solids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cogbill, Thomas H; Ziegelbein, Kurt J
2011-02-01
The basic principles underlying computed tomography, magnetic resonance, and ultrasound are reviewed to promote better understanding of the properties and appropriate applications of these 3 common imaging modalities. A glossary of frequently used terms for each technique is appended for convenience. Risks to patient safety including contrast-induced nephropathy, radiation-induced malignancy, and nephrogenic systemic fibrosis are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Optically stimulated luminescence (OSL) dosimetry in medicine.
Yukihara, E G; McKeever, S W S
2008-10-21
This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome of an OSL measurement are discussed. Practical aspects discussed include stimulation modalities (continuous-wave OSL, pulsed OSL and linear modulation OSL), basic experimental setup, available OSL readers, optical fiber systems and basic properties of available OSL dosimeters. Finally, results from the recent literature on applications of OSL in radiotherapy, radiodiagnostics and heavy charged particle dosimetry are discussed in light of the theoretical and practical framework presented in this review. Open questions and future challenges in OSL dosimetry are highlighted as a guide to the research needed to further advance the field.
Ion-Exchange Chromatography: Basic Principles and Application.
Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F
2017-01-01
Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.
Engineering of superconductors and superconducting devices using artificial pinning sites
NASA Astrophysics Data System (ADS)
Wördenweber, Roger
2017-08-01
Vortex matter in superconducting films and devices is not only an interesting topic for basic research but plays a substantial role in the applications of superconductivity in general. We demonstrate, that in most electronic applications, magnetic flux penetrates the superconductor and affects the performance of superconducting devices. Therefore, vortex manipulation turns out to be a useful tool to avoid degradation of superconducting device properties. Moreover, it can also be used to analyze and understand novel and interesting physical properties and develop new concepts for superconductor applications. In this review, various concepts for vortex manipulation are sketched. For example, the use of micro- and nanopatterns (especially, antidots) for guiding and trapping of vortices in superconducting films and thin film devices is discussed and experimental evidence of their vortex guidance and vortex trapping by various arrangements of antidots is given. We demonstrate, that the vortex state of matter is very important in applications of superconductivity. A better understanding does not only lead to an improvement of the performance of superconductor components, such as reduced noise, better power handling capability, or improved reliability, it also promises deeper insight into the basic physics of vortices and vortex matter.
Precise pooling and dispensing of microfluidic droplets towards micro- to macro-world interfacing
Brouzes, Eric; Carniol, April; Bakowski, Tomasz; Strey, Helmut H.
2014-01-01
Droplet microfluidics possesses unique properties such as the ability to carry out multiple independent reactions without dispersion of samples in microchannels. We seek to extend the use of droplet microfluidics to a new range of applications by enabling its integration into workflows based on traditional technologies, such as microtiter plates. Our strategy consists in developing a novel method to manipulate, pool and deliver a precise number of microfluidic droplets. To this aim, we present a basic module that combines droplet trapping with an on-chip valve. We quantitatively analyzed the trapping efficiency of the basic module in order to optimize its design. We also demonstrate the integration of the basic module into a multiplex device that can deliver 8 droplets at every cycle. This device will have a great impact in low throughput droplet applications that necessitate interfacing with macroscale technologies. The micro- to macro- interface is particularly critical in microfluidic applications that aim at sample preparation and has not been rigorously addressed in this context. PMID:25485102
Hand-waving and interpretive dance: an introductory course on tensor networks
NASA Astrophysics Data System (ADS)
Bridgeman, Jacob C.; Chubb, Christopher T.
2017-06-01
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states. The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
Kobayashi, Masanori; Hyu, Hyon Suong
2010-01-01
Due to its excellent biocompatibility and mechanical properties, various different applications of polyvinyl alcohol-hydrogels (PVA-H) has been attempted in many fields. In the field of orthopedic surgery, we have been engaged for long time in research on the clinical applications of PVA-H as a artificial cartilage, and have performed many basic experiments on the mechanical properties, synthesis of PVA-H, and developed orthopedic implants using PVA-H. From these studies, many applications of artificial articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This review will present the overview of the applications and recent advances of PVA-H cartilages, and discuss clinical potential of PVA-H for orthopedics implant.
Nanomechanics of carbon nanotubes
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.
2017-04-01
This review focusses on introducing the mechanics in carbon nanotubes (CNT), and the major applications of CNT and its composites in biomedicine. It emphasizes the nanomechanics of these materials by reviewing the widely followed experimental methods, theoretical models, simulations, classification, segregation and applications the aforementioned materials. First, several mechanical properties contributing to the classification of the CNT, for various biomedicine applications, are discussed in detail to provide a cursory glance at the uses of CNT. The mechanics of CNT discussed in this paper include: elasticity, stress, tension, compression, nano-scale mechanics. In addition to these basic properties, a brief introduction about nanoscale composites is given. Second, a brief review on some of the major applications of CNT in biomedicine including drug delivery, therapeutics, diagnostics and regenerative medicine is given.
Peptide nanostructures in biomedical technology.
Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik
2016-09-01
Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Mechanical and electrical properties of laminates for high performance printed wiring boards
NASA Astrophysics Data System (ADS)
Guiles, Chester L.
The physical and electrical properties of laminate boards intended for high-performance applications are reviewed with particular reference to the coefficient of thermal expansion, dielectric constant, and characteristic impedance. It is shown, in particular, that the electrical properties can be tailored to some extent by using various conbinations of basic board materials, such as copper foil, fiberglass fabric, glass fabric, epoxy resin, polyimide resin, aluminum sheet, Kevlar and quartz fabrics, copper-invar-copper, and alumina-ceramic.
A review of the different techniques for solid surface acid-base characterization.
Sun, Chenhang; Berg, John C
2003-09-18
In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).
[Preliminary application of scripting in RayStation TPS system].
Zhang, Jianying; Sun, Jing; Wang, Yun
2013-07-01
Discussing the basic application of scripting in RayStation TPS system. On the RayStation 3.0 Platform, the programming methods and the points should be considered during basic scripting application were explored with the help of utility scripts. The typical planning problems in the field of beam arrangement and plan outputting were used as examples by ironprthon language. The necessary properties and the functions of patient object for script writing can be extracted from RayStation system. With the help of NET controls, planning functions such as the interactive parameter input, treatment planning control and the extract of the plan have been realized by scripts. With the help of demo scripts, scripts can be developed in RayStation, as well as the system performance can be upgraded.
Liu, Xiao-Mei; Bao; Zhaorigetu; Zhuang, Xin-Ying; Que, Ling; Tian, Chang-Jiang
2013-10-01
Clinical traditional Chinese pharmacology is the subject that study of basic theory of traditional Chinese medicine, property of Chinese materia medica and clinical application. The study on the standardization research of the terminology of clinical traditional Chinese pharmacology is an important premise and foundation to standardization, modernization and internationalization, informationization construction of clinical traditional Chinese pharmacology and is also the important content of the subject construction. To provide some exploring ideas for clinical traditional Chinese pharmacology noun terminology standardization, this article elaborates the concept of strengthening Yin with bitter-flavor herbs in several aspects, such as connotation and the historical origin, the clinical application in the traditional, modern clinic application, and the modern basic research and so on.
White Paper on Nuclear Data Needs and Capabilities for Basic Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batchelder, J.; Kawano, T.; Kelley, J.
Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less
Steam tables for pure water as an ActiveX component in Visual Basic 6.0
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2003-11-01
The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.
ONR Far East Scientific Information Bulletin. Volume 14, Number 1. HEISEI, Achieving Universal Peace
1989-03-01
grounding gated for basic and central meanings, traced in the Western classics and Indo-European for subsequent etymological development, comparative...controlled properties at reasonable costs. diamond films, processing conditions for Diamond for industrial applications the fabrication of diamond films... applications such as diamondlike films, are beginning to reach heat sinks will also become economically the industrial marketplace. The precise
Mechanical properties of shape memory polymers for morphing aircraft applications
NASA Astrophysics Data System (ADS)
Keihl, Michelle M.; Bortolin, Robert S.; Sanders, Brian; Joshi, Shiv; Tidwell, Zeb
2005-05-01
This investigation addresses basic characterization of a shape memory polymer (SMP) as a suitable structural material for morphing aircraft applications. Tests were performed for monotonic loading in high shear at constant temperature, well below, or just above the glass transition temperature. The SMP properties were time-and temperature-dependent. Recovery by the SMP to its original shape needed to be unfettered. Based on the testing SMPs appear to be an attractive and promising component in the solution for a skin material of a morphing aircraft. Their multiple state abilities allow them to easily change shape and, once cooled, resist large loads.
Dynamical Analysis of an SEIT Epidemic Model with Application to Ebola Virus Transmission in Guinea.
Li, Zhiming; Teng, Zhidong; Feng, Xiaomei; Li, Yingke; Zhang, Huiguo
2015-01-01
In order to investigate the transmission mechanism of the infectious individual with Ebola virus, we establish an SEIT (susceptible, exposed in the latent period, infectious, and treated/recovery) epidemic model. The basic reproduction number is defined. The mathematical analysis on the existence and stability of the disease-free equilibrium and endemic equilibrium is given. As the applications of the model, we use the recognized infectious and death cases in Guinea to estimate parameters of the model by the least square method. With suitable parameter values, we obtain the estimated value of the basic reproduction number and analyze the sensitivity and uncertainty property by partial rank correlation coefficients.
An Online Prediction Platform to Support the Environmental Sciences (American Chemical Society)
Historical QSAR models are currently utilized across a broad range of applications within the U.S. Environmental Protection Agency (EPA). These models predict basic physicochemical properties (e.g., logP, aqueous solubility, vapor pressure), which are then incorporated into expo...
Concepts for the clinical use of stem cells in equine medicine
Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.
2008-01-01
Stem cells from various tissues hold great promise for their therapeutic use in horses, but so far efficacy or proof-of-principle has not been established. The basic characteristics and properties of various equine stem cells remain largely unknown, despite their increasingly widespread experimental and empirical commercial use. A better understanding of equine stem cell biology and concepts is needed in order to develop and evaluate rational clinical applications in the horse. Controlled, well-designed studies of the basic biologic characteristics and properties of these cells are needed to move this new equine research field forward. Stem cell research in the horse has exciting equine specific and comparative perspectives that will most likely benefit the health of horses and, potentially, humans. PMID:19119371
Learning atoms for materials discovery.
Zhou, Quan; Tang, Peizhe; Liu, Shenxiu; Pan, Jinbo; Yan, Qimin; Zhang, Shou-Cheng
2018-06-26
Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy. Copyright © 2018 the Author(s). Published by PNAS.
Applications of asymmetric nanotextured parylene surface using its wetting and transport properties
NASA Astrophysics Data System (ADS)
Sekeroglu, Koray
In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter, thus changing the angle provided the surface with essential wetting properties. This adjustment on the nano-PPX surface exhibited excellent control on water droplet transport as well as guided the droplets from desired points to targets. The results demonstrated that it is possible to create railroad-like paths to manipulate the droplet movements by deforming the nano-PPX surface. Controlling physical properties of the surface granted the inspiration for fabricating basic fluidic devices to sort and mix droplets. These devices are promising for assembly purposes in terms of using microgels in engineering applications (i.e. building blocks for bioengineering). The surface has potential for further development to achieve the directed assembly of microgels into close proximity.
Perspectives on surface nanobubbles
Zhang, Xuehua; Lohse, Detlef
2014-01-01
Materials of nanoscale size exhibit properties that macroscopic materials often do not have. The same holds for bubbles on the nanoscale: nanoscale gaseous domains on a solid-liquid interface have surprising properties. These include the shape, the long life time, and even superstability. Such so-called surface nanobubbles may have wide applications. This prospective article covers the basic properties of surface nanobubbles and gives several examples of potential nanobubble applications in nanomaterials and nanodevices. For example, nanobubbles can be used as templates or nanostructures in surface functionalization. The nanobubbles produced in situ in a microfluidic system can even induce an autonomous motion of the nanoparticles on which they form. Their formation also has implications for the fluid transport in narrow channels in which they form. PMID:25379084
Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.
ERIC Educational Resources Information Center
Brown, Glenn H.
1983-01-01
Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)
Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.
de Figueiredo, Eduardo H M S G; Borgonovi, Arthur F N G; Doring, Thomas M
2011-02-01
MR image contrast is based on intrinsic tissue properties and specific pulse sequences and parameter adjustments. A growing number of MRI imaging applications are based on diffusion properties of water. To better understand MRI diffusion-weighted imaging, a brief overview of MR physics is presented in this article followed by physics of the evolving techniques of diffusion MR imaging and diffusion tensor imaging. Copyright © 2011. Published by Elsevier Inc.
Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications
Pepin, Kay M.; Ehman, Richard L.; McGee, Kiaran P.
2015-01-01
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy. PMID:26592944
Viscoelastic Properties of Advanced Polymer Composites for Ballistic Protective Applications
1994-09-01
ofthe Damaged Sample 78 Figure 69: Fracture Surface of Damage Area Near the Point of Penetration 79 Figure 70. Closer View ofthe Damaged Area...LIST OF TABLES Table 1. Basic Mechanical Properties of the Materials 6 Table 2. Initial DMA Test Results 23 Table 3. Flexural Three Point Bend... point bend testing was conducted using an Instron 1127 Universal Tester to verify the DMA test method and specimen clamping configuration. Interfacial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, T. W.; Yee, W.
The objective of this project was to develop engineered nanostructure laminate materials for applications in gas turbine engines. Although the focus of this effort was on developing improved · thermal barrier coatings, the data and experience gained through such project tasks as basic theoretical work and modeling of composition/structure property relationships can be applied. to the development of microscructure laminates for other·applications.
Intelligent polymeric micelles: development and application as drug delivery for docetaxel.
Li, Yimu; Zhang, Hui; Zhai, Guang-Xi
2017-04-01
Recent years, docetaxel (DTX)-loaded intelligent polymeric micelles have been regarded as a promising vehicle for DTX for the reason that compared with conventional DTX-loaded micelles, DTX-loaded intelligent micelles not only preserve the basic functions of micelles such as DTX solubilization, enhanced accumulation in tumor tissue, and improved bioavailability and biocompatibility of DTX, but also possess other new properties, for instance, tumor-specific DTX delivery and series of responses to endogenous or exogenous stimulations. In this paper, basic theories and action mechanism of intelligent polymeric micelles are discussed in detail, especially the related theories of DTX-loaded stimuli-responsive micelles. The relevant examples of stimuli-responsive DTX-loaded micelles are also provided in this paper to sufficiently illustrate the advantages of relevant technology for the clinical application of anticancer drug, especially for the medical application of DTX.
NASA Astrophysics Data System (ADS)
Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng
2017-10-01
The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Application of Platelet-Rich Plasma to Disorders of the Knee Joint
Mandelbaum, Bert R.; McIlwraith, C. Wayne
2013-01-01
Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674
Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.
ERIC Educational Resources Information Center
Venugopalan, Mundiyath
1991-01-01
Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…
Students' and Teachers' Application of Surface Area to Volume Relationships
ERIC Educational Resources Information Center
Taylor, Amy R.; Jones, M. Gail
2013-01-01
The "National Science Education Standards" emphasize teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale (NRC 2011). Scale includes understanding that different characteristics, properties, or relationships within a system might change as its dimensions are increased or decreased…
The Binding Properties of Quechua Suffixes.
ERIC Educational Resources Information Center
Weber, David
This paper sketches an explicitly non-lexicalist application of grammatical theory to Huallaga (Huanuco) Quechua (HgQ). The advantages of applying binding theory to many suffixes that have previously been treated only as objects of the morphology are demonstrated. After an introduction, section 2 outlines basic assumptions about the nature of HgQ…
Experiments to Demonstrate Piezoelectric and Pyroelectric Effects
ERIC Educational Resources Information Center
Erhart, Jirí
2013-01-01
Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…
Cellulose nanocrystals: synthesis, functional properties, and applications
George, Johnsy; Sabapathi, SN
2015-01-01
Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715
Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.
Meanwell, Nicholas A
2018-02-05
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Ultrasonic Emission from Nanocrystalline Porous Silicon
NASA Astrophysics Data System (ADS)
Shinoda, Hiroyuki; Koshida, Nobuyoshi
A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.
Ultraviolet and thermally stable polymer compositions
NASA Technical Reports Server (NTRS)
Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)
1976-01-01
A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.
Ultraviolet and thermally stable polymer compositions
NASA Technical Reports Server (NTRS)
Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)
1974-01-01
A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.
Application of cementitious composites in mechanical engineering
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Akopian, A. K.; Teleshev, A. A.; Khankhabaev, L. R.; Ivanov, A. S.
2018-03-01
The paper presents the results of the development of composite fiber-reinforced concrete for use as basic parts of machine-tools and machines. It was revealed that the additions of fly ash and limestone significantly reduce the cracking of concrete. Thus, a clear relationship between the properties of concrete and the features of the structure of cement stone was revealed. The strength and crack resistance of concrete is increased due to an increase in the number of low-basic calcium hydrosilicates, as well as increased gel porosity and reduced capillary porosity (especially at the submicroscopic level).
Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S
2011-02-01
Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.
Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.
Yonezawa, Y; Ishida, S; Sunada, H
2001-11-01
Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.
Soft matter food physics--the physics of food and cooking.
Vilgis, Thomas A
2015-12-01
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2015-01-01
The basic properties of a new type of lattices—a lattice of cubes—are described. It is shown that, with a suitable choice of union and intersection operations, the set of all subcubes of an N-cube forms a lattice, which is called a lattice of cubes. Algorithms for constructing such lattices are described, and the results produced by these algorithms in the case of lattices of various dimensions are illustrated. It is proved that a lattice of cubes is a lattice with supplements, which makes it possible to minimize and maximize supermodular functions on it. Examples of such functions are given. The possibility of applying previously developed efficient optimization algorithms to the formulation and solution of new classes of problems on lattices of cubes.
Soft matter food physics—the physics of food and cooking
NASA Astrophysics Data System (ADS)
Vilgis, Thomas A.
2015-12-01
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
NASA Astrophysics Data System (ADS)
Laukhina, E.; Lebedev, V.; Rovira, C.; Laukhin, V.; Veciana, J.
2016-03-01
The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF)2IxBr3-x, were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF)2IxBr3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications.
Synaptic electronics: materials, devices and applications.
Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip
2013-09-27
In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.
Exploratory Investigation of Advanced-Temperature Nickel-Base Alloys
NASA Technical Reports Server (NTRS)
Freche, John C.; Waters, William J.
1959-01-01
An investigation was conducted to provide an advanced-temperature nickel-base alloy with properties suitable for aircraft turbine blades as well as for possible space vehicle applications. An entire series of alloys that do not require vacuum melting techniques and that generally provide good stress-rupture and impact properties was evolved. The basic-alloy composition of 79 percent nickel, 8 percent molybdenum, 6 percent chromium, 6 percent aluminum, and 1 percent zirconium was modified by a series of element additions such as carbon, titanium, and boron, with the nickel content adjusted to account for the additives. Stress-rupture, impact, and swage tests were made with all the alloys. The strongest composition (basic alloy plus 1.5 percent titanium plus 0.125 percent carbon) displayed 384- and 574-hour stress-rupture lives at 1800 F and 15,000 psi in the as-cast and homogenized conditions, respectively. All the alloys investigated demonstrated good impact resistance. Several could not be broken in a low-capacity Izod impact tester and, on this basis, all compared favorably with several high-strength high-temperature alloys. Swaging cracks were encountered with all the alloys. In several cases, however, these cracks were slight and could be detected only by zyglo examination. Some of these compositions may become amenable to hot working on further development. On the basis of the properties indicated, it appears that several of the alloys evolved, particularly the 1.5 percent titanium plus 0.125 percent carbon basic-alloy modification, could be used for advanced- temperature turbine blades, as well as for possible space vehicle applications.
Gloria, Antonio; Ronca, Dante; Russo, Teresa; D'Amora, Ugo; Chierchia, Marianna; De Santis, Roberto; Nicolais, Luigi; Ambrosio, Luigi
2011-01-01
Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.
Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research
2017-01-01
Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research. PMID:29214158
Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar
2007-01-01
Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...
NANOPARTICLES AND THEIR APPLICATIONS IN CELL AND MOLECULAR BIOLOGY
Wang, Edina C.; Wang, Andrew Z.
2013-01-01
Nanoparticles can be engineered with distinctive compositions, sizes, shapes, and surface chemistries to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes. PMID:24104563
Advances in Nanotechnology for Restorative Dentistry.
Khurshid, Zohaib; Zafar, Muhammad; Qasim, Saad; Shahab, Sana; Naseem, Mustafa; AbuReqaiba, Ammar
2015-02-16
Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients.
Advances in Nanotechnology for Restorative Dentistry
Khurshid, Zohaib; Zafar, Muhammad; Qasim, Saad; Shahab, Sana; Naseem, Mustafa; AbuReqaiba, Ammar
2015-01-01
Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients. PMID:28787967
Atomic force microscopy for two-dimensional materials: A tutorial review
NASA Astrophysics Data System (ADS)
Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle
2018-01-01
Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.
Basic materials physics of transparent conducting oxides.
Edwards, P P; Porch, A; Jones, M O; Morgan, D V; Perks, R M
2004-10-07
Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of the doping process to generate n-type conductivity in transparent conducting oxides, the associated transition to the metallic (conducting) state and the detailed properties of the degenerate itinerant electron gas. The aim is to fully understand the origins of the basic performance limits of known materials and to set the scene for new or improved materials which will breach those limits for new-generation transparent conducting materials, either oxides, or beyond oxides.
Optics in engineering education: stimulating the interest of first-year students
NASA Astrophysics Data System (ADS)
Blanco-García, Jesús; Vazquez-Dorrío, Benito
2014-07-01
The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.
Berry phase effect on electronic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Di; Chang, Ming-Che; Niu, Qian
2010-01-01
Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A commonmore » thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.« less
Soybean glycinin subunits: Characterization of physicochemical and adhesion properties.
Mo, Xiaoqun; Zhong, Zhikai; Wang, Donghai; Sun, Xiuzhi
2006-10-04
Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.
History and trends of bioactive glass-ceramics.
Montazerian, Maziar; Dutra Zanotto, Edgar
2016-05-01
The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Odenbach, Professor Stefan
2006-09-01
This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of ferrofluid research. Ferrofluids—suspensions of magnetic nanoparticles—exhibit as a specific feature the magnetic control of their physical parameters and of flows appearing in such fluids. This magnetic control can be achieved by means of moderate magnetic fields with a strength of the order of 10 mT. This sort of magnetic control also enables the design of a wide variety of technical applications such as the use of the magnetic forces for basic research in fluid dynamics. The overall field of ferrofluid research is already about 40 years old. Starting with the first patent on the synthesis of magnetic nanoparticle suspensions by S Papell in 1964, a vivid field of research activities has been established. Looking at the long time in which ferrofluids have been the focus of scientific interest, one can ask the question, what kind of recent developments justify a special issue of a scientific journal? New developments in a field, which depends strongly on a certain material class and which opens research possibilities in different scientific fields will nowadays usually require an interdisciplinary approach. This kind of approach starting from the synthesis of magnetic suspensions, including research concerning their basic properties and flow behaviour and focusing on new applications has been the core of a special research programme funded by the Deutsche Forschungsgemeinschaft (DFG) over the past 6 years. Within this programme—entitled `Colloidal Magnetic Fluids: Basics, Synthesis and Applications of New Ferrofluids'—more than 30 different research groups have been coordinated to achieve new results in various fields related to ferrofluid research. The basic approach of the program has been the assumption that new applications well beyond the typical ferrofluid techniques, for example loud speaker cooling or sealing of rotary shafts, will require tailored magnetic suspensions with properties clearly focused towards the need of the application. While such tailoring of fluids to certain well defined properties sounds like a straightforward approach one has to face the fact that it requires a clear definition of the required properties. This definition itself has to be based on a fundamental physical knowledge of the processes determining certain magnetically controlled phenomena in ferrofluids. To make this point concrete one can look into the detailed aims of the mentioned research program. The application areas identified for the future development of research and application of suspensions of magnetic nanoparticles have been on the one hand the biomedical application—especially with respect to cancer treatment—and on the other hand the use of magnetically controlled rheological properties of ferrofluids for new active technical devices. Both directions require, as mentioned, as a basis for success the synthesis of new ferrofluids with dedicated properties. While the medical applications have to rely on biocompatibility as well as on stability of the suspensions in a biomedical environment, the use of ferrofluids in technical devices employing their magnetically controlled rheological properties will depend on an enhancement of the changes of the fluid's viscous properties in the presence of moderate magnetic fields. For both requirements ferrofluids with a make up clearly different from the usual magnetite based fluids have to be synthesized. The question of how the detailed microscopic make up of the fluids would have to look has to be answered on the basis of basic research results defining the physics background of the respective phenomena. Taking these aspects together it becomes obvious that the aforementioned research program had goals aiming far beyond the state of the art of classical ferrofluid research. These goals as well as the basic strategy to achieve them is in a way reflected by the structure of this issue of Journal of Physics: Condensed Matter. The issue contains results emerging from the research programme as well as invited papers from researchers not participating in the programme but working in closely related areas. The issue is subdivided into five main sections dealing with synthesis, basic physical description, rheology, and both the medical and technical applications of ferrofluids. As can be expected from work done within an interdisciplinary context many of the papers would fit into more than one of these sections and catagorization is thus sometimes difficult. We have therefore tried to place them into the section reflecting the main field of research to which the respective results belong. The first section is on synthesis and characterization of magnetic suspensions. The first paper in this section is dedicated partly to magnetite ferrofluids but with special aspects concerning the particle size tailoring them for applications especially in the field of magnetic hyperthermia. After this, three different types of `new' ferrofluids are presented. Fluids based on pure metal particles exhibiting much stronger magnetic properties than the common magnetite fluids, fluids with a temperature sensitive surfactant shell allowing a change of the particle’s hydrodynamic diameter by variation of the fluid’s temperature and fluids containing spheres of nonmagnetic material with embedded magnetic particles which are already used in new medical applications. The second section is dedicated to the basic physics of ferrofluids and highlights three different topics. First the question of magnetization dynamics is discussed and different aspects of this fundamental problem, which determines the basic description of ferrofluids, are highlighted. The second topic is the well known surface instability appearing in ferrofluids in a homogeneous magnetic field perpendicular to the fluid surface. This part shows clearly how many undiscovered phenomena can be found, even in an area which is as old as the whole research field, if an appropriate measuring technique is used and fresh ideas help to find unexpected effects. The last part of this section deals with the question of dynamics and structure of ferrofluids and shows the experimental possibilities of scattering techniques in this field. Within the third section the question of field dependent changes of the rheological behaviour of ferrofluids is discussed. The first three papers provide theoretical approaches for the understanding of the connection between the rheological properties and shear and field induced changes in the fluid’s microstructure. The fourth paper provides the related experimental results showing the combination of microstructural and rheological measurements under well defined conditions. The last paper of this section does not directly belong to ferrofluid research but to a closely related field—so called magneto-rheological (MR) suspensions, which differ from ferrofluids mainly by the size of the suspended particles and the strength of the rheological effects. As modern theoretical approaches, like the one discussed by Liu et al in the second section have shown, the relation between the effects in ferrofluids and those in MR fluids is so close that it could probably be described in a common theory. Sections four and five contain the application orientated results. In the fourth section the medical applications are the focus of interest. The section starts with a paper which could have also been placed in the synthesis section—the growth of magnetotactic bacteria and the extraction of the magnetic particles produced by these bacteria. The paper also contains information about the characterization of the particles especially with respect to their application. The characterization aspect is then continued in two papers outlining new diagnostic techniques with close relation to future biomedical application of magnetic fluids. Next in vitro applications, especially questions of cell separation using magnetic forces, are highlighted before the final papers address the therapeutic aspects of magnetic drug targeting and magnetic hyperthermia. Finally the fifth section describes three different new approaches for the technical use of ferrofluids. Again, the specialized design of the fluids themselves is an important step towards the new application goals. Altogether the papers within this issue outline the unique potential of magnetically controlled suspensions, the interdisciplinary nature of the related research and the prospects of strongly networked and interdisciplinary activities in the field. I hope that it will give an insight into the fascination of ferrofluid research and a feeling for the advances made in the past years.
Riboh, Jonathan C; Saltzman, Bryan M; Yanke, Adam B; Cole, Brian J
2016-09-01
Amniotic membrane (AM)-derived products have been successfully used in ophthalmology, plastic surgery, and wound care, but little is known about their potential applications in orthopaedic sports medicine. To provide an updated review of the basic science and preclinical and clinical data supporting the use of AM-derived products and to review their current applications in sports medicine. Systematic review. A systematic search of the literature was conducted using the Medline, EMBASE, and Cochrane databases. The search term amniotic membrane was used alone and in conjunction with stem cell, orthopaedic, tissue engineering, scaffold, and sports medicine. The search identified 6870 articles, 80 of which, after screening of the titles and abstracts, were considered relevant to this study. Fifty-five articles described the anatomy, basic science, and nonorthopaedic applications of AM-derived products. Twenty-five articles described preclinical and clinical trials of AM-derived products for orthopaedic sports medicine. Because the level of evidence obtained from this search was not adequate for systematic review or meta-analysis, a current concepts review on the anatomy, physiology, and clinical uses of AM-derived products is presented. Amniotic membranes have many promising applications in sports medicine. They are a source of pluripotent cells, highly organized collagen, antifibrotic and anti-inflammatory cytokines, immunomodulators, and matrix proteins. These properties may make it beneficial when applied as tissue engineering scaffolds, improving tissue organization in healing, and treatment of the arthritic joint. The current body of evidence in sports medicine is heavily biased toward in vitro and animal studies, with little to no human clinical data. Nonetheless, 14 companies or distributors offer commercial AM products. The preparation and formulation of these products alter their biological and mechanical properties, and a thorough understanding of these differences will help guide the use of AM-derived products in sports medicine research. © 2015 The Author(s).
Marine polysaccharides in microencapsulation and application to aquaculture: "from sea to sea".
Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio
2011-12-01
This review's main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported.
Tsukiji, Shinya; Hamachi, Itaru
2014-08-01
The ability to introduce any chemical probe to any endogenous target protein in its native environment, that is in cells and in vivo, is anticipated to provide various new exciting tools for biological and biomedical research. Although still at the prototype stage, the ligand-directed tosyl (LDT) chemistry is a novel type of affinity labeling technique that we developed for such a dream. This chemistry allows for modifying native proteins by various chemical probes with high specificity in various biological settings ranging from in vitro (in test tubes) to in living cells and in vivo. Since the first report, the list of proteins that are successfully labeled by the LDT chemistry has been increasing. A growing number of studies have demonstrated its utility to create semisynthetic proteins directly in cellular contexts. The in situ generated semisynthetic proteins are applicable for various types of analysis and imaging of intracellular biological processes. In this review, we summarize the basic properties of the LDT chemistry and its applications toward in situ engineering and analysis of native proteins in living systems. Current limitations and future challenges of this area are also described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Atmospheric applications of high-energy lasers
NASA Astrophysics Data System (ADS)
Cook, Joung R.
2005-03-01
It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, many still remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionarey history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.
Atmospheric Propagation of High Energy Lasers and Applications
NASA Astrophysics Data System (ADS)
Cook, Joung R.
2005-04-01
It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, still many remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionary history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.
NASA Technical Reports Server (NTRS)
Triner, J. E.
1979-01-01
The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.
High-frequency applications of high-temperature superconductor thin films
NASA Astrophysics Data System (ADS)
Klein, N.
2002-10-01
High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.
NASA Astrophysics Data System (ADS)
Krimpalis, S.; Mergia, K.; Messoloras, S.; Dubinko, A.; Terentyev, D.; Triantou, K.; Reiser, J.; Pintsuk, G.
2017-12-01
The mechanical properties of tungsten produced in different forms before and after neutron irradiation are of considerable interest for their application in fusion devices such as ITER. In this work the mechanical properties and the microstructure of two tungsten (W) products with different microstructures are investigated using depth sensing nano/micro-indentation and transmission electron microscopy, respectively. Neutron irradiation of these materials for different doses, in the temperature range 600 °C-1200 °C, is underway within the EUROfusion project in order to progress our basic understanding of neutron irradiation effects on W. The hardness and elastic modulus are determined as a function of the penetration depth, loading/unloading rate, holding time at maximum load and the final surface treatment. The results are correlated with the microstructure as investigated by SEM and TEM measurements.
R 5T 4 compounds - unique multifunctional intermetallics for basic research and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudryk, Yaroslav
The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd 2Fe 14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result ofmore » a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.« less
Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.
Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming
2008-06-15
In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.
Spent refractory reuse as a slag conditioning additive in the EAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, James P.; Kwong, Kyei-Sing; Krabbe, Rick
2000-01-01
Refractories removed from service in EAF applications are typically landfilled. A joint USDOE and Steel Manufacturers Association program involving industrial cooperators is evaluating spent refractory recycling/reuse. A review of current recycling practices and a review of progress towards controlling EAF slag chemistry and properties with the additions of basic spent refractories will be discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public... MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT General Provisions § 102-80.10 What are the basic safety and environmental management policies for real property? The basic safety and...
Pyroelectricity of silicon-doped hafnium oxide thin films
NASA Astrophysics Data System (ADS)
Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.
2018-04-01
Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.
Electrospun Polymer Fibers for Electronic Applications
Luzio, Alessandro; Canesi, Eleonora Valeria; Bertarelli, Chiara; Caironi, Mario
2014-01-01
Nano- and micro- fibers of conjugated polymer semiconductors are particularly interesting both for applications and for fundamental research. They allow an investigation into how electronic properties are influenced by size confinement and chain orientation within microstructures that are not readily accessible within thin films. Moreover, they open the way to many applications in organic electronics, optoelectronics and sensing. Electro-spinning, the technique subject of this review, is a simple method to effectively form and control conjugated polymer fibers. We provide the basics of the technique and its recent advancements for the formation of highly conducting and high mobility polymer fibers towards their adoption in electronic applications. PMID:28788493
Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi
2010-01-01
Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306
Lectures series in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1987-01-01
The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.
Applications of Light Emitting Diodes in Health Care.
Dong, Jianfei; Xiong, Daxi
2017-11-01
Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-09-01
Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm(3) and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications.
Materials Discovery via CALYPSO Methodology
NASA Astrophysics Data System (ADS)
Ma, Yanming
2014-03-01
Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software (http://www.calypso.cn) which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.
Marine Polysaccharides in Microencapsulation and Application to Aquaculture: “From Sea to Sea”
Borgogna, Massimiliano; Bellich, Barbara; Cesàro, Attilio
2011-01-01
This review’s main objective is to discuss some physico-chemical features of polysaccharides as intrinsic determinants for the supramolecular structures that can efficiently provide encapsulation of drugs and other biological entities. Thus, the general characteristics of some basic polysaccharides are outlined in terms of their conformational, dynamic and thermodynamic properties. The analysis of some polysaccharide gelling properties is also provided, including the peculiarity of the charged polysaccharides. Then, the way the basic physical chemistry of polymer self-assembly is made in practice through the laboratory methods is highlighted. A description of the several literature procedures used to influence molecular interactions into the macroscopic goal of the encapsulation is given with an attempt at classification. Finally, a practical case study of specific interest, the use of marine polysaccharide matrices for encapsulation of vaccines in aquaculture, is reported. PMID:22363241
Clinical Ion Beam Applications: Basic Properties, Application, Quality Control, Planning
NASA Astrophysics Data System (ADS)
Kraft, Gerhard
2009-03-01
Heavy-ion therapy using beam scanning and biological dose optimization is a novel technique of high-precision external radiotherapy. It yields a better perspective for tumor cure of radio-resistant tumors. However, heavy-ion therapy is not a general solution for all types of tumors. As compared to conventional radiotherapy, heavy-ion radiotherapy has the advantages of higher tumor dose, improved sparing of normal tissue in the entrance channel, a more precise concentration of the dose in the target volume with steeper gradients to the normal tissue, and a higher radiobiological effectiveness for tumors which are radio-resistant in conventional therapy. These properties make it possible to treat radio-resistant tumors with great success, including those in close vicinity to critical organs.
Inverting seismic data for rock physical properties; Mathematical background and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfour, Mohammed; Yoon, Wang Jung; Kim, Jinmo
2016-06-08
The basic concept behind seismic inversion is that mathematical assumptions can be established to relate seismic to geological formation properties that caused their seismic responses. In this presentation we address some widely used seismic inversion method in hydrocarbon reservoirs identification and characterization. A successful use of the inversion in real example from gas sand reservoir in Boonsville field, Noth Central Texas is presented. Seismic data was not unambiguous indicator of reservoir facies distribution. The use of the inversion led to remove the ambiguity and reveal clear information about the target.
Direct estimations of linear and nonlinear functionals of a quantum state.
Ekert, Artur K; Alves, Carolina Moura; Oi, Daniel K L; Horodecki, Michał; Horodecki, Paweł; Kwek, L C
2002-05-27
We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of some properties of quantum channels. Experimental realizations of the proposed network are within the reach of quantum technology that is currently being developed.
Meiszterics, Anikó; Havancsák, Károly; Sinkó, Katalin
2013-04-01
Calcium silicate ceramics are intended for application as long-term implant materials. In the present work, attention was paid to understand the correlations between the nanostructure (aggregate size, crystallinity, porosity) and the macroscopic properties (solubility in water and simulated body fluids, SBF; hardness) varying the chemical composition. Varying the catalyst (from a base to various acids) during the chemical synthesis was shown to significantly impact on the pore size, crystallinity and mechanical properties. The basic catalyst yields the ceramics with the highest mechanical strength. Ammonia used in 1.0 or 10.0 molar ratio results in bulk ceramics with parameters required for a biomedical application, good hardness (180-200 HV) and low solubility (1-3%) in water and in SBF. The fine porosity (~50 nm) and homogeneous amorphous structure induce good mechanical character. Copyright © 2012 Elsevier B.V. All rights reserved.
Elliptic genus of singular algebraic varieties and quotients
NASA Astrophysics Data System (ADS)
Libgober, Anatoly
2018-02-01
This paper discusses the basic properties of various versions of the two-variable elliptic genus with special attention to the equivariant elliptic genus. The main applications are to the elliptic genera attached to non-compact GITs, including the theories regarding the elliptic genera of phases on N = 2 introduced in Witten (1993 Nucl. Phys. B 403 159-222).
Magnetic Resonance Based Electrical Properties Tomography: A Review
Zhang, Xiaotong; Liu, Jiaen
2014-01-01
Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104
Kawabata, Yohei; Wada, Koichi; Nakatani, Manabu; Yamada, Shizuo; Onoue, Satomi
2011-11-25
The poor oral bioavailability arising from poor aqueous solubility should make drug research and development more difficult. Various approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of poorly water-soluble drugs. To complete development works within a limited amount of time, the establishment of a suitable formulation strategy should be a key consideration for the pharmaceutical development of poorly water-soluble drugs. In this article, viable formulation options are reviewed on the basis of the biopharmaceutics classification system of drug substances. The article describes the basic approaches for poorly water-soluble drugs, such as crystal modification, micronization, amorphization, self-emulsification, cyclodextrin complexation, and pH modification. Literature-based examples of the formulation options for poorly water-soluble compounds and their practical application to marketed products are also provided. Classification of drug candidates based on their biopharmaceutical properties can provide an indication of the difficulty of drug development works. A better understanding of the physicochemical and biopharmaceutical properties of drug substances and the limitations of each delivery option should lead to efficient formulation development for poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.
Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya
2013-07-01
The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Root, T.E.; Dotterrer, I.L.
1995-12-01
Under its developing {open_quotes}just compensation{close_quotes} jurisprudence, the United States Supreme Court has applied the constitutional requirement (of just compensation for taking private property for public use) to overly intrusive regulations. The application of the just compensation clause to governmental environmental protection activity has pitted the basic principle of protection of private property from government confiscation against another basic principle-the police power (which allows the government to regulate the use of property to protect the health, safety, and welfare of the people). The authors outline the muddle resulting from the conflict of these two constitutional principles after tracing the development ofmore » each. This article first outlines the general trend of increasing regulation of the uses of private property under environmental laws pursuant to the police power, and then outlines the development of Fifth Amendment just compensation jurisprudence (from eminent domain, through inverse condemnation, to regulatory taking). The authors urge Congress to authorize a Commission to review exercise of the police power and environmental protection legislation in light of the Fifth Amendment just compensation provision and to recommend legislation that will reconcile the two principles.« less
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert
2016-06-01
Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.
Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S
2015-01-01
Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.
Laser surface texturing of polymers for biomedical applications
NASA Astrophysics Data System (ADS)
Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan
2018-02-01
Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
Process depending morphology and resulting physical properties of TPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de
2015-12-17
Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less
Nano-Star-Shaped Polymers for Drug Delivery Applications.
Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun
2017-11-01
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conductive nanomaterials for printed electronics.
Kamyshny, Alexander; Magdassi, Shlomo
2014-09-10
This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.
Müller, Kerstin; Bugnicourt, Elodie; Latorre, Marcos; Jorda, Maria; Echegoyen Sanz, Yolanda; Lagaron, José M.; Miesbauer, Oliver; Bianchin, Alvise; Hankin, Steve; Bölz, Uwe; Pérez, Germán; Jesdinszki, Marius; Lindner, Martina; Scheuerer, Zuzana; Castelló, Sara; Schmid, Markus
2017-01-01
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed. PMID:28362331
Müller, Kerstin; Bugnicourt, Elodie; Latorre, Marcos; Jorda, Maria; Echegoyen Sanz, Yolanda; Lagaron, José M; Miesbauer, Oliver; Bianchin, Alvise; Hankin, Steve; Bölz, Uwe; Pérez, Germán; Jesdinszki, Marius; Lindner, Martina; Scheuerer, Zuzana; Castelló, Sara; Schmid, Markus
2017-03-31
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed.
24 CFR 599.203 - Basic application submission requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Basic application submission... Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT, DEPARTMENT OF... Renewal Communities § 599.203 Basic application submission requirements. The basic application submission...
Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets
NASA Astrophysics Data System (ADS)
Tian, Yichao; Tian, He; Wu, Yanling; Zhu, Leilei; Tao, Luqi; Zhang, Wei; Shu, Yi; Xie, Dan; Yang, Yi; Wei, Zhiyi; Lu, Xinghua; Ren, Tian-Ling; Shih, Chih-Kang; Zhao, Jimin
Many remarkable properties of graphene are derived from its large energy window for Dirac-like electronic states and have been explored for applications in electronics and photonics. In addition, strong electron-phonon interaction in graphene has led to efficient photo-thermo energy conversions, which has been harnessed for energy applications. By combining the wavelength independent absorption property and the efficient photo-thermo energy conversion, here we report a new type of applications in sound wave generation underlined by a photo-thermo-acoustic energy conversion mechanism. Most significantly, by utilizing ultrafast optical pulses, we demonstrate the ability to control the phase of sound waves generated by the photo-thermal-acoustic process. Our finding paves the way for new types of applications for graphene, such as remote non-contact speakers, optical-switching acoustic devices, etc. National Basic Research Program of China MOST (2012CB821402), External Cooperation Program of Chinese Academy of Sciences (GJHZ1403), and National Natural Science Foundation of China (11274372).
Pharmaceutical applications of dynamic mechanical thermal analysis.
Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P
2012-04-01
The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.
Multiscale Simulations of Barrier and Aging Properties of Polymer Nanocomposites
2013-10-29
Complexation Between Weakly Basic Dendrimers and Linear Polyelectrolytes: Effects of Chain Stiffness, Grafts, and pOH,” Thomas Lewis, Gunja Pandav, Ahmad Omar...November 2012. (c) Presentations 20.0010/29/2013 Venkat Ganesan, Thomas Lewis. Interactions between Grafted Cationic Dendrimers and Anionic Bilayer... dendrimers have shown great promise in drug and gene therapy applications. Despite the advantages realized through positively charged dendrimers , a
Invited Paper Thin Film Technology In Design And Production Of Optical Systems
NASA Astrophysics Data System (ADS)
Guenther, K. H.; Menningen, R.; Burke, C. A.
1983-10-01
Basic optical properties of dielectric thin films for interference applications and of metallic optical coatings are reviewed. Some design considerations of how to use thin films best in optical systems are given, and some aspects of thin film production technology relevant to the optical designer and the optician are addressed. The necessity of proper specifications, inclusive of test methods, is emphasized.
NASA Technical Reports Server (NTRS)
Arya, L. M. (Principal Investigator)
1980-01-01
Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Pujar, Vijay V.
2008-01-01
In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.
Magnetic resonance of porous media (MRPM): a perspective.
Song, Yi-Qiao
2013-04-01
Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions. Copyright © 2012 Elsevier Inc. All rights reserved.
[Development of viral vectors and the application for viral entry mechanisms].
Tani, Hideki
2011-06-01
Virus is identified as one of the obligate intracellular parasites, which only amplify in cells of specific living things. Viral vectors, which are developed by utilizing these properties, are available in the various fields such as basic research of medical biology or application of gene therapy. Our research group has studied development of viral vectors using properties of baculovirus or vesicular stomatitis virus (VSV). Due to the development of new baculoviral vectors for mammalian cells, it is possible to be more efficient transduction of foreign gene in mammalian cells and animals. Furthermore, pseudotype or recombinant VSV possessing the envelope proteins of hepatitis C virus, Japanese encephalitis virus or baculovirus were constructed, and characteristics of the envelope proteins or entry mechanisms of these viruses were analyzed.
Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J
2008-07-20
PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.
Structural modification of polysaccharides: A biochemical-genetic approach
NASA Technical Reports Server (NTRS)
Kern, Roger G.; Petersen, Gene R.
1991-01-01
Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.
Keller, Tobias C; Rodrigues, Elodie G; Pérez-Ramírez, Javier
2014-06-01
High-silica zeolites have been reported recently as efficient catalysts for liquid- and gas-phase condensation reactions because of the presence of a complementary source of basicity compared to Al-rich basic zeolites. Herein, we describe the controlled generation of these active sites on silica-rich FAU, BEA, and MFI zeolites. Through the application of a mild base treatment in aqueous Na2CO3, alkali-metal-coordinating defects are generated within the zeolite whereas the porous properties are fully preserved. The resulting catalysts were applied in the gas-phase condensation of propanal at 673 K as a model reaction for the catalytic upgrading of pyrolysis oil, for which an up to 20-fold increased activity compared to the unmodified zeolites was attained. The moderate basicity of these new sites leads to a coke resistance superior to traditional base catalysts such as CsX and MgO, and comparable activity and excellent selectivity is achieved for the condensation pathways. Through strategic acid and base treatments and the use of magic-angle spinning NMR spectroscopy, the nature of the active sites was investigated, which supports the theory of siloxy sites as basic centers. This contribution represents a key step in the understanding and design of high-silica base catalysts for the intermediate deoxygenation of crude bio-oil prior to the hydrotreating step for the production of second-generation biofuels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Piezoelectric single crystals for ultrasonic transducers in biomedical applications
Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk
2014-01-01
Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032
Flühs, Dirk; Flühs, Andrea; Ebenau, Melanie; Eichmann, Marion
2015-01-01
Background Dosimetric measurements in small radiation fields with large gradients, such as eye plaque dosimetry with β or low-energy photon emitters, require dosimetrically almost water-equivalent detectors with volumes of <1 mm3 and linear responses over several orders of magnitude. Polyvinyltoluene-based scintillators fulfil these conditions. Hence, they are a standard for such applications. However, they show disadvantages with regard to certain material properties and their dosimetric behaviour towards low-energy photons. Purpose, Materials and Methods Polyethylene naphthalate, recently recognized as a scintillator, offers chemical, physical and basic dosimetric properties superior to polyvinyltoluene. Its general applicability as a clinical dosimeter, however, has not been shown yet. To prove this applicability, extensive measurements at several clinical photon and electron radiation sources, ranging from ophthalmic plaques to a linear accelerator, were performed. Results For all radiation qualities under investigation, covering a wide range of dose rates, a linearity of the detector response to the dose was shown. Conclusion Polyethylene naphthalate proved to be a suitable detector material for the dosimetry of ophthalmic plaques, including low-energy photon emitters and other small radiation fields. Due to superior properties, it has the potential to replace polyvinyltoluene as the standard scintillator for such applications. PMID:27171681
New Developments of Ti-Based Alloys for Biomedical Applications
Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan
2014-01-01
Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539
Effect of electron beam on the properties of electron-acoustic rogue waves
NASA Astrophysics Data System (ADS)
El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.
2015-04-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
Dielectric Spectroscopy in Biomaterials: Agrophysics
El Khaled, Dalia; Castellano, Nuria N.; Gázquez, Jose A.; Perea-Moreno, Alberto-Jesus; Manzano-Agugliaro, Francisco
2016-01-01
Being dependent on temperature and frequency, dielectric properties are related to various types of food. Predicting multiple physical characteristics of agri-food products has been the main objective of non-destructive assessment possibilities executed in many studies on horticultural products and food materials. This review manipulates the basic fundamentals of dielectric properties with their concepts and principles. The different factors affecting the behavior of dielectric properties have been dissected, and applications executed on different products seeking the characterization of a diversity of chemical and physical properties are all pointed out and referenced with their conclusions. Throughout the review, a detailed description of the various adopted measurement techniques and the mostly popular equipment are presented. This compiled review serves in coming out with an updated reference for the dielectric properties of spectroscopy that are applied in the agrophysics field. PMID:28773438
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What are the basic safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Physical properties of organic fullerene cocrystals
NASA Astrophysics Data System (ADS)
Macovez, Roberto
2017-12-01
The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.
The Frölicher-type inequalities of foliations
NASA Astrophysics Data System (ADS)
Raźny, Paweł
2017-04-01
The purpose of this article is to adapt the Frölicher-type inequality, stated and proven for complex and symplectic manifolds in Angella and Tomassini (2015), to the case of transversely holomorphic and symplectic foliations. These inequalities provide a criterion for checking whether a foliation transversely satisfies the ∂ ∂ ¯ -lemma and the ddΛ-lemma (i.e. whether the basic forms of a given foliation satisfy them). These lemmas are linked to such properties as the formality of the basic de Rham complex of a foliation and the transverse hard Lefschetz property. In particular they provide an obstruction to the existence of a transverse Kähler structure for a given foliation. In the second section we will provide some information concerning the d‧d″-lemma for a given double complex (K • , • ,d‧ ,d″) and state the main results from Angella and Tomassini (2015). We will also recall some basic facts and definitions concerning foliations. In the third section we treat the case of transversely holomorphic foliations. We also give a brief review of some properties of the basic Bott-Chern and Aeppli cohomology theories. In Section 4 we prove the symplectic version of the Frölicher-type inequality. The final 3 sections of this paper are devoted to the applications of our main theorems. In them we verify the aforementioned lemmas for some simple examples, give the orbifold versions of the Frölicher-type inequalities and show that transversely Kähler foliations satisfy both the ∂ ∂ ¯ -lemma and the ddΛ-lemma (or in other words that our main theorems provide an obstruction to the existence of a transversely Kähler structure).
Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.
Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M
2010-02-02
Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulin, Patrick, E-mail: patrick-poulin@videotron.ca; Ekins, Sean; Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. Thismore » correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.« less
41 CFR 102-74.10 - What is the basic facility management policy?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY...
Marine Biotechnology. Basic Research Relevant to Biomaterials and Biosensors
1985-01-01
forces (the syringe effect ). Their electronic states and luminescence are other properties with potential for practical application (Callis, 1983). The...based on agglutination (Weir and Herbert, 1973), on fluorescence (Weir et al., 1973), or on other optical effects (Giaever et al., 1984). Several...time (Lowe, 1984). For example, it is possible to couple the reacting moleculea directly to the gate of aj metal oxide semiconducting field- effect
Fire Safety Aspects of Polymeric Materials. Volume 10. Mines and Bunkers
1980-01-01
Formaldehyde and Melamine / Formaldehyde Resins The basic chemistry, properties, and applications of urea / formaldehyde and melamine / formaldehyde resins ... Formaldehyde and Melamine Formaldehyde Rosins 71 4.2.3.3 Unsaturated Polyester Resins 71 4.2.3.4 Epoxy Resins 72 4.2.3.5 Furan Resins 72 4.2.3.6 Amine...aldehyde — most frequently formaldehyde . Urea is often used as a modifying agent. The
Dental applications of nanostructured bioactive glass and its composites
Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.
2013-01-01
To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems. PMID:23606653
Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.
Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L
2000-12-15
The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.
NASA Astrophysics Data System (ADS)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej
2017-11-01
Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...
2017-11-13
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
Development of high temperature nickel-base alloys for jet engine turbine bucket applications
NASA Technical Reports Server (NTRS)
Quigg, R. J.; Scheirer, S. T.
1965-01-01
A program has been initiated to develop a material with superior properties at elevated temperatures for utilization in turbine blade applications. A nickel-base superalloy can provide the necessary high temperature strength by using the maximum capability of the three available strengthening mechanisms - intermetallic gamma prime precipitation (Ni3Al), solid solution strengthening with refractory and precious metals, and stable carbide formations through the addition of strong carbide forming elements. A stress rupture test at 2000 deg F and 15,000 psi was formulated to approximate the desired properties. By adding varying amounts of refractory metals (Mo, W and Ta) it was possible to statistically analyze the effects of each in a basic superalloy composition containing fixed amounts of Co, Cr, C, B, Sr, and Ni at three separate levels of AL and Ta. Metallographic analysis correlated with the mechanical properties of the alloys; those with few strengthening phases were weak and ductile and those with excessive amounts of intermetallic phases present in undesirable morphologies were brittle.
Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.
Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno
2015-04-07
We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.
Zinc nitride thin films: basic properties and applications
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.
2017-02-01
Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.
Thermal and magnetic properties of chitosan-iron oxide nanoparticles.
Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo
2016-09-20
Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal properties of alkali-activated aluminosilicates with CNT admixture
NASA Astrophysics Data System (ADS)
Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert
2017-07-01
Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.
Application of Krylov exponential propagation to fluid dynamics equations
NASA Technical Reports Server (NTRS)
Saad, Youcef; Semeraro, David
1991-01-01
An application of matrix exponentiation via Krylov subspace projection to the solution of fluid dynamics problems is presented. The main idea is to approximate the operation exp(A)v by means of a projection-like process onto a krylov subspace. This results in a computation of an exponential matrix vector product similar to the one above but of a much smaller size. Time integration schemes can then be devised to exploit this basic computational kernel. The motivation of this approach is to provide time-integration schemes that are essentially of an explicit nature but which have good stability properties.
NASA Astrophysics Data System (ADS)
Suzuki, Kuniko; Sugawa, Osami; Yamagishi, Akira; Miyagi, Katsunori; Kamiya, Kyoko
Silicone liquid has the high performance in fire safety showing fire resistance by self-extinguishing, and that is less environmentally pollutant compared with mineral oil. Applicability of silicone liquid of 20cSt to transformers was investigated from the view point of the correlation of ignition time with critical radiant heat flux. The same tests were carried out using a mineral oil and synthetic ester oil. The basic properties of silicone liquid (20cSt) obtained from the series of the tests were verified in its application as a less-flammable transformer fluid.
Microelectronic components and metallic oxide studies and applications
NASA Technical Reports Server (NTRS)
Williams, L., Jr.
1976-01-01
The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.
B-spline Method in Fluid Dynamics
NASA Technical Reports Server (NTRS)
Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2001-01-01
B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.
Scale-Up of GRCop: From Laboratory to Rocket Engines
NASA Technical Reports Server (NTRS)
Ellis, David L.
2016-01-01
GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.
Analysis of optical and electronic properties of MoS2 for optoelectronics and FET applications
NASA Astrophysics Data System (ADS)
Ullah, Muhammad S.; Yousuf, Abdul Hamid Bin; Es-Sakhi, Azzedin D.; Chowdhury, Masud H.
2018-04-01
Molybdenum disulfide (MoS2) is considered as a promising alternative to conventional semiconductor materials that used in the IC industry because of its novel properties. In this paper, we explore the optical and electronic properties of MoS2 for photodetector and transistors applications. This simulation is done using `DFT materials properties simulator'. Our findings show that mono- and multi-layer MoS2 is suitable for conventional and tunnel FET applications due to direct and indirect band-gap respectively. The bulk MoS2 crystal, which are composed of stacked layers have indirect bandgap and mono-layer MoS2 crystal form direct bandgap at the K-point of Brillouin zone. Indirect bandgap of bulk MoS2 crystal implies that phonons need to be involved in band-to-band tunneling (BTBT) process. Degenerately doped semiconductor, which is basically spinning the Fermi level, changing the DOS profile, and thinning the indirect bandgap that allow tunneling from valence band to conduction band. The optical properties of MoS2 is explored in terms of Absorption coefficient, extinction coefficient and refractive index. Our results shows that a MoS2 based photodetector can be fabricate to detect light in the visible range (below 500nm). It is also observed that the MoS2 is most sensitive for the light of wavelength 450nm.
Stochastic geometry in disordered systems, applications to quantum Hall transitions
NASA Astrophysics Data System (ADS)
Gruzberg, Ilya
2012-02-01
A spectacular success in the study of random fractal clusters and their boundaries in statistical mechanics systems at or near criticality using Schramm-Loewner Evolutions (SLE) naturally calls for extensions in various directions. Can this success be repeated for disordered and/or non-equilibrium systems? Naively, when one thinks about disordered systems and their average correlation functions one of the very basic assumptions of SLE, the so called domain Markov property, is lost. Also, in some lattice models of Anderson transitions (the network models) there are no natural clusters to consider. Nevertheless, in this talk I will argue that one can apply the so called conformal restriction, a notion of stochastic conformal geometry closely related to SLE, to study the integer quantum Hall transition and its variants. I will focus on the Chalker-Coddington network model and will demonstrate that its average transport properties can be mapped to a classical problem where the basic objects are geometric shapes (loosely speaking, the current paths) that obey an important restriction property. At the transition point this allows to use the theory of conformal restriction to derive exact expressions for point contact conductances in the presence of various non-trivial boundary conditions.
Effects of the physicochemical properties of gold nanostructures on cellular internalization
Zhang, Jinchao; Wang, Paul C.; Liang, Xing-Jie
2015-01-01
Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research. PMID:26813673
NASA Astrophysics Data System (ADS)
Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.
2017-11-01
Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.
Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.
2017-01-01
Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field. PMID:29164107
Campos, Estefânia V R; Oliveira, Jhones L; Fraceto, Leonardo F
2017-01-01
Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.
[A cold/heat property classification strategy based on bio-effects of herbal medicines].
Jiang, Miao; Lv, Ai-Ping
2014-06-01
The property theory of Chinese herbal medicine (CHM) is regarded as the core and basic of Chinese medical theory, however, the underlying mechanism of the properties in CHMs remains unclear, which impedes a barrier for the modernization of Chinese herbal medicine. The properties of CHM are often categorized into cold and heat according to the theory of Chinese medicine, which are essential to guide the clinical application of CHMs. There is an urgent demand to build a cold/heat property classification model to facilitate the property theory of Chinese herbal medicine, as well as to clarify the controversial properties of some herbs. Based on previous studies on the cold/heat properties of CHM, in this paper, we described a novel strategy on building a cold/heat property classification model based on herbal bio-effect. The interdisciplinary cooperation of systems biology, pharmacological network, and pattern recognition technique might lighten the study on cold/heat property theory, provide a scientific model for determination the cold/heat property of herbal medicines, and a new strategy for expanding the Chinese herbal medicine resources as well.
Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films
NASA Astrophysics Data System (ADS)
Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee
2015-04-01
Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07373h
High-Modulation-Speed LEDs Based on III-Nitride
NASA Astrophysics Data System (ADS)
Chen, Hong
III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.
NASA Astrophysics Data System (ADS)
Fryd, Michael M.; Mason, Thomas G.
2012-05-01
Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.
Tél, Tamás
2015-09-01
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.
1996-04-01
Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.
Technical aspects of dental CBCT: state of the art
Araki, K; Siewerdsen, J H; Thongvigitmanee, S S
2015-01-01
As CBCT is widely used in dental and maxillofacial imaging, it is important for users as well as referring practitioners to understand the basic concepts of this imaging modality. This review covers the technical aspects of each part of the CBCT imaging chain. First, an overview is given of the hardware of a CBCT device. The principles of cone beam image acquisition and image reconstruction are described. Optimization of imaging protocols in CBCT is briefly discussed. Finally, basic and advanced visualization methods are illustrated. Certain topics in these review are applicable to all types of radiographic imaging (e.g. the principle and properties of an X-ray tube), others are specific for dental CBCT imaging (e.g. advanced visualization techniques). PMID:25263643
Ultralight porous metals: From fundamentals to applications
NASA Astrophysics Data System (ADS)
Lu, Tianjian
2002-10-01
Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts. The main aim is to develop lightweight structures which are stiff, strong, able to absorb large amount of energy and cheap for application in the transport and construction industries. For example, the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength, good energy and sound absorbing properties, and adequate fire retardance. Metal foams provide all of these features, and are under serious consideration for this applications by a number of automobile manufacturers (e.g., BMW and Audi). Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles, from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft, from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers. But there is a problem. Before metallic foams can find a widespread application, their basic properties must be measured, and ideally modeled as a function of microstructural details, in order to be included in a design. This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the micromechanical origins of the mechanical, thermal, and acoustic properties of metallic foams.
Effective constitutive relations for large repetitive frame-like structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1981-01-01
Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.
A Concise Introduction to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
2018-02-01
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
Theoretical framework for analyzing structural compliance properties of proteins.
Arikawa, Keisuke
2018-01-01
We propose methods for directly analyzing structural compliance (SC) properties of elastic network models of proteins, and we also propose methods for extracting information about motion properties from the SC properties. The analysis of SC properties involves describing the relationships between the applied forces and the deformations. When decomposing the motion according to the magnitude of SC (SC mode decomposition), we can obtain information about the motion properties under the assumption that the lower SC mode motions or the softer motions occur easily. For practical applications, the methods are formulated in a general form. The parts where forces are applied and those where deformations are evaluated are separated from each other for enabling the analyses of allosteric interactions between the specified parts. The parts are specified not only by the points but also by the groups of points (the groups are treated as flexible bodies). In addition, we propose methods for quantitatively evaluating the properties based on the screw theory and the considerations of the algebraic structures of the basic equations expressing the SC properties. These methods enable quantitative discussions about the relationships between the SC mode motions and the motions estimated from two different conformations; they also help identify the key parts that play important roles for the motions by comparing the SC properties with those of partially constrained models. As application examples, lactoferrin and ATCase are analyzed. The results show that we can understand their motion properties through their lower SC mode motions or the softer motions.
Theoretical framework for analyzing structural compliance properties of proteins
2018-01-01
We propose methods for directly analyzing structural compliance (SC) properties of elastic network models of proteins, and we also propose methods for extracting information about motion properties from the SC properties. The analysis of SC properties involves describing the relationships between the applied forces and the deformations. When decomposing the motion according to the magnitude of SC (SC mode decomposition), we can obtain information about the motion properties under the assumption that the lower SC mode motions or the softer motions occur easily. For practical applications, the methods are formulated in a general form. The parts where forces are applied and those where deformations are evaluated are separated from each other for enabling the analyses of allosteric interactions between the specified parts. The parts are specified not only by the points but also by the groups of points (the groups are treated as flexible bodies). In addition, we propose methods for quantitatively evaluating the properties based on the screw theory and the considerations of the algebraic structures of the basic equations expressing the SC properties. These methods enable quantitative discussions about the relationships between the SC mode motions and the motions estimated from two different conformations; they also help identify the key parts that play important roles for the motions by comparing the SC properties with those of partially constrained models. As application examples, lactoferrin and ATCase are analyzed. The results show that we can understand their motion properties through their lower SC mode motions or the softer motions. PMID:29607281
[Application of THz technology to nondestructive detection of agricultural product quality].
Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong
2014-08-01
With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What basic Art-in... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy governs Federal agencies? Federal agencies must incorporate fine arts as an integral part of the total...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic Art-in... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy governs Federal agencies? Federal agencies must incorporate fine arts as an integral part of the total...
41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What basic design and construction policy governs Federal agencies? 102-76.10 Section 102-76.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL...
Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.
Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen
2016-12-07
Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic- co -glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.
Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites
Sampath, Udeni Gunathilake T.M.; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J.; Lin, Pai-Chen
2016-01-01
Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials. PMID:28774113
Single-Walled Carbon Nanohorns for Energy Applications
Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao
2015-01-01
With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092
NASA Astrophysics Data System (ADS)
Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.
2016-09-01
We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.
Thangaraj, Harry; Reljic, Rajko
2009-06-01
Current TB drug development is beset with many problems. There is a perceived lack of commercial return on investment, as the vast majority of TB patients come from impoverished areas of the world. Clinical trials for new TB drugs are complex, protracted and very expensive. Therefore, the development of new anti-tuberculosis drugs requires simultaneous forward planning of the design of the trials that will be required for licensing purposes. In this article we briefly review the current state of new TB drug development and discuss issues related to intellectual property (IP), with a special emphasis on how IP can facilitate rather than hinder the development of better TB drugs. We also list and discuss the major patent applications that underpin TB drugs that have entered prominent clinical trials and additional applications that were filed over the last five years for drugs resulting from basic upstream research.
Tong, Liping; Zhou, Wenhua; Zhao, Yuetao; Yu, Xuefeng; Wang, Huaiyu; Chu, Paul K
2016-12-01
Polydimethylsiloxane(PDMS) is a common industrial polymer with advantages such as ease of fabrication, tunable hardness, and other desirable properties, but the basic (-OSi(CH 3 ) 2 -) n structure in PDMS is inherently hydrophobic thereby hampering application to biomedical engineering. In this study, plasma immersion ion implantation (PIII) is conducted on PDMS to improve the biological properties. PIII forms wrinkled "herringbone" patterns and abundant O-containing functional groups on PDMS to alter the surface hydrophilicity. The biocompatibility of the modified PDMS is assessed with Chinese hamster ovarian cells and compared to that of the untreated PDMS. Our results reveal that the PDMS samples after undergoing PIII have better cytocompatibility and lower genotoxicity. PIII which is a non-line-of-sight technique extends the application of PDMS to the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
McGill, Preston; Wells, Doug; Morgan, Kristin
2006-01-01
Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.
Zhang, Bing; Jin, Rui; Huang, Jianmei; Liu, Xiaoqing; Xue, Chunmiao; Lin, Zhijian
2012-08-01
Traditional Chinese medicine (TCM) property theory is believed to be a key and difficult point of basic theory studies of TCM. Complex concepts, components and characteristics of TCM property have long puzzled researchers and urged them to develop new angles and approaches. In the view of cognitive science, TCM property theory is a cognitive process of storing, extracting, rebuilding and summarizing the sensory information about TCMs and their effects during the medical practice struggling against diseases under the guidance of traditional Chinese philosophical thinking. The cognitive process of TCM property has particular cognitive elements and strategies. Taking into account clinical application characteristics of TCMs, this study defines the particular cognitive elements. In the combination of research methods of modern chemistry, biology and mathematics, and on the basis early-stage work for five years, we have built a TCM property cognition model based on three elements and practiced with drugs with pungent and hot properties as example, in the hope of interpreting TCM properties with modern science and providing thoughts for the nature of medical properties and instruction for rational clinical prescription.
The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Todd D.
The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructuresmore » Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.« less
Super-resolution Microscopy in Plant Cell Imaging.
Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef
2015-12-01
Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
None
2018-05-14
We will introduce and discuss in some detail the two main classes of jets: cone type and sequential-recombination type. We will discuss their basic properties, as well as more advanced concepts such as jet substructure, jet filtering, ways of optimizing the jet radius, ways of defining the areas of jets, and of establishing the quality measure of the jet-algorithm in terms of discriminating power in specific searches. Finally we will discuss applications for Higgs searches involving boosted particles.
Tribology of selected ceramics at temperatures to 900 C
NASA Technical Reports Server (NTRS)
Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.
1986-01-01
Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.
Techniques for analyzing frequency selective surfaces - A review
NASA Technical Reports Server (NTRS)
Mittra, Raj; Chan, Chi H.; Cwik, Tom
1988-01-01
A number of representative techniques for analyzing frequency-selective surfaces (FSSs), which comprise periodic arrays of patches or apertures in a conducting screen and find important applications as filters in microwaves and optics, are discussed. The basic properties of the FSSs are reviewed and several different approaches to predicting their frequency-response characteristics are described. Some recent developments in the treatment of truncated, curved, and doubly periodic screens are mentioned and representative experimental results are included.
Understanding fracture toughness in gamma TiAl
NASA Astrophysics Data System (ADS)
Chan, Kwai S.
1992-05-01
The ambient-temperature ductility and fracture toughness of TiAl-base intermetallic alloys have been improved in recent years by both alloy additions and microstructural control. Two-phase TiAl alloys have emerged as a new class of lightweight, high-temperature materials with potential importance for aerospace applications. This overview summarizes recent advances in the basic understanding of the fracture processes and toughening mechanisms in TiAl-base alloys and the relationships between microstructures and mechanical properties.
Basic Science and Clinical Application of Stem Cells in Veterinary Medicine
NASA Astrophysics Data System (ADS)
Ribitsch, I.; Burk, J.; Delling, U.; Geißler, C.; Gittel, C.; Jülke, H.; Brehm, W.
Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.
Application of artificial neural networks to composite ply micromechanics
NASA Technical Reports Server (NTRS)
Brown, D. A.; Murthy, P. L. N.; Berke, L.
1991-01-01
Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.
[Preparation and application on compound excipient of sodium stearyl fumarate and plasdone S-630].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Jia, Xiao-Bin
2013-01-01
The compound excipient containing sodium stearyl fumarate and plasdone S-630 was prepared by applying spray drying method. The basic physical properties of compound excipient were studied by solubility test, scanning electron microscope, differential scanning calorimeter, X-ray diffraction and Fourier transform infra-red spectroscopy. The effect of compound excipient on moisture absorption and ferulic acid in vitro dissolution of spray drying power of angelica were investigated. The results showed that the chemical constituents of compound excipient did not change before and after spray drying. The water soluble compound excipient can improve significantly moisture absorption and has application prospect.
ERIC Educational Resources Information Center
Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.
This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…
41 CFR 102-78.10 - What basic historic preservation policy governs Federal agencies?
Code of Federal Regulations, 2014 CFR
2014-01-01
... governs Federal agencies? To protect, enhance and preserve historic and cultural property under their... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What basic historic preservation policy governs Federal agencies? 102-78.10 Section 102-78.10 Public Contracts and Property...
Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.
Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S
2017-01-01
In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. © RSNA, 2017.
Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications
Gimber, Lana H.; Becker, Giles W.; Latt, L. Daniel; Klauser, Andrea S.; Melville, David M.; Gao, Liang; Witte, Russell S.
2017-01-01
In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue’s elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017 PMID:28493799
NASA Astrophysics Data System (ADS)
Martin, Joshua; Nolas, George S.
2016-01-01
We have developed a custom apparatus for the consecutive measurement of the electrical resistivity, the Seebeck coefficient, and the thermal conductivity of materials between 300 K and 12 K. These three transport properties provide for a basic understanding of the thermal and electrical properties of materials. They are of fundamental importance in identifying and optimizing new materials for thermoelectric applications. Thermoelectric applications include waste heat recovery for automobile engines and industrial power generators, solid-state refrigeration, and remote power generation for sensors and space probes. The electrical resistivity is measured using a four-probe bipolar technique, the Seebeck coefficient is measured using the quasi-steady-state condition of the differential method in a 2-probe arrangement, and the thermal conductivity is measured using a longitudinal, multiple gradient steady-state technique. We describe the instrumentation and the measurement uncertainty associated with each transport property, each of which is presented with representative measurement comparisons using round robin samples and/or certified reference materials. Transport properties data from this apparatus have supported the identification, development, and phenomenological understanding of novel thermoelectric materials.
Multifunctional gold nanoparticles for diagnosis and therapy of disease
Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.
2013-01-01
Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Gullikson, E.M.
1997-04-01
Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction bandmore » structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.« less
Advanced fabrication techniques for hydrogen-cooled engine structures
NASA Technical Reports Server (NTRS)
Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.
1985-01-01
Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
The Java seminar covers the fundamentals of Java programming language. No prior programming experience is required for participation in the seminar. The first part of the seminar covers introductory concepts in Java programming including data types (integer, character, ..), operators, functions and constants, casts, input, output, control flow, scope, conditional statements, and arrays. Furthermore, introduction to Object-Oriented programming in Java, relationships between classes, using packages, constructors, private data and methods, final instance fields, static fields and methods, and overloading are explained. The second part of the seminar covers extending classes, inheritance hierarchies, polymorphism, dynamic binding, abstract classes, protected access. The seminar conclude by introducing interfaces, properties of interfaces, interfaces and abstract classes, interfaces and cailbacks, basics of event handling, user interface components with swing, applet basics, converting applications to applets, the applet HTML tags and attributes, exceptions and debugging.
Investigations on composites reinforced with HEA particles
NASA Astrophysics Data System (ADS)
Carcea, I.; Chelariu, R.; Asavei, L.; Cimpoeşu, N.; Florea, R. M.
2017-08-01
This work reports the results of investigations on the fortification with high entropy alloys particles of aluminium matrix composite materials. The properties of these materials processed by Vortex techniques primarily depend on the matrix and the volume fraction of the constituent phase. The mechanical properties, toughening mechanisms and potential applications are briefly reviewed. Traditional methods were used for the basic characterization of the composite. The microstructure of the composites were investigated by optical and scanning electron microscopy (OM, SEM). SEM analysis was performed in order to observe the microstructural evolution as a function of the HEA particles content and to identify some reasons of the presence of porosity or any irregularities within the metal matrix.
Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako
2016-11-01
To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.
The Role of Computer Simulation in Nanoporous Metals—A Review
Xia, Re; Wu, Run Ni; Liu, Yi Lun; Sun, Xiao Yu
2015-01-01
Nanoporous metals (NPMs) have proven to be all-round candidates in versatile and diverse applications. In this decade, interest has grown in the fabrication, characterization and applications of these intriguing materials. Most existing reviews focus on the experimental and theoretical works rather than the numerical simulation. Actually, with numerous experiments and theory analysis, studies based on computer simulation, which may model complex microstructure in more realistic ways, play a key role in understanding and predicting the behaviors of NPMs. In this review, we present a comprehensive overview of the computer simulations of NPMs, which are prepared through chemical dealloying. Firstly, we summarize the various simulation approaches to preparation, processing, and the basic physical and chemical properties of NPMs. In this part, the emphasis is attached to works involving dealloying, coarsening and mechanical properties. Then, we conclude with the latest progress as well as the future challenges in simulation studies. We believe that highlighting the importance of simulations will help to better understand the properties of novel materials and help with new scientific research on these materials. PMID:28793491
Gaussian processes: a method for automatic QSAR modeling of ADME properties.
Obrezanova, Olga; Csanyi, Gabor; Gola, Joelle M R; Segall, Matthew D
2007-01-01
In this article, we discuss the application of the Gaussian Process method for the prediction of absorption, distribution, metabolism, and excretion (ADME) properties. On the basis of a Bayesian probabilistic approach, the method is widely used in the field of machine learning but has rarely been applied in quantitative structure-activity relationship and ADME modeling. The method is suitable for modeling nonlinear relationships, does not require subjective determination of the model parameters, works for a large number of descriptors, and is inherently resistant to overtraining. The performance of Gaussian Processes compares well with and often exceeds that of artificial neural networks. Due to these features, the Gaussian Processes technique is eminently suitable for automatic model generation-one of the demands of modern drug discovery. Here, we describe the basic concept of the method in the context of regression problems and illustrate its application to the modeling of several ADME properties: blood-brain barrier, hERG inhibition, and aqueous solubility at pH 7.4. We also compare Gaussian Processes with other modeling techniques.
Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.
Zhao, Yixin; Zhu, Kai
2016-02-07
Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.
Applications of artificial neural networks (ANNs) in food science.
Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A
2007-01-01
Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.
García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K
2018-02-15
Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.
Profiles of 1975-76 Supplemental Basic Grant Applicants.
ERIC Educational Resources Information Center
Walters, Pamela Barnhouse
The nature and extent of misreporting by applicants for the Basic Educational Opportunity Grant program was investigated. Types of potential program abuse were assessed, along with the accuracy of income estimates that students make on Supplemental Basic Grant applications, which are the basis for determining a student's eligibility. Attention was…
Miličević, Ivana; Štirmer, Nina; Banjad Pečur, Ivana
2016-01-01
This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures. PMID:28773420
A Review of the Anthropometric and Strength Standards of the Canadian Motor Vehicle Safety Standard,
1980-02-01
to manipulate them to fit a0 3 particular design. For example, the designer is required to be familiar with certain biomechanical properties of the...see Ref. 11 for example). What is probably required is the dynamic anthropometry approach used by Ely et al. (Ref. 10) to determine the overall pedal ... biomechanical model, COMBIMAN (Ref. 13) has universal application because the basic parameters of the model can be altered to represent any desired
Micro-Raman Analysis of Irradiated Diamond Films
NASA Technical Reports Server (NTRS)
Newton, R. L.; Munafo, Paul M. (Technical Monitor)
2002-01-01
Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies such as Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (1015 - 1017 H+/cm2 doses) irradiated chemical vapor deposited (CVD) diamond reveals that the microstructure is retained even after high radiation exposure.
Mini- and microgenerators applicable in the MEMS technology
NASA Astrophysics Data System (ADS)
Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z.
2017-06-01
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday's law of induction.
Molecular beam epitaxy and characterization of stannic oxide
NASA Astrophysics Data System (ADS)
White, Mark Earl
Wide bandgap oxides such as tin-doped indium oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO2) are currently used in a variety of technologically important applications, including gas sensors and transparent conducting films for devices such as flat panel displays and photovoltaics. Due to the focus on industrial applications, prior research did not investigate the basic material properties of SnO2 films due to unoptimized growth methods such as RF sputtering and pulsed laser deposition which produced low resistance, polycrystalline films. Beyond these applications, few attempts to enhance and control the fundamental SnO2 properties for semiconducting applications have been reported. This work develops the heteroepitaxy of SnO2 thin films on r-plane Al2O3 by plasma-assisted molecular beam epitaxy (PA-MBE) and demonstrates control of the electrical transport of those films. Phase-pure, epitaxial single crystalline films were controllably and reproducibly grown. X-ray diffraction measurements indicated that these films exhibited the highest structural quality reported. Depending on the epitaxial conditions, tin- and oxygen-rich growth regimes were observed. An unexpected growth rate decrease in the tin-rich regime was determined to be caused by volatile suboxide formation. Excellent transport properties for naturally n-type SnO2 were achieved: the electron mobility, mu, was 103 cm2/V s at a concentration, n, of 2.7 x 1017 cm-3. To control the bulk electron density, antimony was used as an intentional n-type dopant. Antimony-doped film properties showed the highest reported mobilities for doped films (mu = 36 cm2/V s for n = 2.8 x 10 20 cm-3). Films doped with indium had resistivities over five orders-of-magnitude greater than undoped films. These highly resistive films provided a method to control the electrical transport properties. Further research will facilitate detailed studies of the fundamental properties of SnO2 and its development as an oxide with full semiconducting properties.
Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs
NASA Astrophysics Data System (ADS)
Silber, Martin; Wenzelburger, Martin; Gadow, Rainer
2007-04-01
Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.
A general multiple-compartment model for the transport of trace elements through animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.
1991-08-01
Multiple-compartment models employed in the analysis of trace element transport in animals are often based on linear differential equations which relate the rate of change of contaminant (or contaminant concentration) in each compartment to the amount of contaminant (or contaminant concentration) in every other compartment in the system. This has the serious disadvantage of mixing intrinsic physiological properties with the geometry of the animal. The basic equations on which the model presented here is developed are derived from the actual physical process under way and are capable of separating intrinsic physiological properties from geometry. It is thus expected that ratemore » coefficients determined through this model will be applicable to a wider category of physiologically similar animals. A specific application of the model for the study of contamination of sheep--or indeed for any ruminant--is presented, and the temporal evolution of contaminant concentration in the various compartments of the animal is calculated. The application of this model to a system of compartments with changing geometry is also presented.« less
Vacuum investment cast PH13-8Mo corrosion resistant steel. (SAE standard)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-07-01
An industry-wide interest has arisen with regards to the properties and capabilities of investment cast PH 13-8Mo corrosion resistant steel. Specifically of interest are the structural applications in the aerospace industry for this product heat treated to the H1000 condition. The objective of this AMEC cooperative test program was to generate and compile useful data for aerospace structural evaluation of investment cast PH 13-8Mo heat treated to H1000. The determination was made of overall mechanical properties, fatigue, fracture toughness, and crack growth data along with basic microstructural evaluation of the investment cast material. The evaluation of mechanical property variations betweenmore » cast and machined tensile specimens and evaluation of microstructural constituents. PH 13-8Mo, H1000 investment castings for use in the aerospace industry is included.« less
Sensors, Volume 3, Part II, Chemical and Biochemical Sensors Part II
NASA Astrophysics Data System (ADS)
Göpel, Wolfgang; Jones, T. A.; Kleitz, Michel; Lundström, Ingemar; Seiyama, Tetsuro
1997-06-01
'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This is the second of two volumes focusing on chemical and biochemical sensors. It includes a detailed description of biosensors which often make use of transducer properties of the basic sensors and usually have additional biological components. This volume provides a unique overview of the applications, the possibilities and limitations of sensors in comparison with conventional instrumentation in analytical chemistry. Specific facettes of applications are presented by specialists from different fields including environmental, biotechnological, medical, or chemical process control. This book is an indispensable reference work for both specialits and newcomers, researchers and developers.
Influence of IR sensor technology on the military and civil defense
NASA Astrophysics Data System (ADS)
Becker, Latika
2006-02-01
Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Bobela, David C.; Yang, Ye
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
Chen, Chao; Bobela, David C.; Yang, Ye; ...
2017-03-17
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr
2016-09-01
In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.
Mitomycin C and endoscopic sinus surgery: where are we?
Tabaee, Abtin; Brown, Seth M; Anand, Vijay K
2007-02-01
Mitomycin C has been used successfully in various ophthalmologic and, more recently, otolaryngologic procedures. Its modulation of fibroblast activity allows for decreased scarring and fibrosis. Several recent trials have examined the efficacy of mitomycin C in reducing synechia and stenosis following endoscopic sinus surgery. Basic science studies using fibroblast cell lines have demonstrated a dose-dependent suppression of activity with the use of mitomycin C. This is further supported by animal studies that have shown lower rates of maxillary ostial restenosis following application of mitomycin C. No human trial, however, has demonstrated a statistically significant impact of mitomycin C on the incidence of postoperative synechia or stenosis following sinus surgery. The limitations of the literature are discussed. The antiproliferative properties of mitomycin C may theoretically decrease the incidence of synechia and stenosis following endoscopic sinus surgery. Although this is supported by basic science studies and its successful use in other fields, the clinical evidence to date has not shown the application of mitomycin C to be effective in preventing stenosis after endoscopic sinus surgery. Future prospective studies are required before definitive conclusions can be made.
Optics and optics-based technologies education with the benefit of LabVIEW
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Tao, Shiquan
2015-10-01
The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1988-01-01
The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.
Tuning the acid/base properties of nanocarbons by functionalization via amination.
Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng
2010-07-21
The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Duan, Wenhui
2007-03-01
Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.
Graphene and graphene oxide: biofunctionalization and applications in biotechnology.
Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe
2011-05-01
Graphene is the basic building block of 0D fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure, as well as novel electronic properties, which have attracted great interests from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the biofunctionalization of graphene for biological applications, fluorescence-resonance-energy-transfer-based biosensor development by using graphene or graphene-based nanomaterials, and the investigation of graphene or graphene-based nanomaterials for living cell studies are summarized in more detail. Future perspectives and possible challenges in this rapidly developing area are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
Rebich, Richard A.
1994-01-01
Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.
An overview of zirconia ceramics: basic properties and clinical applications.
Manicone, Paolo Francesco; Rossi Iommetti, Pierfrancesco; Raffaelli, Luca
2007-11-01
Zirconia (ZrO2) is a ceramic material with adequate mechanical properties for manufacturing of medical devices. Zirconia stabilized with Y2O3 has the best properties for these applications. When a stress occurs on a ZrO2 surface, a crystalline modification opposes the propagation of cracks. Compression resistance of ZrO2 is about 2000 MPa. Orthopedic research led to this material being proposed for the manufacture of hip head prostheses. Prior to this, zirconia biocompatibility had been studied in vivo; no adverse responses were reported following the insertion of ZrO2 samples into bone or muscle. In vitro experimentation showed absence of mutations and good viability of cells cultured on this material. Zirconia cores for fixed partial dentures (FPD) on anterior and posterior teeth and on implants are now available. Clinical evaluation of abutments and periodontal tissue must be performed prior to their use. Zirconia opacity is very useful in adverse clinical situations, for example, for masking of dischromic abutment teeth. Radiopacity can aid evaluation during radiographic controls. Zirconia frameworks are realized by using computer-aided design/manufacturing (CAD/CAM) technology. Cementation of Zr-ceramic restorations can be performed with adhesive luting. Mechanical properties of zirconium oxide FPDs have proved superior to those of other metal-free restorations. Clinical evaluations, which have been ongoing for 3 years, indicate a good success rate for zirconia FPDs. Zirconia implant abutments can also be used to improve the aesthetic outcome of implant-supported rehabilitations. Newly proposed zirconia implants seem to have good biological and mechanical properties; further studies are needed to validate their application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Mao -Hua; Singh, David J.; Zhang, Lijun
Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn 2O 3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn 2O 3 andmore » BaSn 2O 3, which can be stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO 3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn 2O 3) to 3.15 (SrSn 2O 3) eV, and hole effective masses ranging from 0.87 (BaSn 2O 3) to above 6.0 (SrSn 2O 3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less
Wang, Hui; Zhu, Wei; Ping, Yuan; Wang, Chen; Gao, Ning; Yin, Xianpeng; Gu, Chen; Ding, Dan; Brinker, C Jeffrey; Li, Guangtao
2017-04-26
Metal-organic coordination materials with controllable nanostructures are of widespread interest due to the coupled benefits of inorganic/organic building blocks and desired architectures. In this work, based on the finding of a synergistic interaction between metal-organic frameworks (MOFs) and natural polyphenols under weak basic condition, a facile strategy has been developed for directly fabricating diverse phenolic-inspired functional materials or metal-phenolic frameworks (MPFs) with controlled hollow nanostructures (polyhedral core-shell, rattle-like, hollow cage, etc.) and controllable size, morphology, and roughness, as well as composition. By further incorporating the diverse functionalities of polyphenols such as low toxicity and therapeutic properties, catalytic activity, and ability to serve as carbon precursors, into the novel assemblies, diverse artificially designed nanoarchitectures with target functionalities have been generated for an array of applications.
Prediction of high temperature metal matrix composite ply properties
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.
1988-01-01
The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.
Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation
Yang, Jie; Li, Wenjuan; Ng, Tzi Bun; Deng, Xiangzhen; Lin, Juan; Ye, Xiuyun
2017-01-01
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression. PMID:28559880
The Omental Free Flap-A Review of Usage and Physiology.
Mazzaferro, Daniel; Song, Ping; Massand, Sameer; Mirmanesh, Michael; Jaiswal, Rohit; Pu, Lee L Q
2018-03-01
The omental flap has a rich history of use over the last century, and specifically as a free flap in the last four decades. It has a wide variety of applications in reconstructive surgery and has shown itself to be a reliable donor tissue. We seek to review the properties that make the omental free flap a valuable tool in reconstruction, as well as its many surgical applications in all anatomic regions of the body. We conducted a narrative review of the literature on Medline and Google Scholar. We reviewed basic science articles discussing the intrinsic properties of omental tissue, along with clinical papers describing its applications. The omental free flap is anatomically suitable for harvest and wound coverage and has molecular properties that promote healing and improve function at recipient sites. It has demonstrated utility in a wide variety of reconstructive procedures spanning the head and neck, extremities, and viscera and for several purposes, including wound coverage, lymphedema treatment, and vascularization. It is also occasionally employed in the thoracic cavity and chest wall, though more often as a pedicled flap. More novel uses include its use for cerebrospinal fluid leaks. The omental free flap is a valuable option for reconstructive efforts in nearly all anatomic regions. This is a result of its inherent anatomy and vascularity, and its angiogenic, immunogenic, and lymphatic properties. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Yano, Taka-aki; Hara, Masahiko
2018-06-01
Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.
NASA Technical Reports Server (NTRS)
Stevenson, D. J.
1981-01-01
Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.
From supramolecular polymers to multi-component biomaterials.
Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W
2017-10-30
The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.
Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.
Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi
2017-02-13
Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).
Liquid-Phase Laser Induced Forward Transfer for Complex Organic Inks and Tissue Engineering.
Nguyen, Alexander K; Narayan, Roger J
2017-01-01
Laser induced forward transfer (LIFT) acts as a novel alternative to incumbent plotting techniques such as inkjet printing due to its ability to precisely deposit and position picoliter-sized droplets while being gentle enough to preserve sensitive structures within the ink. Materials as simple as screen printing ink to complex eukaryotic cells have been printed with applications spanning from microelectronics to tissue engineering. Biotechnology can benefit from this technique due to the efficient use of low volumes of reagent and the compatibility with a wide range of rheological properties. In addition, LIFT can be performed in a simple lab environment, not requiring vacuum or other extreme conditions. Although the basic apparatus is simple, many strategies exist to optimize the performance considering the ink and the desired pattern. The basic mechanism is similar between studies so the large number of variants can be summarized into a couple of categories and reported on with respect to their specific applications. In particular, precise and gentle deposition of complex molecules and eukaryotic cells represent the unique abilities of this technology. LIFT has demonstrated not only marked improvements in the quality of sensors and related medical devices over those manufactured with incumbent technologies but also great applicability in tissue engineering due to the high viability of printed cells.
Ion Beam Facility at the University of Chile; Applications and Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, P. A.; Morales, J. R.; Cancino, S.
2010-08-04
The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago,more » Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.« less
Ion Beam Facility at the University of Chile; Applications and Basic Research
NASA Astrophysics Data System (ADS)
Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepúlveda, A.; Ortiz, P.; Rojas, S.
2010-08-01
The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile. Basic physics research is being carried out by measuring low-energy cross section values for the reactions 63Cu(d,p)64Cu and NatZn(p,x)67Ga. Both radionuclide 64Cu and 67Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.
Aleksandrova, E N; Kovacheva, N P
2010-01-01
The application of hematological analysis techniques to detecting the physiological status of the economically valued decapods during their culturing, and in monitoring of the condition of their natural populations, is restrained by the incomplete knowledge of these invertebrates circulatory system and its properties. Scarce data on the use of hematological indicators for determining the physiological status of decapods may be found sporadically in published sources; there is shortage of basic standards needed for interpretation of the analytical results. In this regard the paper considers some data on the major properties of hemolymph and its cellular elements; on methods of their examination; and on the results of application of hematological characteristics to assessing the physiological condition of various species of decapods. The hematological indicators suitable for the analysis of live decapods include: time of coagulation and buffer characteristic of hemolymph; concentration of total proteins, copper, calcium, glucose and lactates in it; total number of hemocytes with the consideration of granulocytes share.
Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases
Zuo, Wei; Yan, Feng; Zhang, Bo; Li, Jiantao; Mei, Dan
2017-01-01
The prevalence of degenerative disorders in public health has promoted in-depth investigations of the underlying pathogenesis and the development of new treatment drugs. Ginkgo biloba leaves extract (EGb) is obtained from Ginkgo biloba leaves and has been used for thousands of years. In recent decades, both basic and clinical studies have established the effects of EGb. It is widely used in various degenerative diseases such as cerebrovascular disease, Alzheimer’s disease, macroangiopathy and more. Here, we reviewed several pharmacological mechanisms of EGb, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis. We also described some clinical applications of EGb, such as its effect on neuro and cardiovascular protection, and anticancer properties. The above biological functions of EGb are mainly focused on aging-related disorders, but its effect on other diseases remains unclear. Thus, through this review, we aim to encourage further studies on EGb and discover more potential applications PMID:29344418
Advances in thermographic signal reconstruction
NASA Astrophysics Data System (ADS)
Shepard, Steven M.; Frendberg Beemer, Maria
2015-05-01
Since its introduction in 2001, the Thermographic Signal Reconstruction (TSR) method has emerged as one of the most widely used methods for enhancement and analysis of thermographic sequences, with applications extending beyond industrial NDT into biomedical research, art restoration and botany. The basic TSR process, in which a noise reduced replica of each pixel time history is created, yields improvement over unprocessed image data that is sufficient for many applications. However, examination of the resulting logarithmic time derivatives of each TSR pixel replica provides significant insight into the physical mechanisms underlying the active thermography process. The deterministic and invariant properties of the derivatives have enabled the successful implementation of automated defect recognition and measurement systems. Unlike most approaches to analysis of thermography data, TSR does not depend on flawbackground contrast, so that it can also be applied to characterization and measurement of thermal properties of flaw-free samples. We present a summary of recent advances in TSR, a review of the underlying theory and examples of its implementation.
Imazato, Satoshi; Kitagawa, Haruaki; Tsuboi, Ririko; Kitagawa, Ranna; Thongthai, Pasiree; Sasaki, Jun-Ichi
2017-09-26
To develop dental restorative materials with "bio-active" functions, addition of the capability to release active agents is an effective approach. However, such functionality needs to be attained without compromising the basic properties of the restorative materials. We have developed novel non-biodegradable polymer particles for drug delivery, aimed for application in dental resins. The particles are made using 2-hydroxyethyl methacrylate (HEMA) and a cross-linking monomer trimethylolpropane trimethacrylate (TMPT), with a hydrophilic nature to adsorb proteins or water-soluble antimicrobials. The polyHEMA/TMPT particles work as a reservoir to release fibroblast growth factor-2 (FGF-2) or cetylpyridinium chloride (CPC) in an effective manner. Application of the polyHEMA/TMPT particles loaded with FGF-2 to adhesives, or those loaded with CPC to resin-based endodontic sealers or denture bases/crowns is a promising approach to increase the success of the treatments by conferring "bio-active" properties to these materials to induce tissue regeneration or to inhibit bacterial infection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false Application of Basic Course Formula (Male and Female Members) (Sample) C Appendix C to Part 110 National Defense Department of Defense OFFICE OF THE... Appendix C to Part 110—Application of Basic Course Formula (Male and Female Members) (Sample) Zone I Zone...
NASA Astrophysics Data System (ADS)
Zhou, Mi; Yang, Songtao; Jiang, Tao; Xue, Xiangxin
2015-05-01
The effect of basicity on high-chromium vanadium-titanium magnetite (V-Ti-Cr) sintering was studied via sintering pot tests. The sinter rate, yield, and productivity were calculated before determining sinter strength (TI) and reduction degradation index (RDI). Furthermore, the effect of basicity on V-Ti-Cr sinter mineralogy was clarified using metallographic microscopy, x-ray diffraction, and scanning electron microscopy-energy-dispersive x-ray spectroscopy. The results indicate that increasing basicity quickly increases the sintering rate from 25.4 mm min-1 to 28.9 mm min-1, yield from 75.3% to 87.2%, TI from 55.4% to 64.8%, and productivity from 1.83 t (m2 h)-1 to 1.94 t (m2 h)-1 before experiencing a slight drop. The V-Ti-Cr sinter shows complex mineral composition, with main mineral phases such as magnetite, hematite, silicate (dicalcium silicate, Ca-Fe olivine, glass), calcium and aluminum silico-ferrite (SFCA/SFCAI) and perovskite. Perovskite is notable because it lowers the V-Ti sinter strength and RDI. The well intergrowths between magnetite and SFCA/SFCAI, and the decrease in perovskite and secondary skeletal hematite are the key for improving TI and RDI. Finally, a comprehensive index was calculated, and the optimal V-Ti-Cr sinter basicity also for industrial application was 2.55.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2017-04-01
In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.
Animal venom studies: Current benefits and future developments
Utkin, Yuri N
2015-01-01
Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom of these animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and comprehensive methods allows studying either of venoms available in tiny amounts or of low abundant components in already known venoms. PMID:26009701
41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic design and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL... must be timely, efficient, and cost effective. (b) Use a distinguished architectural style and form in...
Electromechanical properties of superconducting MgB2 wire
NASA Astrophysics Data System (ADS)
Salama, K.; Zhou, Y. X.; Hanna, M.; Alessandrini, M.; Putman, P. T.; Fang, H.
2005-12-01
The current-carrying capability of superconducting wires is degraded by stress. Therefore electromechanical properties are one of the key feedback parameters needed for progress in conductor applications. In this work, uniaxial tensile stresses and bending stresses were applied to Fe /MgB2 wires at room temperature, followed by measurement of critical current using a transport method at 4.2 K. Basic mechanical properties were calculated from the measured stress-strain characteristics. The irreversible tensile strain at which the critical current density of MgB2 wire starts to degrade was found to be 0.5%. In addition, the degradation of Ic with decreasing bending diameters was found to be very rapid for wires that were deformed after the heat treatment that forms the MgB2 compound, while not much degradation of Ic was found for wires that were bent before being annealed. SEM observations confirmed that cracks could be healed by post-annealing.
Characterization of Nanophase Materials
NASA Astrophysics Data System (ADS)
Wang, Zhong Lin
2000-01-01
Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.
Porous silicon platform for optical detection of functionalized magnetic particles biosensing.
Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh
2013-04-01
The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.
Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-12-01
Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.
Banerjee, Arghya Narayan
2011-01-01
Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis. PMID:24198485
Zero Income Basic Grant Applicants. Phase II Report.
ERIC Educational Resources Information Center
Applied Management Sciences, Inc., Silver Spring, MD.
The nature and extent of corrections made to their records by zero/low income applicants to the Basic Educational Opportunity Grant (BEOG) program was investigated. Behaviors of zero/low income applicants and the total pool of applicants were also compared. It was found that zero/low income applicants and all applicants who were rejected displayed…
A technigue exploitation about anti-slide tire polyploid on ice-snow road in winter
NASA Astrophysics Data System (ADS)
Xiaojie, Qi; Qiang, Wang; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2017-04-01
Present studies focus on improving anti-slide property of tyes on ice-snow road by changing material modification of tyre tread and designing groove. However, the basic reason causing starting slide, long braking distance, turning slide slip and so on of tyres used in winter is that tyre tread materials are unitary and homogenous rubber composite which can’t coordinate driving demands of tyres in winter under muti-work condition, and can’t exert their best property when starting, braking and sliding slip. In order to improve comprehensive anti-slide property of tyres, this paper discusses about changing structure, shape and distribution proportion among haploid materials of tyre tread rubber. Polyploid bubber tyre tread technique based on artificial neural network which is in favor of starting, braking and anti-slide slip is optimized and combined. Friction feature and anti-slide mechanism on ice-snow road of polyploid rubber tyre tread are studied using testing technique of low-temperature cabin and computer simulation. A set high anti-slide theories and realizing method systems of polyploid rubber composite formed from basic theory, models and technique method are developped which will be applied into solving anti-slide problem of winter tyres, provide theory instruction for studies on high anti-slide winter tyres, and promote development of application and usage safety of winter tyres.
Le, Khoa V; Takezoe, Hideo; Araoka, Fumito
2017-07-01
Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush
2018-02-01
Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.
Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system
NASA Astrophysics Data System (ADS)
Kashif, I.; Ratep, A.; Adel, Gh.
2018-07-01
Glasses having a composition xSiO2 xB2O3 (95-2 x) Bi2O35TeO2 where x = (5, 10, 15, 20, 25) prepared by the melt-quenching technique. Thermal stability, density, optical transmittance, and the refractive index of these glasses investigated. Glass samples were transparent in the visible to near-infrared (NIR) region and had a high refractive index. A number of glass samples have high glass-forming ability. This indicates that the quarterly glasses are suitable for optical applications in the visible to the NIR region. Bi2O3 substituted by B2O3 and SiO2 on optical properties discussed. It suggested that the substitution of Bi2O3 increased the density, molar volume, the molar polarizability, optical basicity and refractive index in addition to, the oxygen packing density, the optical energy gap, and metallization decrease. These results are helpful for designing new optical glasses controlled to have a higher refractive index. All studied glass presented high nonlinearities, and the addition of network modifiers made a little contribution. Results clarified the bandgap energy reduction, which associated with the growth within the non-bridging oxygen content with the addition of the network modifier. An increase in the refractive index nonlinearity explained by the optical basicity and the high electronic polarizability of the modifier ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Li, D.; Luett, M.
1998-07-01
This paper reports the synthesis and characterizations of a new water-soluble poly(paraphenylene) (PPP) and its applications in preparing self-assembled multi-layer films. This new water-soluble conducting polymer was prepared through the sulfonation reaction of poly(p-quarterphenylene-2,2{prime}-dicarboxylic acid). The incorporation of sulfonate groups has dramatically improved PPP's solubility in water at a wide pH range, whereas previous PPP is only slightly soluble in basic solutions. Dilute aqueous solutions of this polymer with acidic, neutral or basic pH emit brilliant blue light while irradiated with UV light. The sulfonated PPP emits from 350 nm to 455 nm with a maximum intensity at 380 nm.more » Self-assembled multilayers of this sulfonated PPP were constructed with a positively charged polymer poly(diallyl dimethyl ammonium chloride) and characterized with various surface analyses. Conductive (RuO{sub 2} and ITO), semiconductive (Si wafer), and non-conductive (SiO{sub 2}) substrates were used in the preparation of self-assembled multilayers. Electrical, optical and structural properties of these novel self-assembled thin films will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Li, D.Q.; Luett, M.
1998-03-01
This paper reports the synthesis and characterizations of a new water-soluble poly(para-phenylene) (PPP) and its applications in preparing self-assembled multilayer films. This new water-soluble conducting polymer was prepared through the sulfonation reaction of poly(p-quarterphenylene-2,2{prime}-dicarboxylic acid). The incorporation of sulfonate groups has dramatically improved PPP`s solubility in water at a wide pH range, whereas previous PPP is only slightly soluble in basic solutions. Dilute aqueous solutions of this polymer with acidic, neutral or basic pH emit brilliant blue light while irradiated with UV light. The sulfonated PPP emits from 350 nm to 455 nm with a maximum intensity at 380 nm.more » Self-assembled multilayers of this sulfonated PPP were constructed with a positively charged polymer poly(diallyl dimethyl ammonium chloride) and characterized with various surface analyses. Conductive (RuO{sub 2} and ITO), semiconductive (Si wafer), and non-conductive (SiO{sub 2}) substrates were used in the preparation of self-assembled multilayers. Electrical, optical and structural properties of these novel self-assembled thin films will be discussed.« less
Susceptibility of metallic magnesium implants to bacterial biofilm infections.
Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P
2016-06-01
Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.
Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications
NASA Astrophysics Data System (ADS)
Korobov, Yu. S.; Nevezhin, S. V.; FiliÑpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.
2017-12-01
Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.
Laminated anisotropic reinforced plastic plates and shells
NASA Technical Reports Server (NTRS)
Korolev, V. I.
1981-01-01
Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.
Biophysical EPR Studies Applied to Membrane Proteins
Sahu, Indra D; Lorigan, Gary A
2015-01-01
Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapoza, R.J.; Vollmer, H.R.; Haberly, K.L.
1992-11-01
Fiberglass reinforced plastic (FRP) materials offer excellent corrosion-resistant properties and long-term cost advantages compared to exotic alloys or organic lining systems. This guideline document provides potential buyers of FRP FGD (flue gas desulfurization) equipment with enough knowledge of FRP materials and methods to make informed decisions when procuring FRP equipment or services. It is divided into the following chapters: application criteria, procurement strategies, FRP basics, guidelines for designing FRP equipment, quality management. A glossary and manufacturers information/recommendations are included.
Micro-Raman Analysis of Irradiated Diamond Films
NASA Technical Reports Server (NTRS)
Newton, Robert L.
2003-01-01
Owing to its unique and robust physical properties, diamond is a much sought after material for use in advanced technologies, even in Microelectromechanical Systems (MEMS). The volume and weight savings promised by MEMS-based devices are of particular interest to spaceflight applications. However, much basic materials science research remains to be completed in this field. Results of micro-Raman analysis of proton (10(exp 15) - 10(exp 17) H(+)/sq cm doses) irradiated chemical vapor deposited (CVD) films are presented and indicate that their microstructure is retained even after high radiation exposure.
Amplitude, frequency, and timbre with the French horn
NASA Astrophysics Data System (ADS)
Konz, Nicholas; Ruiz, Michael J.
2018-07-01
The French horn is used to introduce the three basic properties of periodic waves: amplitude, frequency, and waveform. These features relate to the perceptual characteristics of loudness, pitch, and timbre encountered in everyday language. Visualizations are provided in the form of oscilloscope screenshots, spectrograms, and Fourier spectra to illustrate the physics. Introductory students will find the musical relevance interesting as they experience a real-world application of physics. Demonstrations playing the French horn are provided in an accompanying video (Ruiz 2018 Video: Amplitude, frequency, and timbre with the French horn http://mjtruiz.com/ped/horn/).
Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing
Song, Edward; Choi, Jin-Woo
2013-01-01
One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in polyaniline nanowire-based sensors are summarized. Finally, the current limitations and the future prospect of polyaniline nanowires are discussed. PMID:28348347
Ice in space: An experimental and theoretical investigation
NASA Technical Reports Server (NTRS)
Patashnick, H.; Rupprecht, G.
1977-01-01
Basic knowledge is provided on the behavior of ice and ice particles under a wide variety of conditions including those of interplanetary space. This information and, in particular, the lifetime of ice particles as a function of solar distance is an absolute requirement for a proper interpretation of photometric profiles in comets. Because fundamental properties of ice and ice particles are developed in this report, the applicability of this information extends beyond the realm of comets into any area where volatile particles exist, be it in space or in the earth's atmosphere.
NASA Astrophysics Data System (ADS)
Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.
2014-11-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Analyses of group sequential clinical trials.
Koepcke, W
1989-12-01
In the first part of this article the methodology of group sequential plans is reviewed. After introducing the basic definition of such plans the main properties are shown. At the end of this section three different plans (Pocock, O'Brien-Fleming, Koepcke) are compared. In the second part of the article some unresolved issues and recent developments in the application of group sequential methods to long-term controlled clinical trials are discussed. These include deviation from the assumptions, life table methods, multiple-arm clinical trials, multiple outcome measures, and confidence intervals.
1988-01-01
Synthetic Motor Oils Basic Research on Mist Flamma- AFLRL-97 A046345 Sep 77 D.W. Naegeli bility--Phase I, Experimental W.D. Weatherford, Jr. Facility...Fuels on Combustor Properties D.W. Naegeli Application of Energy Dispersive AFLRL-102 A062792 Feb 78 M.K. Greenberg X-Ray Fluorescence Spectroscopy...the Literature J.P. Cuellar, Jr. Military Fuels Refined From AFLRL-131 A101069 Mar 81 J.N. Bowden Paraho-Il Shale Oil E.C. Owens D.W. Naegeli L.L
Experiments to demonstrate piezoelectric and pyroelectric effects
NASA Astrophysics Data System (ADS)
Erhart, Jiří
2013-07-01
Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature change. The direct piezoelectric effect is demonstrated by the electric charge generated from the bending of the piezoelectric ceramic membrane or from the gas igniter. The converse piezoelectric effect is presented in the experiments by the deflection of the bending piezoelectric element (piezoelectric bimorph).
Gemini surfactants from natural amino acids.
Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa
2014-03-01
In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.
Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Guo, Muxing; Pandelaers, Lieven; Blanpain, Bart; Huang, Shuigen
Slag valorization in added value construction applications can contribute substantially to the sustainability of steel industry. The present work aims to investigate the crystallization behavior of a typical industrial Basic Oxygen Furnace (BOF) slag (CaO-FeOx-SiO2-based slag) by varying the basicity through hot stage engineering. A sample of industry Basic Oxygen Slag (BOF) was mixed with different quantities of silica (SiO2) to modify basicity. The effect of basicity on solidification microstructure and mineralogy was studied. The results suggest that the mineralogy of the solidified slag can be manipulated to enhance its suitability as raw material for construction applications.
Raman spectroscopy of graphene-based materials and its applications in related devices.
Wu, Jiang-Bin; Lin, Miao-Ling; Cong, Xin; Liu, He-Nan; Tan, Ping-Heng
2018-03-05
Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.
Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei
2013-04-22
The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DigiLens color sequential filtering for microdisplay-based projection applications
NASA Astrophysics Data System (ADS)
Sagan, Stephen F.; Smith, Ronald T.; Popovich, Milan M.
2000-10-01
Application Specific Integrated Filters (ASIFs), based on a unique holographic polymer dispersed liquid crystal (H-PDLC) material system offering high efficiency, fast switching and low power, are being developed for microdisplay based projection applications. A new photonics technology based H-PDLC materials combined with the ability to be electrically switched on and off offers a new approach to color sequential filtering of a white light source for microdisplay-based front and rear projection display applications. Switchable Bragg gratings created in the PDLC are fundamental building blocks. Combined with the well- defined spectral and angular characteristics of Bragg gratings, these selectable filters can provide a large color gamut and a dynamically adjustable white balance. These switchable Bragg gratings can be reflective or transmissive and in each case can be designed to operate in either additive or subtractive mode. The spectral characteristics of filters made from a stack of these Bragg gratings can be configured for a specific lamp spectrum to give high diffractive efficiency over the broad bandwidths required for an illumination system. When it is necessary to reduce the spectral bandwidth, it is possible to use the properties of reflection Bragg holograms to construct very narrow band high efficiency filters. The basic properties and key benefits of ASIFs in projection displays are reviewed.
Basic Skills Applications in Occupational Investigation.
ERIC Educational Resources Information Center
Hendrix, Mary
This guide contains 50 lesson plans for learning activities that incorporate basic skills into content areas of career education, mathematics, science, social studies, communications, and productive work habits. Each lesson consists of a purpose, basic skills applications, approximate time required, materials needed, things for the teacher to do…
37 CFR 7.11 - Requirements for international application originating from the United States.
Code of Federal Regulations, 2013 CFR
2013-07-01
... application and/or registration is depicted in black and white and the basic application or registration does... and white. (ii) If the mark in the basic application or registration is depicted in black and white and includes a color claim, the international application must include both a black and white...
[INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures
NASA Astrophysics Data System (ADS)
Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang
2018-05-01
Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.
Controlled low strength materials (CLSM), reported by ACI Committee 229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, N.
1997-07-01
Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavementmore » bases, conduit bedding, erosion control, void filling, and radioactive waste management.« less
NASA Astrophysics Data System (ADS)
Wang, Chunxiao; Li, DanQi; Shen, Tingting; Lu, Cheng; Sun, Jing; Wang, Xikui
2018-01-01
Heterogeneous photocatalytic materials, which combine the advantages of photocatalytic materials and heterojunction, have been developed rapidly in the field of environmental pollution control. In this paper, TiO2 surface heterojunction catalysts with different catalytic activity were prepared by controlling the amount of HF, and their XRD characterization was also carried out. In addition, the optimum amount of HF was determined by photocatalytic degradation of simulated dye wastewater by methylene blue solution. And the optimal amount of catalyst and the optimal pH reaction conditions for degradation experiments were used to screen the highly reactive titania surface heterojunction system and its optimum application conditions. It provides the possibility of application in the degradation of industrial wastewater and environmental treatment.
Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.
Chang, Chia-Yu; Ting, Hsiao-Chien; Su, Hong-Lin; Jeng, Jing-Ren
2018-01-01
In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.
Al-Halafi, Ali M.
2013-01-01
The basic concept for the application of vital dyes during vitreoretinal surgery is to assist in highlighting preretinal membranes and tissues which are very thin and semitransparent and thus difficult to detect. The vital dyes may be classified according to different criteria, where the most commonly applied includes chemical classification. In ophthalmic surgery, vital dyes are widely used in cataract and vitreoretinal surgery. The vital dyes, indocyanine green, infracyanine green, and brilliant blue stain the internal limiting membrane, and trypan blue and triamcinolone acetonide help to visualize epiretinal membranes and vitreous, respectively. This review exhibits the current literature regarding the properties of vital dyes, techniques of application, indications, and toxicities during vitreoretinal surgery and, also suggests that the field of chromovitrectomy represents an expanding area of research. PMID:24371423
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.
2015-04-01
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon application. Here, Fe3O4 nanoparticles are shown to provide excellent conjugation bases for entrapment of therapeutic molecules, fluorescent agents, and targeting ligands; enhancement of solid tumor treatment is achieved through co-application of local hyperthermia with chemotherapeutic agents.
Discrimination of Mixed Taste Solutions using Ultrasonic Wave and Soft Computing
NASA Astrophysics Data System (ADS)
Kojima, Yohichiro; Kimura, Futoshi; Mikami, Tsuyoshi; Kitama, Masataka
In this study, ultrasonic wave acoustic properties of mixed taste solutions were investigated, and the possibility of taste sensing based on the acoustical properties obtained was examined. In previous studies, properties of solutions were discriminated based on sound velocity, amplitude and frequency characteristics of ultrasonic waves propagating through the five basic taste solutions and marketed beverages. However, to make this method applicable to beverages that contain many taste substances, further studies are required. In this paper, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through mixed solutions composed of sweet and salty substance was measured. As a result, differences among solutions were clearly observed as differences in their properties. Furthermore, these mixed solutions were discriminated by a self-organizing neural network. The ratio of volume in their mixed solutions was estimated by a distance-type fuzzy reasoning method. Therefore, the possibility of taste sensing was shown by using ultrasonic wave acoustic properties and the soft computing, such as the self-organizing neural network and the distance-type fuzzy reasoning method.
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
Mukherjee, Lipi; Zhai, Peng-Wang; Hu, Yongxiang; Winker, David M.
2018-01-01
Polarized radiation fields in a turbid medium are influenced by single-scattering properties of scatterers. It is common that media contain two or more types of scatterers, which makes it essential to properly mix single-scattering properties of different types of scatterers in the vector radiative transfer theory. The vector radiative transfer solvers can be divided into two basic categories: the stochastic and deterministic methods. The stochastic method is basically the Monte Carlo method, which can handle scatterers with different scattering properties explicitly. This mixture scheme is called the external mixture scheme in this paper. The deterministic methods, however, can only deal with a single set of scattering properties in the smallest discretized spatial volume. The single-scattering properties of different types of scatterers have to be averaged before they are input to deterministic solvers. This second scheme is called the internal mixture scheme. The equivalence of these two different mixture schemes of scattering properties has not been demonstrated so far. In this paper, polarized radiation fields for several scattering media are solved using the Monte Carlo and successive order of scattering (SOS) methods and scattering media contain two types of scatterers: Rayleigh scatterers (molecules) and Mie scatterers (aerosols). The Monte Carlo and SOS methods employ external and internal mixture schemes of scatterers, respectively. It is found that the percentage differences between radiances solved by these two methods with different mixture schemes are of the order of 0.1%. The differences of Q/I, U/I, and V/I are of the order of 10−5 ~ 10−4, where I, Q, U, and V are the Stokes parameters. Therefore, the equivalence between these two mixture schemes is confirmed to the accuracy level of the radiative transfer numerical benchmarks. This result provides important guidelines for many radiative transfer applications that involve the mixture of different scattering and absorptive particles. PMID:29047543
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
[Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].
Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong
2014-07-01
Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.
NASA Astrophysics Data System (ADS)
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
Chemical Foundations of Hydrogen Sulfide Biology
Li, Qian; Lancaster, Jack R.
2013-01-01
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631
The use of autologous blood-derived growth factors in bone regeneration
Civinini, Roberto; Macera, Armando; Nistri, Lorenzo; Redl, Birgit; Innocenti, Massimo
2011-01-01
Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having platelet concentrations above baseline. When activated the platelets release growth factors that play an essential role in bone healing such as Platelet-derived Growth Factor, Transforming Growth Factor-β, Vascular Endothelial Growth Factor and others. Multiple basic science and in vivo animal studies agree that PRP has a role in the stimulation of the healing cascade in ligament, tendon, muscle cartilage and in bone regeneration in the last years PRP had a widespread diffusion in the treatment of soft tissue and bone healing. The purpose of this review is to describe the biological properties of platelets and its factors, the methods used for producing PRP, to provide a background on the underlying basic science and an overview of evidence based medicine on clinical application of PRP in bone healing. PMID:22461800
Chemical processing of glasses
NASA Astrophysics Data System (ADS)
Laine, Richard M.
1990-11-01
The development of chemical processing methods for the fabrication of glass and ceramic shapes for photonic applications is frequently Edisonian in nature. In part, this is because the numerous variables that must be optimized to obtain a given material with a specific shape and particular properties cannot be readily defined based on fundamental principles. In part, the problems arise because the basic chemistry of common chemical processing systems has not been fully delineated. The prupose of this paper is to provide an overview of the basic chemical problems associated with chemical processing. The emphasis will be on sol-gel processing, a major subset pf chemical processing. Two alternate approaches to chemical processing of glasses are also briefly discussed. One approach concerns the use of bimetallic alkoxide oligomers and polymers as potential precursors to mulimetallic glasses. The second approach describes the utility of metal carboxylate precursors to multimetallic glasses.
Anandakrishnan, Ramu; Onufriev, Alexey
2008-03-01
In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.
Attempt at forming an expression of Manning's 'n' for Open Channel Flow
NASA Astrophysics Data System (ADS)
De, S. K.; Khosa, R.
2016-12-01
Study of open channel hydraulics finds application in diverse areas such as design of river banks, bridges and other structures. Principal hydraulic elements used in these applications include surface water profiles and flow velocity and these carry significant influences of fluid properties, channel properties and boundary conditions. As per current practice, friction influences are routinely captured in a single factor and commonly referred to as the roughness coefficient and amongst the most widely used equation of flow that uses the latter coefficient is the Manning's equation. As of now, selection of the Manning's roughness coefficient is made from existing tabulated data and accompanying pictures and, clearly as per these practices, the selection and choice of this coefficient is inevitably very subjective and a source of uncertainty in the application of transport models. In this study, an attempt has been made to develop a more rational and computationally feasible expression of the Manning's constant 'n' so that it partially or fully eliminates the need to refer to a table whenever performing a computation. The development of an equation of the Manning's constant uses the basic parameters of the flow and also consideration for influences such as vegetation and form roughness as well.
NASA Astrophysics Data System (ADS)
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.
ERIC Educational Resources Information Center
Kabat, Hugh F.; And Others
1982-01-01
A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)
The availability and accessibility of basic concept vocabulary in AAC software: a preliminary study.
McCarthy, Jillian H; Schwarz, Ilsa; Ashworth, Morgan
2017-09-01
Core vocabulary lists obtained through the analyses of children's utterances include a variety of basic concept words. Supporting young children who use augmentative and alternative communication (AAC) to develop their understanding and use of basic concepts is an area of practice that has important ramifications for successful communication in a classroom environment. This study examined the availability of basic concept words across eight frequently used, commercially available AAC language systems, iPad© applications, and symbol libraries used to create communication boards. The accessibility of basic concept words was subsequently examined using two AAC language page sets and two iPad applications. Results reveal that the availability of basic concept words represented within the different AAC language programs, iPad applications, and symbol libraries varied but was limited across programs. However, there is no significant difference in the accessibility of basic concept words across the language program page sets or iPad applications, generally because all of them require sophisticated motor and cognitive plans for access. These results suggest that educators who teach or program vocabulary in AAC systems need to be mindful of the importance of basic concept words in classroom settings and, when possible, enhance the availability and accessibility of these words to users of AAC.
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
Studies of new perfluoroether elastomeric sealants. [for aircraft fuel tanks
NASA Technical Reports Server (NTRS)
Basiulis, D. I.; Salisbury, D. P.
1981-01-01
Channel and filleting sealants were developed successfully from cyano and diamidoxime terminated perfluoro alkylene ether prepolymers. The prepolymers were polymerized, formulated and tested. The polymers and/or formulations therefrom were evaluated as to their physical, mechanical and chemical properties (i.e., specific gravity, hardness, nonvolatile content, corrosion resistance, stress corrosion, pressure rupture resistance, low temperature flexibility, gap sealing efficiency, tensile strength and elongation, dynamic mechanical behavior, compression set, fuel resistance, thermal properties and processability). Other applications of the formulated polymrs and incorporation of the basic prepolymers into other polymeric systems were investigated. A cyano terminated perfluoro alkylene oxide triazine was formulated and partially evaluated. The channel sealant in its present formulation has excellent pressure rupture resistance and surpasses present MIL specifications before and after fuel and heat aging.
Two main and a new type rare earth elements in Mg alloys: A review
NASA Astrophysics Data System (ADS)
Kong, Linghang
2017-09-01
Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique.
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-04-26
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed.
Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique
Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu
2017-01-01
In 1974, molecular electronics pioneers Mark Ratner and Arieh Aviram predicted that a single molecule could act as a diode, in which electronic current can be rectified. The electronic rectification property of the diode is one of basic functions of electronic components and since then, the molecular diode has been investigated as a first single-molecule device that would have a practical application. In this review, we first describe the experimental fabrication and electronic characterization techniques of molecular diodes consisting of a small number of molecules or a single molecule. Then, two main mechanisms of the rectification property of the molecular diode are discussed. Finally, representative results for the molecular diode are reviewed and a brief outlook on crucial issues that need to be addressed in future research is discussed. PMID:28445393
Quantum Theory of Rare-Earth Magnets
NASA Astrophysics Data System (ADS)
Miyake, Takashi; Akai, Hisazumi
2018-04-01
Strong permanent magnets mainly consist of rare earths (R) and transition metals (T). The main phase of the neodymium magnet, which is the strongest magnet, is Nd2Fe14B. Sm2Fe17N3 is another magnet compound having excellent magnetic properties comparable to those of Nd2Fe14B. Their large saturation magnetization, strong magnetocrystalline anisotropy, and high Curie temperature originate from the interaction between the T-3d electrons and R-4f electrons. This article discusses the magnetism of rare-earth magnet compounds. The basic theory and first-principles calculation approaches for quantitative description of the magnetic properties are presented, together with applications to typical compounds such as Nd2Fe14B, Sm2Fe17N3, and the recently synthesized NdFe12N.
Zero temperature coefficient of resistance of the electrical-breakdown path in ultrathin hafnia
NASA Astrophysics Data System (ADS)
Zhang, H. Z.; Ang, D. S.
2017-09-01
The recent widespread attention on the use of the non-volatile resistance switching property of a microscopic oxide region after electrical breakdown for memory applications has prompted basic interest in the conduction properties of the breakdown region. Here, we report an interesting crossover from a negative to a positive temperature dependence of the resistance of a breakdown region in ultrathin hafnia as the applied voltage is increased. As a consequence, a near-zero temperature coefficient of resistance is obtained at the crossover voltage. The behavior may be modeled by (1) a tunneling-limited transport involving two farthest-spaced defects along the conduction path at low voltage and (2) a subsequent transition to a scattering-limited transport after the barrier is overcome by a larger applied voltage.
Droplet localization in the random XXZ model and its manifestations
NASA Astrophysics Data System (ADS)
Elgart, A.; Klein, A.; Stolz, G.
2018-01-01
We examine many-body localization properties for the eigenstates that lie in the droplet sector of the random-field spin- \\frac 1 2 XXZ chain. These states satisfy a basic single cluster localization property (SCLP), derived in Elgart et al (2018 J. Funct. Anal. (in press)). This leads to many consequences, including dynamical exponential clustering, non-spreading of information under the time evolution, and a zero velocity Lieb-Robinson bound. Since SCLP is only applicable to the droplet sector, our definitions and proofs do not rely on knowledge of the spectral and dynamical characteristics of the model outside this regime. Rather, to allow for a possible mobility transition, we adapt the notion of restricting the Hamiltonian to an energy window from the single particle setting to the many body context.
NASA Astrophysics Data System (ADS)
KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert
2016-12-01
The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.
Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.
Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P
2012-03-01
The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.
Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus
2017-01-01
Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555
Alternative Fuels Characterization | Transportation Research | NREL
. Research at NREL focuses on the basic properties of these fuels and what levels of oxygen can be tolerated conventional cars and on understanding the performance of flex-fuel vehicles that can operate on ethanol levels basic properties of these fuels, as well as determining what levels of oxygen can be tolerated in drop
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2014 CFR
2014-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2012 CFR
2012-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2011 CFR
2011-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
John F. Hunt
1998-01-01
The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.
ERIC Educational Resources Information Center
Opfer, John E.; Siegler, Robert S.
2004-01-01
Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…
Mohammed, Ameen Hadi; Ahmad, Mansor B; Ibrahim, Nor Azowa; Zainuddin, Norhazlin
2018-02-13
The incorporation of two different monomers, having different properties, in the same polymer molecule leads to the formation of new materials with great scientific and commercial importance. The basic requirements for polymeric materials in some areas of biomedical applications are that they are hydrophilic, having good mechanical and thermal properties, soft, and oxygen-permeable. A series of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone (TMSPM/NVP) xerogels containing different concentration of ethylene glycol dimethacrylate (EGDMA) as crosslinking agent were prepared by bulk polymerization to high conversion using BPO as initiator. The copolymers were characterized by FTIR. The corresponding hydrogels were obtained by swelling the xerogels in deionized water to equilibrium. Addition of EGDMA increases the transparency of xerogels and hydrogels. The minimum amount of EGDMA required to produce a transparent xerogel is 1%. All the Swelling parameters, including water content (EWC), volume fraction of polymer (ϕ 2 ) and weight loss during swelling decrease with increasing EGDMA. Young's and shear modulus (E and G) increase as EGDMA increases. The hydrogels were characterized in terms of modulus cross-linking density (v e and v t ) and polymer-solvent interaction parameters (χ). Thermal properties include TGA and glass transition temperature (T g ) enhance by adding EGDMA whereas the oxygen permeability (P) of hydrogels decreases as water content decrease. This study prepared and studied the properties for new copolymer (TMSPM-co-NVP) contains different amounts of (EGDMA). These copolymers possess new properties with potential use in different biomedical applications. The properties of the prepared hydrogels are fit with the standard properties of materials which should be used for contact lenses.
Passive water collection with the integument: mechanisms and their biomimetic potential.
Comanns, Philipp
2018-05-22
Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced. © 2018. Published by The Company of Biologists Ltd.
Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying
2015-02-27
The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.
Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity
Du, Mao -Hua; Singh, David J.; Zhang, Lijun; ...
2016-04-19
Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn 2O 3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn 2O 3 andmore » BaSn 2O 3, which can be stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO 3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn 2O 3) to 3.15 (SrSn 2O 3) eV, and hole effective masses ranging from 0.87 (BaSn 2O 3) to above 6.0 (SrSn 2O 3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less
TriPleX: a versatile dielectric photonic platform
NASA Astrophysics Data System (ADS)
Wörhoff, Kerstin; Heideman, René G.; Leinse, Arne; Hoekman, Marcel
2015-04-01
Photonic applications based on planar waveguide technology impose stringent requirements on properties such as optical propagation losses, light coupling to optical fibers, integration density, as well as on reliability and reproducibility. The latter is correlated to a high level of control of the refractive index and waveguide geometry. In this paper, we review a versatile dielectric waveguide platform, called TriPleX, which is based on alternating silicon nitride and silicon dioxide films. Fabrication with CMOS-compatible equipment based on low-pressure chemical vapor deposition enables the realization of stable material compositions being a prerequisite to the control of waveguide properties and modal shape. The transparency window of both materials allows for the realization of low-loss waveguides over a wide wavelength range (400 nm-2.35 μm). Propagation losses as low as 5×10-4 dB/cm are reported. Three basic geometries (box shell, double stripe, and filled box) can be distinguished. A specific tapering technology is developed for on-chip, low-loss (<0.1 dB) spotsize convertors, allowing for combining efficient fiber to chip coupling with high-contrast waveguides required for increased functional complexity as well as for hybrid integration with other photonic platforms such as InP and SOI. The functionality of the TriPleX platform is captured by verified basic building blocks. The corresponding library and associated design kit is available for multi-project wafer (MPW) runs. Several applications of this platform technology in communications, biomedicine, sensing, as well as a few special fields of photonics are treated in more detail.
Visual Basic Applications to Physics Teaching
ERIC Educational Resources Information Center
Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena
2011-01-01
Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…
Ground Instructor Written Test Guide--Basic-Advanced. Revised 1972.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The test guide was prepared to assist applicants who are preparing for the Ground Instructor Written Test. It supersedes the 1967 examination guide. The guide outlines the scope of the basic aeronautical knowledge requirements for a ground instructor; acquaints the applicant with source material that may be used to acquire this basic knowledge;…
Ratz-Łyko, A.; Arct, J.; Pytkowska, K.
2016-01-01
Centella asiatica extract is a rich source of natural bioactive substances, triterpenoid saponins, flavonoids, phenolic acids, triterpenic steroids, amino acids and sugars. Thus, many scavenging free radicals, exhibit antiinflammatory activity and affect on the stratum corneum hydration and epidermal barrier function. The aim of the present study was to evaluate the in vivo moisturizing and antiinflammatory properties of cosmetic formulations (oil-in-water emulsion cream and hydrogel) containing different concentrations of Centella asiatica extract. The study was conducted over four weeks on a group of 25 volunteers after twice a day application of cosmetic formulations with Centella asiatica extract (2.5 and 5%, w/w) on their forearms. The measurement of basic skin parameters (stratum corneum hydration and epidermal barrier function) was performed once a week. The in vivo antiinflammatory activity based on the methyl nicotinate model of microinflammation in human skin was evaluated after four weeks application of tested formulations. In vivo tests formulations containing 5% of Centella asiatica extract showed the best efficacy in improving skin moisture by increase of skin surface hydration state and decrease in transepidermal water loss as well as exhibited antiinflammatory properties based on the methyl nicotinate model of microinflammation in human skin. Comparative tests conducted by corneometer, tewameter and chromameter showed that cosmetic formulations containing Centella asiatica extract have the moisturizing and antiinflammatory properties. PMID:27168678
Principles of phosphorescent organic light emitting devices.
Minaev, Boris; Baryshnikov, Gleb; Agren, Hans
2014-02-07
Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.
Low-pass filtering of noisy field Schlumberger sounding curves. Part II: Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, N.; Wadhwa, R.S.; Shrotri, B.S.
1986-02-01
The basic principles of the application of the linear system theory for smoothing noise-degraded d.c. geoelectrical sounding curves were recently established by Patella. A field Schlumberger sounding is presented to demonstrate first their application and validity. To achieve this purpose, firstly it is pointed out that the required smoothing or low-pass filtering can be considered as an intrinsic property of the transformation of original Schlumberger sounding curves into pole-pole (two-electrode) curves. Then the authors sketch a numerical algorithm to perform the transformation, opportunely modified from a known procedure for transforming dipole diagrams into Schlumberger ones. Finally they show a fieldmore » example with the double aim of demonstrating (i) the high quality of the low-pass filtering, and (ii) the reliability of the transformed pole-pole curve as far as quantitative interpretation is concerned.« less
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
NASA Astrophysics Data System (ADS)
Pukhovskaya, S. G.; Ivanova, Yu. B.; Nam, Dao The; Vashurin, A. S.
2014-10-01
Spectrophotometric titration is used to study the basic properties of a series of porphyrins with a continuously increasing degree of macrocycle deformation resulting from the introduction of strong electron-withdrawing substituents: 2,3,7,8,12,13,17,18-octaethylporphyrin ( I), 5-nitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( II), 5,15-dinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( III), 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( IV), and 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( V). It is found that the values of log K b (total basicity constants) obtained for the investigated compounds consistently diminish with an increase in the number of meso-substituents: 11.85 ( I) > 10.45 ( II) > 10.31 ( III) > 10.23 ( IV) > 9.56 ( V). It is shown that two opposing factors, the steric and electronic effects of the substituents, change the basic properties of the above series of compounds.
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
Technetium-99m: basic nuclear physics and chemical properties.
Castronovo, F P
1975-05-01
The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.
Order-of-magnitude physics of neutron stars. Estimating their properties from first principles
NASA Astrophysics Data System (ADS)
Reisenegger, Andreas; Zepeda, Felipe S.
2016-03-01
We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.
Schwer Iii, Donald R; McNear, David H
2011-01-01
Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Recent progress in tissue optical clearing for spectroscopic application
NASA Astrophysics Data System (ADS)
Sdobnov, A. Yu.; Darvin, M. E.; Genina, E. A.; Bashkatov, A. N.; Lademann, J.; Tuchin, V. V.
2018-05-01
This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc. Structural images of different skin layers obtained ex vivo for porcine ear skin samples at application of Omnipaque™ and glycerol solutions during 60 min. Red color corresponds to TPEAF signal channel. Green color corresponds to SHG signal channel.
Design and Applications of Noncanonical DNA Base Pairs.
Jissy, A K; Datta, Ayan
2014-01-02
While the Watson-Crick base pairs are known to stabilize the DNA double helix and play a vital role in storage/replication of genetic information, their replacement with non-Watson-Crick base pairs has recently been shown to have interesting practical applications. Nowadays, theoretical calculations are routinely performed on very complex systems to gain a better understanding of how molecules interact with each other. We not only bring together some of the basic concepts of how mispaired or unnatural nucleobases interact with each other but also look at how such an understanding influences the prediction of novel properties and development of new materials. We highlight the recent developments in this field of research. In this Perspective, we discuss the success of DFT methods, particularly, dispersion-corrected DFT, for applications such as pH-controlled molecular switching, electric-field-induced stacking of disk-like molecules with guanine quartets, and optical birefringence of alkali-metal-coordinated guanine quartets. The synergy between theoretical models and real applications is highlighted.
Hot-melt extrusion--basic principles and pharmaceutical applications.
Lang, Bo; McGinity, James W; Williams, Robert O
2014-09-01
Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.
The Science and Applications Tethered Platform (SATP) project
NASA Technical Reports Server (NTRS)
Merlina, P.
1986-01-01
The capabilities of tether systems in orbit are going to be demonstrated by the first planned flights of the Tethered Satellite System (TSS). These test flights will investigate the properties of tether systems as low altitude atmospheric research facilities and as electric power generators. Studies are being conducted with the purpose of testing a variety of concepts and approaches. A comparative analysis of results will allow the choosing of the most promising ideas for further development. The broad range of applications presently under study include applications in electrodynamics, transportation, microgravity in addition to basic research. The SATP project definition study is now about midway through its first phase. The analyses conducted have led to an appraisal of users interest in the project and to a deeper understanding of the problems associated with large, long-lived tether systems in space. In addition, two specialized platform designs, devoted to microgravity and precise pointing applications, are being studied because of their potential usefulness and the promise of technical feasibility.
Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.
2010-01-01
Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.
Hoye, Robert L. Z.; Schulz, Philip; Schelhas, Laura T.; ...
2017-02-28
Recently, there has been an explosive growth in research based on hybrid lead-halide perovskites for photovoltaics owing to rapid improvements in efficiency. The advent of these materials for solar applications has led to widespread interest in understanding the key enabling properties of these materials. This has resulted in renewed interest in related compounds and a search for materials that may replicate the defect-tolerant properties and long lifetimes of the hybrid lead-halide perovskites. Given the rapid pace of development of the field, the rises in efficiencies of these systems have outpaced the more basic understanding of these materials. Measuring or calculatingmore » the basic properties, such as crystal/electronic structure and composition, can be challenging because some of these materials have anisotropic structures, and/or are composed of both heavy metal cations and volatile, mobile, light elements. Some consequences are beam damage during characterization, composition change under vacuum, or compound effects, such as the alteration of the electronic structure through the influence of the substrate. These effects make it challenging to understand the basic properties integral to optoelectronic operation. Compounding these difficulties is the rapid pace with which the field progresses. This has created an ongoing need to continually evaluate best practices with respect to characterization and calculations, as well as to identify inconsistencies in reported values to determine if those inconsistencies are rooted in characterization methodology or materials synthesis. This article describes the difficulties in characterizing hybrid lead-halide perovskites and new materials and how these challenges may be overcome. The topic was discussed at a seminar at the 2015 Materials Research Society Fall Meeting & Exhibit. This article highlights the lessons learned from the seminar and the insights of some of the attendees, with reference to both recent literature and controlled experiments to illustrate the challenges discussed. The focus in this article is on crystallography, composition measurements, photoemission spectroscopy, and calculations on perovskites and new, related absorbers. We suggest how the reporting of the important artifacts could be streamlined between groups to ensure reproducibility as the field progresses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoye, Robert L. Z.; Schulz, Philip; Schelhas, Laura T.
Recently, there has been an explosive growth in research based on hybrid lead-halide perovskites for photovoltaics owing to rapid improvements in efficiency. The advent of these materials for solar applications has led to widespread interest in understanding the key enabling properties of these materials. This has resulted in renewed interest in related compounds and a search for materials that may replicate the defect-tolerant properties and long lifetimes of the hybrid lead-halide perovskites. Given the rapid pace of development of the field, the rises in efficiencies of these systems have outpaced the more basic understanding of these materials. Measuring or calculatingmore » the basic properties, such as crystal/electronic structure and composition, can be challenging because some of these materials have anisotropic structures, and/or are composed of both heavy metal cations and volatile, mobile, light elements. Some consequences are beam damage during characterization, composition change under vacuum, or compound effects, such as the alteration of the electronic structure through the influence of the substrate. These effects make it challenging to understand the basic properties integral to optoelectronic operation. Compounding these difficulties is the rapid pace with which the field progresses. This has created an ongoing need to continually evaluate best practices with respect to characterization and calculations, as well as to identify inconsistencies in reported values to determine if those inconsistencies are rooted in characterization methodology or materials synthesis. This article describes the difficulties in characterizing hybrid lead-halide perovskites and new materials and how these challenges may be overcome. The topic was discussed at a seminar at the 2015 Materials Research Society Fall Meeting & Exhibit. This article highlights the lessons learned from the seminar and the insights of some of the attendees, with reference to both recent literature and controlled experiments to illustrate the challenges discussed. The focus in this article is on crystallography, composition measurements, photoemission spectroscopy, and calculations on perovskites and new, related absorbers. We suggest how the reporting of the important artifacts could be streamlined between groups to ensure reproducibility as the field progresses.« less
Validation of Student and Parent Reported Data on the Basic Grant Application Form. Project Summary.
ERIC Educational Resources Information Center
Applied Management Sciences, Inc., Silver Spring, MD.
Results of studies to assess accuracy of information reported by applicants to the Basic Educational Opportunity Grant (BEOG) program are summarized. Attention is also focused on applicant characteristics and corrective actions taken as a result of the studies. Overall, the studies found that the majority of BEOG applicants reported income…
Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
Yuan, Huipin; Fernandes, Hugo; Habibovic, Pamela; de Boer, Jan; Barradas, Ana M. C.; de Ruiter, Ad; Walsh, William R.; van Blitterswijk, Clemens A.; de Bruijn, Joost D.
2010-01-01
Biomaterials can be endowed with biologically instructive properties by changing basic parameters such as elasticity and surface texture. However, translation from in vitro proof of concept to clinical application is largely missing. Porous calcium phosphate ceramics are used to treat small bone defects but in general do not induce stem cell differentiation, which is essential for regenerating large bone defects. Here, we prepared calcium phosphate ceramics with varying physicochemical and structural characteristics. Microporosity correlated to their propensity to stimulate osteogenic differentiation of stem cells in vitro and bone induction in vivo. Implantation in a large bone defect in sheep unequivocally demonstrated that osteoinductive ceramics are equally efficient in bone repair as autologous bone grafts. Our results provide proof of concept for the clinical application of “smart” biomaterials. PMID:20643969
Polymeric film application for phase change heat transfer
NASA Astrophysics Data System (ADS)
Bart, Hans-Jörg; Dreiser, Christian
2018-06-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
Lu, Ming; Guo, Zhefei; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Pan, Xin; Wu, Chuanbin
2014-01-01
Hot melt extrusion (HME) is a powerful technology to enhance the solubility and bioavailability of poorly water-soluble drugs by producing amorphous solid dispersions. Although the number of articles and patents about HME increased dramatically in the past twenty years, there are very few commercial products by far. The three main obstacles limiting the commercial application of HME are summarized as thermal degradation of heat-sensitive drugs at high process temperature, recrystallization of amorphous drugs during storage and dissolving process, and difficulty to obtain products with reproducible physicochemical properties. Many efforts have been taken in recent years to understand the basic mechanism underlying these obstacles and then to overcome them. This article reviewed and summarized the limitations, recent advances, and future prospects of HME.
Recent progress on the structure separation of single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Cui, Jiaming; Yang, Dehua; Zeng, Xiang; Zhou, Naigen; Liu, Huaping
2017-11-01
The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.
Rechargeable metal hydrides for spacecraft application
NASA Technical Reports Server (NTRS)
Perry, J. L.
1988-01-01
Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.
NASA Astrophysics Data System (ADS)
Moey, Siah Watt; Abdullah, Aminah; Ahmad, Ishak
2014-09-01
A new patent pending process is proposed in this study to produce edible film directly from seaweed (Kappaphycus alvarezii). Seaweed together with other ingredients had been used to produce the film through casting technique. Physical and mechanical tests were performed on the edible film to examine the thickness, colour, transparency, solubility, tensile strength, elongation at break, water permeability rate, oxygen permeability rate and surface morphology. The produced film was transparent, stretchable, sealable and have basic properties for applications in food, pharmaceutical, cosmetic, toiletries and also agricultural industries. Edible film was successfully developed directly from dry seaweed instead of using alginate and carrageenan. The edible film processing method developed in this research was easier and cheaper compared with the method by using alginate and carrageenan.
Polymeric film application for phase change heat transfer
NASA Astrophysics Data System (ADS)
Bart, Hans-Jörg; Dreiser, Christian
2018-01-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
....305) 3. Application (Sec. 600.310) 4. Certified Application Counselors (Sec. 600.315) 5. Determination... application'' used by both Medicaid and the Exchange, and found in 42 CFR 431.907(b)(1) of this chapter and 45... [[Page 59126
NASA Astrophysics Data System (ADS)
Grupen, Claus; Shwartz, Boris
2011-09-01
Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.
Fissioning uranium plasmas and nuclear-pumped lasers
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Thom, K.
1975-01-01
Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.
Simultaneous extraction and quantitation of several bioactive amines in cheese and chocolate.
Baker, G B; Wong, J T; Coutts, R T; Pasutto, F M
1987-04-17
A method is described for simultaneous extraction and quantitation of the amines 2-phenylethylamine, tele-methylhistamine, histamine, tryptamine, m- and p-tyramine, 3-methoxytyramine, 5-hydroxytryptamine, cadaverine, putrescine, spermidine and spermine. This method is based on extractive derivatization of the amines with a perfluoroacylating agent, pentafluorobenzoyl chloride, under basic aqueous conditions. Analysis was done on a gas chromatograph equipped with an electron-capture detector and a capillary column system. The procedure is relatively rapid and provides derivatives with good chromatographic properties. Its application to analysis of the above amines in cheese and chocolate products is described.
Periodic nanostructural materials for nanoplasmonics
NASA Astrophysics Data System (ADS)
Choi, Dukhyun
2017-02-01
Nanoscale periodic material design and fabrication are essentially fundamental requirement for basic scientific researches and industrial applications of nanoscience and engineering. Innovative, effective, reproducible, large-area uniform, tunable and robust nanostructure/material syntheses are still challenging. Here, I would like to introduce the novel periodic nanostructural materials particularly with uniformly ordered nanoporous or nanoflower structures, which are fabricated by simple, cost-effective, and high-throughput wet chemical methods. I also report large-area periodic plasmonic nanostructures based on template-based nanolithography. The surface morphology and optical properties are characterized by SEM and UV-vis. spectroscopy. Furthermore, their enhancement factor is evaluated by using SERS signals.
Glassfibre Reinforced Concrete: a Review
NASA Astrophysics Data System (ADS)
Bartos, P. J. M.
2017-09-01
Introduced to construction about 40 years ago, GRC has come of age. It is now widely used all over the world and in quantities very likely greater than most of the other types of fibre reinforced concrete, although it remains less known. A brief history of GRC is followed by review of the basic make-up of this complex composite. Methods of production are identified, properties reviewed and modes of fracture which are unique to GRC are explained. Benefits which are already available and exploited by its users are summarised and the wide spectrum of current applications of GRC is outlined.
Wang, Chunyong; Li, Qingguo; Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness.
Zhou, Xiaoqiang; Yang, Tian
2014-01-01
We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338
Methods in Astronomical Image Processing
NASA Astrophysics Data System (ADS)
Jörsäter, S.
A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future
WS2 mode-locked ultrafast fiber laser
Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin
2015-01-01
Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729
Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model
NASA Technical Reports Server (NTRS)
Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.
2002-01-01
We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.
The application of dynamic programming in production planning
NASA Astrophysics Data System (ADS)
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
Nanoparticles: nanotoxicity aspects
NASA Astrophysics Data System (ADS)
Vlastou, Elena; Gazouli, Maria; Ploussi, Agapi; Platoni, Kalliopi; Efstathopoulos, Efstathios P.
2017-11-01
The giant steps towards Nanosciences dictate the need to gain a broad knowledge about not only beneficial but also noxious properties of Nanomaterials. Apart from the remarkable advantages of Nanoparticles (NPs) in medicine and industry, there have been raised plenty of concerns about their potential adverse effects in living organisms and ecosystems as well. Without a doubt, it is of critical importance to ensure that NPs medical and industrial applications are accompanied by the essential safety so that the balance will be tilted in favor of the profits that society will earn. However, the evaluation of NPs toxic effects remains a great challenge for the scientific community due to the wealth of factors that Nanotoxicity depends on. Size, surface area, dosing, shape, surface coating and charge and bulk material are the basic parameters under investigation to assess the risk involved in NPs usage. Our purpose is to highlight NPs physical and chemical properties responsible for induced toxicity, describe the mechanisms that take place in their interaction with cells and organs and finally report the potential harmful consequences that may result from the innovative applications of Nanomaterials.
Stotesbury, Theresa; Illes, Mike; Wilson, Paul; Vreugdenhil, Andrew J
2017-01-01
Solution-gelation chemistry has promising applications in forensic synthetic blood substitute development. This research offers a silicon-based sol-gel approach to creating stable materials that share similar rheological properties to that of whole human blood samples. Room temperature, high water content, silicon sol-gels were created using the organosilane precursors 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate along with various concentrations of filler and pigment. Shear-thinning non-Newtonian properties were observed within most formulations of the presented materials. The effects of colloidal concentration, temperature, age and filler addition on the viscosity of the sol-gels were investigated. SEM-EDS analysis was used to identify the behavior of the fillers within the film and support their inclusion for basic bloodstain pattern simulation. A final proposed candidate sol-gel was assessed using a previously reported passive drip simulation test on a hard, dry surface and passed. This works represents encouraging development in providing safe material alternatives to using whole human blood for forensic training and research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature
NASA Astrophysics Data System (ADS)
Welch, Ashley J.; van Gemert, Martin J. C.
The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.
Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing
Shang, Yang
2015-01-01
Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909
Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.
Shang, Yang; Guo, Lin
2015-10-01
Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.
Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure
Tang, Yongsheng; Wu, Zhishen
2016-01-01
Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110
Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.
Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L
2014-01-01
Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.
Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.
Tang, Yongsheng; Wu, Zhishen
2016-02-25
Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.
Optoelectronic properties of single-wall carbon nanotubes.
Nanot, Sébastien; Hároz, Erik H; Kim, Ji-Hee; Hauge, Robert H; Kono, Junichiro
2012-09-18
Single-wall carbon nanotubes (SWCNTs), with their uniquely simple crystal structures and chirality-dependent electronic and vibrational states, provide an ideal laboratory for the exploration of novel 1D physics, as well as quantum engineered architectures for applications in optoelectronics. This article provides an overview of recent progress in optical studies of SWCNTs. In particular, recent progress in post-growth separation methods allows different species of SWCNTs to be sorted out in bulk quantities according to their diameters, chiralities, and electronic types, enabling studies of (n,m)-dependent properties using standard macroscopic characterization measurements. Here, a review is presented of recent optical studies of samples enriched in 'armchair' (n = m) species, which are truly metallic nanotubes but show excitonic interband absorption. Furthermore, it is shown that intense ultrashort optical pulses can induce ultrafast bandgap oscillations in SWCNTs, via the generation of coherent phonons, which in turn modulate the transmission of a delayed probe pulse. Combined with pulse-shaping techniques, coherent phonon spectroscopy provides a powerful method for studying exciton-phonon coupling in SWCNTs in a chirality-selective manner. Finally, some of the basic properties of highly aligned SWCNT films are highlighted, which are particularly well-suited for optoelectronic applications including terahertz polarizers with nearly perfect extinction ratios and broadband photodetectors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yan, Zheng
Graphene, a two-dimensional sp2-bonded carbon material, has attracted enormous attention due to its excellent electrical, optical and mechanical properties. Recently developed chemical vapor deposition (CVD) methods could produce large-size and uniform polycrystalline graphene films, limited to gas carbon sources, metal catalyst substrates and degraded properties induced by grain boundaries. Meanwhile, pristine monolayer graphene exhibits a standard ambipolar behavior with a zero neutrality point in field-effect transistors (FETs), limiting its future electronic applications. This thesis starts with the investigation of CVD synthesis of pristine and N-doped graphene with controlled thickness using solid carbon sources on metal catalyst substrates (chapter 1), and then discusses the direct growth of bilayer graphene on insulating substrates, including SiO2, h-BN, Si3N4 and Al2O3, without needing further transfer-process (chapter 2). Chapter 3 discusses the synthesis of high-quality graphene single crystals and hexagonal onion-ring-like graphene domains, and also explores the basic growth mechanism of graphene on Cu substrates. To extend graphene's potential applications, both vertical and planar graphene-carbon nanotube hybrids are fabricated using CVD method and their interesting properties are investigated (chapter 4). Chapter 5 discusses how to use chemical methods to modulate graphene's electronic behaviors.
Investigation of a bearingless helicopter rotor concept having a composite primary structure
NASA Technical Reports Server (NTRS)
Bielawa, R. L.; Cheney, M. C., Jr.; Novak, R. C.
1976-01-01
Experimental and analytical investigations were conducted to evaluate a bearingless helicopter rotor concept (CBR) made possible through the use of the specialized nonisotropic properties of composite materials. The investigation was focused on four principal areas which were expected to answer important questions regarding the feasibility of this concept. First, an examination of material properties was made to establish moduli, ultimate strength, and fatigue characteristics of unidirectional graphite/epoxy, the composite material selected for this application. The results confirmed the high bending modulus and strengths and low shear modulus expected of this material, and demonstrated fatigue properties in torsion which make this material ideally suited for the CBR application. Second, a dynamically scaled model was fabricated and tested in the low speed wind tunnel to explore the aeroelastic characteristics of the CBR and to explore various concepts relative to the method of blade pitch control. Two basic control configurations were tested, one in which pitch flap coupling could occur and another which eliminated all coupling. It was found that both systems could be operated successfully at simulated speeds of 180 knots; however, the configuration with coupling present revealed a potential for undesirable aeroelastic response. The uncoupled configuration behaved generally as a conventional hingeless rotor and was stable for all conditions tested.
Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebak, Raul B.; Lou, Xiaoyuan
Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less
Decoupling Polymer Properties to Elucidate Mechanisms Governing Cell Behavior
Wang, Xintong; Boire, Timothy C.; Bronikowski, Christine; Zachman, Angela L.; Crowder, Spencer W.
2012-01-01
Determining how a biomaterial interacts with cells (“structure-function relationship”) reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery. PMID:22536977
Hygroscopic properties of magnetic recording tape
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1976-01-01
Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.
Nickel hydroxides and related materials: a review of their structures, synthesis and properties
Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.
2015-01-01
This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812
NASA Astrophysics Data System (ADS)
Kate, Gunavant K.; Thakare, Sunil B., Dr.
2017-08-01
Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.
A thermodynamic approach to obtain materials properties for engineering applications
NASA Technical Reports Server (NTRS)
Chang, Y. Austin
1993-01-01
With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C., E-mail: lichun@nwpu.edu.cn; Shang, J.; Yue, Z.
2015-07-15
In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the othermore » elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.« less
The Armed Forces Casualty Assistance Readiness Enhancement System (CARES): Design for Flexibility
2006-06-01
Special Form SQL Structured Query Language SSA Social Security Administration U USMA United States Military Academy V VB Visual Basic VBA Visual Basic for...of Abbreviations ................................................................... 26 Appendix B: Key VBA Macros and MS Excel Coding...internet portal, CARES Version 1.0 is a MS Excel spreadsheet application that contains a considerable number of Visual Basic for Applications ( VBA
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.
2017-05-01
A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.
NASA Astrophysics Data System (ADS)
Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.
2016-03-01
Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).
Surface Modifications and Their Effects on Titanium Dental Implants
Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.
2015-01-01
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097
Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion
Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop
2015-01-01
The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs. PMID:25905686
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1982-01-01
The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.
Excitons in Single-Walled Carbon Nanotubes and Their Dynamics
NASA Astrophysics Data System (ADS)
Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.
2018-04-01
Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.
Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.
2018-05-01
In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.
NASA Astrophysics Data System (ADS)
Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang
2018-06-01
The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.
Chapter 19: Catalysis by Metal Carbides and Nitrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A; Nash, Connor P; Yung, Matthew M
Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalyticmore » energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.« less
Bio-functionalization of biomedical metals.
Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C
2017-01-01
Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.
Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.
Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T
2007-03-30
Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.
NASA Astrophysics Data System (ADS)
Los, J. H.; Kroes, J. M. H.; Albe, K.; Gordillo, R. M.; Katsnelson, M. I.; Fasolino, A.
2017-11-01
We present an extended Tersoff potential for boron nitride (BN-ExTeP) for application in large scale atomistic simulations. BN-ExTeP accurately describes the main low energy B, N, and BN structures and yields quantitatively correct trends in the bonding as a function of coordination. The proposed extension of the bond order, added to improve the dependence of bonding on the chemical environment, leads to an accurate description of point defects in hexagonal BN (h -BN) and cubic BN (c -BN). We have implemented this potential in the molecular dynamics LAMMPS code and used it to determine some basic properties of pristine 2D h -BN and the elastic properties of defective h -BN as a function of defect density at zero temperature. Our results show that there is a strong correlation between the size of the static corrugation induced by the defects and the weakening of the in-plane elastic moduli.
Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications
NASA Astrophysics Data System (ADS)
Suzuki, Hiromichi; He, Jianmei
2017-11-01
There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.
Ultrafast spectroscopy of coherent phonon in carbon nanotubes using sub-5-fs visible pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takayoshi; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 Japan; Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
2016-02-01
In the last two decades, nano materials are attracting many scientists’ interest for both basic and application viewpoints. In order to understand the properties of nano systems it is needed to understand the dynamic properties which control the specific properties of the systems. All the primary processes in nano systems are taking place in femtosecond regime. Our group has been able to stably generate visible to near-infrared sub-5-fs laser pulses using a noncollinear optical parametric amplifier (NOPA) by the combination of various novel techniques including non-collinear optical parametric amplifier, pulse compression by a prism pair and grating pair. We applymore » the sub-5-fs pulses to study real-time coherent phonon in a one-dimensional system of carbon nanotubes. We determine exciton-phonon coupling mechanisms by observing the breathing mode in semiconducting carbon nanotubes and show the effect of electronic transition affected by the vibrational mode.« less
ERIC Educational Resources Information Center
Vogel, Ronald J.
A study was conducted in 1976 of applicants who submitted corrections or amendments to their Student Eligibility Reports (SERs) for the Basic Educational Opportunity Grant (BEOG) Program. The objective was to review the applications corrections process and to determine factors linked to applicants' use of correction procedures. Attention was…
A Computational Approach to Investigate Properties of Estimators
ERIC Educational Resources Information Center
Caudle, Kyle A.; Ruth, David M.
2013-01-01
Teaching undergraduates the basic properties of an estimator can be difficult. Most definitions are easy enough to comprehend, but difficulties often lie in gaining a "good feel" for these properties and why one property might be more desired as compared to another property. Simulations which involve visualization of these properties can…
Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.
Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta
2017-01-01
Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the development of noninvasive diagnostic medicine, since it is able to provide imaging of the interior of the human body in real time without causing harm or putting the human body in risk.
Electrical properties of epoxies used in hybrid microelectronics
NASA Technical Reports Server (NTRS)
Stout, C. W.
1976-01-01
The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.
Basics and applications of genome editing technology.
Yamamoto, Takashi; Sakamoto, Naoaki
2016-01-01
Genome editing with programmable site-specific nucleases is an emerging technology that enables the manipulation of targeted genes in many organisms and cell lines. Since the development of the CRISPR-Cas9 system in 2012, genome editing has rapidly become an indispensable technology for all life science researchers, applicable in various fields. In this seminar, we will introduce the basics of genome editing and focus on the recent development of genome editing tools and technologies for the modification of various organisms and discuss future directions of the genome editing research field, from basic to medical applications.
ERIC Educational Resources Information Center
Swinson, John V.
2000-01-01
Intellectual property is a term that covers a number of different rights. Considers issues such as what are the basic forms of intellectual property; who owns the intellectual property created by a teacher; who owns intellectual property created by students; and use of downloaded materials from the internet. (Author/LM)
SEADYN Analysis of a Tow Line for a High Altitude Towed Glider
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1996-01-01
The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation.
Hybrid biosorbents for removal of pollutants and remediation
NASA Astrophysics Data System (ADS)
Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda
2014-05-01
For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.
Basic principles, methodology, and applications of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Moreira, M. A. (Principal Investigator); Deassuncao, G. V.
1984-01-01
The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.
Zhang, Yongbin; Petibone, Dayton; Xu, Yang; Mahmood, Meena; Karmakar, Alokita; Casciano, Dan; Ali, Syed; Biris, Alexandru S
2014-05-01
Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.
Diagnostic Techniques Used to Study Chemical-Vapor-Deposited Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2000-01-01
The advantages and utility of chemical-vapor-deposited (CVD) diamond as an industrial ceramic can only be realized if the price and quality are right. Until recently, this technology was of interest only to the academic and basic research community. However, interest has grown because of advances made by leading CVD diamond suppliers: 1) Reduction of the cost of CVD polycrystalline diamond deposition below $5/carat ($8/sq cm); 2) Installation of production capacity; 3) Epitaxial growth of CVD single-crystal diamond. Thus, CVD diamond applications and business are an industrial reality. At present, CVD diamond is produced in the form of coatings or wafers. CVD diamond film technology offers a broader technological potential than do natural and high-pressure synthetic diamonds because size, geometry, and eventually cost will not be as limiting. Now that they are cost effective, diamond coatings - with their extreme properties - can be used in a variety of applications. Diamond coatings can improve many of the surface properties of engineering substrate materials, including erosion, corrosion, and wear resistance. Examples of actual and potential applications, from microelectromechanical systems to the wear parts of diamond coatings and related superhard coatings are described. For example, diamond coatings can be used as a chemical and mechanical barrier for the space shuttles check valves, particularly on the guide pins and seat assemblies.
Pharmaceutical applications of cyclodextrins: basic science and product development.
Loftsson, Thorsteinn; Brewster, Marcus E
2010-11-01
Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.
Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications
Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia
2016-01-01
Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236
Li, B; Chan, E C Y
2003-01-01
We present an approach to customize the sample submission process for high-throughput purification (HTP) of combinatorial parallel libraries using preparative liquid chromatography electrospray ionization mass spectrometry. In this study, Visual Basic and Visual Basic for Applications programs were developed using Microsoft Visual Basic 6 and Microsoft Excel 2000, respectively. These programs are subsequently applied for the seamless electronic submission and handling of data for HTP. Functions were incorporated into these programs where medicinal chemists can perform on-line verification of the purification status and on-line retrieval of postpurification data. The application of these user friendly and cost effective programs in our HTP technology has greatly increased our work efficiency by reducing paper work and manual manipulation of data.
Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.
Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin
2006-11-16
Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.
41 CFR 301-73.106 - What are the basic services that should be covered by a TMS?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., confirmation of reservations, etc.). (b) Provide basic management information, such as— (1) Number of... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the basic... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 73...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2012 CFR
2012-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2014 CFR
2014-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2010 CFR
2010-07-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2011 CFR
2011-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What is the basic real...
An Independent Evaluation of the Technical Features of the Basic Reading Inventory
ERIC Educational Resources Information Center
Bieber, Gregg; Hulac, David M.; Schweinle, William
2015-01-01
The present study investigated some psychometric properties of the Basic Reading Inventory (BRI), a widely used informal reading inventory. The BRI and Dynamic Indicators of Basic Early Literacy Skills (DIBELS) probes were administered to 149 third, fourth, and fifth graders. Test--retest and alternate forms reliability analyses indicated adequate…
Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules.
Ochoa-Aguilar, Abraham; Ventura-Martinez, Rosa; Sotomayor-Sobrino, Marco Antonio; Gómez, Claudia; Morales-Espinoza, María del Rosario
2016-01-01
Beta-lactam molecules are a family of drugs commonly used for their antibiotic properties; however, recent research has shown that several members of this group present a large number of other effects such as neuroprotective, antioxidant, analgesic or immunomodulatory capabilities. These properties have been used in both preclinical and clinical studies in different diseases such as hypoxic neuronal damage or acute and chronic pain. The present work briefly reviews the antibiotic effect of these molecules, and will then focus specially on the non-antibiotic effects of three beta-lactam subfamilies: penicillins, cephalosporins and beta lactamase inhibitors, each of which have different molecular structure and pharmacokinetics and therefore have several potential clinical applications. A thorough search of bibliographic databases for peer-reviewed research was performed including only classic experiments or high quality reviews for the antibiotic mechanisms of beta-lactam molecules and only experimental research papers where included when the non-antibiotic properties of these molecules were searched. Only published articles from indexed journals were included. Quality of retrieved papers was assessed using standard tools. The characteristics of screened papers were described and findings of included studies were contextualized to either a mechanistic or a clinical framework. Seventy-eight papers were included in the review; the majority (56) were relative to the non-antibiotic properties of beta-lactam molecules. The non-antibiotic effects reviewed were divided accordingly to the amount of information available for each one. Twelve papers outlined the epileptogenic effects induced by beta-lactam molecules administration; these included both clinical and basic research as well as probable mechanistic explanations. Eighteen papers described a potential neuroprotective effect, mostly in basic in vitro and in vivo experiments. Analgesic properties where identified in twelve papers and basic research was described alongside with both experimental and serendipic clinical findings. Seven papers described a down-regulation effect exerted by beta-lactam molecules administration in different addiction animal models. Finally other effects such as penile erection, dopamine release facilitation and anti-neoplasic effects where described from seven papers. The findings of this review show that beta-lactam molecules may induce several effects, which may be clinically relevant in a lot of different diseases. This paper is, to our knowledge, the first comprehensive review of the non-antibiotic effects shown by beta-lactam molecules and may help increase the interest in this field, which may result in a direct translation of this effects to a clinical context.
Effect of gloss and heat on the mechanical behaviour of a glass carbomer cement.
Menne-Happ, Ulrike; Ilie, Nicoleta
2013-03-01
The effect of gloss and heat on the mechanical behaviour of a recently launched glass carbomer cement (GCP, GCP dental) was evaluated and compared with resin-modified glass ionomer cements (Fuji II LC, GC and Photac Fil Quick Aplicap, 3M ESPE). 120bar-shaped specimens (n=20) were produced, maintained in distilled water at 37°C and tested after one week. The GCP specimens were cured with and without heat application and with and without gloss. The flexural strength and modulus of elasticity in flexural test as well as the micro-mechanical properties (Vickers Hardness, indentation modulus, creep) of the top and bottom surface were evaluated. The amount and size of the fillers, voids and cracks were compared using a light and a scanning electron microscope. In the flexural test, the resin-modified glass ionomer cements performed significantly better than GCP. Fuji II LC and Photac Fil (Weibull parameter: 17.7 and 14.3) proved superior reliability in the flexural test compared to GCP (1.4-2.6). The highest Vickers Hardness and lowest creep were achieved by GCP, whereas Fuji II LC reached the highest indentation modulus. The results of this study proved that relationships exist between the compositions, microstructures and mechanical properties of the cements. Heat treatment and gloss application did not influence the mechanical properties of GCP. The mechanical properties were basically influenced by the type of cement and its microstructure. Considering the measured mechanical properties, there is no need of using gloss or heat when restoring teeth with GCP. Copyright © 2012 Elsevier Ltd. All rights reserved.
Food mechanical properties and dietary ecology.
Berthaume, Michael A
2016-01-01
Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.
Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin
2011-11-01
The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.
Wen, Gang; Guo, ZhiGuang; Liu, Weimin
2017-03-09
Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world; thus, it is necessary to optimize the performances of such materials to yield durable superhydrophobic surfaces. To sum up, some challenges and perspectives regarding the future research and development of polymeric superhydrophobic surfaces are presented.
Thermal insulation of pipelines by foamed glass-ceramic
NASA Astrophysics Data System (ADS)
Apkaryan, A. S.; Kudyakov, A. I.
2015-01-01
Based on broken glass, clay and organic additives granular insulating glass crystalline material and technology of its receipt are developed. The regularities of the effect of composition and firing temperature on the properties of the granules are specified. The resulting granular thermally insulating material is produced with a bulk density of 260-280 kg/m3 pellet strength - 1.74 MPa, thermal conductivity - 0.075 W/m °C, water absorption - 2.6 % by weight. The effect of the basic physical characteristics of the components of the charge on the process of pore formation is studied. According to the research results, basic parameters affecting the sustainability of the swelling glass are specified. Rational charge composition, thermal and gas synthesis mode are chosen so that the partial pressure of gases is below the surface tension of the melt. This enables the formation of granules with small closed pores and vitrified surface. The article is the result of studies on the application of materials for pipe insulation of heating mains with foamed glass ceramics.
Evaluation of a Liquid Amine System for Spacecraft Carbon Dioxide Control
NASA Technical Reports Server (NTRS)
Breaux, D. K.; Friedel, P.; Hwang, K. C.; Probert, G.; Ruder, J. M.; Sawamura, L.
1974-01-01
The analytical and experimental studies are described which were directed toward the acquisition of basic information on utilizing a liquid amine sorbent for in use in a CO2 removal system for manned spacecraft. Liquid amine systems are successfully used on submarines for control of CO2 generated by the crew, but liquid amines were not previously considered for spacecraft applications due to lack of development of satisfactory rotary phase separators. Developments in this area now make consideration of liquid amines practical for spacecraft system CO2 removal. The following major tasks were performed to evaluate liquid amine systems for spacecraft: (1) characterization, through testing, of the basic physical and thermodynamic properties of the amine solution; (2) determination of the dynamic characteristics of a cocurrent flow absorber; and (3) evaluation, synthesis, and selection of a liquid amine system concept oriented toward low power requirements. A low weight, low power system concept was developed. Numerical and graphical data are accompanied by pertinent observations.
NASA Astrophysics Data System (ADS)
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
Lectures on Dark Matter Physics
NASA Astrophysics Data System (ADS)
Lisanti, Mariangela
Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
NASA Astrophysics Data System (ADS)
Chen, Li; Chen, Xinliang; Zhou, Zhongxin; Guo, Sheng; Zhao, Ying; Zhang, Xiaodan
2018-03-01
Al doped ZnO (AZO) films deposited on glass substrates through the atomic layer deposition (ALD) technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from 20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10‑3 Ω·cm and high optical transmittance deposited at 150 °C with 20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707) and the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900).
Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong
2016-08-01
As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Huihui; Gao, Feng; Dai, Mingjin; Jia, Dechang; Zhou, Yu; Hu, Pingan
2017-03-01
Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS{}2 ), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN. Project supported by the National Natural Science Foundation of China (Nos. 61390502, 21373068), the National Basic Research Program of China (No. 2013CB632900), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51521003), and the Self-Planned Task of State Key Laboratory of Robotics and System (No. SKLRS201607B).
ERIC Educational Resources Information Center
Miller, Daniel R.; And Others
To improve vocational educational programs in agriculture, occupational information on a common core of basic skills within the occupational area of the chemical applicator is presented in the revised task inventory survey. The purpose of the occupational survey was to identify a common core of basic skills which are performed and are essential…
Waxman, S R; Lynch, E B; Casey, K L; Baer, L
1997-11-01
Basic level categories are a rich source of inductive inference for children and adults. These 3 experiments examine how preschool-age children partition their inductively rich basic level categories to form subordinate level categories and whether these have inductive potential. Children were taught a novel property about an individual member of a familiar basic level category (e.g., a collie). Then, children's extensions of that property to other objects from the same subordinate (e.g., other collies), basic (e.g., other dogs), and superordinate (e.g., other animals) level categories were examined. The results suggest (a) that contrastive information promotes the emergence of subordinate categories as a basis of inductive inference and (b) that newly established subordinate categories can retain their inductive potential in subsequent reasoning over a week's time.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
Ogawa, Shinpei; Kimata, Masafumi
2018-03-20
Electromagnetic wave absorbers have been investigated for many years with the aim of achieving high absorbance and tunability of both the absorption wavelength and the operation mode by geometrical control, small and thin absorber volume, and simple fabrication. There is particular interest in metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) due to their complete fulfillment of these demands. MIM-PMAs consist of top periodic micropatches, a middle dielectric layer, and a bottom reflector layer to generate strong localized surface plasmon resonance at absorption wavelengths. In particular, in the visible and infrared (IR) wavelength regions, a wide range of applications is expected, such as solar cells, refractive index sensors, optical camouflage, cloaking, optical switches, color pixels, thermal IR sensors, IR microscopy and gas sensing. The promising properties of MIM-PMAs are attributed to the simple plasmonic resonance localized at the top micropatch resonators formed by the MIMs. Here, various types of MIM-PMAs are reviewed in terms of their historical background, basic physics, operation mode design, and future challenges to clarify their underlying basic design principles and introduce various applications. The principles presented in this review paper can be applied to other wavelength regions such as the ultraviolet, terahertz, and microwave regions.
Ogawa, Shinpei; Kimata, Masafumi
2018-01-01
Electromagnetic wave absorbers have been investigated for many years with the aim of achieving high absorbance and tunability of both the absorption wavelength and the operation mode by geometrical control, small and thin absorber volume, and simple fabrication. There is particular interest in metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) due to their complete fulfillment of these demands. MIM-PMAs consist of top periodic micropatches, a middle dielectric layer, and a bottom reflector layer to generate strong localized surface plasmon resonance at absorption wavelengths. In particular, in the visible and infrared (IR) wavelength regions, a wide range of applications is expected, such as solar cells, refractive index sensors, optical camouflage, cloaking, optical switches, color pixels, thermal IR sensors, IR microscopy and gas sensing. The promising properties of MIM-PMAs are attributed to the simple plasmonic resonance localized at the top micropatch resonators formed by the MIMs. Here, various types of MIM-PMAs are reviewed in terms of their historical background, basic physics, operation mode design, and future challenges to clarify their underlying basic design principles and introduce various applications. The principles presented in this review paper can be applied to other wavelength regions such as the ultraviolet, terahertz, and microwave regions. PMID:29558454
Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera
2018-03-26
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.
Cummins, Philip M; Dowling, Oonagh; O'Connor, Brendan F
2011-01-01
Ion-exchange chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80-kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone).
Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea
2017-12-01
The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg -1 year -1 and D, 2, 7 g kg -1 year -1 ) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca ++ and Mg ++ ) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material
NASA Technical Reports Server (NTRS)
Gamwell, Wayne R.; McGill, Preston B.
2003-01-01
Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.
Music Tune Restoration Based on a Mother Wavelet Construction
NASA Astrophysics Data System (ADS)
Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.
2017-01-01
It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.
MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels.
Berka, Karel; Hanák, Ondrej; Sehnal, David; Banás, Pavel; Navrátilová, Veronika; Jaiswal, Deepti; Ionescu, Crina-Maria; Svobodová Vareková, Radka; Koca, Jaroslav; Otyepka, Michal
2012-07-01
Biomolecular channels play important roles in many biological systems, e.g. enzymes, ribosomes and ion channels. This article introduces a web-based interactive MOLEonline 2.0 application for the analysis of access/egress paths to interior molecular voids. MOLEonline 2.0 enables platform-independent, easy-to-use and interactive analyses of (bio)macromolecular channels, tunnels and pores. Results are presented in a clear manner, making their interpretation easy. For each channel, MOLEonline displays a 3D graphical representation of the channel, its profile accompanied by a list of lining residues and also its basic physicochemical properties. The users can tune advanced parameters when performing a channel search to direct the search according to their needs. The MOLEonline 2.0 application is freely available via the Internet at http://ncbr.muni.cz/mole or http://mole.upol.cz.
The pdf approach to turbulent flow
NASA Technical Reports Server (NTRS)
Kollmann, W.
1990-01-01
This paper provides a detailed discussion of the theory and application of probability density function (pdf) methods, which provide a complete statistical description of turbulent flow fields at a single point or a finite number of points. The basic laws governing the flow of Newtonian fluids are set up in the Eulerian and the Lagrangian frame, and the exact and linear equations for the characteristic functionals in those frames are discussed. Pdf equations in both frames are derived as Fourier transforms of the equations of the characteristic functions. Possible formulations for the nonclosed terms in the pdf equation are discussed, their properties are assessed, and closure modes for the molecular-transport and the fluctuating pressure-gradient terms are reviewed. The application of pdf methods to turbulent combustion flows, supersonic flows, and the interaction of turbulence with shock waves is discussed.
SF6-alternative gases for application in gas-insulated switchgear
NASA Astrophysics Data System (ADS)
Li, Xingwen; Zhao, Hu; Murphy, Anthony B.
2018-04-01
The environmental problems caused by greenhouse gases have received unprecedented attention. Sulfur hexafluoride (SF6), which is the preferred gas for use in gas-insulated switchgear (circuit breakers, disconnect switches, etc. for high-voltage electrical circuits), has a very high global warming potential, and there is a large international effort to find alternative gases. Recently, this effort has made important progress, with promising alternative gases being identified and tested. An overview, in particular the current state of the art, of the study of SF6-alternative gases is presented in the paper. The review focuses on the application of the SF6-alternative gases in gas-insulated switchgear, with detailed analysis of calculations and measurements of their basic physical properties, dielectric strengths, and arc-quenching capabilities. Finally, a discussion of and perspectives on current research and future research directions are presented.
Electrophysiological measurement of human auditory function
NASA Technical Reports Server (NTRS)
Galambos, R.
1975-01-01
Knowledge of the human auditory evoked response is reviewed, including methods of determining this response, the way particular changes in the stimulus are coupled to specific changes in the response, and how the state of mind of the listener will influence the response. Important practical applications of this basic knowledge are discussed. Measurement of the brainstem evoked response, for instance, can state unequivocally how well the peripheral auditory apparatus functions. It might then be developed into a useful hearing test, especially for infants and preverbal or nonverbal children. Clinical applications of measuring the brain waves evoked 100 msec and later after the auditory stimulus are undetermined. These waves are clearly related to brain events associated with cognitive processing of acoustic signals, since their properties depend upon where the listener directs his attention and whether how long he expects the signal.
Murgia, Sergio; Falchi, Angela Maria; Meli, Valeria; Schillén, Karin; Lippolis, Vito; Monduzzi, Maura; Rosa, Antonella; Schmidt, Judith; Talmon, Yeshayahu; Bizzarri, Ranieri; Caltagirone, Claudia
2015-05-01
We present here an innovative, fluorescent, monoolein-based cubosome dispersion. Rather than embedded within the monoolein palisade, the fluorescent imaging agent, namely dansyl, was conjugated to the terminal ethylene oxide moieties of the block copolymer Pluronic F108. We discuss the physicochemical and photophysical properties of this fluorescent Pluronic and of a cubosome formulation stabilized by a mixture of dansyl-conjugated and non-conjugated Pluronic, also including an anticancer drug (quercetin). Furthermore, we performed biocompatibility tests against HeLa cells to assess internalization and cytotoxicity features of this nanoparticles aqueous dispersion. Cryo-TEM, SAXS, and DLS analysis, proved the bicontinuous cubic inner nanostructure and the morphology of this fluorescent cubosome dispersion, while photophysical measurements and biocompatibility results basically validate their potential use for theranostic nanomedicine applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Jonnal, Ravi S; Kocaoglu, Omer P; Zawadzki, Robert J; Liu, Zhuolin; Miller, Donald T; Werner, John S
2016-07-01
Optical coherence tomography (OCT) has enabled "virtual biopsy" of the living human retina, revolutionizing both basic retina research and clinical practice over the past 25 years. For most of those years, in parallel, adaptive optics (AO) has been used to improve the transverse resolution of ophthalmoscopes to foster in vivo study of the retina at the microscopic level. Here, we review work done over the last 15 years to combine the microscopic transverse resolution of AO with the microscopic axial resolution of OCT, building AO-OCT systems with the highest three-dimensional resolution of any existing retinal imaging modality. We surveyed the literature to identify the most influential antecedent work, important milestones in the development of AO-OCT technology, its applications that have yielded new knowledge, research areas into which it may productively expand, and nascent applications that have the potential to grow. Initial efforts focused on demonstrating three-dimensional resolution. Since then, many improvements have been made in resolution and speed, as well as other enhancements of acquisition and postprocessing techniques. Progress on these fronts has produced numerous discoveries about the anatomy, function, and optical properties of the retina. Adaptive optics OCT continues to evolve technically and to contribute to our basic and clinical knowledge of the retina. Due to its capacity to reveal cellular and microscopic detail invisible to clinical OCT systems, it is an ideal companion to those instruments and has the demonstrable potential to produce images that can guide the interpretation of clinical findings.
The JRC-ITU approach to the safety of advanced nuclear fuel cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanghaenel, T.; Rondinella, V.V.; Somers, J.
2013-07-01
The JRC-ITU safety studies of advanced fuels and cycles adopt two main axes. First the full exploitation of still available and highly relevant knowledge and samples from past fuel preparation and irradiation campaigns (complementing the limited number of ongoing programmes). Secondly, the shift of focus from simple property measurement towards the understanding of basic mechanisms determining property evolution and behaviour of fuel compounds during normal, off-normal and accident conditions. The final objective of the second axis is the determination of predictive tools applicable to systems and conditions different from those from which they were derived. State of the art experimentalmore » facilities, extensive networks of partnerships and collaboration with other organizations worldwide, and a developing programme for training and education are essential in this approach. This strategy has been implemented through various programs and projects. The SUPERFACT programme constitutes the main body of existing knowledge on the behavior in-pile of MOX fuel containing minor actinides. It encompassed all steps of a closed fuel cycle. Another international project investigating the safety of a closed cycle is METAPHIX. In this case a U-Pu19-Zr10 metal alloy containing Np, Am and Cm constitutes the fuel. 9 test pins have been prepared and irradiated. In addition to the PIE (Post Irradiation Examination), pyrometallurgical separation of the irradiated fuel has been performed, to demonstrate all the steps of a multiple recycling closed cycle and characterize their safety relevant aspects. Basic studies like thermodynamic fuel properties, fuel-cladding-coolant interactions have also been carried out at JRC-ITU.« less
ERIC Educational Resources Information Center
Umar, Yunusa
2014-01-01
A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…
41 CFR 102-85.25 - What is the basic principle governing OAs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... principle governing OAs? 102-85.25 Section 102-85.25 Public Contracts and Property Management Federal... POLICY FOR OCCUPANCY IN GSA SPACE Pricing Policy-General § 102-85.25 What is the basic principle governing OAs? The basic principle governing OAs is to adopt the private sector practice of capturing in a...
Contract Award on Initial Proposals
1988-09-30
3 2. Competition in Contracting Act ... ......... 6 3. Federal Property and Administrative Services Act 10 B. Basic Rules for Award Without...Discussions Before CICA . 11 C. Basic Rules for Award Without Discussions After Passage of CICA .......... ........................ ... 12 D. Award...controlled by statute. This chapter will explore those statutes and their antecedents. The basic rules for awarding contracts without discussions
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film-forming material in a working device is a complex, multifaceted endeavor. It requires close attention to maintaining the optical properties of the electro-optic active portion of the polymer while manipulating the polymer structure to obtain the desired secondary polymer properties.
The amazing graphene: an educational bridge connecting different physics concepts
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Bellomonte, Leonardo; Pizzolato, Nicola
2018-01-01
The purpose of this work is to present a learning workshop covering various physics concepts aimed at strengthening physics/engineering student understanding about the remarkable properties of two dimensional materials, graphene in particular. At the basis of this learning experience is the idea of blending and interconnecting separate pieces of knowledge already acquired by undergraduates in different courses and to help them visualize and link the concepts lying beyond separate chunks of information or equations. Graphene represents an appropriate unifying framework to achieve this task in view of its monatomic structure and various exotic processes peculiar to this and some other two dimensional crystals. We first discuss essential elements of group theory and their application to the symmetry properties of graphene with the aim of presenting to physics/electronic engineering undergraduates that in a system characterized by symmetry properties such as a crystal, the acquisition of the solutions of the Schrödinger equation is simpler and easier to visualize than when these properties are ignored. We have then selected and discussed some remarkable properties of graphene: the linear electron energy-momentum dispersion relation in proximity of some edge points of the Brillouin zone; the consequential massless Dirac behaviour of the electrons; their tunnelling behaviour and the related Klein paradox; the chiral behaviour of electrons and holes; the fractional quantum Hall effect in massless particles; and the quantum behaviour of correlated quasiparticles observable at macroscopic level. These arguments are presented in a context covering related pieces of knowledge about classical, quantum and relativistic mechanics. Finally, we mention current applications and possible future ones with the aim of providing students with an expertise that could be useful for further work experiences and scientific investigations regarding new materials, having far-reaching implications in various fields such as basic physics, materials science and engineering applications.
Hoffmann, Axel; Schultheiß, Helmut
2014-12-17
Magnetic interactions give rise to a surprising amount of complexity due to the fact that both static and dynamic magnetic properties are governed by competing short-range exchange interactions and long-range dipolar coupling. Even though the underlying dynamical equations are well established, the connection of magnetization dynamics to other degrees of freedom, such as optical excitations, charge and heat flow, or mechanical motion, make magnetism a mesoscale research problem that is still wide open for exploration. Synthesizing magnetic materials and heterostructures with tailored properties will allow to take advantage of magnetic interactions spanning many length-scales, which can be probed with advancedmore » spectroscopy and microscopy and modeled with multi-scale simulations. Finally, this paper highlights some of the current basic research topics in mesoscale magnetism, which beyond their fundamental science impact are also expected to influence applications ranging from information technologies to magnetism based energy conversion.« less
NASA Astrophysics Data System (ADS)
Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.
2009-11-01
Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.
NASA Astrophysics Data System (ADS)
Patra, Tarak; Yang, Junhong; Cheng, Yiz; Simmons, David
Polymeric ionic liquids (PILs) are very promising materials to enable more environmentally stable high density energy storage devices. Realization of PILs providing high environmental and mechanical stability while maximizing ion conductivity would be accelerated by an improved molecular level understanding of their structure and dynamics. Extensive evidence suggests that both mechanical properties and ion conductivity in anhydrous PILs are intimately related to the PIL's glass formation behavior. This represents a major challenge to the rational design of these materials, given that the basic nature of glass formation and its connection to molecular properties remains a substantial open question in polymer and condensed matter physics. Here we describe coarse-grained and atomistic molecular dynamics simulations probing the relationship between PIL architecture and interactions, glass formation behavior, and ion transport characteristics. These studies provide guidance towards the design of PILs with improved stability and ion conductivity for future energy applications.
NASA Astrophysics Data System (ADS)
Jeong, Eun Seon; Byun, Aram; Kim, Jin Woong
2014-03-01
Lipid molecules have both hydrophilic and hydrophobic properties. Since their packing parameter ranges from 0.5 to 1, they self-assemble to form a vesicle structure, liposome. Thanks to the vesicle structure, liposome is able to encapsulate both hydrophilic and hydrophobic active ingredients, thus widening its applicability to pharmaceutical, cosmetic, and food industry. However, its vesicular structure is readily transferred to micelle in the presence of amphiphilic additives with low packing parameters. Therefore, it is critical to developing a technique to overcome this drawback. This study introduces a microfluidic approach to physically immobilize liposome in microgel particles. For this, we generate a uniform liposome-in-oil-in-water emulsion in a capillary-based microfluidic device. Basically, we observe how the flows in micro-channels affect generation of embryo emulsion drops. Then, the uniform emulsion is solidified by using photo-polymerization. Finally, we characterize the particle morphology, membrane fluidity, and mesh property, encapsulation efficiency and releasing.
Electrical and optical properties of Ar/NH{sub 3} atmospheric pressure plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zheng-Shi, E-mail: changzhsh1984@163.com, E-mail: gjzhang@xjtu.edu.cn; Yao, Cong-Wei; Chen, Si-Le
Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH{sub 3}) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components ofmore » plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH{sub 3} APPJ to help judge the usability in its applications.« less
Evaluation of taste solutions by sensor fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko
In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less
Modelling, analyses and design of switching converters
NASA Technical Reports Server (NTRS)
Cuk, S. M.; Middlebrook, R. D.
1978-01-01
A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.
Hwang, Ki-Hwan; Seo, Hyeon Jin; Nam, Sang-Hun; Boo, Jin-Hyo
2015-10-01
Recently, the use of PSS in flexible device electrodes has been reported. PSS treatment consists of a step in which a small amount of surfactant is added to enhance the adhesion between PSS and the substrate or TCO materials. However, basic research into the effect of the surfactant is lacking. We studied the effects of sodium dodecyl sulfate (SDS) at controlled concentrations in aqueous PSS solution and that it enhanced the conductivity in the mixed thin films with surfactant and PSS. The thin films were prepared by the spin coating method. To study the structural effects on the resulting electrical properties, the thin films were investigated by FE-SEM (Field Emission Scanning Electron Microscopy) and AFM (Atomic Force Microscopy). At the same time, the electrical properties were investigated using a 4-point probe and solar simulator.
Understanding volatility correlation behavior with a magnitude cross-correlation function
NASA Astrophysics Data System (ADS)
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
Role of alginate in antibacterial finishing of textiles.
Li, Jiwei; He, Jinmei; Huang, Yudong
2017-01-01
Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakade, S. G., E-mail: sundipkakade@gmail.com, E-mail: ydk@physics.unipune.ac.in; Department of Physics, Sir Parashurambhau College, Pune-411 030; Kambale, R. C.
Cobalt ferrite (CoFe{sub 2}O{sub 4}) shown to be promising candidate for applications such as high-density magnetic recording, enhanced memory storage, magnetic fluids and catalysts. Utility of ferrite nanoparticles depends on its size, dispersibility in solutions, and magnetic properties. We have investigated the structural properties of synthesized cobalt ferrite nanoparticles synthesized by sol gel auto combustion for uncontrolled, acidic, neutral and basic pH values. X-ray diffraction (XRD) study confirms the cubic spinel phase formation with lattice constant 8.38 Å. In this study, we have optimized the pH value to synthesize homogenous cobalt ferrite nanoparticles with enhanced magnetic behavior. The surface morphologymore » has been investigated by employing SEM images and the confirmation of spinel ferrite was also supported by using IR spectroscopy. Magnetic measurements for CoFe{sub 2}O{sub 4} compositions (with pH <1, pH = 3, 7, 10) were investigated using VSM measurements.« less
Dynamic and social behaviors of human pluripotent stem cells.
Phadnis, Smruti M; Loewke, Nathan O; Dimov, Ivan K; Pai, Sunil; Amwake, Christine E; Solgaard, Olav; Baer, Thomas M; Chen, Bertha; Reijo Pera, Renee A
2015-09-18
Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored.
Dynamic and social behaviors of human pluripotent stem cells
Phadnis, Smruti M.; Loewke, Nathan O.; Dimov, Ivan K.; Pai, Sunil; Amwake, Christine E.; Solgaard, Olav; Baer, Thomas M.; Chen, Bertha; Pera, Renee A. Reijo
2015-01-01
Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored. PMID:26381699
Understanding volatility correlation behavior with a magnitude cross-correlation function.
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
High nitrogen pressure solution growth of GaN
NASA Astrophysics Data System (ADS)
Bockowski, Michal
2014-10-01
Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.
Thermodynamic properties for arsenic minerals and aqueous species
Nordstrom, D. Kirk; Majzlan, Juraj; Königsberger, Erich; Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj
2014-01-01
Quantitative geochemical calculations are not possible without thermodynamic databases and considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). Oelkers et al. (2009) wrote, “The creation of thermodynamic databases may be one of the greatest advances in the field of geochemistry of the last century.” Thermodynamic data have been used for basic research needs and for a countless variety of applications in hazardous waste management and policy making (Zhu and Anderson 2002; Nordstrom and Archer 2003; Bethke 2008; Oelkers and Schott 2009). The challenge today is to evaluate thermodynamic data for internal consistency, to reach a better consensus of the most reliable properties, to determine the degree of certainty needed for geochemical modeling, and to agree on priorities for further measurements and evaluations.
Prescribing methadone for pain management in end-of-life care.
Manfredonia, John F
2005-03-01
Methadone hydrochloride is an effective, inexpensive, and relatively safe opioid to use in the treatment of patients with chronic pain. It is especially effective in management of pain during the final stages of life, as it is the only long-acting analgesic available in liquid form. However, because methadone has a long half-life, individual wide variations, and potential for accumulation and overdosage, physicians must judiciously and conscientiously prescribe it. Also, they should closely monitor patients during the titration phase and educate them with regard to basic pharmacologic properties and potential side effects. A plan to start at low doses and proceed slowly is applicable to methadone.
Approximate Matching as a Key Technique in Organization of Natural and Artificial Intelligence
NASA Technical Reports Server (NTRS)
Mack, Marilyn; Lapir, Gennadi M.; Berkovich, Simon
2000-01-01
The basic property of an intelligent system, natural or artificial, is "understanding". We consider the following formalization of the idea of "understanding" among information systems. When system I issues a request to system 2, it expects a certain kind of desirable reaction. If such a reaction occurs, system I assumes that its request was "understood". In application to simple, "push-button" systems the situation is trivial because in a small system the required relationship between input requests and desired outputs could be specified exactly. As systems grow, the situation becomes more complex and matching between requests and actions becomes approximate.
Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti.
Adelman, Zachary N; Jasinskiene, Nijole; James, Anthony A
2002-04-30
Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.
Jiu-Sheng, Li; Ze-Jiang, Zhao; Jian-Quan, Yao
2017-11-27
In order to extend to 3-bit encoding, we propose notched-wheel structures as polarization insensitive coding metasurfaces to control terahertz wave reflection and suppress backward scattering. By using a coding sequence of "00110011…" along x-axis direction and 16 × 16 random coding sequence, we investigate the polarization insensitive properties of the coding metasurfaces. By designing the coding sequences of the basic coding elements, the terahertz wave reflection can be flexibly manipulated. Additionally, radar cross section (RCS) reduction in the backward direction is less than -10dB in a wide band. The present approach can offer application for novel terahertz manipulation devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, B.L.; Hueda, A.H.; Jodra, L.G.
1958-01-01
The lateest trends in the preparation of modern synthetic ion exchangers obtained by the treatment of polymerization and polycondensation products are reviewed. The physical and chemical characteristics, especially the stability, of exchangers are discussed. The utilization of ion exchangers in basic operations is described and illustrated with the results obtained in its application to the hydrometallurgy of uranium. The life of such materials are also considered. The most important synthetic commercial exchangers and their uses and properties are tabulated. (tr-auth)
1983-03-01
PARK MATERIALS RESEARCH LA.. L E CROSS ET AL. MAR 83 N00014-78-C-0291 F/G Pill! I 1.0 ü1- I 2.5 I.I 12.2 - li. 112.0 1.8 125 Ulli 1.4...DTIC L.E. Cross R.E. Newnham S-5- £arsch ÄELECTE J.V. Bi^gers ^k SEP 7 1983 s TABLE OF CONTENTS INTRODUCTION 1 SECTION I 2 1.0 STUDIES...Niobate. 85 87 89 91 93 & i • A • D ity Codes and/or Bial - -. • - 1 • ’ ’• i i i —m^^^mv IV APPENDIX 26 Dielectric Properties of
Monoparametric family of metrics derived from classical Jensen-Shannon divergence
NASA Astrophysics Data System (ADS)
Osán, Tristán M.; Bussandri, Diego G.; Lamberti, Pedro W.
2018-04-01
Jensen-Shannon divergence is a well known multi-purpose measure of dissimilarity between probability distributions. It has been proven that the square root of this quantity is a true metric in the sense that, in addition to the basic properties of a distance, it also satisfies the triangle inequality. In this work we extend this last result to prove that in fact it is possible to derive a monoparametric family of metrics from the classical Jensen-Shannon divergence. Motivated by our results, an application into the field of symbolic sequences segmentation is explored. Additionally, we analyze the possibility to extend this result into the quantum realm.
Mirror neuron system: basic findings and clinical applications.
Iacoboni, Marco; Mazziotta, John C
2007-09-01
In primates, ventral premotor and rostral inferior parietal neurons fire during the execution of hand and mouth actions. Some cells (called mirror neurons) also fire when hand and mouth actions are just observed. Mirror neurons provide a simple neural mechanism for understanding the actions of others. In humans, posterior inferior frontal and rostral inferior parietal areas have mirror properties. These human areas are relevant to imitative learning and social behavior. Indeed, the socially isolating condition of autism is associated with a deficit in mirror neuron areas. Strategies inspired by mirror neuron research recently have been used in the treatment of autism and in motor rehabilitation after stroke.