ERIC Educational Resources Information Center
Tsaparlis, Georgios; Papaphotis, Georgios
2009-01-01
This study tested for deep understanding and critical thinking about basic quantum chemical concepts taught at 12th grade (age 17-18). Our aim was to achieve conceptual change in students. A quantitative study was conducted first (n = 125), and following this 23 selected students took part in semi-structured interviews either individually or in…
ERIC Educational Resources Information Center
Papaphotis, Georgios; Tsaparlis, Georgios
2008-01-01
Part 1 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught in the twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used. The study compared performance in five questions that tested recall of knowledge or application of algorithmic procedures (type-A…
ERIC Educational Resources Information Center
Papaphotis, Georgios; Tsaparlis, Georgios
2008-01-01
Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…
ERIC Educational Resources Information Center
Stefani, Christina; Tsaparlis, Georgios
2009-01-01
We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…
Dreuw, Andreas
2006-11-13
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich
2015-02-02
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence ofmore » product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.« less
NASA Astrophysics Data System (ADS)
Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.
2014-05-01
Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.
Facilitative effect of graphene quantum dots in MoS2 growth process by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Zhang, Lu; Wang, Yongsheng; Dong, Yanfang; Zhao, Xuan; Fu, Chen; He, Dawei
2018-01-01
Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61335006, and 61378073), and the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China.
Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger
2016-07-26
Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.
Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F
2011-03-03
The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.
Nonequilibrium radiative hypersonic flow simulation
NASA Astrophysics Data System (ADS)
Shang, J. S.; Surzhikov, S. T.
2012-08-01
Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange, computational algorithms, and the aerodynamic-electromagnetic interaction are summarized and delineated. The critical basic research areas for physic-based hypersonic flow simulation should become self-evident through the present discussion. Nevertheless intensive basic research efforts must be sustained in these areas for fundamental knowledge and future technology advancement.
Novel Quantum Dot Gate FETs and Nonvolatile Memories Using Lattice-Matched II-VI Gate Insulators
NASA Astrophysics Data System (ADS)
Jain, F. C.; Suarez, E.; Gogna, M.; Alamoody, F.; Butkiewicus, D.; Hohner, R.; Liaskas, T.; Karmakar, S.; Chan, P.-Y.; Miller, B.; Chandy, J.; Heller, E.
2009-08-01
This paper presents the successful use of ZnS/ZnMgS and other II-VI layers (lattice-matched or pseudomorphic) as high- k gate dielectrics in the fabrication of quantum dot (QD) gate Si field-effect transistors (FETs) and nonvolatile memory structures. Quantum dot gate FETs and nonvolatile memories have been fabricated in two basic configurations: (1) monodispersed cladded Ge nanocrystals (e.g., GeO x -cladded-Ge quantum dots) site-specifically self-assembled over the lattice-matched ZnMgS gate insulator in the channel region, and (2) ZnTe-ZnMgTe quantum dots formed by self-organization, using metalorganic chemical vapor-phase deposition (MOCVD), on ZnS-ZnMgS gate insulator layers grown epitaxially on Si substrates. Self-assembled GeO x -cladded Ge QD gate FETs, exhibiting three-state behavior, are also described. Preliminary results on InGaAs-on-InP FETs, using ZnMgSeTe/ZnSe gate insulator layers, are presented.
Yuan, Jia; Long, Xinping; Zhang, Chaoyang
2016-12-01
N-Oxidization is an important strategy for enhancing the density and energy of energetic materials. Nevertheless, the influence of N + -O - introduction on molecular stability remains relatively unknown. Thus, the present work comprehensively studied 102 basic N-rich ring structures, including azoles, furazans, and azines, as well as their N-oxides by quantum chemical calculations. The introduction of N + -O - weakens molecular stability in most cases because the process elongates chemical bonds, decreases ring aromaticity, narrows the gaps between the highest occupied and lowest unoccupied molecular orbitals, and increases the photochemical reactivity. Besides, the easy H transfer to the neighboring O atom, which forms a N-OH isomer in azoles, renders the stabilization by N-oxide introduction ineffective. However, N-oxide introduction can enhance the molecular stability of 1,2,3,4-tetrazine-1,3-dioxide and tetrazino-tetrazine 1,3,6,8-tetraoxide by promoting σ-π separation and relieving lone-pair repulsion. Moreover, the alternate arrangement of positive and negative charges is another factor stabilizing the 1,2,3,4-tetrazine ring by 1,3-dioxidation. Finally, we assess the accessibility of N-oxidized azoles and azines by regarding N 2 O and H 2 O 2 as oxidizers. We find that all the oxidations were exothermic, thermodynamically spontaneous, and kinetically feasible. After an overall evaluation, we propose 19 N-oxides as basic structures for high-energy materials with considerable stability.
Musharraf, Syed Ghulam; Ul Arfeen, Qamar; Ul Haq, Faraz; Khatoon, Aliya; Azher Ali, Rahat
2017-10-01
Methyltestosterone is a synthetic testosterone derivative commonly used for the treatment of testosterone deficiency in males and one the anabolic steroids whose use is banned by World Anti-Doping Agency (WADA). This study presents a simple, cost-effective and rapid stability-indicating assay for densitometric quantification of methyltestosterone in pharmaceutical formulation. The developed method employed pre-coated TLC plates with mobile phase hexane:acetone (6.5:3.5 v/v). Limit of detection and limit of quantitation were found to be 2.06 and 6.24 ng/spot, respectively. Stress degradation study of methyltestosterone was conducted by applying various stress conditions such as hydrolysis under acidic, basic and neutral conditions, heating in anhydrous conditions and exposure to light. Methyltestosterone was found to be susceptible to photodegradation, acidic and basic hydrolysis. Degraded products were well resolved with significantly different Rf values. Acid degraded product was identified as 17,17-dimethyl-18-norandrosta-4,13(14)-dien-3-one through spectroscopic methods. The reactivity of methyltestosterone under applied stress conditions was also explained by quantum chemical calculations. The developed method is found to be repeatable, selective and accurate for quantification of methyltestosterone and can be employed for routine analysis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vibrational Heat Transport in Molecular Junctions
NASA Astrophysics Data System (ADS)
Segal, Dvira; Agarwalla, Bijay Kumar
2016-05-01
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.
NASA Astrophysics Data System (ADS)
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
Complete Quantum Control of a Single Silicon-Vacancy Center in a Diamond Nanopillar
NASA Astrophysics Data System (ADS)
Zhang, Jingyuan Linda; Lagoudakis, Konstantinos G.; Tzeng, Yan-Kai; Dory, Constantin; Radulaski, Marina; Kelaita, Yousif; Shen, Zhi-Xun; Melosh, Nicholas A.; Chu, Steven; Vuckovic, Jelena
Coherent quantum control of a quantum bit (qubit) is an important step towards its use in a quantum network. SiV- center in diamond offers excellent physical qualities such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the fast spin manipulation and techniques to extend the spin coherence time are under active investigation. Here, we demonstrate full coherent control over the state of a single SiV- center in a diamond nanopillar using ultrafast optical pulses. The high quality of the chemical vapor deposition grown SiV- centers allows us to coherently manipulate and quasi-resonantly read out the state of the single SiV- center. Moreover, the SiV- centers being coherently controlled are integrated into diamond nanopillar arrays in a site-controlled, individually addressable manner with high yield, low strain, and high spectral stability, which paves the way for scalable on chip optically accessible quantum system in a quantum photonic network. Financial support is provided by the DOE Office of Basic Energy Sciences, Division of Materials Sciences through Stanford Institute for Materials and Energy Sciences (SIMES) under contract DE-AC02-76SF00515.
Maxwell’s demon in the quantum-Zeno regime and beyond
NASA Astrophysics Data System (ADS)
Engelhardt, G.; Schaller, G.
2018-02-01
The long-standing paradigm of Maxwell’s demon is till nowadays a frequently investigated issue, which still provides interesting insights into basic physical questions. Considering a single-electron transistor, where we implement a Maxwell demon by a piecewise-constant feedback protocol, we investigate quantum implications of the Maxwell demon. To this end, we harness a dynamical coarse-graining method, which provides a convenient and accurate description of the system dynamics even for high measurement rates. In doing so, we are able to investigate the Maxwell demon in a quantum-Zeno regime leading to transport blockade. We argue that there is a measurement rate providing an optimal performance. Moreover, we find that besides building up a chemical gradient, there can be also a regime where the feedback loop additionally extracts energy, which results from the energy non-conserving character of the projective measurement.
Mid-infrared absorption spectroscopy using quantum cascade lasers
NASA Astrophysics Data System (ADS)
Haibach, Fred; Erlich, Adam; Deutsch, Erik
2011-06-01
Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.
On the theory of time dilation in chemical kinetics
NASA Astrophysics Data System (ADS)
Baig, Mirza Wasif
2017-10-01
The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas
2015-09-15
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
NASA Astrophysics Data System (ADS)
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas
2017-12-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.
Optical properties of two types of sex hormones of the cyclopentenephenanthrene series
NASA Astrophysics Data System (ADS)
Meshalkin, Yu. P.; Artyukhov, V. Ya.; Pomogaev, V. A.
2003-09-01
The spectral and luminescent characteristics of estradiol and testosterone—two basic sex hormones of the cyclopentenephenanthrene series—are calculated by employing quantum-chemical methods. The results of calculations are in good agreement with experimental data. It is shown that fluorescence observed in estrogens is associated with the occurrence of the lowest ππ state, while the absence of fluorescence in androgens is attributed to the existence of the lowest nπ state, from which fluorescence is forbidden.
Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes
NASA Astrophysics Data System (ADS)
Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy
2018-02-01
The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.
Djordjevic, Ivan B
2010-04-12
The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
Quantum Entanglement and Chemical Reactivity.
Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S
2015-11-10
The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.
Quantum indistinguishability in chemical reactions.
Fisher, Matthew P A; Radzihovsky, Leo
2018-05-15
Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
An intermediate level of abstraction for computational systems chemistry.
Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F
2017-12-28
Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).
The Nature of the Chemical Bond--1990.
ERIC Educational Resources Information Center
Ogilvie, J. F.
1990-01-01
Three aspects of quantum mechanics in modern chemistry are stressed: the fundamental structure of quantum mechanics as a basis of chemical applications, the relationship of quantum mechanics to atomic and molecular structure, and the consequent implications for chemical education. A list of 64 references is included. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haw; Hsia, Chih-Hao
Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility maymore » be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.« less
New insights into ETS-10 and titanate quantum wire: a comprehensive characterization.
Jeong, Nak Cheon; Lee, Young Ju; Park, Jung-Hyun; Lim, Hyunjin; Shin, Chae-Ho; Cheong, Hyeonsik; Yoon, Kyung Byung
2009-09-16
The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.
Ma, Guangcai; Yuan, Quan; Yu, Haiying; Lin, Hongjun; Chen, Jianrong; Hong, Huachang
2017-04-01
The binding of organic chemicals to serum albumin can significantly reduce their unbound concentration in blood and affect their biological reactions. In this study, we developed a new QSAR model for bovine serum albumin (BSA) - water partition coefficients (K BSA/W ) of neutral organic chemicals with large structural variance, logK BSA/W values covering 3.5 orders of magnitude (1.19-4.76). All chemical geometries were optimized by semi-empirical PM6 algorithm. Several quantum chemical parameters that reflect various intermolecular interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates the regression model derived from logK ow , the most positive net atomic charges on an atom, Connolly solvent excluded volume, polarizability, and Abraham acidity could explain the partitioning mechanism of organic chemicals between BSA and water. The simulated external validation and cross validation verifies the developed model has good statistical robustness and predictive ability, thus can be used to estimate the logK BSA/W values for chemicals in application domain, accordingly to provide basic data for the toxicity assessment of the chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bich Ha, Nguyen
2011-12-01
Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the main aims of the textbook. The book consists of 15 chapters. According to their detailed contents they can be divided into three groups. In five chapters forming the first group (Introduction, Structure, Length Scales, Types of Nanostructures, Absorption and Emission Basics) the author presents the notions, definitions and concepts related to nanosystems, as well as the length scales of all their physical parameters. The contents of these chapters have been written for all readers studying any undergraduate academic programme in natural sciences and engineering. The subsequent seven chapters forming the second group (A Quantum Mechanics Review, Model Quantum Mechanics Problems, Additional Model Problems, Density of States, Bands, Time-Dependent Perturbation Theory, Interband Transitions) contain a comprehensive and easily understandable presentation of the theoretical basics of nanoscience. The last three chapters (Synthesis, Characterization, Applications) contain presentations on the fundamental methods in the experimental studies and applications of nanosystems. This book is very useful not only for training beginners in research and engineering in nanoscience and nanotechnology, but also for attracting the interest of specialists in other scientific disciplines to the application of the achievements of this new emerging multidisciplinary scientific field.
Inelastic electron tunneling mediated by a molecular quantum rotator
NASA Astrophysics Data System (ADS)
Sugimoto, Toshiki; Kunisada, Yuji; Fukutani, Katsuyuki
2017-12-01
Inelastic electron tunneling (IET) accompanying nuclear motion is not only of fundamental physical interest but also has strong impacts on chemical and biological processes in nature. Although excitation of rotational motion plays an important role in enhancing electric conductance at a low bias, the mechanism of rotational excitation remains veiled. Here, we present a basic theoretical framework of IET that explicitly takes into consideration quantum angular momentum, focusing on a molecular H2 rotator trapped in a nanocavity between two metallic electrodes as a model system. It is shown that orientationally anisotropic electrode-rotator coupling is the origin of angular-momentum exchange between the electron and molecule; we found that the anisotropic coupling imposes rigorous selection rules in rotational excitation. In addition, rotational symmetry breaking induced by the anisotropic potential lifts the degeneracy of the energy level of the degenerated rotational state of the quantum rotator and tunes the threshold bias voltage that triggers rotational IET. Our theoretical results provide a paradigm for physical understanding of the rotational IET process and spectroscopy, as well as molecular-level design of electron-rotation coupling in nanoelectronics.
Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method
ERIC Educational Resources Information Center
Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo
2012-01-01
This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash (Technical Monitor)
1998-01-01
The tubular forms of fullerenes popularly known as carbon nanotubes are experimentally produced as single-, multiwall, and rope configurations. The nanotubes and nanoropes have shown to exhibit unusual mechanical and electronic properties. The single wall nanotubes exhibit both semiconducting and metallic behavior. In short undefected lengths they are the known strongest fibers which are unbreakable even when bent in half. Grown in ropes their tensile strength is approximately 100 times greater than steel at only one sixth the weight. Employing large scale classical and quantum molecular dynamics simulations we will explore the use of carbon nanotubes and carbon nanotube junctions in 2-, 3-, and 4-point molecular electronic device components, dynamic strength characterization for compressive, bending and torsional strains, and chemical functionalization for possible use in a nanoscale molecular motor. The above is an unclassified material produced for non-competitive basic research in the nanotechnology area.
NASA Astrophysics Data System (ADS)
Soriano-Correa, Catalina; Raya, Angélica; Barrientos-Salcedo, Carolina; Esquivel, Rodolfo O.
2014-06-01
Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH&HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.
Generation of Antibunched Light by Excited Molecules in a Microcavity Trap
NASA Technical Reports Server (NTRS)
DeMartini, F.; DiGiuseppe, G.; Marrocco, M.
1996-01-01
The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.
A Simple Encryption Algorithm for Quantum Color Image
NASA Astrophysics Data System (ADS)
Li, Panchi; Zhao, Ya
2017-06-01
In this paper, a simple encryption scheme for quantum color image is proposed. Firstly, a color image is transformed into a quantum superposition state by employing NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state into a balanced superposition state by employed the controlled rotation gates. At this time, the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-qubits basic states. After measuring, the whole image is an uniform white noise, which does not provide any information. Decryption is the reverse process of encryption. The experimental results on the classical computer show that the proposed encryption scheme has better security.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
NASA Technical Reports Server (NTRS)
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser
Prasad, Saradh; Saleh AlHesseny, Hanan; AlSalhi, Mohamad S.; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-01
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%. PMID:28336863
A High Power, Frequency Tunable Colloidal Quantum Dot (CdSe/ZnS) Laser.
Prasad, Saradh; AlHesseny, Hanan Saleh; AlSalhi, Mohamad S; Devaraj, Durairaj; Masilamai, Vadivel
2017-01-30
Tunable lasers are essential for medical, engineering and basic science research studies. Most conventional solid-state lasers are capable of producing a few million laser shots, but limited to specific wavelengths, which are bulky and very expensive. Dye lasers are continuously tunable, but exhibit very poor chemical stability. As new tunable, efficient lasers are always in demand, one such laser is designed with various sized CdSe/ZnS quantum dots. They were used as a colloid in tetrahydrofuran to produce a fluorescent broadband emission from 520 nm to 630 nm. The second (532 nm) and/or third harmonic (355 nm) of the Nd:YAG laser (10 ns, 10 Hz) were used together as the pump source. In this study, different sized quantum dots were independently optically pumped to produce amplified spontaneous emission (ASE) with 4 nm to 7 nm of full width at half-maximum (FWHM), when the pump power and focusing were carefully optimized. The beam was directional with a 7 mrad divergence. Subsequently, these quantum dots were combined together, and the solution was placed in a resonator cavity to obtain a laser with a spectral width of 1 nm and tunable from 510 to 630 nm, with a conversion efficiency of about 0.1%.
Modeling techniques for quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Modeling techniques for quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jirauschek, Christian; Kubis, Tillmann
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less
Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis.
Stauch, Tim; Dreuw, Andreas
2016-11-23
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications of quantum mechanochemical methods to point out their synergistic relationship with experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N., E-mail: sergei.molotkov@gmail.com
2012-05-15
The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Threemore » protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.« less
Quantum Error Correction with Biased Noise
NASA Astrophysics Data System (ADS)
Brooks, Peter
Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.
NASA Astrophysics Data System (ADS)
Hey, Anthony J. G.; Walters, Patrick
This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.
Quantum-chemical Calculations in the Study of Antitumour Compounds
NASA Astrophysics Data System (ADS)
Luzhkov, V. B.; Bogdanov, G. N.
1986-01-01
The results of quantum-chemical calculations on antitumour preparations concerning the mechanism of their action at the electronic and molecular levels and structure-activity correlations are discussed in this review. Preparations whose action involves alkylating and free-radial mechanisms, complex-forming agents, and antimetabolites are considered. Modern quantum-chemical methods for calculations on biologically active substances are described. The bibliography includes 106 references.
Quantum Dots: An Experiment for Physical or Materials Chemistry
ERIC Educational Resources Information Center
Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.
2005-01-01
An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.
Quantum-chemical insights from deep tensor neural networks
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221
Quantum-chemical insights from deep tensor neural networks.
Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre
2017-01-09
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
Quantum-chemical insights from deep tensor neural networks
NASA Astrophysics Data System (ADS)
Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre
2017-01-01
Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.
NASA Astrophysics Data System (ADS)
Miller, Tristan; Smallwood, Chris; Zhang, Wentao; Eisaki, Hiroshi; Lee, Dung-Hai; Lanzara, Alessandra
2015-03-01
Time- and Angle-resolved photoemission spectroscopy (tr-ARPES) has been used to directly measure the dynamics of many different properties of high-temperature superconductors, including the quasiparticle relaxation, cooper pair recombination, and many-body interactions. There have also been several intriguing results on several materials showing how laser pulses can manipulate their chemical potential on ultrafast timescales, and it's been suggested that these effects could find applications in optoelectronic devices. Studies on GaAs have also found that laser pulses may induce a surface voltage effect. Here, we extend these studies for the first time to a Bi2212 sample in the superconducting state, and disentangle the shift in chemical potential from surface voltage effects. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
Quantum Information in Non-physics Departments at Liberal Arts Colleges
NASA Astrophysics Data System (ADS)
Westmoreland, Michael
2012-02-01
Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.
Quantum Metric of Classic Physics
NASA Astrophysics Data System (ADS)
Machusky, Eugene
2017-09-01
By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.
ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations
NASA Astrophysics Data System (ADS)
Laloo, Jalal Z. A.; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai
2017-07-01
The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.
ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations.
Laloo, Jalal Z A; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai
2017-07-01
The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.
Quantum chemical studies of estrogenic compounds
USDA-ARS?s Scientific Manuscript database
Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...
Electronic properties of new topological quantum materials
NASA Astrophysics Data System (ADS)
Kaminski, Adam
Topological materials are characterized by the presence of nontrivial quantum electronic states, where often the electron spin is locked to its momentum. This opens up the possibility for developing new devices in which information is processed or stored by means of spin rather than charge. In this talk we will discuss the electronic properties of several of newly discovered topological quantum materials. In WTe2 we have observed a topological transition involving a change of the Fermi surface topology (known as a Lifshitz transition) driven by temperature. The strong temperature-dependence of the chemical potential that is at the heart of this phenomenon is also important for understanding the thermoelectric properties of such semimetals. Both WTe2 and MoTe2 were proposed to host type II Weyl semimetalic state. Indeed our data provides first experimental confirmation of such state in both of these materials. We will also present evidence for a new topological state in PtSn4 where pairs of extended Dirac node arcs rather are present rather than Dirac points, that is so far not understood theoretically. Our research opens up new directions on enhancing topological responsiveness of new quantum materials. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (ARPES measurements), Center for Emergent Materials, an NSF MRSEC, under Grant DMR-1420451 (theory and data anal.
Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing
NASA Astrophysics Data System (ADS)
Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias
2017-10-01
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
NASA Astrophysics Data System (ADS)
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
NASA Astrophysics Data System (ADS)
Fischer, R.; Müller, R.
1989-08-01
It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.
Electron-beam generated porous dextran gels: experimental and quantum chemical studies.
Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta
2014-06-01
The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.
Direct estimations of linear and nonlinear functionals of a quantum state.
Ekert, Artur K; Alves, Carolina Moura; Oi, Daniel K L; Horodecki, Michał; Horodecki, Paweł; Kwek, L C
2002-05-27
We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of some properties of quantum channels. Experimental realizations of the proposed network are within the reach of quantum technology that is currently being developed.
Particles, Waves, and the Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Christoudouleas, N. D.
1975-01-01
Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)
Secure Communication via Key Generation with Quantum Measurement Advantage in the Telecom Band
2013-10-30
II: Summary of Project In this basic research program we proposed to investigate the use of keyed communication in quantum noise as a key generation...implement quantum limited detection in our running-code OCDMA experiment to demonstrate (a) quantum measurement advantage creation between two users, (b...neither is adequate against known-plaintext attacks. This is a serious security problem facing the whole field of quantum cryptography in regard to both
Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering.
Loschen, Christoph; Klamt, Andreas
2015-06-01
The fact that novel drug candidates are becoming increasingly insoluble is a major problem of current drug development. Computational tools may address this issue by screening for suitable solvents or by identifying potential novel cocrystal formers that increase bioavailability. In contrast to other more specialized methods, the fluid phase thermodynamics approach COSMO-RS (conductor-like screening model for real solvents) allows for a comprehensive treatment of drug solubility, solvate and cocrystal formation and many other thermodynamics properties in liquids. This article gives an overview of recent COSMO-RS developments that are of interest for drug development and contains several new application examples for solubility prediction and solvate/cocrystal screening. For all property predictions COSMO-RS has been used. The basic concept of COSMO-RS consists of using the screening charge density as computed from first principles calculations in combination with fast statistical thermodynamics to compute the chemical potential of a compound in solution. The fast and accurate assessment of drug solubility and the identification of suitable solvents, solvate or cocrystal formers is nowadays possible and may be used to complement modern drug development. Efficiency is increased by avoiding costly quantum-chemical computations using a database of previously computed molecular fragments. COSMO-RS theory can be applied to a range of physico-chemical properties, which are of interest in rational crystal engineering. Most notably, in combination with experimental reference data, accurate quantitative solubility predictions in any solvent or solvent mixture are possible. Additionally, COSMO-RS can be extended to the prediction of cocrystal formation, which results in considerable predictive accuracy concerning coformer screening. In a recent variant costly quantum chemical calculations are avoided resulting in a significant speed-up and ease-of-use. © 2015 Royal Pharmaceutical Society.
Superlattice photoelectrodes for photoelectrochemical cells
Nozik, Arthur J.
1987-01-01
A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.
An Introduction to Dispersive Interactions
ERIC Educational Resources Information Center
Taddei, M. M.; Mendes, T. N. C.; Farina, C.
2010-01-01
Dispersive forces are a kind of van der Waals intermolecular force which could only be fully understood with the establishment of quantum mechanics and, in particular, of quantum electrodynamics. In this pedagogical paper, we introduce the subject in a more elementary approach, aiming at students with basic knowledge of quantum mechanics. We…
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
NASA Astrophysics Data System (ADS)
Tsvid, Gene
Semiconductor laser active regions are commonly characterized by photo- and electro-luminescence (PL, EL) and cavity length analysis. However quantitative spectral information is not readily extracted from PL and EL data and comparison of different active region materials can be difficult. More quantifiable spectral information is contained in the optical gain spectra. This work reports on spectral gain studies, using multi-segmented interband devices, of InGaAs quantum well and quantum dot active regions grown by metalorganic chemical vapor deposition (MOCVD). Using the fundamental connection between gain and spontaneous emission spectra, the spontaneous radiative current and spontaneous radiative efficiency is evaluated for these active regions. The spectral gain and spontaneous radiative efficiency measurements of 980 nm emitting InGaAs quantum well (QW) material provides a benchmark comparison to previous results obtained on highly-strained, 1200 nm emitting InGaAs QW material. These studies provide insight into carrier recombination and the role of the current injection efficiency in InGaAs QW lasers. The spectral gain of self-assembled MOCVD grown InGaAs quantum dots (QD) active regions are also investigated, allowing for comparison to InGaAs QW material. The second part of my talk will cover intersubband-transition QW and quantum-box (QB) lasers. Quantum cascade (QC) lasers have emerged as compact and technologically important light sources in the mid-infrared (IR) and far-IR wavelength ranges infringing on the near-IR and terahertz spectral regions respectively. However, the overall power conversion efficiency, so-called wallplug efficiency, of the best QC lasers, emitting around 5 microns, is ˜9% in CW operation and very unlikely to exceed 15%. In order to dramatically improve the wallplug efficiency of mid-IR lasers (i.e., to about 50%), intersubband QB (IQB) lasers have been proposed. The basic idea, the optimal design and the progress towards the fabrication of IQB lasers will be presented.
Hidden Statistics Approach to Quantum Simulations
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the transitional potential is to provide a jump from a deterministic state to a random state with prescribed probability density. This jump is triggered by blowup instability due to violation of Lipschitz condition generated by the quantum potential. As a result, the dynamics attains quantum properties on a classical scale. The model can be implemented physically as an analog VLSI-based (very-large-scale integration-based) computer, or numerically on a digital computer. This work opens a way of developing fundamentally new algorithms for quantum simulations of exponentially complex problems that expand NASA capabilities in conducting space activities. It has been illustrated that the complexity of simulations of particle interaction can be reduced from an exponential one to a polynomial one.
Hand-waving and interpretive dance: an introductory course on tensor networks
NASA Astrophysics Data System (ADS)
Bridgeman, Jacob C.; Chubb, Christopher T.
2017-06-01
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states. The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Noncommutative complex structures on quantum homogeneous spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2016-01-01
A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.
Nuclear quantum effects in water exchange around lithium and fluoride ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, David M.; Manolopoulos, David; Dang, Liem X.
2015-02-14
We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell ismore » found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less
Quantum chemical approach to estimating the thermodynamics of metabolic reactions.
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-12
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
Bakalova, Rumiana; Zhelev, Zhivko; Kokuryo, Daisuke; Spasov, Lubomir; Aoki, Ichio; Saga, Tsuneo
2011-01-01
Background: One of the most attractive properties of quantum dots is their potential to extend the opportunities for fluorescent and multimodal imaging in vivo. The aim of the present study was to clarify whether the composition and structure of organic coating of nanoparticles are crucial for their application in vivo. Methods: We compared quantum dots coated with non-crosslinked amino-functionalized polyamidoamine (PAMAM) dendrimers, quantum dots encapsulated in crosslinked carboxyl-functionalized PAMAM dendrimers, and silica-shelled amino-functionalized quantum dots. A multimodal fluorescent and paramagnetic quantum dot probe was also developed and analyzed. The probes were applied intravenously in anesthetized animals for visualization of brain vasculature using two-photon excited fluorescent microscopy and visualization of tumors using fluorescent IVIS® imaging (Caliper Life Sciences, Hopkinton, MA) and magnetic resonance imaging. Results: Quantum dots coated with non-crosslinked dendrimers were cytotoxic. They induced side effects in vivo, including vasodilatation with a decrease in mean arterial blood pressure and heart rate. The quantum dots penetrated the vessels, which caused the quality of fluorescent imaging to deteriorate. Quantum dots encapsulated in crosslinked dendrimers had low cytotoxicity and were biocompatible. In concentrations <0.3 nmol quantum dots/kg bodyweight, these nanoparticles did not affect blood pressure and heart rate, and did not induce vasodilatation or vasoconstriction. PEGylation (PEG [polyethylene glycol]) was an indispensable step in development of a quantum dot probe for in vivo imaging, based on silica-shelled quantum dots. The non-PEGylated silica-shelled quantum dots possessed low colloidal stability in high-salt physiological fluids, accompanied by rapid aggregation in vivo. The conjugation of silica-shelled quantum dots with PEG1100 increased their stability and half-life in the circulation without significant enhancement of their size. In concentrations <2.5 nmol/kg bodyweight, these quantum dots did not affect the main physiological variables. It was possible to visualize capillaries, which makes this quantum dot probe appropriate for investigation of mediators of vasoconstriction, vasodilatation, and brain circulation in intact animals in vivo. The multimodal silica-shelled quantum dots allowed visualization of tumor tissue in an early stage of its development, using magnetic resonance imaging. Conclusion: The present study shows that the type and structure of organic/bioorganic shells of quantum dots determine their biocompatibility and are crucial for their application in imaging in vivo, due to the effects of the shell on the following properties: colloidal stability, solubility in physiological fluids, influence of the basic physiological parameters, and cytotoxicity. PMID:21980235
Quantum population and entanglement evolution in photosynthetic process
NASA Astrophysics Data System (ADS)
Zhu, Jing
Applications of the concepts of quantum information theory are usually related to the powerful and counter-intuitive quantum mechanical effects of superposition, interference and entanglement. In this thesis, I examine the role of coherence and entanglement in complex chemical systems. The research has focused mainly on two related projects: The first project is developing a theoretical model to explain the recent ultrafast experiments on excitonic migration in photosynthetic complexes that show long-lived coherence of the order of hundreds of femtoseconds and the second project developing the Grover algorithm for global optimization of complex systems. The first part can be divided into two sections. The first section is investigating the theoretical frame about the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex. The new developed modified scaled hierarchical equation of motion (HEOM) approach is employed for simulating the open quantum system. The second section is investigating the evolution of entanglement in the FMO complex based on the simulation result via scaled HEOM approach. We examine the role of multipartite entanglement in the FMO complex by direct computation of the convex roof optimization for a number of different measures, including pairwise, triplet, quadruple and quintuple sites entanglement. Our results support the hypothesis that multipartite entanglement is maximum primary along the two distinct electronic energy transfer pathways. The second part of this thesis can be separated into two sections. The first section demonstrated that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The second section is implementing the basic quantum logical gates upon arrays of trapped ultracold polar molecules as qubits for the quantum computer. Utilized herein is the Multi-Target Optimal Control Theory (MTOCT) as a means of manipulating the initial-to-target transition probability via external laser field. The detailed calculation is applied for the SrO molecule, an ideal candidate in proposed quantum computers using arrays of trapped ultra-cold polar molecules.
EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study
NASA Astrophysics Data System (ADS)
Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood
2018-07-01
EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.
Quantum probability ranking principle for ligand-based virtual screening.
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
Quantum probability ranking principle for ligand-based virtual screening
NASA Astrophysics Data System (ADS)
Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal
2017-04-01
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.
New Potentials for Old: The Darboux Transformation in Quantum Mechanics
ERIC Educational Resources Information Center
Williams, Brian Wesley; Celius, Tevye C.
2008-01-01
The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…
A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services
NASA Astrophysics Data System (ADS)
Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun
2018-04-01
We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.
A molecular quantum spin network controlled by a single qubit.
Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit
2017-08-01
Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.
2005-10-01
late the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario. KEY WORDS: Time evolution... quantum circuit and design are presented for an optimized entangling probe attacking the BB84 Protocol of quantum key distribution (QKD) and yielding...unambiguous, at least some of the time. It follows that the BB84 (Bennett-Brassard 1984) proto- col of quantum key distribution has a vulnerability similar to
Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots
Qu, Dan; Zheng, Min; Zhang, Ligong; Zhao, Haifeng; Xie, Zhigang; Jing, Xiabin; Haddad, Raid E.; Fan, Hongyou; Sun, Zaicheng
2014-01-01
Photoluminescent graphene quantum dots (GQDs) have received enormous attention because of their unique chemical, electronic and optical properties. Here a series of GQDs were synthesized under hydrothermal processes in order to investigate the formation process and optical properties of N-doped GQDs. Citric acid (CA) was used as a carbon precursor and self-assembled into sheet structure in a basic condition and formed N-free GQD graphite framework through intermolecular dehydrolysis reaction. N-doped GQDs were prepared using a series of N-containing bases such as urea. Detailed structural and property studies demonstrated the formation mechanism of N-doped GQDs for tunable optical emissions. Hydrothermal conditions promote formation of amide between –NH2 and –COOH with the presence of amine in the reaction. The intramoleculur dehydrolysis between neighbour amide and COOH groups led to formation of pyrrolic N in the graphene framework. Further, the pyrrolic N transformed to graphite N under hydrothermal conditions. N-doping results in a great improvement of PL quantum yield (QY) of GQDs. By optimized reaction conditions, the highest PL QY (94%) of N-doped GQDs was obtained using CA as a carbon source and ethylene diamine as a N source. The obtained N-doped GQDs exhibit an excitation-independent blue emission with single exponential lifetime decay. PMID:24938871
Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy
2018-01-09
Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.
Quantum-dot cellular automata: Review and recent experiments (invited)
NASA Astrophysics Data System (ADS)
Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.
1999-04-01
An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.
Undergraduate computational physics projects on quantum computing
NASA Astrophysics Data System (ADS)
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Entropic cohering power in quantum operations
NASA Astrophysics Data System (ADS)
Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng
2018-02-01
Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.
From quantum foundations to applications and back.
Gisin, Nicolas; Fröwis, Florian
2018-07-13
Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Quantum chemical investigation of levofloxacin-boron complexes: A computational approach
NASA Astrophysics Data System (ADS)
Sayin, Koray; Karakaş, Duran
2018-04-01
Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.
Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-01-01
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603
Quantum Bio-Informatics II From Quantum Information to Bio-Informatics
NASA Astrophysics Data System (ADS)
Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori
2009-02-01
The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems / H. Kamimura -- Massive collection of full-length complementary DNA clones and microarray analyses: keys to rice transcriptome analysis / S. Kikuchi -- Changes of influenza A(H5) viruses by means of entropic chaos degree / K. Sato and M. Ohya -- Basics of genome sequence analysis in bioinformatics - its fundamental ideas and problems / T. Suzuki and S. Miyazaki -- A basic introduction to gene expression studies using microarray expression data analysis / D. Wanke and J. Kilian -- Integrating biological perspectives: a quantum leap for microarray expression analysis / D. Wanke ... [et al.].
Polynomial-time quantum algorithm for the simulation of chemical dynamics
Kassal, Ivan; Jordan, Stephen P.; Love, Peter J.; Mohseni, Masoud; Aspuru-Guzik, Alán
2008-01-01
The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born–Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits. PMID:19033207
Quantum correlations in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
ERIC Educational Resources Information Center
Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.
2015-01-01
An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…
How to Build a Quantum Computer
NASA Astrophysics Data System (ADS)
Sanders, Barry C.
2017-11-01
Quantum computer technology is progressing rapidly with dozens of qubits and hundreds of quantum logic gates now possible. Although current quantum computer technology is distant from being able to solve computational problems beyond the reach of non-quantum computers, experiments have progressed well beyond simply demonstrating the requisite components. We can now operate small quantum logic processors with connected networks of qubits and quantum logic gates, which is a great stride towards functioning quantum computers. This book aims to be accessible to a broad audience with basic knowledge of computers, electronics and physics. The goal is to convey key notions relevant to building quantum computers and to present state-of-the-art quantum-computer research in various media such as trapped ions, superconducting circuits, photonics and beyond.
Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M2 (M = Cu, Ag, Au, Rg).
Li, Wan-Lu; Lu, Jun-Bo; Wang, Zhen-Ling; Hu, Han-Shi; Li, Jun
2018-05-07
The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu 2 , Ag 2 , Au 2 , Rg 2 ) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0 g + ground state, Rg 2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg 2 , two nearly degenerate SO states, 0 g + and 2 u , exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.
Fundamental Quantum Mechanics--A Graphic Presentation
ERIC Educational Resources Information Center
Wise, M. N.; Kelley, T. G.
1977-01-01
Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)
Quorum sensing: a quantum perspective.
Majumdar, Sarangam; Pal, Sukla
2016-09-01
Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.
Hybrid quantum computing with ancillas
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Kendon, Viv
2016-10-01
In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.
On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield
Raković, Dejan; Dugić, Miroljub; Jeknić-Dugić, Jasmina; Plavšić, Milenko; Jaćimovski, Stevo; Šetrajčić, Jovan
2014-01-01
In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well). PMID:25028662
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
An Introduction to Quantum Communications Networks; Or, how shall we communicate in the quantum era?
NASA Astrophysics Data System (ADS)
Razavi, Mohsen
2018-05-01
This book fills a gap between experts and non-experts in the field by providing readers with the basic tools to understand the latest developments in quantum communications and its future directions. With the fast pace of developments in quantum technologies, it is more necessary than ever to make the new generation of students in science/engineering familiar with the key ideas behind such disruptive systems. This book describes key applications for quantum networks; local, metropolitan, and global networks; and the industrial outlook for the field.
NASA Astrophysics Data System (ADS)
Gao, Da; Ray, Asok
2007-03-01
The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.
NASA Astrophysics Data System (ADS)
Nguyen, Quynh Nhu Ngoc
The results of quantum chemical calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols by significantly increasing basicity of the substrate hydroxyl group. The energy barrier for cyclization of the pentadienyl cation after water loss is already low in the background reaction and is altered fairly little by the cage. The calculations for other non-alcohol substrates also suggest that the cage increases the basicity of amine and phosphine groups, though to a lesser extend comparing to the alcohol substrate. Due to their twisting patterns, alpha-helical peptides are known to have overall "macrodipoles" along the principal axes as the result of the backbone carbonyl groups pointing toward the C-terminus. As the dipoles have implications in helical bundles, interactions with lipid bilayers, and distribution of charge, chemists have long been interested in employing the macrodipole in modifications of peptides' catalytic activities. In this studied, we examined the impact of both global and local noncovalent interactions between peptide catalysts and substrates in the first transesterification step, in hope of designing a better peptide catalysts to aid in ester metabolism. Quantum mechanical calculations helped predict whether the targeted medium-sized cyclic peptide products would more likely be the major products, before the experimental team invested extensive resources and time to carry out the syntheses. Many systems were found to favor the medium-sized cyclic peptides, whereas one system was predicted to result in polycyclic product, and the latter experimental observations agreed with these predictions. Naturally occurring cyclic peptides display various biological activities due to their diverse structures. Understanding the dominant structures of these peptides could help give insight into protein-protein interactions or substrate-protein binding. With the experimental NMR data obtained for the synthesized peptides, dynamic simulations were used to sample a large conformational space, generating diverse conformer libraries. Quantum mechanical calculations were then used to determine the relative energies between the conformers, and to compute theoretical NMR data, which were then compared to the experimental values, to determine the best match conformers. Hydropersulfides are commonly found among many mammalian systems, and has recently gained more interest due to their greater nucleophilicity and reducing capacity compared to the related thiols. A series of quantum mechanical calculations were performed for small sulfur-containing molecules in order to help understand these biological compounds. First part of this chapter explores the basics of chemical properties and reactivity of hydropersulfides. The later sections further discuss the redox component of RSSH in generation of the radical RSS, which was found to be unreactive in the presence of O 2 and NO. Modeling the formation of these natural products in the absence of the enzymes has many of its own limitation, but understanding the inherent reactivity of the substrates could be beneficial to future enzymatic studies. Density functional theory calculations of mechanism of caryolene featured one mechanism with a base-catalyzed deprotonation/reprotonation sequence, while the other higher-energy mechanism involved intramolecular proton transfer and a secondary carbocation minimum. This result suggested the role of the enzyme in helping to avoid the secondary carbocation. Both pathways bypassed the concerted suprafacial/suprafacial [2+2] cycloadditions, which were not in violation of orbital symmetry due to their asynchronicity. Quantum mechanical calculations were used to determine theoretical 1H and 13C chemical shifts, which were then compared to the experimental NMR data to assign relative configurations for isohirsut-1-ene, isohirsut-4-ene, and tsukubadiene, which were previously isolated from engineered Streptomyces. Conformational searches and Boltzmann averaging were performed to address conformational flexibility in experimental NMR. The reactivity of macrocyclic bis-enones in Diels-Alder reactions was examined with quantum mechanical calculations to locate transition state structures and potential energy surfaces. Stepwise mechanisms appeared to be much lower in energy than the concerted pathways. Steric interactions and torsional strain helped explain product formations and why reactants that differed only by Z/E stereochemistry gave different product observation. The Ready group investigated the different approach to synthesizing nitrogen-containing heterocycles via dihydropyridine boronic ester intermediates, which was formed when pyridine boronic ester reacted with organometallic reagents in the presence of an acylating agent. The relative stereochemistry was initially assigned by comparison of experimental and computed chemical shifts, and the structure of the major product was later confirmed by X-ray crystallography. In the development of a stereo-controlled synthesis of australifungin, a natural products, only a small amount of the intermediate, which needed to undergo removal of protecting groups to yield the desired product, was obtained. There were worries that removing these protecting group might instead lead to undesired side product. However, the calculation results indicated that the desired product would still be more thermodynamically favored, giving confidence for the experimental work to proceed. (Abstract shortened by ProQuest.).
Quantum probability and Hilbert's sixth problem
NASA Astrophysics Data System (ADS)
Accardi, Luigi
2018-04-01
With the birth of quantum mechanics, the two disciplines that Hilbert proposed to axiomatize, probability and mechanics, became entangled and a new probabilistic model arose in addition to the classical one. Thus, to meet Hilbert's challenge, an axiomatization should account deductively for the basic features of all three disciplines. This goal was achieved within the framework of quantum probability. The present paper surveys the quantum probabilistic axiomatization. This article is part of the themed issue `Hilbert's sixth problem'.
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
Photoelectric Effect: Back to Basics.
ERIC Educational Resources Information Center
Powell, R. A.
1978-01-01
Presents a simplified theoretical analysis of the variation of quantum yield with photon energy in the photoelectric experiment. Describes a way to amplify the experiment and make it more instructive to advanced students through the measurement of quantum yield of a photo cell. (GA)
Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír
2012-05-21
In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.
Fluorescein angiography basic science and engineering.
Wolfe, D R
1986-12-01
Fluorescein angiography is an application of the physical phenomenon of fluorescence, which is phosphorescence in which the quantum mechanical decay curve is so rapid that it appears instantaneous, and it consequently has no afterglow. Sodium fluorescein is excited by light energy between 465 and 490 nm, and it decays into a lower state emitting light energy between 520 and 530 nm as fluorescent radiation. The free electrons available for excitation are reduced by chemical bonding between the fluorescein dye and plasma proteins to which up to 80% of the dye is bound in the bloodstream, thus reducing overall fluorescence. Optimalization of the observed and recorded fluorescence is afforded by providing exciter and barrier filters with as little overlap as possible to reduce or eliminate contrast reducing pseudofluorescence.
Quantum chemical parameters in QSAR: what do I use when?
Hickey, James P.; Ostrander, Gary K.
1996-01-01
This chapter provides a brief overview of the numerous quantum chemical parameters that have been/are currently being used in quantitative structure activity relationships (QSAR), along with a representative bibliography. The parameters will be grouped according to their mechanistic interpretations, and representative biological and physical chemical applications will be mentioned. Parmater computation methods and the appropriate software are highlighted, as are sources for software.
Jeans instability of rotating magnetized quantum plasma: Influence of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, H., E-mail: hjoshi8525@yahoo.com; Pensia, R. K.
2015-07-31
The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.
Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.
Djordjevic, Ivan B
2010-05-01
I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.
Effect of Coulomb interaction on chemical potential of metal film
NASA Astrophysics Data System (ADS)
Kostrobij, P. P.; Markovych, B. M.
2018-07-01
The chemical potential of a metal film within the jellium model taking into account the Coulomb interaction between electrons is calculated. The surface potential is modelled as the infinite rectangular potential well. The behaviour of the chemical potential as a function of the film thickness is studied, the quantum size effect for this quantity is analysed. It is shown that taking into account the Coulomb interaction leads to a significant decrease of the chemical potential and to an enhancement of the quantum size effect.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.
Giansante, Carlo; Infante, Ivan
2017-10-19
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.
Coherent Ising machines—optical neural networks operating at the quantum limit
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshihisa; Aihara, Kazuyuki; Leleu, Timothee; Kawarabayashi, Ken-ichi; Kako, Satoshi; Fejer, Martin; Inoue, Kyo; Takesue, Hiroki
2017-12-01
In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.
Grothendieck-Verdier duality patterns in quantum algebra
NASA Astrophysics Data System (ADS)
Manin, Yu I.
2017-08-01
After a brief survey of the basic definitions of Grothendieck-Verdier categories and dualities, I consider in this context dualities introduced earlier in the categories of quadratic algebras and operads, largely motivated by the theory of quantum groups. Finally, I argue that Dubrovin's `almost duality' in the theory of Frobenius manifolds and quantum cohomology must also fit a (possibly extended) version of Grothendieck-Verdier duality.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.
Knizia, Gerald
2013-11-12
Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.
Rosta, Edina; Warshel, Arieh
2012-01-01
Understanding the relationship between the adiabatic free energy profiles of chemical reactions and the underlining diabatic states is central to the description of chemical reactivity. The diabatic states form the theoretical basis of Linear Free Energy Relationships (LFERs) and thus play a major role in physical organic chemistry and related fields. However, the theoretical justification for some of the implicit LFER assumptions has not been fully established by quantum mechanical studies. This study follows our earlier works1,2 and uses the ab initio frozen density functional theory (FDFT) method3 to evaluate both the diabatic and adiabatic free energy surfaces and to determine the corresponding off-diagonal coupling matrix elements for a series of SN2 reactions. It is found that the off-diagonal coupling matrix elements are almost the same regardless of the nucleophile and the leaving group but change upon changing the central group. Furthermore, it is also found that the off diagonal elements are basically the same in gas phase and in solution, even when the solvent is explicitly included in the ab initio calculations. Furthermore, our study establishes that the FDFT diabatic profiles are parabolic to a good approximation thus providing a first principle support to the origin of LFER. These findings further support the basic approximation of the EVB treatment. PMID:23329895
NASA Astrophysics Data System (ADS)
Ermilov, A. S.; Zobov, V. E.
2007-12-01
To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.
Quantum model of light transmission in array waveguide gratings.
Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P
2013-06-17
We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.
Recent advances in quantum scattering calculations on polyatomic bimolecular reactions.
Fu, Bina; Shan, Xiao; Zhang, Dong H; Clary, David C
2017-12-11
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years. These calculations are useful because they provide highly accurate information on the dynamics of chemical reactions which can be compared in detail with experimental results. They also serve as quantum mechanical benchmarks for testing approximate theories which can more readily be applied to more complicated reactions. This review includes theories for calculating quantities such as rate constants which have many important scientific applications.
NASA Astrophysics Data System (ADS)
Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.
2018-03-01
The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
A universal quantum information processor for scalable quantum communication and networks
Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao
2014-01-01
Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514
Basics for the preparation of quantum dots and their interactions with living cells.
Jiang, Xiue; Bai, Jing; Wang, Tiantian
2014-01-01
A study of the interactions between nanoparticles and living cells is invaluable in understanding the nano-biological effect and the mechanism of cellular endocytosis. Here we describe two methods for the preparation of semiconductor quantum dots with different physiochemical properties. Furthermore, we describe how to study the interaction of the two quantum dots with living HeLa cells and red blood cells with confocal microscopy.
Model of a programmable quantum processing unit based on a quantum transistor effect
NASA Astrophysics Data System (ADS)
Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander
2018-02-01
In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.
Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective
2017-01-01
Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition. PMID:28972763
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
Gurlo, Aleksander
2011-01-01
Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.
Quantum limit of heat flow across a single electronic channel.
Jezouin, S; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Jin, Y; Pierre, F
2013-11-01
Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.
Coherent Coupled Qubits for Quantum Annealing
NASA Astrophysics Data System (ADS)
Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.
2017-07-01
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
NASA Astrophysics Data System (ADS)
Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.
2014-05-01
The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.
Quantum chemistry in environmental pesticide risk assessment.
Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar
2017-11-01
The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Compactness Aromaticity of Atoms in Molecules
Putz, Mihai V.
2010-01-01
A new aromaticity definition is advanced as the compactness formulation through the ratio between atoms-in-molecule and orbital molecular facets of the same chemical reactivity property around the pre- and post-bonding stabilization limit, respectively. Geometrical reactivity index of polarizability was assumed as providing the benchmark aromaticity scale, since due to its observable character; with this occasion new Hydrogenic polarizability quantum formula that recovers the exact value of 4.5 a03 for Hydrogen is provided, where a0 is the Bohr radius; a polarizability based–aromaticity scale enables the introduction of five referential aromatic rules (Aroma 1 to 5 Rules). With the help of these aromatic rules, the aromaticity scales based on energetic reactivity indices of electronegativity and chemical hardness were computed and analyzed within the major semi-empirical and ab initio quantum chemical methods. Results show that chemical hardness based-aromaticity is in better agreement with polarizability based-aromaticity than the electronegativity-based aromaticity scale, while the most favorable computational environment appears to be the quantum semi-empirical for the first and quantum ab initio for the last of them, respectively. PMID:20480020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhui; School of Computatioal Sciences, Korea Institute for Advanced Study, Seoul 130-722; Lee, Soojoon
Extending the eavesdropping strategy devised by Zhang, Li, and Guo [Zhang, Li, and Guo, Phys. Rev. A 63, 036301 (2001)], we show that the multiparty quantum communication protocol based on entanglement swapping, which was proposed by Cabello (e-print quant-ph/0009025), is not secure. We modify the protocol so that entanglement swapping can secure multiparty quantum communication, such as multiparty quantum key distribution and quantum secret sharing of classical information, and show that the modified protocol is secure against the Zhang-Li-Guo strategy for eavesdropping as well as the basic intercept-resend attack.0.
The actual content of quantum theoretical kinematics and mechanics
NASA Technical Reports Server (NTRS)
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Positive spaces, generalized semi-densities, and quantum interactions
NASA Astrophysics Data System (ADS)
Canarutto, Daniel
2012-03-01
The basics of quantum particle physics on a curved Lorentzian background are expressed in a formulation which has original aspects and exploits some non-standard mathematical notions. In particular, positive spaces and generalized semi-densities (in a distributional sense) are shown to link, in a natural way, discrete multi-particle spaces to distributional bundles of quantum states. The treatment of spinor and boson fields is partly original also from an algebraic point of view and suggests a non-standard approach to quantum interactions. The case of electroweak interactions provides examples.
Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas
2012-04-10
The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
Azadi, Sam; Cohen, R E
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience
NASA Astrophysics Data System (ADS)
Pathak, Smita
Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to nanoparticles in medical imaging.
NASA Astrophysics Data System (ADS)
Stapp, Henry P.
2011-11-01
The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determined by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.
Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance
NASA Astrophysics Data System (ADS)
Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan
2013-07-01
Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d
Old Wine in New Bottles: Quantum Theory in Historical Perspective.
ERIC Educational Resources Information Center
Bent, Henry A.
1984-01-01
Discusses similarities between chemistry and three central concepts of quantum physics: (1) stationary states; (2) wave functions; and (3) complementarity. Based on these and other similarities, it is indicated that quantum physics is a chemical physics. (JN)
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.
Gradual Introduction of Some Aspects of Quantum Mechanics in a High School Curriculum.
ERIC Educational Resources Information Center
Cuppari, A.; Rinaudo, G.; Robutti, O.; Violino, P.
1997-01-01
Suggests that the basic concepts of quantum mechanics can be introduced at the high school level by considering the action of classical mechanics, then introducing Planck's constant as the granularity of that action. Uses the periodic motion of a spring as a practical example. (AIM)
A universal quantum module for quantum communication, computation, and metrology
NASA Astrophysics Data System (ADS)
Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae
2017-08-01
In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.
Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M
2017-09-05
Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.
NASA Astrophysics Data System (ADS)
Zhang, KeJia; Zhang, Long; Song, TingTing; Yang, YingHui
2016-06-01
In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the "HIEC" (The scheme whose messages are hidden in the entanglement correlation), "HIAO" (The scheme whose messages are hidden with the assistant operations) and "HIMB" (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.
Quantum realization of the bilinear interpolation method for NEQR.
Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou
2017-05-31
In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.
Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai
2018-06-13
An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.
2015-02-08
We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.
Eddy, Nnabuk O; Ibok, Udo J; Ebenso, Eno E; El Nemr, Ahmed; El Ashry, El Sayed H
2009-09-01
The inhibition efficiency of some antibiotics against mild steel corrosion was studied using weight loss and quantum chemical techniques. Values of inhibition efficiency obtained from weight loss measurements correlated strongly with theoretical values obtained through semi empirical calculations. High correlation coefficients were also obtained between inhibition efficiency of the antibiotics and some quantum chemical parameters, including frontier orbital (E (HOMO) and E (LUMO)), dipole moment, log P, TNC and LSER parameters (critical volume and dipolar-polarisability factor), which indicated that these parameters affect the inhibition efficiency of the compounds. It was also found that quantitative structure activity relation can be used to adequately predict the inhibition effectiveness of these compounds.
Eddy, Nnabuk O; Ita, Benedict I
2011-02-01
Experimental aspects of the inhibition of the corrosion of mild steel in HCl solutions by some carbozones were studied using gravimetric, thermometric and gasometric methods, while a theoretical study was carried out using density functional theory, a quantitative structure-activity relation, and quantum chemical principles. The results obtained indicated that the studied carbozones are good adsorption inhibitors for the corrosion of mild steel in HCl. The inhibition efficiencies of the studied carbozones were found to increase with increasing concentration of the respective inhibitor. A strong correlation was found between the average inhibition efficiency and some quantum chemical parameters, and also between the experimental and theoretical inhibition efficiencies (obtained from the quantitative structure-activity relation).
NASA Astrophysics Data System (ADS)
Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.
2013-04-01
The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.
Uncertain for a century: quantum mechanics and the dilemma of interpretation.
Frank, Adam
2015-12-01
Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.
Sponer, Jiří; Sponer, Judit E; Mládek, Arnošt; Jurečka, Petr; Banáš, Pavel; Otyepka, Michal
2013-12-01
Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. Copyright © 2013 Wiley Periodicals, Inc.
Khandogin, Jana; Musier-Forsyth, Karin; York, Darrin M
2003-07-25
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) plays several important roles in the viral life-cycle and presents an attractive target for rational drug design. Here, the macromolecular reactivity of NC and its binding to RNA is characterized through determination of electrostatic and chemical descriptors derived from linear-scaling quantum calculations in solution. The computational results offer a rationale for the experimentally observed susceptibility of the Cys49 thiolate toward small-molecule electrophilic agents, and support the recently proposed stepwise protonation mechanism of the C-terminal Zn-coordination complex. The distinctive binding mode of NC to SL2 and SL3 stem-loops of the HIV-1 genomic RNA packaging signal is studied on the basis of protein side-chain contributions to the electrostatic binding energies. These results indicate the importance of several basic residues in the 3(10) helical region and the N-terminal zinc finger, and rationalize the presence of several evolutionarily conserved residues in NC. The combined reactivity and RNA-binding study provides new insights that may contribute toward the structure-based design of anti-HIV therapies.
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Interactive simulations for quantum key distribution
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Rizzoli, Aluna
2017-05-01
Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.
Bohm's Quantum Potential and the Visualization of Molecular Structure
NASA Technical Reports Server (NTRS)
Levit, Creon; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.
Gamma-Ray Telescope and Uncertainty Principle
ERIC Educational Resources Information Center
Shivalingaswamy, T.; Kagali, B. A.
2012-01-01
Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…
Running key mapping in a quantum stream cipher by the Yuen 2000 protocol
NASA Astrophysics Data System (ADS)
Shimizu, Tetsuya; Hirota, Osamu; Nagasako, Yuki
2008-03-01
A quantum stream cipher by Yuen 2000 protocol (so-called Y00 protocol or αη scheme) consisting of linear feedback shift register of short key is very attractive in implementing secure 40 Gbits/s optical data transmission, which is expected as a next-generation network. However, a basic model of the Y00 protocol with a very short key needs a careful design against fast correlation attacks as pointed out by Donnet This Brief Report clarifies an effectiveness of irregular mapping between running key and physical signals in the driver for selection of M -ary basis in the transmitter, and gives a design method. Consequently, quantum stream cipher by the Y00 protocol with our mapping has immunity against the proposed fast correlation attacks on a basic model of the Y00 protocol even if the key is very short.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
NASA Astrophysics Data System (ADS)
Polyakov, Igor V.; Khrenova, Maria G.; Moskovsky, Alexander A.; Shabanov, Boris M.; Nemukhin, Alexander V.
2018-04-01
Modeling electronic excitation of bacteriochlorophyll (BChl) molecules in light-harvesting (LH) antennae from photosynthetic centers presents a challenge for the quantum theory. We report on a quantum chemical study of the ring of 32 BChl molecules from the bacterial core complex LH1-RC. Diagonal and off-diagonal elements of the excitonic Hamiltonian matrices are estimated in quantum chemical calculations of relevant fragments using the TD-DFT and CIS approaches. The deviation of the computed excitation energy of this BChl system from the experimental data related to the Qy band maximum of this LH1-RC complex is about 0.2 eV. We demonstrate that corrections due to improvement in modeling of an individual BChl molecule and due to contributions from the protein environment are in the range of the obtained discrepancy between theory and experiment. Differences between results of the excitonic model and direct quantum chemical calculations of BChl aggregates fall in the same range.
Senior, Samir A; Madbouly, Magdy D; El massry, Abdel-Moneim
2011-09-01
Quantum chemical and topological descriptors of some organophosphorus compounds (OP) were correlated with their toxicity LD(50) as a dermal. The quantum chemical parameters were obtained using B3LYP/LANL2DZdp-ECP optimization. Using linear regression analysis, equations were derived to calculate the theoretical LD(50) of the studied compounds. The inclusion of quantum parameters, having both charge indices and topological indices, affects the toxicity of the studied compounds resulting in high correlation coefficient factors for the obtained equations. Two of the new four firstly supposed descriptors give higher correlation coefficients namely the Heteroatom Corrected Extended Connectivity Randic index ((1)X(HCEC)) and the Density Randic index ((1)X(Den)). The obtained linear equations were applied to predict the toxicity of some related structures. It was found that the sulfur atoms in these compounds must be replaced by oxygen atoms to achieve improved toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance
NASA Astrophysics Data System (ADS)
Sugimoto, Yoshiaki; Ondráček, Martin; Abe, Masayuki; Pou, Pablo; Morita, Seizo; Perez, Ruben; Flores, Fernando; Jelínek, Pavel
2013-09-01
Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.
Simulating the control of molecular reactions via modulated light fields: from gas phase to solution
NASA Astrophysics Data System (ADS)
Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina
2017-04-01
Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.
An efficient matrix product operator representation of the quantum chemical Hamiltonian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less
Some thoughts about consciousness: from a quantum mechanics perspective.
Gargiulo, Gerald J
2013-08-01
The article explores some of the basic findings of quantum physics and information theory and their possible usefulness in offering new vistas for understanding psychoanalysis and the patient-analyst interchange. Technical terms are explained and placed in context, and examples of applying quantum models to clinical experience are offered. Given the complexity of the findings of quantum mechanics and information theory, the article aims only to introduce some of the major concepts from these disciplines. Within this framework the article also briefly addresses the question of mind as well as the problematic of reducing the experience of consciousness to neurological brain functioning.
Introduction to quantum turbulence
Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.
2014-01-01
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870
Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2008-05-30
We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.
Lighting up micromotors with quantum dots for smart chemical sensing.
Jurado-Sánchez, B; Escarpa, A; Wang, J
2015-09-25
A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.
Quantum chemical determination of young?s modulus of lignin. Calculations on ß-O-4' model compound
Thomas Elder
2007-01-01
The calculation of Young?s modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in...
Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein
2016-01-07
We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Quantum Locality in Game Strategy
NASA Astrophysics Data System (ADS)
Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.
2017-03-01
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
Quantum Locality in Game Strategy
Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.
2017-01-01
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage. PMID:28327567
Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian
2014-01-14
The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.
2014-01-14
The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei (CCN), and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems.more » The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics (PIMD) method at the density functional theory (DFT) level of theory. We observe a small zero-point effect on the the equilibrium structures of certain clusters. One configuration is found to display a bimodal behaviour at 300 K in contrast to the stable ionised state suggested from a zero temperature classical geometry optimisation. The general effect of zero-point motion is to promote the extent of proton transfer with respect to classical behaviour. We thank Prof. Angelos Michaelides and his group in University College London (UCL) for practical advice and helpful discussions. This work benefited from interactions with the Thomas Young Centre through seminar and discussions involving the PIMD method. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. JLS and IJF were supported by the IMPACT scheme at UCL and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful for use of the UCL Legion High Performance Computing Facility and the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy, Office of Science of the under Contract No. DE-AC02-05CH11231.« less
Noncommutativity and Humanity — Julius Wess and his Legacy
NASA Astrophysics Data System (ADS)
Djordjevic, Goran S.
2012-03-01
A personal view on Julius Wess's human and scientific legacy in Serbia and the Balkan region is given. Motivation for using noncommutative and nonarchimedean geometry on very short distances is presented. In addition to some mathematical preliminaries, we present a short introduction in adelic quantum mechanics in a way suitable for its noncommutative generalization. We also review the basic ideas and tools embedded in q-deformed and noncommutative quantum mechanics. A rather fundamental approach, called deformation quantization, is noted. A few relations between noncommutativity and nonarchimedean spaces, as well as similarities between corresponding quantum theories, in particular, quantum cosmology are pointed out. An extended Moyal product in a frame of an adelic noncommutative quantum mechanics is also considered.
Robson, Scott A; Peterson, Robert; Bouchard, Louis-S; Villareal, Valerie A; Clubb, Robert T
2010-07-21
Chemical exchange phenomena in NMR spectra can be quantitatively interpreted to measure the rates of ligand binding, as well as conformational and chemical rearrangements. In macromolecules, processes that occur slowly on the chemical shift time scale are frequently studied using 2D heteronuclear ZZ or N(z)-exchange spectroscopy. However, to successfully apply this method, peaks arising from each exchanging species must have unique chemical shifts in both dimensions, a condition that is often not satisfied in protein-ligand binding equilibria for (15)N nuclei. To overcome the problem of (15)N chemical shift degeneracy we developed a heteronuclear zero-quantum (and double-quantum) coherence N(z)-exchange experiment that resolves (15)N chemical shift degeneracy in the indirect dimension. We demonstrate the utility of this new experiment by measuring the heme binding kinetics of the IsdC protein from Staphylococcus aureus. Because of peak overlap, we could not reliably analyze binding kinetics using conventional methods. However, our new experiment resulted in six well-resolved systems that yielded interpretable data. We measured a relatively slow k(off) rate of heme from IsdC (<10 s(-1)), which we interpret as necessary so heme loaded IsdC has time to encounter downstream binding partners to which it passes the heme. The utility of using this new exchange experiment can be easily expanded to (13)C nuclei. We expect our heteronuclear zero-quantum coherence N(z)-exchange experiment will expand the usefulness of exchange spectroscopy to slow chemical exchange events that involve ligand binding.
Valley-orbit splitting in doped nanocrystalline silicon: k•p calculations
NASA Astrophysics Data System (ADS)
Belyakov, Vladimir A.; Burdov, Vladimir A.
2007-07-01
The valley-orbit splitting in silicon quantum dots with shallow donors has been theoretically studied. In particular, the chemical-shift calculation was carried out within the frames of k•p approximation for single- and many-donor cases. For both cases, the great value of the chemical shift has been obtained compared to its bulk value. Such increase of the chemical shift becomes possible due to the quantum confinement effect in a dot. It is shown for the single-donor case that the level splitting and chemical shift strongly depend on the dot radius and donor position inside the nanocrystal. In the many-donor case, the chemical shift is almost proportional to the number of donors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, Henry P.
2011-05-10
The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determinedmore » by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.« less
NASA Astrophysics Data System (ADS)
Snider, Gregory
2000-03-01
Quantum-dot Cellular Automata (QCA) [1] is a promising architecture which employs quantum dots for digital computation. It is a revolutionary approach that holds the promise of high device density and low power dissipation. A basic QCA cell consists of four quantum dots coupled capacitively and by tunnel barriers. The cell is biased to contain two excess electrons within the four dots, which are forced to opposite "corners" of the four-dot cell by mutual Coulomb repulsion. These two possible polarization states of the cell will represent logic "0" and "1". Properly arranged, arrays of these basic cells can implement Boolean logic functions. Experimental results from functional QCA devices built of nanoscale metal dots defined by tunnel barriers will be presented. The experimental devices to be presented consist of Al islands, which we will call quantum dots, interconnected by tunnel junctions and lithographically defined capacitors. Aluminum/ aluminum-oxide/aluminum tunnel junctions were fabricated using a standard e-beam lithography and shadow evaporation technique. The experiments were performed in a dilution refrigerator at a temperature of 70 mK. The operation of a cell is evaluated by direct measurements of the charge state of dots within a cell as the input voltage is changed. The experimental demonstration of a functioning cell will be presented. A line of three cells demonstrates that there are no metastable switching states in a line of cells. A QCA majority gate will also be presented, which is a programmable AND/OR gate and represents the basic building block of QCA systems. The results of recent experiments will be presented. 1. C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, Nanotechnology, 4, 49 (1993).
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
NASA Astrophysics Data System (ADS)
Cautereels, Julie; Blockhuys, Frank
2017-06-01
The quantum chemical mass spectrometry for materials science (QCMS2) method is used to verify the proposed mechanism for proton transfer - the Mobile Proton Model (MPM) - by histidine for ten XHS tripeptides, based on quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. The fragmentations of the different intermediate structures in the MPM mechanism are studied within the QCMS2 framework, and the energetics of the proposed mechanism itself and those of the fragmentations of the intermediate structures are compared, leading to the computational confirmation of the MPM. In addition, the calculations suggest that the mechanism should be extended from considering only the formation of five-membered ring intermediates to include larger-ring intermediates. [Figure not available: see fulltext.
Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S
2013-04-15
The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Hayashi, Satoko; Tsubomoto, Yutaka; Nakanishi, Waro
2018-02-17
The nature of the E-E' bonds (E, E' = S and Se) in glutathione disulfide ( 1 ) and derivatives 2 - 3 , respectively, was elucidated by applying quantum theory of atoms-in-molecules (QTAIM) dual functional analysis (QTAIM-DFA), to clarify the basic contribution of E-E' in the biological redox process, such as the glutathione peroxidase process. Five most stable conformers a - e were obtained, after applying the Monte-Carlo method then structural optimizations. In QTAIM-DFA, total electron energy densities H b ( r c ) are plotted versus H b ( r c ) - V b ( r c )/2 at bond critical points (BCPs), where V b ( r c ) are potential energy densities at BCPs. Data from the fully optimized structures correspond to the static nature. Those containing perturbed structures around the fully optimized one in the plot represent the dynamic nature of interactions. The behavior of E-E' was examined carefully. Whereas E-E' in 1a - 3e were all predicted to have the weak covalent nature of the shared shell interactions, two different types of S-S were detected in 1 , depending on the conformational properties. Contributions from the intramolecular non-covalent interactions to stabilize the conformers were evaluated. An inverse relationship was observed between the stability of a conformer and the strength of E-E' in the conformer, of which reason was discussed.
Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction
NASA Astrophysics Data System (ADS)
He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu
2015-01-01
Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.
[PHYSIOLOGY AND PHARMACOLOGICAL PROPERTIES OF NANOMATERIALS].
Chekman, I S
2015-01-01
Literature data and results of our department studies on theoretical and practical basics of nanoscience were summarized in the article. Much attention is paid to research in the field of physical, chemical, biological, medical, physiological, pharmacological, and toxicological properties of nanomaterials with the aim of their wider implementation into practice lately. The discovery of new quantum/wave properties of nanoparticles is of particular importance. The author of the article advances an idea: wave properties of nanomaterials play greater role with a decrease in particle size. The preponderance of wave properties compared with corpuscular ones in nanostructures determines a great change in their physical. chemical properties and an increase in physical, mechanical biological, physiological, pharmacological, and toxicologica activity. The idea advanced in the article hasn't been verified by theoretical or experimental studies for now. Joined efforts of scientists of different scientific fields are needed. A confirmation of hypothesis by specific findings will be of great importance for physiology, medicine, pharmacology and promote an implementation of new efficacious preparations into clinical practice. New fundamental discoveries could be made only by multidisciplinary approach.
To Tunnel or not to Tunnel, Proton Transfer is the Question.
NASA Astrophysics Data System (ADS)
Chew, Kathryn; Nemchick, Deacon; Vaccaro, Patrick
2014-06-01
The transduction of protons between donor and acceptor sites, as mediated by the action of adjoining hydrogen bonds, represents one of the most ubiquitous of chemical transformations. While the basic mechanisms underlying such phenomena often can be ascribed to simple acid-base chemistry, the putative roles of selective nuclear and electronic displacements should not be discounted, especially when the presence of a sizeable potential barrier impedes classical hydron-migration pathways. The vibrational and isotopic specificity of hindered intramolecular proton transfer taking place within the ground (˜{X1}{A}1) and the lowest-lying excited (˜{A1}B2 (π *π) electronic states of the prototypical tropolone (TrOH) system has been probed by implementing multiple-color variants of resonant four-wave mixing (RFWM) spectroscopy, with polarization-resolved detection allowing for the extraction of quantitative rotation-tunneling information. The marked dependence of unimolecular dynamics on the extent and the type of excitation deposited into TrOH internal degrees of freedom will be discussed. Experimentally observed trends and propensities for tunneling-mediated reactivity will be interpreted through use of accompanying quantum-chemical calculations.
Exploiting Locality in Quantum Computation for Quantum Chemistry.
McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-12-18
Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Modern Fysics Phallacies: The Best Way Not to Unify Physics
NASA Astrophysics Data System (ADS)
Beichler, James E.
Too many physicists believe the `phallacy' that the quantum is more fundamental than relativity without any valid supporting evidence, so the earliest attempts to unify physics based on the continuity of relativity have been all but abandoned. This belief is probably due to the wealth of pro-quantum propaganda and general `phallacies in fysics' that were spread during the second quarter of the twentieth century, although serious `phallacies' exist throughout physics on both sides of the debate. Yet both approaches are basically flawed because both relativity and the quantum theory are incomplete and grossly misunderstood as they now stand. Had either side of the quantum versus relativity controversy sought common ground between the two worldviews, total unification would have been accomplished long ago. The point is, literally, that the discrete quantum, continuous relativity, basic physical geometry, theoretical mathematics and classical physics all share one common characteristic that has never been fully explored or explained - a paradoxical duality between a dimensionless point (discrete) and an extended length (continuity) in any dimension - and if the problem of unification is approached from an understanding of how this paradox relates to each paradigm, all of physics and indeed all of science could be unified under a single new theoretical paradigm.
Modelling and simulation of parallel triangular triple quantum dots (TTQD) by using SIMON 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathany, Maulana Yusuf, E-mail: myfathany@gmail.com; Fuada, Syifaul, E-mail: fsyifaul@gmail.com; Lawu, Braham Lawas, E-mail: bram-labs@rocketmail.com
2016-04-19
This research presents analysis of modeling on Parallel Triple Quantum Dots (TQD) by using SIMON (SIMulation Of Nano-structures). Single Electron Transistor (SET) is used as the basic concept of modeling. We design the structure of Parallel TQD by metal material with triangular geometry model, it is called by Triangular Triple Quantum Dots (TTQD). We simulate it with several scenarios using different parameters; such as different value of capacitance, various gate voltage, and different thermal condition.
Interacting quantum fields and the chronometric principle
Segal, I. E.
1976-01-01
A form of interaction in quantum field theory is described that is physically intrinsic rather than superimposed via a postulated nonlinearity on a hypothetical free field. It derives from the extension to general symmetries of the distinction basic for the chronometric cosmology between the physical (driving) and the observed energies, together with general precepts of quantum field theory applicable to nonunitary representations. The resulting interacting field is covariant, causal, involves real particle production, and is devoid of nontrivial ultraviolet divergences. Possible physical applications are discussed. PMID:16592353
NASA Astrophysics Data System (ADS)
Majid, Shahn
2002-05-01
Here is a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes for the Part III pure mathematics course at Cambridge University, the book is suitable as a primary text for graduate courses in quantum groups or supplementary reading for modern courses in advanced algebra. The material assumes knowledge of basic and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The volume is a primer for mathematicians but it will also be useful for mathematical physicists.
Rhorix: An interface between quantum chemical topology and the 3D graphics program blender
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.
Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less
Rhorix: An interface between quantum chemical topology and the 3D graphics program blender
Sale, Kenneth L.; Simmons, Blake A.; Popelier, Paul L. A.
2017-01-01
Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter‐free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition of mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add‐On” named Rhorix for the state‐of‐the‐art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. A number of examples are discussed. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28857244
NASA Astrophysics Data System (ADS)
Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo
2016-04-01
Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.
Rhorix: An interface between quantum chemical topology and the 3D graphics program blender
Mills, Matthew J. L.; Sale, Kenneth L.; Simmons, Blake A.; ...
2017-08-31
Journal of Computational Chemistry Published by Wiley Periodicals, Inc. Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition ofmore » mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python “Add-On” named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. Finally, a number of examples are discussed..« less
ERIC Educational Resources Information Center
Sevilla, F. J.; Olivares-Quiroz, L.
2012-01-01
In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…
Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.
Verma, V B; Stevens, Martin J; Silverman, K L; Dias, N L; Garg, A; Coleman, J J; Mirin, R P
2011-02-28
We demonstrate photon antibunching from a single lithographically defined quantum dot fabricated by electron beam lithography, wet chemical etching, and overgrowth of the barrier layers by metalorganic chemical vapor deposition. Measurement of the second-order autocorrelation function indicates g(2)(0)=0.395±0.030, below the 0.5 limit necessary for classification as a single photon source.
Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana
2018-03-22
Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.
What are the mechanics of quantum cognition?
Navarro, Daniel Joseph; Fuss, Ian
2013-06-01
Pothos & Busemeyer (P&B) argue that quantum probability (QP) provides a descriptive model of behavior and can also provide a rational analysis of a task. We discuss QP models using Marr's levels of analysis, arguing that they make most sense as algorithmic level theories. We also highlight the importance of having clear interpretations for basic mechanisms such as interference.
Experimental recovery of quantum correlations in absence of system-environment back-action
Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe
2013-01-01
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554
Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.
Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond
2017-02-24
Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.
Towards topological quantum computer
NASA Astrophysics Data System (ADS)
Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.
2018-01-01
Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.
Experimental recovery of quantum correlations in absence of system-environment back-action.
Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe
2013-01-01
Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.
High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.
Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton
2017-11-03
Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.
Solving the scalability issue in quantum-based refinement: Q|R#1.
Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P
2017-12-01
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
NASA Astrophysics Data System (ADS)
Huang, Bo-Jia; Kao, Li-Chi; Brahma, Sanjaya; Jeng, Yu-En; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang-Yao
2017-05-01
Oxide- and defect-free metal/semiconductor interface is important to improve Ohmic contact for the suppression of electron scattering and the avoidance of an extrinsic surface state in estimating the barrier of the Schottky contact at the nanodevice interface. This study reports the growth mechanism of Zn quantum dots coherently grown on Si(1 1 1) and the physical phenomena of the crystalline, nonlinear optics, and the chemical states of Zn quantum dots. Epitaxial Zn quantum dots were coherently formed on a non-oxide Si(1 1 1) surface through the liquid- to solid-phase transformation as a result of pattern matching between the Zn(0 0 2) and Si(1 1 1) surfaces. The growth mechanism of constrained Zn quantum dots grown through strategic magnetron radio frequency sputtering is complex. Some factors, such as substrate temperature, hydrogen gas flow, and negative DC bias, influence the configuration of epitaxial Zn quantum dots. In particular, hydrogen gas plays an important role in reducing the ZnO+ and native oxide that is bombarded by accelerated ions, thereby enhancing the Zn ion surface diffusion. The reduction reaction can be inspected by distinguishing the chemical states of ZnO/Zn quantum dots from natural oxidation or the states of Zn 3d through the analysis of x-ray absorption near the edge structure spectrum. The complex growth mechanism can be systematically understood by analyzing a noncancelled anisotropic 3 m dipole from reflective second harmonic generation and inspecting the evolution between the Zn(0 0 2) and Zn(1 1 1) peaks of the collective ZnO/Zn quantum dots in synchrotron XRD.
The rate constant of a quantum-diffusion-controlled bimolecular reaction
NASA Astrophysics Data System (ADS)
Bondarev, B. V.
1986-04-01
A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.
NASA Astrophysics Data System (ADS)
Regti, Abdelmajid; Ayouchia, Hicham Ben El; Laamari, My Rachid; Stiriba, Salah Eddine; Anane, Hafid; Haddad, Mohammadine El
2016-12-01
The adsorption of cationic dyes, Basic Yellow (BY28) and Methylene Blue (MB) on a new activated carbon from medlar species were studied in both single and binary system. Some experimental parameters, namely, pH, amount of adsorbent and contact time are studied. Quantum chemical results indicate that the adsorption efficiency was directly related to the dye electrophilicity power. Some theorical parameters were calculated and proved that MB is more electrophilic than BY28, than greatest interaction with surface sites. Kinetic study showed that the adsorption follows the pseudo-second-order model and Freundlich was the best model to describe the phenomenon in the single and binary system. According to the local reactivity results using Parr functions, the sulphur and nitrogen atoms will be the main adsorption sites.
Time reversal and charge conjugation in an embedding quantum simulator.
Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan
2015-08-04
A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a (171)Yb(+) ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones.
Quantum-coherent mixtures of causal relations
NASA Astrophysics Data System (ADS)
Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.
2017-05-01
Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.
Quantum-coherent mixtures of causal relations
MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.
2017-01-01
Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394
Time reversal and charge conjugation in an embedding quantum simulator
Zhang, Xiang; Shen, Yangchao; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jing-Ning; Kim, Kihwan
2015-01-01
A quantum simulator is an important device that may soon outperform current classical computations. A basic arithmetic operation, the complex conjugate, however, is considered to be impossible to be implemented in such a quantum system due to the linear character of quantum mechanics. Here, we present the experimental quantum simulation of such an unphysical operation beyond the regime of unitary and dissipative evolutions through the embedding of a quantum dynamics in the electronic multilevels of a 171Yb+ ion. We perform time reversal and charge conjugation, which are paradigmatic examples of antiunitary symmetry operators, in the evolution of a Majorana equation without the tomographic knowledge of the evolving state. Thus, these operations can be applied regardless of the system size. Our approach offers the possibility to add unphysical operations to the toolbox of quantum simulation, and provides a route to efficiently compute otherwise intractable quantities, such as entanglement monotones. PMID:26239028
Quantum-coherent mixtures of causal relations.
MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J
2017-05-09
Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.
Emulating weak localization using a solid-state quantum circuit.
Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M
2014-10-14
Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.
Fault-tolerant simple quantum-bit commitment unbreakable by individual attacks
NASA Astrophysics Data System (ADS)
Shimizu, Kaoru; Imoto, Nobuyuki
2002-03-01
This paper proposes a simple scheme for quantum-bit commitment that is secure against individual particle attacks, where a sender is unable to use quantum logical operations to manipulate multiparticle entanglement for performing quantum collective and coherent attacks. Our scheme employs a cryptographic quantum communication channel defined in a four-dimensional Hilbert space and can be implemented by using single-photon interference. For an ideal case of zero-loss and noiseless quantum channels, our basic scheme relies only on the physical features of quantum states. Moreover, as long as the bit-flip error rates are sufficiently small (less than a few percent), we can improve our scheme and make it fault tolerant by adopting simple error-correcting codes with a short length. Compared with the well-known Brassard-Crepeau-Jozsa-Langlois 1993 (BCJL93) protocol, our scheme is mathematically far simpler, more efficient in terms of transmitted photon number, and better tolerant of bit-flip errors.
NASA Astrophysics Data System (ADS)
Mathew, Bijo; Adeniyi, Adebayo A.; Joy, Monu; Mathew, Githa Elizabeth; Singh-Pillay, Ashona; Sudarsanakumar, C.; Soliman, Mahmoud E. S.; Suresh, Jerad
2017-10-01
Compound (2E)-3-(methoxyphenyl)-1-(4-methylphenyl) prop-2-en-1-one (Ch) was synthesized by the Claisen-Schmidt condensation reaction between para-methylacetophenone and para-methoxybenzaldehyde under basic condition. The structure of the molecule was elucidated using X-ray diffraction. Compound (Ch) demonstrated higher antioxidant activities in the DPPH test and H2O2 assay (IC50 = 12.23 ± 0.53 and 15.62 ± 0.98) than with the standard ascorbic acid (IC50 = 17.32 ± 0.44 and 19.07 ± 0.35). An evaluation of the atomic and molecular properties of ascorbic acid and Ch were computed based on their antioxidant activities. The molecular properties give insight into possible reasons for the enhanced antioxidant properties of Ch compared to ascorbic acid. The atomic properties provide further insight into chemical changes of the atoms of the compounds. Such changes include electronic shifting of the compounds electrophilic and/or nucleophilic states which highlight chemical moieties which characterize the antioxidant activity but do not directly relate to a variation in their antioxidant activities. The results obtained reflect oxygen atoms having significant nucleophilic interactions of each of the compounds. This was characterized by higher Fukui indices, isotropic and anisotropic hyperfine and orbital coupling stability energy.
Objectivity in Quantum Measurement
NASA Astrophysics Data System (ADS)
Li, Sheng-Wen; Cai, C. Y.; Liu, X. F.; Sun, C. P.
2018-06-01
The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists "objectively" since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.
Objectivity in Quantum Measurement
NASA Astrophysics Data System (ADS)
Li, Sheng-Wen; Cai, C. Y.; Liu, X. F.; Sun, C. P.
2018-05-01
The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists "objectively" since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.
Fidelity between Gaussian mixed states with quantum state quadrature variances
NASA Astrophysics Data System (ADS)
Hai-Long, Zhang; Chun, Zhou; Jian-Hong, Shi; Wan-Su, Bao
2016-04-01
In this paper, from the original definition of fidelity in a pure state, we first give a well-defined expansion fidelity between two Gaussian mixed states. It is related to the variances of output and input states in quantum information processing. It is convenient to quantify the quantum teleportation (quantum clone) experiment since the variances of the input (output) state are measurable. Furthermore, we also give a conclusion that the fidelity of a pure input state is smaller than the fidelity of a mixed input state in the same quantum information processing. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the Foundation of Science and Technology on Information Assurance Laboratory (Grant No. KJ-14-001).
Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.
Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping
2015-12-01
Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.
Quantum Chemistry, 5th Edition by Ira N. Levine
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
2000-12-01
Of course, there is no one- or two-week shortcut by which nonspecialists can master enough quantum mechanics to become informed users of quantum chemical techniques. Nevertheless, a text that integrated the fundamentals of quantum theory with a rigorous introduction to quantum chemistry could help instructors design a class that would benefit both these nonspecialists and graduate students in physical chemistry. Could such a class overcome the (undeserved) stigma associated with the physical chemistry curriculum? That remains to be seen.
Synthesis, dynamics and photophysics of nanoscale systems
NASA Astrophysics Data System (ADS)
Mirkovic, Tihana
The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained through a combination of steady-state and time-resolved spectroscopy in conjunction with quantum chemical calculations aided in the elucidation of the dynamics and the mechanism of light harvesting in the multichromophoric phycobiliprotein phycocyanin PC645 in vitro. Investigation of the light-harvesting efficiency and optimization of energy transfer with respect to the structural organization of light-harvesting chromophores on the nanoscale, can provide us with fundamental information necessary for the development of synthetic light-harvesting devices capable of mimicking the efficiency of the natural system.
On a Quantum Model of Brain Activities
NASA Astrophysics Data System (ADS)
Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.
2010-01-01
One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.
Particle Substructure. A Common Theme of Discovery in this Century
DOE R&D Accomplishments Database
Panofsky, W. K. H.
1984-02-01
Some example of modern developments in particle physics are given which demonstrate that the fundamental rules of quantum mechanics, applied to all forces in nature as they became understood, have retained their validity. The well-established laws of electricity and magnetism, reformulated in terms of quantum mechanics, have exhibited a truly remarkable numerical agreement between theory and experiment over an enormous range of observation. As experimental techniques have grown from the top of a laboratory bench to the large accelerators of today, the basic components of experimentation have changed vastly in scale but only little in basic function. More important, the motivation of those engaged in this type of experimentation has hardly changed at all.
In situ electron-beam polymerization stabilized quantum dot micelles.
Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric
2011-04-19
A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society
Ab initio quantum chemistry: methodology and applications.
Friesner, Richard A
2005-05-10
This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods that are discussed include coupled cluster theory, localized second-order Moller-Plesset perturbation theory, multireference perturbation approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade. Incorporation of a condensed-phase environment by means of mixed quantum mechanical/molecular mechanics or self-consistent reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are discussed briefly.
Quantum origins of objectivity
NASA Astrophysics Data System (ADS)
Horodecki, R.; Korbicz, J. K.; Horodecki, P.
2015-03-01
In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete model. More specifically, working formally within the decoherence theory setting with multiple environments (called quantum Darwinism), we show how a crucial for quantum mechanics notion of nondisturbance due to Bohr [N. Bohr, Phys. Rev. 48, 696 (1935), 10.1103/PhysRev.48.696] and a natural definition of objectivity lead to a canonical structure of a quantum system-environment state, reflecting objective information records about the system stored in the environment.
Properties and relative measure for quantifying quantum synchronization
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan
2017-07-01
Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.
NASA Astrophysics Data System (ADS)
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
Thermodynamics of Quantum Gases for the Entire Range of Temperature
ERIC Educational Resources Information Center
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
Applicability of DFT model in reactive distillation
NASA Astrophysics Data System (ADS)
Staszak, Maciej
2017-11-01
The density functional theory (DFT) applicability to reactive distillation is discussed. Brief modeling techniques description of distillation and rectification with chemical reaction is provided as a background for quantum method usage description. The equilibrium and nonequilibrium distillation models are described for that purpose. The DFT quantum theory is concisely described. The usage of DFT in the modeling of reactive distillation is described in two parts. One of the fundamental and very important component of distillation modeling is vapor-liquid equilibrium description for which the DFT quantum approach can be used. The representative DFT models, namely COSMO-RS (Conductor like Screening Model for Real Solvents), COSMOSPACE (COSMO Surface Pair Activity Coefficient) and COSMO-SAC (SAC - segment activity coefficient) approaches are described. The second part treats the way in which the chemical reaction is described by means of quantum DFT method. The intrinsic reaction coordinate (IRC) method is described which is used to find minimum energy path of substrates to products transition. The DFT is one of the methods which can be used for that purpose. The literature data examples are provided which proves that IRC method is applicable for chemical reaction kinetics description.
NASA Astrophysics Data System (ADS)
Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang
2018-03-01
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang
2018-03-01
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei
2018-01-01
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm−2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method—chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density–voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs. PMID:29657776
Alam, Mahboob; Lee, Dong-Ung
2015-01-01
The aim of this study was to report the synthesis of biologically active compounds; 7-(2′-aminoethoxyimino)-cholest-5-ene (4), a steroidal oxime-ether and its derivatives (5, 6) via a facile microwave assisted solvent free reaction methodology. This new synthetic, eco-friendly, sustainable protocol resulted in a remarkable improvement in the synthetic efficiency (85-93 % yield) and high purity using basic alumina. The synthesized compounds were screened for their antibacterial against six bacterial strains by disc diffusion method and antioxidant potential by DPPH assay. The binding capabilities of a compound 6 exhibiting good antibacterial potential were assessed on the basis of molecular docking studies and four types of three-dimensional molecular field descriptors. Moreover the structure-antimicrobial activity relationships were studied using some physicochemical and quantum-chemical parameters with GAMESS interface as well as WebMO Job Manager by using the basic level of theory. Hence, this synthetic approach is believed to provide a better scope for the synthesis of steroidal oxime-ether analogues and will be a more practical alternative to the presently existing procedures. Moreover, detailed in silico docking studies suggested the plausible mechanism of steroidal oxime-ethers as effective antimicrobial agents. PMID:27330525
Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation.
Myllys, Nanna; Ponkkonen, Tuomo; Passananti, Monica; Elm, Jonas; Vehkamäki, Hanna; Olenius, Tinja
2018-05-24
The role of a strong organobase, guanidine, in sulfuric acid-driven new-particle formation is studied using state-of-the-art quantum chemical methods and molecular cluster formation simulations. Cluster formation mechanisms at the molecular level are resolved, and theoretical results on cluster stability are confirmed with mass spectrometer measurements. New-particle formation from guanidine and sulfuric acid molecules occurs without thermodynamic barriers under studied conditions, and clusters are growing close to a 1:1 composition of acid and base. Evaporation rates of the most stable clusters are extremely low, which can be explained by the proton transfers and symmetrical cluster structures. We compare the ability of guanidine and dimethylamine to enhance sulfuric acid-driven particle formation and show that more than 2000-fold concentration of dimethylamine is needed to yield as efficient particle formation as in the case of guanidine. At similar conditions, guanidine yields 8 orders of magnitude higher particle formation rates compared to dimethylamine. Highly basic compounds such as guanidine may explain experimentally observed particle formation events at low precursor vapor concentrations, whereas less basic and more abundant bases such as ammonia and amines are likely to explain measurements at high concentrations.
Electrostatic thin film chemical and biological sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.
A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includesmore » providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.« less
The unique world of the Everett version of quantum theory
NASA Astrophysics Data System (ADS)
Squires, Euan J.
1988-03-01
We ask whether the basic Everett assumption, that there are no changes of the wavefunction other than those given by the Schrödinger equation, is compatible with experience. We conclude that it is, provided we allow the world of observation to be partially a creation of consciousness. The model suggests the possible existence of quantum paranormal effects.
Magneto optical properties of self-assembled InAs quantum dots for quantum information processing
NASA Astrophysics Data System (ADS)
Tang, Jing; Xu, Xiu-Lai
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 11721404, 51761145104, and 61675228), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07030200 and XDPB0803), and the CAS Interdisciplinary Innovation Team.
The Quantum Socket: Wiring for Superconducting Qubits - Part 1
NASA Astrophysics Data System (ADS)
McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.
A quantum annealing architecture with all-to-all connectivity from local interactions.
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-10-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.
Quantum Gauss-Jordan Elimination and Simulation of Accounting Principles on Quantum Computers
NASA Astrophysics Data System (ADS)
Diep, Do Ngoc; Giang, Do Hoang; Van Minh, Nguyen
2017-06-01
The paper is devoted to a version of Quantum Gauss-Jordan Elimination and its applications. In the first part, we construct the Quantum Gauss-Jordan Elimination (QGJE) Algorithm and estimate the complexity of computation of Reduced Row Echelon Form (RREF) of N × N matrices. The main result asserts that QGJE has computation time is of order 2 N/2. The second part is devoted to a new idea of simulation of accounting by quantum computing. We first expose the actual accounting principles in a pure mathematics language. Then, we simulate the accounting principles on quantum computers. We show that, all accounting actions are exhousted by the described basic actions. The main problems of accounting are reduced to some system of linear equations in the economic model of Leontief. In this simulation, we use our constructed Quantum Gauss-Jordan Elimination to solve the problems and the complexity of quantum computing is a square root order faster than the complexity in classical computing.
A quantum annealing architecture with all-to-all connectivity from local interactions
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-01-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2001-11-01
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics
NASA Astrophysics Data System (ADS)
Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.
2008-06-01
A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.
First-principles calculations of Ti and O NMR chemical shift tensors in ferroelectric perovskites
NASA Astrophysics Data System (ADS)
Pechkis, Daniel; Walter, Eric; Krakauer, Henry
2011-03-01
Complementary chemical shift calculations were carried out with embedded clusters, using quantum chemistry methods, and with periodic boundary conditions, using the GIPAW approach within the Quantum Espresso package. Compared to oxygen chemical shifts, δ̂ (O), cluster calculations for δ̂ (Ti) were found to be more sensitive to size effects, termination, and choice of gaussian-type atomic basis set, while GIPAW results were found to be more sensitive to the pseudopotential construction. The two approaches complemented each other in optimizing these factors. We show that the two approaches yield comparable chemical shifts for suitably converged simulations, and results are compared with available experimental measurements. Supported by ONR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-02-13
A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.
Architectures for Quantum Simulation Showing a Quantum Speedup
NASA Astrophysics Data System (ADS)
Bermejo-Vega, Juan; Hangleiter, Dominik; Schwarz, Martin; Raussendorf, Robert; Eisert, Jens
2018-04-01
One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred to as "quantum computational supremacy," referring to the experimental realization of a quantum device that computationally outperforms classical computers. In this work, we show that one can devise versatile and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum computation. In each of the schemes, an initial product state is prepared, potentially involving an element of randomness as in disordered models, followed by a short-time evolution under a basic translationally invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental demonstration of a quantum speedup within reach in the near term.
Quantum interpolation for high-resolution sensing
Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola
2017-01-01
Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy. PMID:28196889
Quantum interpolation for high-resolution sensing.
Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola
2017-02-28
Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.
Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy
2015-10-01
Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), 1H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1H-1H homonuclear dipolar couplings and narrow 1H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1H-1H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.
Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2015-10-14
Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which rendermore » it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.« less
ON THE DYNAMICAL DERIVATION OF EQUILIBRIUM STATISTICAL MECHANICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prigogine, I.; Balescu, R.; Henin, F.
1960-12-01
Work on nonequilibrium statistical mechanics, which allows an extension of the kinetic proof to all results of equilibrium statistical mechanics involving a finite number of degrees of freedom, is summarized. As an introduction to the general N-body problem, the scattering theory in classical mechanics is considered. The general N-body problem is considered for the case of classical mechanics, quantum mechanics with Boltzmann statistics, and quantum mechanics including quantum statistics. Six basic diagrams, which describe the elementary processes of the dynamics of correlations, were obtained. (M.C.G.)
NASA Astrophysics Data System (ADS)
Thakkar, Ajit J.
2017-09-01
This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.
Weiss, Emily A
2013-11-19
In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this Account, I describe the varied roles of organic molecules in controlling the structure and properties of colloidal quantum dots. Molecules serve as surfactant that determines the mechanism and rate of nucleation and growth and the final size and surface structure of a quantum dot. Anionic surfactant in the reaction mixture allows precise control over the size of the quantum dot core but also drives cation enrichment and structural disordering of the quantum dot surface. Molecules serve as chemisorbed ligands that dictate the energetic distribution of surface states. These states can then serve as thermodynamic traps for excitonic charge carriers or couple to delocalized states of the quantum dot core to change the confinement energy of excitonic carriers. Ligands, therefore, in some cases, dramatically shift the ground state absorption and photoluminescence spectra of quantum dots. Molecules also act as protective layers that determine the probability of redox processes between quantum dots and other molecules. How much the ligand shell insulates the quantum dot from electron exchange with a molecular redox partner depends less on the length or degree of conjugation of the native ligand and more on the density and packing structure of the adlayer and the size and adsorption mode of the molecular redox partner. Control of quantum dot properties in these examples demonstrates that nanoscale interfaces, while complex, can be rationally designed to enhance or specify the functionality of a nanostructured system.
Mata, Ricardo A
2010-05-21
In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.
Stadler, Eduard; Eibel, Anna; Fast, David; Freißmuth, Hilde; Holly, Christian; Wiech, Mathias; Moszner, Norbert; Gescheidt, Georg
2018-05-16
We have developed a simple method for determining the quantum yields of photo-induced reactions. Our setup features a fibre coupled UV-Vis spectrometer, LED irradiation sources, and a calibrated spectrophotometer for precise measurements of the LED photon flux. The initial slope in time-resolved absorbance profiles provides the quantum yield. We show the feasibility of our methodology for the kinetic analysis of photochemical reactions and quantum yield determination. The typical chemical actinometers, ferrioxalate and ortho-nitrobenzaldehyde, as well as riboflavin, a spiro-compound, phosphorus- and germanium-based photoinitiators for radical polymerizations and the frequently utilized photo-switch azobenzene serve as paradigms. The excellent agreement of our results with published data demonstrates the high potential of the proposed method as a convenient alternative to the time-consuming chemical actinometry.
Controlling the Properties of Matter with Quantum Dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimov, Victor
2017-03-22
Solar cells and photodetectors could soon be made from new types of materials based on semiconductor quantum dots, thanks to new insights based on ultrafast measurements capturing real-time photoconversion processes. Photoconversion is a process wherein the energy of a photon, or quantum of light, is converted into other forms of energy, for example, chemical or electrical. Semiconductor quantum dots are chemically synthesized crystalline nanoparticles that have been studied for more than three decades in the context of various photoconversion schemes including photovoltaics (generation of photo-electricity) and photo-catalysis (generation of “solar fuels”). The appeal of quantum dots comes from the unmatchedmore » tunability of their physical properties, which can be adjusted by controlling the size, shape and composition of the dots. At Los Alamos, the research connects to the institutional mission of solving national security challenges through scientific excellence, in this case focusing on novel physical principles for highly efficient photoconversion, charge manipulation in exploratory device structures and novel nanomaterials.« less
NASA Astrophysics Data System (ADS)
Hirota, Osamu; Ohhata, Kenichi; Honda, Makoto; Akutsu, Shigeto; Doi, Yoshifumi; Harasawa, Katsuyoshi; Yamashita, Kiichi
2009-08-01
The security issue for the next generation optical network which realizes Cloud Computing System Service with data center" is urgent problem. In such a network, the encryption by physical layer which provide super security and small delay should be employed. It must provide, however, very high speed encryption because the basic link is operated at 2.5 Gbit/sec or 10 Gbit/sec. The quantum stream cipher by Yuen-2000 protocol (Y-00) is a completely new type random cipher so called Gauss-Yuen random cipher, which can break the Shannon limit for the symmetric key cipher. We develop such a cipher which has good balance of the security, speed and cost performance. In SPIE conference on quantum communication and quantum imaging V, we reported a demonstration of 2.5 Gbit/sec system for the commercial link and proposed how to improve it to 10 Gbit/sec. This paper reports a demonstration of the Y-00 cipher system which works at 10 Gbit/sec. A transmission test in a laboratory is tried to get the basic data on what parameters are important to operate in the real commercial networks. In addition, we give some theoretical results on the security. It is clarified that the necessary condition to break the Shannon limit requires indeed the quantum phenomenon, and that the full information theoretically secure system is available in the satellite link application.
Uni10: an open-source library for tensor network algorithms
NASA Astrophysics Data System (ADS)
Kao, Ying-Jer; Hsieh, Yun-Da; Chen, Pochung
2015-09-01
We present an object-oriented open-source library for developing tensor network algorithms written in C++ called Uni10. With Uni10, users can build a symmetric tensor from a collection of bonds, while the bonds are constructed from a list of quantum numbers associated with different quantum states. It is easy to label and permute the indices of the tensors and access a block associated with a particular quantum number. Furthermore a network class is used to describe arbitrary tensor network structure and to perform network contractions efficiently. We give an overview of the basic structure of the library and the hierarchy of the classes. We present examples of the construction of a spin-1 Heisenberg Hamiltonian and the implementation of the tensor renormalization group algorithm to illustrate the basic usage of the library. The library described here is particularly well suited to explore and fast prototype novel tensor network algorithms and to implement highly efficient codes for existing algorithms.
NASA Astrophysics Data System (ADS)
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
NASA Astrophysics Data System (ADS)
Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim
2017-08-01
Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.
Berry phase effect on electronic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Di; Chang, Ming-Che; Niu, Qian
2010-01-01
Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A commonmore » thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.« less
Investigation of possible observable e ects in a proposed theory of physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freidan, Daniel
2015-03-31
The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying tomore » do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.« less
Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.
Sevastik, Robin; Himo, Fahmi
2007-12-01
The reaction mechanism of 4-oxalocrotonate tautomerase (4-OT) is studied using the density functional theory method B3LYP. This enzyme catalyzes the isomerisation of unconjugated alpha-keto acids to their conjugated isomers. Two different quantum chemical models of the active site are devised and the potential energy curves for the reaction are computed. The calculations support the proposed reaction mechanism in which Pro-1 acts as a base to shuttle a proton from the C3 to the C5 position of the substrate. The first step (proton transfer from C3 to proline) is shown to be the rate-limiting step. The energy of the charge-separated intermediate (protonated proline-deprotonated substrate) is calculated to be quite low, in accordance with measured pKa values. The results of the two models are used to evaluate the methodology employed in modeling enzyme active sites using quantum chemical cluster models.
Mashuga, Motsie E.; Olasunkanmi, Lukman O.; Adekunle, Abolanle S.; Yesudass, Sasikumar; Kabanda, Mwadham M.; Ebenso, Eno E.
2015-01-01
The inhibition of mild steel corrosion in 1 M HCl solution by some ionic liquids (ILs) namely, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate [HMIM][TfO], 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], and 1-hexyl-3-methylimidazolium iodide [HMIM][I] was investigated using electrochemical measurements, spectroscopic analyses and quantum chemical calculations. All the ILs showed appreciably high inhibition efficiency. At 303 K, the results of electrochemical measurements indicated that the studied ILs are mixed-type inhibitors. The adsorption studies showed that all the four ILs adsorb spontaneously on steel surface with [HMIM][TfO], [HMIM][BF4] and [HMIM][I] obeying Langmuir adsorption isotherm, while [HMIM][PF6] conformed better with Temkin adsorption isotherm. Spectroscopic analyses suggested the formation of Fe/ILs complexes. Some quantum chemical parameters were calculated to corroborate experimental results.
Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.
2016-06-01
A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.
Effect of rotation on Jeans instability of magnetized radiative quantum plasma
NASA Astrophysics Data System (ADS)
Joshi, H.; Pensia, R. K.
2017-03-01
The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.
Hao, Tian
2017-02-22
The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.
Transfer of non-Gaussian quantum states of mechanical oscillator to light
NASA Astrophysics Data System (ADS)
Filip, Radim; Rakhubovsky, Andrey A.
2015-11-01
Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2017-08-01
Starting with the quantum-like paradigm on application of quantum information and probability outside of physics we proceed to the social laser model describing Stimulated Amplification of Social Actions (SASA). The basic components of social laser are the quantum information field carrying information excitations and the human gain medium. The aim of this note is to analyze constraints on these components making possible SASA. The soical laser model can be used to explain the recent wave of color revolutions as well as such “unpredictable events” as Brexit and election of Donald Trump as the president of the United States of America. The presented quantum-like model is not only descriptive. We shall list explicitly conditions for creation of social laser.
NASA Astrophysics Data System (ADS)
Shimada, Toru; Hasegawa, Takeshi
2017-10-01
The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.
Shimada, Toru; Hasegawa, Takeshi
2017-10-05
The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ziyi
2017-12-01
Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.
Quantum Monte Carlo simulations of Ti4 O7 Magnéli phase
NASA Astrophysics Data System (ADS)
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron; Zhong, Xiaoliang; Kent, Paul; Heinonen, Olle
2015-03-01
Ti4O7 is ubiquitous in Ti-oxides. It has been extensively studied, both experimentally and theoretically in the past decades using multiple levels of theories, resulting in multiple diverse results. The latest DFT +SIC methods and state of the art HSE06 hybrid functionals even propose a new anti-ferromagnetic state at low temperature. Using Quantum Monte Carlo (QMC), as implemented in the QMCPACK simulation package, we investigated the electronic and magnetic properties of Ti4O7 at low (120K) and high (298K) temperatures and at different magnetic states. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. L.S, J.K and P.K were supported through Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe; Paulus, Beate; Hege, Hans-Christian; Schild, Axel
2016-06-15
ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wavefunction, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT possesses routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Relationship between Surface Modifications of Nanoparticle and Invasion into Suspension Cells
NASA Astrophysics Data System (ADS)
Matsui, Y.; Sakai, N.; Tsuda, A.; Yoneda, M.
2011-07-01
Nanomaterials have a variety of properties for each material. There is little information available on which kinds of material properties have effects on toxicity and kinetics. This paper presents that a relationship between material properties and hazard data by undertaking a bibliographical survey at first. With respect to cytotoxicity, it probably depends mainly on the particle volume dose and to a certain degree on particle solubility. It can be concluded from these results that there is a relationship between material properties and hazard data. Many activities involving nano risk are occurring all over the world. Secondly, we assayed actually for cellular uptake of three kinds of Quantum dots (15 nm, 5.5×1012 particles/ml) to demonstrate our result of bibliographical survey. Three different surface modification quantum dots (non-modification, -COOH, -NH3) were mixed with floating Jurkat cells in each. After thirty minute, we washed these cells three times and detected fluorescence by flow cytometer. Almost all the carboxylate particles invaded a cell, about 60% aminated them also invaded and few non-modification particles were taken up. Nanomaterials are often very broadly categorized and named based upon their basic material composition or product shape. Our results confirm that we have to examine which physical-chemical properties affect some adverse effects for each nanomaterial.
Entanglement, space-time and the Mayer-Vietoris theorem
NASA Astrophysics Data System (ADS)
Patrascu, Andrei T.
2017-06-01
Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).
Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro
2013-07-01
There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.
Kirkpatrick, T R; Belitz, D
2015-07-10
The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.
Implementation of quantum logic gates using polar molecules in pendular states.
Zhu, Jing; Kais, Sabre; Wei, Qi; Herschbach, Dudley; Friedrich, Bretislav
2013-01-14
We present a systematic approach to implementation of basic quantum logic gates operating on polar molecules in pendular states as qubits for a quantum computer. A static electric field prevents quenching of the dipole moments by rotation, thereby creating the pendular states; also, the field gradient enables distinguishing among qubit sites. Multi-target optimal control theory is used as a means of optimizing the initial-to-target transition probability via a laser field. We give detailed calculations for the SrO molecule, a favorite candidate for proposed quantum computers. Our simulation results indicate that NOT, Hadamard and CNOT gates can be realized with high fidelity, as high as 0.985, for such pendular qubit states.
Cubic GaN quantum dots embedded in zinc-blende AlN microdisks
NASA Astrophysics Data System (ADS)
Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.
2013-09-01
Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.
NASA Astrophysics Data System (ADS)
Greca, Ileana Maria; Freire, Olival
Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.
NASA Astrophysics Data System (ADS)
Loepp, Susan; Wootters, William K.
2006-09-01
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices. Accessible to readers familiar with matrix algebra, vector spaces and complex numbers First undergraduate text to cover cryptography, error-correction, and quantum computation together Features exercises designed to enhance understanding, including a number of computational problems, available from www.cambridge.org/9780521534765
NASA Astrophysics Data System (ADS)
Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail
2014-05-01
Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).
Quantum Information Theory - an Invitation
NASA Astrophysics Data System (ADS)
Werner, Reinhard F.
Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.
Quantum coordinated multi-point communication based on entanglement swapping
NASA Astrophysics Data System (ADS)
Du, Gang; Shang, Tao; Liu, Jian-wei
2017-05-01
In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten-Podolsky-Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.
Quantum violation of an instrumental test
NASA Astrophysics Data System (ADS)
Chaves, Rafael; Carvacho, Gonzalo; Agresti, Iris; Di Giulio, Valerio; Aolita, Leandro; Giacomini, Sandro; Sciarrino, Fabio
2018-03-01
Inferring causal relations from experimental observations is of primal importance in science. Instrumental tests provide an essential tool for that aim, as they allow one to estimate causal dependencies even in the presence of unobserved common causes. In view of Bell's theorem, which implies that quantum mechanics is incompatible with our most basic notions of causality, it is of utmost importance to understand whether and how paradigmatic causal tools obtained in a classical setting can be carried over to the quantum realm. Here we show that quantum effects imply radically different predictions in the instrumental scenario. Among other results, we show that an instrumental test can be violated by entangled quantum states. Furthermore, we demonstrate such violation using a photonic set-up with active feed-forward of information, thus providing an experimental proof of this new form of non-classical behaviour. Our findings have fundamental implications in causal inference and may also lead to new applications of quantum technologies.
Introduction to basic solar cell measurements
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1976-01-01
The basic approaches to solar cell performance and diagnostic measurements are described. The light sources, equipment for I-V curve measurement, and the test conditions and procedures for performance measurement are detailed. Solar cell diagnostic tools discussed include analysis of I-V curves, series resistance and reverse saturation current determination, spectral response/quantum yield measurement, and diffusion length/lifetime determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Múnera, Héctor A., E-mail: hmunera@hotmail.com; Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America
2016-07-07
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding amore » unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.« less
A quantum informational approach for dissecting chemical reactions
NASA Astrophysics Data System (ADS)
Duperrouzel, Corinne; Tecmer, Paweł; Boguslawski, Katharina; Barcza, Gergely; Legeza, Örs; Ayers, Paul W.
2015-02-01
We present a conceptionally different approach to dissect bond-formation processes in metal-driven catalysis using concepts from quantum information theory. Our method uses the entanglement and correlation among molecular orbitals to analyze changes in electronic structure that accompany chemical processes. As a proof-of-principle example, the evolution of nickel-ethene bond-formation is dissected, which allows us to monitor the interplay of back-bonding and π-donation along the reaction coordinate. Furthermore, the reaction pathway of nickel-ethene complexation is analyzed using quantum chemistry methods, revealing the presence of a transition state. Our study supports the crucial role of metal-to-ligand back-donation in the bond-forming process of nickel-ethene.
Kandemirli, Fatma; Tokay, Nesrin; Shvets, Nataly M; Dimoglo, Anatoly S
2003-01-01
Conformational analysis and quantum chemical calculations were carried out using molecular mechanics (MMP2) and semi-empirical quantum chemistry (CNDO/2) methods for 51 steroid homologues belonging to a series of 17-spirolactones. Matrices called Electronic-Topological Matrices of Conjunction (ETMCs) were formed using data obtained from quantum chemical calculations. A structural fragment of activity was identified in the series of steroids. As seen from the fragment's properties, active compounds are characterized by the presence of two atoms of oxygen, O1 and O3, which are situated at a distance of 13.5 A and possess high negative charges (-0.29 to -0.31 e).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. D.; Wang, J.; Department of Chemistry, SUNY Stony Brook, New York 11794
We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature,more » the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy dissipation, heat and electric currents observed in the experiments. We observed a perfect transfer efficiency in chemical reactions at high voltage (chemical potential difference). Our theoretical predicted behavior of the electric current with respect to the voltage is in good agreements with the recent experiments on electron transfer in single molecules.« less
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W
2016-09-16
Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.
Quantum dots in bio-imaging: Revolution by the small
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, Harinder; Kaul, Zeenia; Wadhwa, Renu
2005-04-22
Visual analysis of biomolecules is an integral avenue of basic and applied biological research. It has been widely carried out by tagging of nucleotides and proteins with traditional fluorophores that are limited in their application by features such as photobleaching, spectral overlaps, and operational difficulties. Quantum dots (QDs) are emerging as a superior alternative and are poised to change the world of bio-imaging and further its applications in basic and applied biology. The interdisciplinary field of nanobiotechnology is experiencing a revolution and QDs as an enabling technology have become a harbinger of this hybrid field. Within a decade, research onmore » QDs has evolved from being a pure science subject to the one with high-end commercial applications.« less
Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok
2013-07-19
Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Basic Chemistry for the Cement Industry.
ERIC Educational Resources Information Center
Turner, Mason
This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J
2015-05-13
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
NASA Astrophysics Data System (ADS)
Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.
2017-01-01
Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
Cluster Quantum Chemical Study of the Grignard Reagent Formation
NASA Astrophysics Data System (ADS)
Tulub, A. V.; Porsev, V. V.
The main stages of the Grignard reagent formation are described in a framework of quantum chemical cluster model. We have established two kinds of the adsorption of CH3Hal on Mgn clusters, one of which leads to radical formation and the second is responsible for radical free dissociate adsorption. The charge redistribution in cluster CH3MgnHal result to the strong electrostatic interaction with ether and Grignard reagent formation without any activation barrier.
Sun, Yuzhen; Pan, Wenxiao; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian
2016-01-01
Short-chain chlorinated paraffins (SCCPs) are still controversial candidates for inclusion in the Stockholm Convention. The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors. A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed. We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations. The thermodynamic properties were acquired using the AM1 method, and frontier molecular orbital analysis was carried out to obtain the E(HOMO), E(LUMO) and E(LUMO)-E(HOMO) for degradability exploration at the same level. The influence of the chlorination degree (N(Cl)) on the relative stability and environmental degradation was elucidated. A novel structural descriptor, μ, was proposed to measure the dispersion of the chlorine atoms within a molecule. There were significant correlations between thermodynamic values and N(Cl), while the reported N(Cl)-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners. In addition, isomers with large μ showed higher relative stability than those with small μ. This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and OH attack respectively. The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack, while direct photolysis of C10-SCCP congeners cannot readily occur due to the large E(LUMO)-E(HOMO) values. The chlorination effect and the conclusions were further checked with appropriate density functional theory (DFT) calculations. Copyright © 2015. Published by Elsevier B.V.
Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol
2015-01-01
Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys.2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum under DFT by several fold. The approach also shows promise for free energy calculations when thermal noise can be controlled. PMID:25516726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Steffen; Gerwert, Klaus, E-mail: gerwert@bph.rub.de; Department of Biophysics, Chinese Academy of Sciences, Max-Planck-Gesellschaft Partner Institute for Computational Biology, 320 Yue Yang Road, 200031 Shanghai
Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations.more » A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.« less
Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles
2017-05-31
211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.
Kipriyanov, Alexey A; Doktorov, Alexander B
2014-10-14
The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.
Wolf, Steffen; Freier, Erik; Cui, Qiang; Gerwert, Klaus
2014-12-14
Proton conduction along protein-bound "water wires" is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded ("dangling") O-H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.
Du, Tingsong; Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.
Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713
BOOK REVIEW: A First Course in Loop Quantum Gravity A First Course in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca
2012-12-01
Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in Loop Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (loop) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for loop quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through loop quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, loop quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an 'open issues and controversies' section, addressing some of the criticism of loop quantum gravity and pointing to weak points of the theory. Again, readers aiming at starting research in loop quantum gravity should take this as a guide and motivation for further study, as many technicalities are naturally left out. In summary this book fully reaches the aim set by the authors - to introduce the topic in a way that is widely accessible to undergraduates - and as such is highly recommended.
Zinc sulfide quantum dots for photocatalytic and sensing applications
NASA Astrophysics Data System (ADS)
Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.
2017-09-01
Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haxton, Wick C.; Holstein, Barry R.; Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003
2000-01-01
The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers.
Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul
2014-06-01
In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.
1987-02-15
For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less
NASA Astrophysics Data System (ADS)
Ros Barcelò, A.; Zapata, J. M.
1996-11-01
Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.
Towards a Quantum Game of Life
NASA Astrophysics Data System (ADS)
Flitney, Adrian P.; Abbott, Derek
Cellular automata provide a means of obtaining complex behaviour from a simple array of cells and a deterministic transition function. They supply a method of computation that dispenses with the need for manipulation of individual cells and they are computationally universal. Classical cellular automata have proved of great interest to computer scientists but the construction of quantum cellular automata pose particular difficulties. We present a version of John Conway's famous two-dimensional classical cellular automata Life that has some quantum-like features, including interference effects. Some basic structures in the new automata are given and comparisons are made with Conway's game.
Time-reversal-symmetric single-photon wave packets for free-space quantum communication.
Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G
2015-05-01
Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.
Bell's Theorem, Entaglement, Quantum Teleportation and All That
Leggett, Anthony
2018-04-19
One of the most surprising aspects of quantum mechanics is that under certain circumstances it does not allow individual physical systems, even when isolated, to possess properties in their own right. This feature, first clearly appreciated by John Bell in 1964, has in the last three decades been tested experimentally and found (in most people's opinion) to be spectacularly confirmed. More recently it has been realized that it permits various operations which are classically impossible, such as "teleportation" and secure-in-principle cryptography. This talk is a very basic introduction to the subject, which requires only elementary quantum mechanics.
Quantum Computing Architectural Design
NASA Astrophysics Data System (ADS)
West, Jacob; Simms, Geoffrey; Gyure, Mark
2006-03-01
Large scale quantum computers will invariably require scalable architectures in addition to high fidelity gate operations. Quantum computing architectural design (QCAD) addresses the problems of actually implementing fault-tolerant algorithms given physical and architectural constraints beyond those of basic gate-level fidelity. Here we introduce a unified framework for QCAD that enables the scientist to study the impact of varying error correction schemes, architectural parameters including layout and scheduling, and physical operations native to a given architecture. Our software package, aptly named QCAD, provides compilation, manipulation/transformation, multi-paradigm simulation, and visualization tools. We demonstrate various features of the QCAD software package through several examples.
Emergent functions of quantum materials
NASA Astrophysics Data System (ADS)
Tokura, Yoshinori; Kawasaki, Masashi; Nagaosa, Naoto
2017-11-01
Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence--collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.
Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide
2015-12-22
Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning
2010-09-30
Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.
Quantum Measurement Theory in Gravitational-Wave Detectors.
Danilishin, Stefan L; Khalili, Farid Ya
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Continuous-variable quantum network coding for coherent states
NASA Astrophysics Data System (ADS)
Shang, Tao; Li, Ke; Liu, Jian-wei
2017-04-01
As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.
Chayawan; Vikas
2016-11-01
This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Yoshida, Y.; Kim, K.; Andrianarijaona, V. M.
2017-04-01
Proteins are made out of long chains of amino acids and are an integral part of many tasks of a cell. Because the function of a protein is caused by its structure, even minute changes in the molecular geometry of the protein can have large effects on how the protein can be used. This study investigated how manipulations in the structure of acidic and basic amino acids affected their potential energy. Acidic and basic amino acids were chosen because prior studies have suggested that the ionizable side chains of these amino acids can be very influential on a molecule's prefered conformation. Each atom in the molecule was pulled along x, y, and z axis to see how different types of changes affect the potential energy of the whole structure. The results of our calculations, which were done using ORCA, emphasize the vibronic couplings. The aggregated data was used to create a data set of potential energy curves to better understand the quantum dynamic properties of acidic and basic amino acids (preliminary data was presented in http://meetings.aps.org/Meeting/MAR16/Session/M1.273 andhttp://meetings.aps.org/Meeting/FWS16/Session/F2.6).
ERIC Educational Resources Information Center
Sim, Joong Hiong; Daniel, Esther Gnanamalar Sarojini
2014-01-01
Representational competence is defined as "skills in interpreting and using representations". This study attempted to compare students' of high, medium, and low levels of understanding of (1) basic chemical concepts, and (2) chemical representations, in their representational competence. A total of 411 Form 4 science students (mean age =…
Energy anisotropy as a function of the direction of spin magnetization for a doublet system
NASA Astrophysics Data System (ADS)
Cherry, Peter J.; Malkin, Vladimir G.; Malkina, Olga L.; Asher, James R.
2016-11-01
This manuscript describes new phenomena that currently are not taken into account in both experimental EPR spectra interpretations and quantum chemical calculations of EPR parameters. This article presents an argument, with evidence, against the common belief that in the absence of an external magnetic field the total energy of a doublet system is independent of the spin orientation. Consequences of this phenomenon for interpretation of EPR experimental studies as well as for quantum chemical calculations of EPR parameters are discussed.
Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives
NASA Astrophysics Data System (ADS)
Billes, Ferenc; Elečková, Lenka; Mikosch, Hans; Andruch, Vasil
2015-07-01
The infrared and Raman spectra of dehydroacetic acid and some of its derivatives were measured. The assignments of the vibrational bands were based on quantum chemical calculations and normal coordinate analysis. The optimized structures, atomic net charges and dipole moments of the investigated molecules were also results of our quantum chemical calculations. The analysis of the last properties made possible a deeper insight into the structure and substituent effect on the investigated molecules. One of them is presented in the graphical abstract.
Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions.
Himo, Fahmi
2017-05-24
The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.
A Concise Introduction to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
2018-02-01
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
The quantum phase-transitions of water
NASA Astrophysics Data System (ADS)
Fillaux, François
2017-08-01
It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.
Preface: Special Topic on Nuclear Quantum Effects
NASA Astrophysics Data System (ADS)
Tuckerman, Mark; Ceperley, David
2018-03-01
Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.
Preface: Special Topic on Nuclear Quantum Effects.
Tuckerman, Mark; Ceperley, David
2018-03-14
Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.
Deploying a quantum annealing processor to detect tree cover in aerial imagery of California
Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Mukhopadhyay, Supratik; Nemani, Ramakrishna R.
2017-01-01
Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover in remote sensing imagery, using early-generation quantum annealing hardware built by D-wave Systems, Inc. Beginning within a known boosting framework, we train decision stumps on texture features and vegetation indices extracted from four-band, one-meter-resolution aerial imagery from the state of California. We then impose a regulated quadratic training objective to select an optimal voting subset from among these stumps. The votes of the subset define the classifier. For optimization, the logical variables in the objective function map to quantum bits in the hardware device, while quadratic couplings encode as the strength of physical interactions between the quantum bits. Hardware design limits the number of couplings between these basic physical entities to five or six. To account for this limitation in mapping large problems to the hardware architecture, we propose a truncation and rescaling of the training objective through a trainable metaparameter. The boosting process on our basic 108- and 508-variable problems, thus constituted, returns classifiers that incorporate a diverse range of color- and texture-based metrics and discriminate tree cover with accuracies as high as 92% in validation and 90% on a test scene encompassing the open space preserves and dense suburban build of Mill Valley, CA. PMID:28241028
Preparation of reflective CsI photocathodes with reproducible high quantum efficiency
NASA Astrophysics Data System (ADS)
Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.
1995-02-01
CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.
Chemical Biodynamics Division. Annual report 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.
NASA Astrophysics Data System (ADS)
Godina-Nava, Juan José; Torres-Vega, Gabino; López-Riquelme, Germán Octavio; López-Sandoval, Eduardo; Samana, Arturo Rodolfo; García Velasco, Fermín; Hernández-Aguilar, Claudia; Domínguez-Pacheco, Arturo
2017-02-01
Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Gaussian Hypothesis Testing and Quantum Illumination.
Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario
2017-09-22
Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.
Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol
Kale, Seyit; Sode, Olaseni; Weare, Jonathan; ...
2014-11-07
Finding transition paths for chemical reactions can be computationally costly owing to the level of quantum-chemical theory needed for accuracy. Here, we show that a multilevel preconditioning scheme that was recently introduced (Tempkin et al. J. Chem. Phys. 2014, 140, 184114) can be used to accelerate quantum-chemical string calculations. We demonstrate the method by finding minimum-energy paths for two well-characterized reactions: tautomerization of malonaldehyde and Claissen rearrangement of chorismate to prephanate. For these reactions, we show that preconditioning density functional theory (DFT) with a semiempirical method reduces the computational cost for reaching a converged path that is an optimum undermore » DFT by several fold. In conclusion, the approach also shows promise for free energy calculations when thermal noise can be controlled.« less
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
Characterizing quantum supremacy in near-term devices
NASA Astrophysics Data System (ADS)
Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut
2018-06-01
A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 × 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.
PsiQuaSP-A library for efficient computation of symmetric open quantum systems.
Gegg, Michael; Richter, Marten
2017-11-24
In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.
NASA Astrophysics Data System (ADS)
Gruska, Jozef
2012-06-01
One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.
Complex and unpredictable Cardano
NASA Astrophysics Data System (ADS)
Ekert, Artur
2008-08-01
This purely recreational paper is about one of the most colorful characters of the Italian Renaissance, Girolamo Cardano, and the discovery of two basic ingredients of quantum theory, probability and complex numbers.
Elucidating Reaction Mechanisms on Quantum Computers
NASA Astrophysics Data System (ADS)
Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias
We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.
Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.
Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J
2015-10-01
We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.
Chemical application of diffusion quantum Monte Carlo
NASA Technical Reports Server (NTRS)
Reynolds, P. J.; Lester, W. A., Jr.
1984-01-01
The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp
2015-10-07
We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less
A Combined Theoretical and Experimental Study for Silver Electroplating
Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong
2014-01-01
A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung
2018-01-01
In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.
Basic concepts of quantum interference and electron transport in single-molecule electronics.
Lambert, C J
2015-02-21
This tutorial outlines the basic theoretical concepts and tools which underpin the fundamentals of phase-coherent electron transport through single molecules. The key quantity of interest is the transmission coefficient T(E), which yields the electrical conductance, current-voltage relations, the thermopower S and the thermoelectric figure of merit ZT of single-molecule devices. Since T(E) is strongly affected by quantum interference (QI), three manifestations of QI in single-molecules are discussed, namely Mach-Zehnder interferometry, Breit-Wigner resonances and Fano resonances. A simple MATLAB code is provided, which allows the novice reader to explore QI in multi-branched structures described by a tight-binding (Hückel) Hamiltonian. More generally, the strengths and limitations of materials-specific transport modelling based on density functional theory are discussed.
Coherent control of single electrons: a review of current progress
NASA Astrophysics Data System (ADS)
Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier
2018-05-01
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
ABC of ladder operators for rationally extended quantum harmonic oscillator systems
NASA Astrophysics Data System (ADS)
Cariñena, José F.; Plyushchay, Mikhail S.
2017-07-01
The problem of construction of ladder operators for rationally extended quantum harmonic oscillator (REQHO) systems of a general form is investigated in the light of existence of different schemes of the Darboux-Crum-Krein-Adler transformations by which such systems can be generated from the quantum harmonic oscillator. Any REQHO system is characterized by the number of separated states in its spectrum, the number of ‘valence bands’ in which the separated states are organized, and by the total number of the missing energy levels and their position. All these peculiarities of a REQHO system are shown to be detected and reflected by a trinity (A^+/- , B^+/- , C^+/-) of the basic (primary) lowering and raising ladder operators related between themselves by certain algebraic identities with coefficients polynomially-dependent on the Hamiltonian. We show that all the secondary, higher-order ladder operators are obtainable by a composition of the basic ladder operators of the trinity which form the set of the spectrum-generating operators. Each trinity, in turn, can be constructed from the intertwining operators of the two complementary minimal schemes of the Darboux-Crum-Krein-Adler transformations.
Computations and interpretations: The growth of quantum chemistry, 1927-1967
NASA Astrophysics Data System (ADS)
Park, Buhm Soon
1999-10-01
This dissertation is a contribution to the historical study of scientific disciplines in the twentieth century. It seeks to examine the development of quantum chemistry during the four decades after its inception in 1927. This development was manifest in theories, tools, scientists, and institutions, all of which constituted the disciplinary identity of quantum chemistry. To characterize its identity, I deal with the origins of key ideas and concepts; the change of computational tools from desk calculators to digital computers; the formation of a network among research groups and individuals; and the institutionalization of annual meetings. The dissertation's thesis is three-fold. First, in the pre- World War II years, there were individual contributions to the development of theories in quantum chemistry, but the founding fathers worked in their disciplinary contexts of physics or chemistry with little interest in building a quantum chemistry community. Second, the introduction of electronic digital computers in the postwar years affected the resurgence of the ab initio approach-the attempt to solve the Schrödinger equation without recourse to empirical data-and also the emergence of a community of quantum chemists. But the use of computers did not give rise to a consensus over the aims, methods, or content of the discipline. Third, quantum chemistry exerted a significant influence upon the transformation of chemical education and research in general, thanks to ``chemical translators,'' who sought to explain the gist of quantum chemistry in a language that chemists could understand. In sum, quantum chemistry has been a discipline characterized by diverse traditions, and the whole of chemistry has been under the influence of computations and interpretations made by quantum chemists.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
Laboratory measurements. [chemical and photochemical data relative to stratospheric modeling
NASA Technical Reports Server (NTRS)
1977-01-01
A compilation of chemical and photochemical data that are relevant to stratospheric modeling is presented. There are three broad categories of data: (1) rate constants for chemical reactions, including temperature and pressure dependencies along with product distributions; (2) absorption cross sections, photodissociation quantum yield, and photolysis; (3) heterogeneous chemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.
Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Elucidating reaction mechanisms on quantum computers
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-01-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011
Elucidating reaction mechanisms on quantum computers
NASA Astrophysics Data System (ADS)
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-07-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Zhang, Hai-Mei; Chen, Shi-Lu
2015-06-09
The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.
Local quantum thermal susceptibility
De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio
2016-01-01
Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458
Implementation of a quantum metamaterial using superconducting qubits.
Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V
2014-10-14
The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.
Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; De Franceschi, S.
2016-01-01
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. PMID:27882926
Local quantum thermal susceptibility
NASA Astrophysics Data System (ADS)
de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio
2016-09-01
Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.
A Wave Chaotic Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.
Photonic multipartite entanglement conversion using nonlocal operations
NASA Astrophysics Data System (ADS)
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Quantum computing with defects.
Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-05-11
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
NASA Astrophysics Data System (ADS)
Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.
2016-11-01
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.
Piezo-Phototronic Effect in a Quantum Well Structure.
Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin
2016-05-24
With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.
Frictional lubricity enhanced by quantum mechanics.
Zanca, Tommaso; Pellegrini, Franco; Santoro, Giuseppe E; Tosatti, Erio
2018-04-03
The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.
Quantum Mechanics predicts evolutionary biology.
Torday, J S
2018-07-01
Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Maurand, R; Jehl, X; Kotekar-Patil, D; Corna, A; Bohuslavskyi, H; Laviéville, R; Hutin, L; Barraud, S; Vinet, M; Sanquer, M; De Franceschi, S
2016-11-24
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.
Quantum photonic network and physical layer security
NASA Astrophysics Data System (ADS)
Sasaki, Masahide; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Shimizu, Ryosuke; Toyoshima, Morio
2017-06-01
Quantum communication and quantum cryptography are expected to enhance the transmission rate and the security (confidentiality of data transmission), respectively. We study a new scheme which can potentially bridge an intermediate region covered by these two schemes, which is referred to as quantum photonic network. The basic framework is information theoretically secure communications in a free space optical (FSO) wiretap channel, in which an eavesdropper has physically limited access to the main channel between the legitimate sender and receiver. We first review a theoretical framework to quantify the optimal balance of the transmission efficiency and the security level under power constraint and at finite code length. We then present experimental results on channel characterization based on 10 MHz on-off keying transmission in a 7.8 km terrestrial FSO wiretap channel. This article is part of the themed issue 'Quantum technology for the 21st century'.
Quantum photonic network and physical layer security.
Sasaki, Masahide; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Shimizu, Ryosuke; Toyoshima, Morio
2017-08-06
Quantum communication and quantum cryptography are expected to enhance the transmission rate and the security (confidentiality of data transmission), respectively. We study a new scheme which can potentially bridge an intermediate region covered by these two schemes, which is referred to as quantum photonic network. The basic framework is information theoretically secure communications in a free space optical (FSO) wiretap channel, in which an eavesdropper has physically limited access to the main channel between the legitimate sender and receiver. We first review a theoretical framework to quantify the optimal balance of the transmission efficiency and the security level under power constraint and at finite code length. We then present experimental results on channel characterization based on 10 MHz on-off keying transmission in a 7.8 km terrestrial FSO wiretap channel.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Cao, Gang; Li, Hai-Ou; Tu, Tao; Wang, Li; Zhou, Cheng; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2013-01-01
A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale, orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau–Zener–Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications. PMID:23360992
Black holes in loop quantum gravity.
Perez, Alejandro
2017-12-01
This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.
Trapped atomic ions for quantum-limited metrology
NASA Astrophysics Data System (ADS)
Wineland, David
2017-04-01
Laser-beam-manipulated trapped ions are a candidate for large-scale quantum information processing and quantum simulation but the basic techniques used can also be applied to quantum-limited metrology and sensing. Some examples being explored at NIST are: 1) As charged harmonic oscillators, trapped ions can be used to sense electric fields; this can be used to characterize the electrode-surface-based noisy electric fields that compromise logic-gate fidelities and may eventually be used as a tool in surface science. 2) Since typical qubit logic gates depend on state-dependent forces, we can adapt the gate dynamics to sensitively detect additional forces. 3) We can use extensions of Bell inequality measurements to further restrict the degree of local realism possessed by Bell states. 4) We also briefly describe experiments for creation of Bell states using Hilbert space engineering. This work is a joint effort including the Ion-Storage group, the Quantum processing group, and the Computing and Communications Theory group at NIST, Boulder. Supported by IARPA, ONR, and the NIST Quantum Information Program.
Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters
NASA Astrophysics Data System (ADS)
Vlaisavljevich, Bess
Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.
Relative Configuration of Natural Products Using NMR Chemical Shifts
USDA-ARS?s Scientific Manuscript database
By comparing calculated with experimental NMR chemical shifts, we were able to determine the relative configurations of three monoterpene diastereomers produced by the walkingstick Anisomorpha buprestoides. The combined RMSDs of both 1H and 13C quantum chemically calculated shifts were able to predi...
Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)
NASA Astrophysics Data System (ADS)
Minch, Michael J.
1998-02-01
There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.
Divac, Vera M; Puchta, Ralph; Bugarčić, Zorica M
2012-08-02
The mechanism of phenylselenoetherification of (Z)- and (E)-hex-4-en-1-ols using some bases (triethylamine, pyridine, quinoline, 2,2'-bipyridine) as catalysts and some solvents [tetrahydrofuran (THF) and CCl4] as reaction media was examined through studies of kinetics of the cyclization by UV-vis spectrophotometry. It was demonstrated that the intramolecular cyclization is facilitated in the presence of bases as a result of the hydrogen bond between the base and the alkenol's OH group. The rate constants in the base-catalyzed reactions are remarkably influenced by the bulkiness and basicity of the base used and the nature of the considered nitrogen donors. The obtained values for rate constants show that the reaction with triethylamine is the fastest one. THF with higher polarity and higher basic character is better as a solvent than CCl4. Quantum-chemical calculations [MP2(fc)/6-311+G**//B3LYP/6-311+G** + ZPE(B3LYP/6-311+G**] show that the cyclization of (Z)-hex-4-en-1-ol to a tetrahydrofuranoid five-membered ring is kinetically controlled, while the cyclization of (E)-hex-4-en-1-ol to the tetrahydropyranoid six-membered ring is thermodynamically controlled. This is in accordance with previous experimental findings.
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
2018-03-22
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
NASA Astrophysics Data System (ADS)
Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.
2018-05-01
One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.
NASA Astrophysics Data System (ADS)
Marshman, Emily; Singh, Chandralekha
2017-06-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.
Statistics of the Work done in a Quantum Quench
NASA Astrophysics Data System (ADS)
Silva, Alessandro
2009-03-01
The quantum quench, i.e. a rapid change in time of a control parameter of a quantum system, is the simplest paradigm of non-equilibrium process, completely analogous to a standard thermodynamic transformation. The dynamics following a quantum quench is particularly interesting in strongly correlated quantum systems, most prominently when the quench in performed across a quantum critical point. In this talk I will present a way to characterize the physics of quantum quenches by looking at the statistics of a basic thermodynamic variable: the work done on the system by changing its parameters [1]. I will first elucidate the relation between the probability distribution of the work, quantum Jarzynski equalities, and the Loschmidt echo, a quantity that emerges usually in the context of dephasing. Using this connection, I will then characterize the statistics of the work done on a Quantum Ising chain by quenching locally or globally the transverse field. I will then show that for global quenches the presence of a quantum critical point results in singularities of the moments of the distribution, while, for local quenches starting at criticality, the probability distribution itself displays an interesting edge singularity. The results of a similar analysis for other systems will be discussed. [4pt] [1] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
Stochastic analysis of surface roughness models in quantum wires
NASA Astrophysics Data System (ADS)
Nedjalkov, Mihail; Ellinghaus, Paul; Weinbub, Josef; Sadi, Toufik; Asenov, Asen; Dimov, Ivan; Selberherr, Siegfried
2018-07-01
We present a signed particle computational approach for the Wigner transport model and use it to analyze the electron state dynamics in quantum wires focusing on the effect of surface roughness. Usually surface roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies on approximations like statistical averaging and in the case of quantum wires incorporates quantum corrections based on the mode space approach. We provide a novel computational approach to enable physical analysis of these assumptions in terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which, besides providing a full quantum description of the electron dynamics, enables intuitive insights into the processes of tunneling, which govern the physical evolution. It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the quantum behavior of the electron system. Of particular importance is the distribution of the density: Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the classical scattering model. Further quantum effects are retardation of the electron dynamics and quantum reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even in the case of ideal wire walls.
Nonparadoxical loss of information in black hole evaporation in a quantum collapse model
NASA Astrophysics Data System (ADS)
Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel
2015-06-01
We consider a novel approach to address the black hole information paradox. The idea is based on adapting, to the situation at hand, the modified versions of quantum theory involving spontaneous stochastic dynamical collapse of quantum states, which have been considered in attempts to deal with shortcomings of the standard Copenhagen interpretation of quantum mechanics, in particular, the issue known as "the measurement problem." The new basic hypothesis is that the modified quantum behavior is enhanced in the region of high curvature so that the information encoded in the initial quantum state of the matter fields is rapidly erased as the black hole singularity is approached. We show that in this manner the complete evaporation of the black hole via Hawking radiation can be understood as involving no paradox. Calculations are performed using a modified version of quantum theory known as "continuous spontaneous localization" (CSL), which was originally developed in the context of many-particle nonrelativistic quantum mechanics. We use a version of CSL tailored to quantum field theory and applied in the context of the two -dimensional Callan-Giddings-Harvey-Strominger model. Although the role of quantum gravity in this picture is restricted to the resolution of the singularity, related studies suggest that there might be further connections.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Three-State Quantum Dot Gate FETs Using ZnS-ZnMgS Lattice-Matched Gate Insulator on Silicon
NASA Astrophysics Data System (ADS)
Karmakar, Supriya; Suarez, Ernesto; Jain, Faquir C.
2011-08-01
This paper presents the three-state behavior of quantum dot gate field-effect transistors (FETs). GeO x -cladded Ge quantum dots (QDs) are site-specifically self-assembled over lattice-matched ZnS-ZnMgS high- κ gate insulator layers grown by metalorganic chemical vapor deposition (MOCVD) on silicon substrates. A model of three-state behavior manifested in the transfer characteristics due to the quantum dot gate is also presented. The model is based on the transfer of carriers from the inversion channel to two layers of cladded GeO x -Ge quantum dots.
Optimizing Teleportation Cost in Distributed Quantum Circuits
NASA Astrophysics Data System (ADS)
Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh
2018-03-01
The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.
Complex Instruction Set Quantum Computing
NASA Astrophysics Data System (ADS)
Sanders, G. D.; Kim, K. W.; Holton, W. C.
1998-03-01
In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.
Photon-assisted tunneling in an asymmetrically coupled triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bao-Chuan; Cao, Gang, E-mail: gcao@ustc.edu.cn; Chen, Bao-Bao
The gate-defined quantum dot is regarded as one of the basic structures required for scalable semiconductor quantum processors. Here, we demonstrate a structure that contains three quantum dots scaled in series. The electron number of each dot and the tunnel coupling between them can be tuned conveniently using splitting gates. We tune the quantum dot array asymmetrically such that the tunnel coupling between the right dot and the central dot is much larger than that between the left dot and the central dot. When driven by microwaves, the sidebands of the photon-assisted tunneling process appear not only in the left-to-centralmore » dot transition region but also in the left-to-right dot transition region. These sidebands are both attributed to the left-to-central transition for asymmetric coupling. Our result shows that there is a region of a triple quantum dot structure that remains indistinct when studied with a normal two-dimensional charge stability diagram; this will be helpful in future studies of the scalability of quantum dot systems.« less
NASA Astrophysics Data System (ADS)
Gauvin, Jean-François
2018-03-01
In the early 1960s, a PhD student in physics, Costas Papaliolios, designed a simple—and playful—system of Polaroid polarizer filters with a specific goal in mind: explaining the core principles behind Julian Schwinger's quantum mechanical measurement algebra, developed at Harvard in the late 1940s and based on the Stern-Gerlach experiment confirming the quantization of electron spin. Papaliolios dubbed his invention "quantum toys." This article looks at the origins and function of this amusing pedagogical device, which landed half a century later in the Collection of Historical Scientific Instruments at Harvard University. Rendering the abstract tangible was one of Papaliolios's demonstration tactics in reforming basic teaching of quantum mechanics. This article contends that Papaliolios's motivation in creating the quantum toys came from a renowned endeavor aimed, inter alia, at reforming high-school physics training in the United States: Harvard Project Physics. The pedagogical study of these quantum toys, finally, compels us to revisit the central role playful discovery performs in pedagogy, at all levels of training and in all fields of knowledge.
Quantum Cascade Lasers in Biomedical Infrared Imaging.
Bird, Benjamin; Baker, Matthew J
2015-10-01
Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Control of Ultracold Photodissociation with Magnetic Fields
NASA Astrophysics Data System (ADS)
McDonald, M.; Majewska, I.; Lee, C.-H.; Kondov, S. S.; McGuyer, B. H.; Moszynski, R.; Zelevinsky, T.
2018-01-01
Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.
Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer
NASA Astrophysics Data System (ADS)
Xu, Lan; Xu, Bo
2015-10-01
In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.
Tachyon warm inflation with the effects of loop quantum cosmology in the light of Planck 2015
NASA Astrophysics Data System (ADS)
Kamali, Vahid; Basilakos, Spyros; Mehrabi, Ahmad; Motaharfar, Meysam; Massaeli, Erfan
We investigate the observational signatures of quantum cosmology in the Cosmic Microwave Background data provided by Planck collaboration. We apply the warm inflationary paradigm with a tachyon scalar field to the loop quantum cosmology. In this context, we first provide the basic cosmological functions in terms of the tachyon field. We then obtain the slow-roll parameters and the power spectrum of scalar and tensor fluctuations, respectively. Finally, we study the performance of various warm inflationary scenarios against the latest Planck data and we find a family of models which are in agreement with the observations.
A Non-Intuitionist's Approach To The Interpretation Problem Of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Grelland, Hans Herlof
2005-02-01
A philosophy of physics called "linguistic empiricism" is presented and applied to the interpretation problem of quantum mechanics. This philosophical position is based on the works of Jacques Derrida. The main propositions are (i) that meaning, included the meaning attached to observations, are language-dependent and (ii) that mathematics in physics should be considered as a proper language, not necessary translatable to a more basic language of intuition and immediate experience. This has fundamental implications for quantum mechanics, which is a mathematically coherent and consistent theory; its interpretation problem is associated with its lack of physical images expressible in ordinary language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoilova, N. I.
Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation ofmore » motion determine the quantum mechanical commutation relation?.« less
Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice
NASA Astrophysics Data System (ADS)
Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.
2018-06-01
We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.
Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole
2015-05-12
Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less
NASA Astrophysics Data System (ADS)
Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.
2017-10-01
The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.
Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts
NASA Astrophysics Data System (ADS)
Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.
2016-05-01
Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.
Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization.
Mazack, Michael J M; Gao, Jiali
2014-05-28
The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.
Titanium-based silicide quantum dot superlattices for thermoelectrics applications.
Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles
2015-07-10
Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.
Quantum-chemical investigations of spectroscopic properties of a fluorescence probe
NASA Astrophysics Data System (ADS)
Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.
2012-09-01
The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.
Gapped two-body Hamiltonian for continuous-variable quantum computation.
Aolita, Leandro; Roncaglia, Augusto J; Ferraro, Alessandro; Acín, Antonio
2011-03-04
We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.
The fractional dynamics of quantum systems
NASA Astrophysics Data System (ADS)
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Deterministic nonclassicality for quantum-mechanical oscillators in thermal states
NASA Astrophysics Data System (ADS)
Marek, Petr; Lachman, Lukáš; Slodička, Lukáš; Filip, Radim
2016-07-01
Quantum nonclassicality is the basic building stone for the vast majority of quantum information applications and methods of its generation are at the forefront of research. One of the obstacles any method needs to clear is the looming presence of decoherence and noise which act against the nonclassicality and often erase it completely. In this paper we show that nonclassical states of a quantum harmonic oscillator initially in thermal equilibrium states can be deterministically created by coupling it to a single two-level system. This can be achieved even in the absorption regime in which the two-level system is initially in the ground state. The method is resilient to noise and it may actually benefit from it, as witnessed by the systems with higher thermal energy producing more nonclassical states.
The How and Why of Chemical Reactions
ERIC Educational Resources Information Center
Schubert, Leo
1970-01-01
Presents a discussion of some of the fundamental concepts in thermodynamics and quantum mechanics including entropy, enthalpy, free energy, the partition function, chemical kinetics, transition state theory, the making and breaking of chemical bonds, electronegativity, ion sizes, intermolecular energies and of their role in explaining the nature…
The Harvard organic photovoltaic dataset
Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; ...
2016-09-27
Presented in this work is the Harvard Organic Photovoltaic Dataset (HOPV15), a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.
Computational study of some fluoroquinolones: Structural, spectral and docking investigations
NASA Astrophysics Data System (ADS)
Sayin, Koray; Karakaş, Duran; Kariper, Sultan Erkan; Sayin, Tuba Alagöz
2018-03-01
Quantum chemical calculations are performed over norfloxacin, tosufloxacin and levofloxacin. The most stable structures for each molecule are determined by thermodynamic parameters. Then the best level for calculations is determined by benchmark analysis. M062X/6-31 + G(d) level is used in calculations. IR, UV-VIS and NMR spectrum are calculated and examined in detail. Some quantum chemical parameters are calculated and the tendency of activity is recommended. Additionally, molecular docking calculations are performed between related compounds and a protein (ID: 2J9N).
The Harvard organic photovoltaic dataset
Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán
2016-01-01
The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312
The Harvard organic photovoltaic dataset.
Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán
2016-09-27
The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.
The Statistical Basis of Chemical Equilibria.
ERIC Educational Resources Information Center
Hauptmann, Siegfried; Menger, Eva
1978-01-01
Describes a machine which demonstrates the statistical bases of chemical equilibrium, and in doing so conveys insight into the connections among statistical mechanics, quantum mechanics, Maxwell Boltzmann statistics, statistical thermodynamics, and transition state theory. (GA)
Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate
NASA Astrophysics Data System (ADS)
de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro
2014-10-01
This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.
Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases
NASA Astrophysics Data System (ADS)
Badino, Massimiliano; Friedrich, Bretislav
2013-09-01
The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.
Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires
NASA Astrophysics Data System (ADS)
Gao, Faming
2011-05-01
A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing
2014-05-06
The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper
NASA Astrophysics Data System (ADS)
Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha
2016-03-01
We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.
Quantum Sets and Clifford Algebras
NASA Astrophysics Data System (ADS)
Finkelstein, David
1982-06-01
The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.
Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...
Classical geometric resolution of the Einstein—Podolsky—Rosen paradox
Ne'eman, Yuval
1983-01-01
I show that, in the geometry of a fiber bundle describing a gauge theory, curvature and parallel transport ensure and impose nonseparability. The “Einstein—Podolsky—Rosen paradox” is thus resolved “classically.” I conjecture that the ostentatiously “implausible” features of the quantum treatment are due to the fact that space—time separability, a basic assumption of single-particle nonrelativistic quantum mechanics, does not fit the bundle geometry of the complete physics. PMID:16593392
Branched Hamiltonians and supersymmetry
Curtright, Thomas L.; Zachos, Cosmas K.
2014-03-21
Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.
Quantum κ-deformed differential geometry and field theory
NASA Astrophysics Data System (ADS)
Mercati, Flavio
2016-03-01
I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.
A Top-down versus a Bottom-up Hidden-variables Description of the Stern-Gerlach Experiment
NASA Astrophysics Data System (ADS)
Arsenijević, M.; Jeknić-Dugić, J.; Dugić, M.
We employ the Stern-Gerlach experiment to highlight the basics of a minimalist, non-interpretational top-down approach to quantum foundations. Certain benefits of the "quantum structural studies" (QSS) highlightedhere are detected and discussed. While the top-down approach can be described without making any reference to the fundamental structure of a closed system, the hidden variables (HV) theory á la Bohm proves to be more subtle than it is typically regarded.
SYSTEMATIC THEORETICAL STUDY ON THE INTERSTELLAR CARBON CHAIN MOLECULES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etim, Emmanuel E.; Arunan, Elangannan; Gorai, Prasanta
2016-12-01
In an effort to further our interest in understanding the basic chemistry of interstellar molecules, here we carry out an extensive investigation of the stabilities of interstellar carbon chains; C{sub n}, H{sub 2}C{sub n}, HC{sub n}N and C{sub n}X (X = N, O, Si, S, H, P, H{sup −}, N{sup −}). These sets of molecules account for about 20% of all the known interstellar and circumstellar molecules. Their high abundances, therefore, demand serious attention. High-level ab initio quantum chemical calculations are employed to accurately estimate the enthalpy of formation, chemical reactivity indices, global hardness and softness, and other chemical parametersmore » of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, and these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd-numbered carbon chains. Interstellar chemistry is not actually driven by thermodynamics, but it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd-numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even-numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.« less
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
On the Making of Quantum Chemistry in Germany
NASA Astrophysics Data System (ADS)
Karachalios, Andreas
During the 1990s several historians of science have studied the emergence of quantum chemistry as an autonomous discipline in different national contexts (Nye, 1993; Simões, 1993; Simões, forthcoming; Gavroglu and Simões, 1994; Karachalios, 1997a). Beyond these disciplinary studies, a number of contributions to special aspects of this theme have appeared (Schweber, 1990; Gavroglu, 1995; Simões and Gavroglu, 1997, 1999a,b; Schwarz et al., 1999). In this literature the birth of quantum chemistry has generally been associated with two dates: the 1927 paper of Walter Heitler and Fritz London and the year 1931 in which Linus Pauling and John Clarke Slater independently explained the tetrahedral orientation of the four bonds of the carbon atom. To these dates we might also add a third: in 1928 London published a paper, 'Zur Quantentheorie der homöopolaren Valenzzahlen' (London, 1928), in which he gave a quantum mechanical explanation of the classical chemical notion of valency. There he showed a relationship between the valency numbers and the spectroscopical multiplicity, namely that valency=multiplicity-1. This relation established a bridge between physical and chemical facts. Taken together, these developments constitute important events for the international development of quantum chemistry.
Symmetry breaking by quantum coherence in single electron attachment
NASA Astrophysics Data System (ADS)
Krishnakumar, E.; Prabhudesai, Vaibhav S.; Mason, Nigel J.
2018-02-01
Quantum coherence-induced effects in atomic and molecular systems are the basis of several proposals for laser-based control of chemical reactions. So far, these rely on coherent photon beams inducing coherent reaction pathways that may interfere with one another, to achieve the desired outcome. This concept has been successfully exploited for removing the inversion symmetry in the dissociation of homonuclear diatomic molecules, but it remains to be seen if such quantum coherent effects can also be generated by the interaction of incoherent electrons with such molecules. Here we show that resonant electron attachment to H2 and the subsequent dissociation into H (n = 2) + H- is asymmetric about the inter-nuclear axis, whereas the asymmetry in D2 is far less pronounced. We explain this observation as due to attachment of a single electron resulting in a coherent superposition of two resonances of opposite parity. In addition to exemplifying a new quantum coherent process, our observation of coherent quantum dynamics involves the active participation of all three electrons and two nuclei, which could provide new tools for studying electron correlations as a means to control chemical processes, and demonstrates the role of coherent effects in electron-induced chemistry.
A quantum–quantum Metropolis algorithm
Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-01
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
NASA Astrophysics Data System (ADS)
Crum, Dax M.; Valsaraj, Amithraj; David, John K.; Register, Leonard F.; Banerjee, Sanjay K.
2016-12-01
Particle-based ensemble semi-classical Monte Carlo (MC) methods employ quantum corrections (QCs) to address quantum confinement and degenerate carrier populations to model tomorrow's ultra-scaled metal-oxide-semiconductor-field-effect-transistors. Here, we present the most complete treatment of quantum confinement and carrier degeneracy effects in a three-dimensional (3D) MC device simulator to date, and illustrate their significance through simulation of n-channel Si and III-V FinFETs. Original contributions include our treatment of far-from-equilibrium degenerate statistics and QC-based modeling of surface-roughness scattering, as well as considering quantum-confined phonon and ionized-impurity scattering in 3D. Typical MC simulations approximate degenerate carrier populations as Fermi distributions to model the Pauli-blocking (PB) of scattering to occupied final states. To allow for increasingly far-from-equilibrium non-Fermi carrier distributions in ultra-scaled and III-V devices, we instead generate the final-state occupation probabilities used for PB by sampling the local carrier populations as function of energy and energy valley. This process is aided by the use of fractional carriers or sub-carriers, which minimizes classical carrier-carrier scattering intrinsically incompatible with degenerate statistics. Quantum-confinement effects are addressed through quantum-correction potentials (QCPs) generated from coupled Schrödinger-Poisson solvers, as commonly done. However, we use these valley- and orientation-dependent QCPs not just to redistribute carriers in real space, or even among energy valleys, but also to calculate confinement-dependent phonon, ionized-impurity, and surface-roughness scattering rates. FinFET simulations are used to illustrate the contributions of each of these QCs. Collectively, these quantum effects can substantially reduce and even eliminate otherwise expected benefits of considered In0.53Ga0.47 As FinFETs over otherwise identical Si FinFETs despite higher thermal velocities in In0.53Ga0.47 As. It also may be possible to extend these basic uses of QCPs, however calculated, to still more computationally efficient drift-diffusion and hydrodynamic simulations, and the basic concepts even to compact device modeling.
Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations
NASA Astrophysics Data System (ADS)
Granata, Carmine; Vettoliere, Antonio
2016-02-01
The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In particular, we will discuss the motivations, the theoretical aspects, the fabrication techniques, the different nanoSQUIDs and the relative nanoscale applications.
Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.
Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A
2013-12-27
The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.
Using of Quantum Dots in Biology and Medicine.
Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina
2018-01-01
Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.
The SLH framework for modeling quantum input-output networks
Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan
2017-09-04
Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less
The SLH framework for modeling quantum input-output networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan
Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Hajry, A
2014-12-01
Quantum chemical calculations were carried out to study the electronic structure and stability of adenine-thymine and the rare tautomer of adenine-thymine base pairs along with their Cu 2+ complexes and their interactions with AlN-modified fullerene (C58AlN) using Density Functional Theory (B3LYP method). Since, these two forms of base pairs and their Cu 2+ complexes have almost similar electronic structures, their chemical differentiation is an extremely difficult task. In this investigation, we have observed that AlN-doped C 60 could be used as a potentially viable nanoscale sensor to detect these two base pairs as well as their Cu2+ complexes.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
ERIC Educational Resources Information Center
Kind, Vanessa; Kind, Per Morten
2011-01-01
Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…
Separated Representations and Fast Algorithms for Materials Science
2007-10-29
Quantum Chemisty , 127 (1999), pp. 143–269. [28] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sciences, John...Advances in highly correlated approaches. Advances in Quantum Chemisty , 127:143–269, 1999. [58] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis
Engineering Light: Quantum Cascade Lasers
Claire Gmachl
2017-12-09
Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.
USDA-ARS?s Scientific Manuscript database
A comprehensive quantum chemical study was carried out on 34 type A and type B trichothecenes, including selected derivatives and biosynthetic precursors of deoxynivalenol, nivalenol, and T-2 toxin. Quantum parameters, Natural Bond Orbital (NBO) analysis, and molecular properties were calculated on ...
Quantum action for time-dependent Ginzburg-Landau equations
NASA Astrophysics Data System (ADS)
Thompson, R. S.
1994-02-01
A gauge-invariant formula is derived for the quantum action of a dirty superconductor with strong pair breaking. The major complication is the coupling between the order parameter and the electro-chemical potential, which is most simply expressed as an imaginary time integral. The perturbative modes of excitation are identified.
Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S
2013-05-01
Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.
Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone
NASA Astrophysics Data System (ADS)
Gosav, Steluta; Paduraru, Nicoleta; Maftei, Dan; Birsa, Mihail Lucian; Praisler, Mirela
2017-02-01
The aim of this work is to characterize a quite novel 3-dithiocarbamic flavonoid by vibrational spectroscopy in conjunction with Density Functional Theory (DFT) calculations. Quantum mechanics calculations of energies, geometries and vibrational wavenumbers in the ground state were carried out by using hybrid functional B3LYP with 6-311G(d,p) as basis set. The results indicate a remarkable agreement between the calculated molecular geometries, as well as vibrational frequencies, and the corresponding experimental data. In addition, a complete assignment of all the absorption bands present in the vibrational spectrum has been performed. In order to assess its chemical potential, quantum molecular descriptors characterizing the interactions between the 3-dithiocarbamic flavonoid and its biological receptors have been computed. The frontier molecular orbitals and the HOMO-LUMO energy gap have been used in order to explain the way in which the new molecule can interact with other species and to characterize its molecular chemical stability/reactivity. The molecular electrostatic potential (MEP) map, computed in order to identify the sites of the studied flavonoid that are most likely to interact with electrophilic and nucleophilic species, is discussed.
Jhin, Changho; Hwang, Keum Taek
2014-01-01
Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627
Quantum control of quasi-collision states: A protocol for hybrid fusion
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.
2018-04-01
When confined to small regions quantum systems exhibit electronic and structural properties different from their free space behavior. These properties are of interest, for example, for molecular insertion, hydrogen storage and the exploration of new pathways for chemical and nuclear reactions. Here, a confined three-body problem is studied, with emphasis on the study of the “quantum scars” associated to dynamical collisions. For the particular case of nuclear reactions, it is proposed that a molecular cage might simply be used as a confining device with the collision states accessed by quantum control techniques.
Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2017-06-22
Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galster, Ulrich; Baumgartner, Frank; Mueller, Ulrich
2005-12-15
Dissociation of well-defined H{sub 3} Rydberg states into three ground state hydrogen atoms reveals characteristic correlation patterns in the center-of-mass motion of the three fragments. We present an extensive experimental dataset of momentum correlation maps for all lower Rydberg states of H{sub 3} and D{sub 3}. In particular the states with principal quantum number n=2 feature simple correlation patterns with regular occurence of mutual affinities. Energetically higher-lying states typically show more complex patterns which are unique for each state. Quantum-chemical calculations on adiabatic potential energy surfaces of H{sub 3} Rydberg states are presented to illuminate the likely origin of thesemore » differences. We discuss the likely dissociation mechanisms and paths which are responsible for the observed continuum correlation.« less
Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H
2015-06-03
Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A triple quantum dot based nano-electromechanical memory device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozner, R.; Lifshitz, E.; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000
Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Consideringmore » realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.« less
From the GKLS Equation to the Theory of Solar and Fuel Cells
NASA Astrophysics Data System (ADS)
Alicki, R.
The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.
Li, Yuan; Chopra, Nitin
2015-05-21
Patterned growth of multilayer graphene shell encapsulated gold nanoparticles (GNPs) and their covalent linking with inorganic quantum dots are demonstrated. GNPs were grown using a xylene chemical vapor deposition process, where the surface oxidized gold nanoparticles catalyze the multilayer graphene shell growth in a single step process. The graphene shell encapsulating gold nanoparticles could be further functionalized with carboxylic groups, which were covalently linked to amine-terminated quantum dots resulting in GNP-quantum dot heterostructures. The compositions, morphologies, crystallinity, and surface functionalization of GNPs and their heterostructures with quantum dots were evaluated using microscopic, spectroscopic, and analytical methods. Furthermore, optical properties of the derived architectures were studied using both experimental methods and simulations. Finally, GNP-quantum dot heterostructures were studied for photocatalytic degradation of phenol.
NASA Astrophysics Data System (ADS)
Rechenberg, H.
While the 20th century is approaching its conclusion, the historian may look back and assemble the essential scientific fruits of the this period. Nearly fifty years ago, Werner Heisenberg stated in a lecture that in quantum or wave mechanics ``a new, unified science of matter has arisen, where the separation between chemistry and physics essentially lost any meaning", because (Heisenberg 1953)``The chemical properties of atoms have at least in principle become accessible to calculation, and already in the first years after the rise of quantum mechanics the simplest chemical binding, namely that of the two hydrogen atoms in the hydrogen molecule was calculated with the help of the new methods and was found in closest agreement with chemical experience. Thus the chemical valency-forces were explained on a physical basis, and the application of the new knowledge in industrial practices became only a matter of time."
Combined use of computational chemistry and chemoinformatics methods for chemical discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Manabu, E-mail: sugimoto@kumamoto-u.ac.jp; Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
2015-12-31
Data analysis on numerical data by the computational chemistry calculations is carried out to obtain knowledge information of molecules. A molecular database is developed to systematically store chemical, electronic-structure, and knowledge-based information. The database is used to find molecules related to a keyword of “cancer”. Then the electronic-structure calculations are performed to quantitatively evaluate quantum chemical similarity of the molecules. Among the 377 compounds registered in the database, 24 molecules are found to be “cancer”-related. This set of molecules includes both carcinogens and anticancer drugs. The quantum chemical similarity analysis, which is carried out by using numerical results of themore » density-functional theory calculations, shows that, when some energy spectra are referred to, carcinogens are reasonably distinguished from the anticancer drugs. Therefore these spectral properties are considered of as important measures for classification.« less
Use of statistical and neural net approaches in predicting toxicity of chemicals.
Basak, S C; Grunwald, G D; Gute, B D; Balasubramanian, K; Opitz, D
2000-01-01
Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applied to the development of H-QSAR models for estimating the acute aquatic toxicity (LC50) of 69 benzene derivatives to Pimephales promelas (fathead minnow). Topostructural, topochemical, geometrical, and quantum chemical indices were used as the four levels of the hierarchical method. It is clear from both the statistical and neural network models that topostructural indices alone cannot adequately model this set of congeneric chemicals. Not surprisingly, topochemical indices greatly increase the predictive power of both statistical and neural network models. Quantum chemical indices also add significantly to the modeling of this set of acute aquatic toxicity data.
On the quantum Landau collision operator and electron collisions in dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daligault, Jérôme, E-mail: daligaul@lanl.gov
2016-03-15
The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck formmore » of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.« less
On the quantum Landau collision operator and electron collisions in dense plasmas
NASA Astrophysics Data System (ADS)
Daligault, Jérôme
2016-03-01
The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.
Preparation and measurement of three-qubit entanglement in a superconducting circuit.
Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J
2010-09-30
Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.
Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha
We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantummore » dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.« less
Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's
NASA Technical Reports Server (NTRS)
Wang, Yang
1994-01-01
We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack
NASA Astrophysics Data System (ADS)
Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun
2016-08-01
We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).
Quantum localisation on the circle
NASA Astrophysics Data System (ADS)
Fresneda, Rodrigo; Gazeau, Jean Pierre; Noguera, Diego
2018-05-01
Covariant integral quantisation using coherent states for semi-direct product groups is implemented for the motion of a particle on the circle. In this case, the phase space is the cylinder, which is viewed as a left coset of the Euclidean group E(2). Coherent states issued from fiducial vectors are labeled by points in the cylinder and depend also on extra parameters. We carry out the corresponding quantisations of the basic classical observables, particularly the angular momentum and the 2π-periodic discontinuous angle function. We compute their corresponding lower symbols. The quantum localisation on the circle is examined through the properties of the angle operator yielded by our procedure, its spectrum and lower symbol, its commutator with the quantum angular momentum, and the resulting Heisenberg inequality. Comparison with other approaches to the long-standing question of the quantum angle is discussed.
Quantum Approach to Informatics
NASA Astrophysics Data System (ADS)
Stenholm, Stig; Suominen, Kalle-Antti
2005-08-01
An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.
Measurement and control of a Coulomb-blockaded parafermion box
NASA Astrophysics Data System (ADS)
Snizhko, Kyrylo; Egger, Reinhold; Gefen, Yuval
2018-02-01
Parafermionic zero modes are fractional topologically protected quasiparticles expected to arise in various platforms. We show that Coulomb charging effects define a parafermion box with unique access options via fractional edge states and/or quantum antidots. Basic protocols for the detection, manipulation, and control of parafermionic quantum states are formulated. With those tools, one may directly observe the dimension of the zero-mode Hilbert space, prove the degeneracy of this space, and perform on-demand digital operations satisfying a parafermionic algebra.
Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction
NASA Astrophysics Data System (ADS)
Kumar, Punit; Singh, Shiv; Ahmad, Nafees
2018-05-01
Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.