Sample records for basic research facilities

  1. Proposed BISOL Facility - a Conceptual Design

    NASA Astrophysics Data System (ADS)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  2. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  3. Mechanical Components Branch Test Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2004-01-01

    The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.

  4. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    DOE R&D Accomplishments Database

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  5. [The Unified National Health System and the third sector: Characterization of non-hospital facilities providing basic health care services in Belo Horizonte, Minas Gerais, Brazil].

    PubMed

    Canabrava, Claudia Marques; Andrade, Eli Iôla Gurgel; Janones, Fúlvio Alves; Alves, Thiago Andrade; Cherchiglia, Mariangela Leal

    2007-01-01

    In Brazil, nonprofit or charitable organizations are the oldest and most traditional and institutionalized form of relationship between the third sector and the state. Despite the historical importance of charitable hospital care, little research has been done on the participation of the nonprofit sector in basic health care in the country. This article identifies and describes non-hospital nonprofit facilities providing systematically organized basic health care in Belo Horizonte, Minas Gerais, Brazil, in 2004. The research focused on the facilities registered with the National Council on Social Work, using computer-assisted telephone and semi-structured interviews. Identification and description of these organizations showed that the charitable segment of the third sector conducts organized and systematic basic health care services but is not recognized by the Unified National Health System as a potential partner, even though it receives referrals from basic government services. The study showed spatial and temporal overlapping of government and third-sector services in the same target population.

  6. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  7. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  8. Main outcomes of an RCT to pilot test reporting and feedback to foster research integrity climates in the VA.

    PubMed

    Martinson, Brian C; Mohr, David C; Charns, Martin P; Nelson, David; Hagel-Campbell, Emily; Bangerter, Ann; Bloomfield, Hanna E; Owen, Richard; Thrush, Carol R

    2017-01-01

    Assessing the integrity of research climates and sharing such information with research leaders may support research best practices. We report here results of a pilot trial testing the effectiveness of a reporting and feedback intervention using the Survey of Organizational Research Climate (SOuRCe). We randomized 41 Veterans Health Administration (VA) facilities to a phone-based intervention designed to help research leaders understand their survey results (enhanced arm) or to an intervention in which results were simply distributed to research leaders (basic arm). Primary outcomes were (1) whether leaders took action, (2) whether actions taken were consistent with the feedback received, and (3) whether responses differed by receptivity to quality improvement input. Research leaders from 25 of 42 (59%) VA facilities consented to participate in the study intervention and follow-up, of which 14 were at facilities randomized to the enhanced arm. We completed follow-up interviews with 21 of the 25 leaders (88%), 12 from enhanced arm facilities. While not statistically significant, the proportion of leaders reporting taking some action in response to the feedback was twice as high in the enhanced arm than in the basic arm (67% vs. 33%, p = .20). While also not statistically significant, a higher proportion of actions taken among facilities in the enhanced arm were responsive to the survey results than in the basic arm (42% vs. 22%, p = .64). Enhanced feedback of survey results appears to be a promising intervention that may increase the likelihood of responsive action to improve organizational climates. Due to the small sample size of this pilot study, even large percentage-point differences between study arms are not statistically distinguishable. This hypothesis should be tested in a larger trial.

  9. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  10. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  11. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  12. Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bice, D.E.; Hahn, F.F.; Henderson, R.F.

    1996-12-01

    The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication,more » approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.« less

  13. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  14. Reference Mission Operational Analysis Document (RMOAD) for the Life Sciences Research Facilities

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The space station will be constructed during the next decade as an orbiting, low-gravity, permanent facility. The facility will provide a multitude of research opportunities for many different users. The pressurized research laboratory will allow life scientists to study the effects of long-term exposure to microgravity on humans, animals, and plants. The results of these studies will increase our understanding of this foreign environment on basic life processes and ensure the safety of man's long-term presence in space. This document establishes initial operational requirements for the use of the Life Sciences Research Facility (LSRF) during its construction.

  15. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  16. A DOE Perspective

    NASA Astrophysics Data System (ADS)

    Bennett, Kristin

    2004-03-01

    As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.

  17. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  18. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  19. [RABIN MEDICAL CENTER - A TERTIARY CENTER OF EXCELLENCE IN SERVICE, TEACHING AND RESEARCH].

    PubMed

    Niv, Yaron; Halpern, Eyran

    2017-04-01

    Rabin Medical Center (RMC) belongs to Clalit Health Services and is a tertiary, academic medical center with all the facilities of modern and advanced medicine. Annually in the RMC, 650,000 patients are treated in the outpatient clinics, and 100,000 patients are hospitalized in the hospital departments. All these patients are treated by 4500 devoted staff members, including 1000 physicians and 2000 nurses. RMC is one of the largest, centrally located medical centers for medical and nursing students' education in Israel, taking place in clinical departments, as well as in basic sciences courses. We also have a nursing school attached to the hospital. Our vision supports excellence in research. We have a special Research Department that supports RMC researchers, with research coordinators, and all the relevant facilities to assist in clinical and basic science studies. We also promote collaboration efforts with many academic centers in Israel and abroad. The scope of RMC research is broad, including 700 new studies every year and 1500 active studies currently. This issue of Harefuah is dedicated to the clinical and basic science research conducted at RMC with original papers presenting research performed by our departments and laboratories.

  20. 10 CFR 600.30 - Cost sharing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... research and development except where: (1) A research or development activity of a basic or fundamental... circular of the Office of Management and Budget; (iv) Indirect costs or facilities and administrative costs...

  1. Research Possibilities Beyond Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Smitherman, D. V.; Needham, D. H.; Lewis, R.

    2018-02-01

    This abstract explores the possibilities for a large research facilities module attached to the Deep Space Gateway, using the same large module design and basic layout planned for the Deep Space Transport.

  2. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei A.; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L.

    2009-07-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better diagnoses [3] - similarly, data fusion across BES facilities will lead to new scientific discoveries.

  3. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  4. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  5. The development of methods for predicting and measuring distribution patterns of aerial sprays. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1981-01-01

    A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  6. 42 CFR 93.222 - Research.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., demonstration or survey designed to develop or contribute to general knowledge (basic research) or specific... 42 Public Health 1 2014-10-01 2014-10-01 false Research. 93.222 Section 93.222 Public Health... STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH...

  7. 42 CFR 93.222 - Research.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., demonstration or survey designed to develop or contribute to general knowledge (basic research) or specific... 42 Public Health 1 2010-10-01 2010-10-01 false Research. 93.222 Section 93.222 Public Health... STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH...

  8. 42 CFR 93.222 - Research.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., demonstration or survey designed to develop or contribute to general knowledge (basic research) or specific... 42 Public Health 1 2011-10-01 2011-10-01 false Research. 93.222 Section 93.222 Public Health... STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH...

  9. 42 CFR 93.222 - Research.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., demonstration or survey designed to develop or contribute to general knowledge (basic research) or specific... 42 Public Health 1 2012-10-01 2012-10-01 false Research. 93.222 Section 93.222 Public Health... STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH...

  10. 42 CFR 93.222 - Research.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., demonstration or survey designed to develop or contribute to general knowledge (basic research) or specific... 42 Public Health 1 2013-10-01 2013-10-01 false Research. 93.222 Section 93.222 Public Health... STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH...

  11. Basic Library Skills: A Self-Paced Workbook.

    ERIC Educational Resources Information Center

    Tierney, Judith

    This self-paced workbook is designed to introduce college students to the resources and facilities of the library and to providing the knowledge and skills necessary to do basic library research. Two introductory chapters include a library-specific tour with floor plans (the D. Leonard Corgan Library, Wilkes-Barre, Pennsylvania) and information…

  12. Federal Research and Development Funding: FY2017

    DTIC Science & Technology

    2016-06-24

    facilities and equipment; does not include physical assets for R&D such as R&D equipment and facilities or routine product testing, quality control...multiagency R&D initiative to advance understanding and control of matter at the nanoscale, where the physical , chemical, and biological properties of...nuclear programs that dated back to the Manhattan Project. Today, DOE conducts basic scientific research in areas ranging from nuclear physics to the

  13. The Influence of Older Age Groups to Sustainable Product Design Research of Urban Public Facilities

    NASA Astrophysics Data System (ADS)

    Wen-juan, Zhang; Hou-peng, Song

    2017-01-01

    Through summarize the status quo of public facilities design to older age groups in China and a variety of factors what influence on them, the essay, from different perspective, is designed to put forward basic principle to sustainable design of public facilities for the aged in the city, and thus further promote and popularize the necessity of sustainable design applications in the future design of public facilities for elderly people.

  14. Gravitational biology on the space station

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  15. Analyzing Public Sector Education Facilities: A Step Further towards Accessible Basic Education Institutions in Destitute Subregions

    ERIC Educational Resources Information Center

    Talpur, Mir Aftab Hussain; Napiah, Madzlan; Chandio, Imtiaz Ahmed; Memon, Irfan Ahmed

    2014-01-01

    Rural subregions of the developing countries are suffering from many physical and socioeconomic problems, including scarcity of basic education institutions. The shortage of education institutions extended distance between rural localities and education institutions. Hence, to curb this problem, this research is aimed to deal with the basic…

  16. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  17. Preparing for a Semiannual IACUC Inspection of a Satellite Zebrafish (Danio rerio) Facility

    PubMed Central

    Koerber, Amy S; Kalishman, Jennifer

    2009-01-01

    Institutions worldwide have experienced a rapid growth in the use of zebrafish as a research model for a variety of molecular and genetic studies of vertebrate development. This expansion in zebrafish research essentially has outpaced the establishment of specific recommendations for the care and use of fish in research. In some cases, this situation has created a dilemma where an Institutional Animal Care and Use Committee, which is responsible for oversight of vertebrate animal research, is not fully prepared to undertake this role for a decentralized zebrafish facility. IACUC inspectors will be more equipped to ask pertinent questions by understanding the basic principles of zebrafish health and facility management. Concurrently, zebrafish facility managers can contribute to the progress of a semiannual facility inspection by maintaining fully accessible operating records. In the context of presenting a well-established and useful model of zebrafish management and recordkeeping to the zebrafish facility operator, the information we present here also prepares a potential IACUC inspector to conduct a constructive and positive inspection. PMID:19245754

  18. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  19. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  20. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  1. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  2. 15 CFR 950.3 - National Climatic Center (NCC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...

  3. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  4. Using principles from emergency management to improve emergency response plans for research animals.

    PubMed

    Vogelweid, Catherine M

    2013-10-01

    Animal research regulatory agencies have issued updated requirements for emergency response planning by regulated research institutions. A thorough emergency response plan is an essential component of an institution's animal care and use program, but developing an effective plan can be a daunting task. The author provides basic information drawn from the field of emergency management about best practices for developing emergency response plans. Planners should use the basic principles of emergency management to develop a common-sense approach to managing emergencies in their facilities.

  5. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  6. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  7. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  8. 14 CFR 1260.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vest title in the recipient without further obligation to the Federal Government. An example of exempt... include research grants, training grants, facilities grants, educational grants, and cooperative... property acquired under an award to conduct basic or applied research by a non-profit institution of higher...

  9. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  10. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  11. Quality of basic maternal care functions in health facilities of five African countries: an analysis of national health system surveys.

    PubMed

    Kruk, Margaret E; Leslie, Hannah H; Verguet, Stéphane; Mbaruku, Godfrey M; Adanu, Richard M K; Langer, Ana

    2016-11-01

    Global efforts to increase births at health-care facilities might not reduce maternal or newborn mortality if quality of care is insufficient. However, little systematic evidence exists for the quality at health facilities caring for women and newborn babies in low-income countries. We analysed the quality of basic maternal care functions and its association with volume of deliveries and surgical capacity in health-care facilities in five sub-Saharan African countries. In this analysis, we combined nationally representative health system surveys (Service Provision Assessments by the Demographic and Health Survery Programme) with data for volume of deliveries and quality of delivery care from Kenya, Namibia, Rwanda, Tanzania, and Uganda. We measured the quality of basic maternal care functions in delivery facilities using an index of 12 indicators of structure and processes of care, including infrastructure and use of evidence-based routine and emergency care interventions. We regressed the quality index on volume of births and confounders (public or privately managed, availability of antiretroviral therapy services, availability of skilled staffing, and country) stratified by facility type: primary (no caesarean capacity) or secondary (has caesarean capacity) care facilities. The Harvard University Human Research Protection Program approved this analysis as exempt from human subjects review. The national surveys were completed between April, 2006, and May, 2010. Our sample consisted of 1715 (93%) of 1842 health-care facilities that provided normal delivery service, after exclusion of facilities with missing (n=126) or invalid (n=1) data. 1511 (88%) study facilities (site of 276 965 [44%] of 622 864 facility births) did not have caesarean section capacity (primary care facilities). Quality of basic maternal care functions was substantially lower in primary (index score 0·38) than secondary care facilities (0·77). Low delivery volume was consistently associated with poor quality, with differences in quality between the lowest versus highest volume facilities of -0·22 (95% CI -0·26 to -0·19) in primary care facilities and -0·17 (-0·21 to -0·11) in secondary care facilities. More than 40% of facility deliveries in these five African countries occurred in primary care facilities, which scored poorly on basic measures of maternal care quality. Facilities with caesarean section capacity, particularly those with birth volumes higher than 500 per year, had higher scores for maternal care quality. Low-income and middle-income countries should systematically assess and improve the quality of delivery care in health facilities to accelerate reduction of maternal and newborn deaths. None. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license. Published by Elsevier Ltd.. All rights reserved.

  12. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  13. 14 CFR § 1260.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authority to vest title in the recipient without further obligation to the Federal Government. An example of... purpose. Awards include research grants, training grants, facilities grants, educational grants, and...) for property acquired under an award to conduct basic or applied research by a non-profit institution...

  14. The USER: Utilizing Scientific Environments for Research

    NASA Astrophysics Data System (ADS)

    Walker, Lakeisha

    A lot of hard work goes into submitting a proposal for access to equipment in our nation's top science research facilities. It seems the biggest focus for a facility USER should be on the acceptance of the proposal, however, the job of a facility USER actually begins after the acceptance letter arrives. In order to make the most of the Awarded experiment time and cultivate collaborations for the future, facility USERs need to look beyond the proposal. From experiment scheduling to arrival to data analysis the entire USER experience is valuable and worth doing well. This presentation will discuss best practices for facility USERs and highlight successful USER collaborations at ORNL's High Flux Isotope Reactor. Funded by the Office of Basic Energy Sciences, U.S. DOE. ORNL is managed by UT-Battelle, LLC for US DOE.

  15. [The Contribution of GMP-grade Hospital Preparation to Translational Research].

    PubMed

    Yonezawa, Atsushi; Kajiwara, Moto; Minami, Ikuko; Omura, Tomohiro; Nakagawa, Shunsaku; Matsubara, Kazuo

    2015-01-01

    Translational research is important for applying the outcomes of basic research studies to practical medical treatments. In exploratory early-phase clinical trials for an innovative therapy, researchers should generally manufacture investigational agents by themselves. To provide investigational agents with safety and high quality in clinical studies, appropriate production management and quality control are essential. In the Department of Pharmacy of Kyoto University Hospital, a manufacturing facility for sterile drugs was established, independent of existing manufacturing facilities. Manuals on production management and quality control were developed according to Good Manufacturing Practices (GMP) for Investigational New Drugs (INDs). Advanced clinical research has been carried out using investigational agents manufactured in our facility. These achievements contribute to both the safety of patients and the reliability of clinical studies. In addition, we are able to do licensing-out of our technique for the manufacture of investigational drugs. In this symposium, we will introduce our GMP grade manufacturing facility for sterile drugs and discuss the role of GMP grade hospital preparation in translational research.

  16. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  17. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  18. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  19. Overview of Fuel Rod Simulator Usage at ORNL

    NASA Astrophysics Data System (ADS)

    Ott, Larry J.; McCulloch, Reg

    2004-02-01

    During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.

  20. {open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacker, J.M.

    1996-11-01

    {open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally andmore » externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.« less

  1. A perspective on 10-years HTS experience at the Walter and Eliza Hall Institute of Medical Research - eighteen million assays and counting.

    PubMed

    Lackovic, Kurt; Lessene, Guillaume; Falk, Hendrik; Leuchowius, Karl-Johan; Baell, Jonathan; Street, Ian

    2014-03-01

    The Walter and Eliza Hall Institute of Medical Research (WEHI) is Australia's longest serving medical research institute. WEHI's High Throughput Screening (HTS) Facility was established in 2003 with $5 million of infrastructure funds invested by WEHI, and the Victorian State Government's Strategic Technology Initiative through Bio21 Australia Ltd. The Facility was Australia's first truly academic HTS facility and was one of only a handful operating in publicly funded institutions worldwide at that time. The objectives were to provide access to enabling HTS technologies, such as assay design, liquid handling automation, compound libraries and expertise to promote translation of basic research in a national setting that has a relatively young biotech sector and does not have a big Pharma research presence. Ten years on and the WEHI HTS Facility has participated in over 92 collaborative projects, generated over 18 million data points, and most importantly, projects that began in the Facility have been commercialized successfully (due to strong ties with Business Development and emphasis on intellectual property management) and now have molecules progressing in clinical trials.

  2. Classification of basic facilities for high-rise residential: A survey from 100 housing scheme in Kajang area

    NASA Astrophysics Data System (ADS)

    Ani, Adi Irfan Che; Sairi, Ahmad; Tawil, Norngainy Mohd; Wahab, Siti Rashidah Hanum Abd; Razak, Muhd Zulhanif Abd

    2016-08-01

    High demand for housing and limited land in town area has increasing the provision of high-rise residential scheme. This type of housing has different owners but share the same land lot and common facilities. Thus, maintenance works of the buildings and common facilities must be well organized. The purpose of this paper is to identify and classify basic facilities for high-rise residential building hoping to improve the management of the scheme. The method adopted is a survey on 100 high-rise residential schemes that ranged from affordable housing to high cost housing by using a snowball sampling. The scope of this research is within Kajang area, which is rapidly developed with high-rise housing. The objective of the survey is to list out all facilities in every sample of the schemes. The result confirmed that pre-determined 11 classifications hold true and can provide the realistic classification for high-rise residential scheme. This paper proposed for redefinition of facilities provided to create a better management system and give a clear definition on the type of high-rise residential based on its facilities.

  3. THE SCHOOL OF DENTAL MEDICINE NEW RESEARCH AND TEACHING BUILDING FOR THE UNIVERSITY OF PENNSYLVANIA.

    ERIC Educational Resources Information Center

    Pennsylvania Univ., Philadelphia.

    IN PLANNING A NEW RESEARCH AND TEACHING BUILDING FOR THE SCHOOL OF DENTAL MEDICINE, A PROGRAM WAS DEVELOPED OUTLINING THE DESIGN NEEDS AND THE SPACE AND FACILITY REQUIREMENTS. MAJOR AREAS OF THE PROGRAM WERE--(1) GENERAL DESIGN AND CONSTRUCTION COMPONENTS, (2) THE RESEARCH COMPONENT, AND (3) THE BASIC SCIENCE TEACHING COMPONENTS. SPACE…

  4. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  5. An Antarctic research outpost as a model for planetary exploration.

    PubMed

    Andersen, D T; McKay, C P; Wharton, R A; Rummel, J D

    1990-01-01

    During the next 50 years, human civilization may well begin expanding into the solar system. This colonization of extraterrestrial bodies will most likely begin with the establishment of small research outposts on the Moon and/or Mars. In all probability these facilities, designed primarily for conducting exploration and basic science, will have international participation in their crews, logistical support and funding. High fidelity Earth-based simulations of planetary exploration could help prepare for these expensive and complex operations. Antarctica provides one possible venue for such a simulation. The hostile and remote dry valleys of southern Victoria Land offer a valid analog to the Martian environment but are sufficiently accessible to allow routine logistical support and to assure the relative safety of their inhabitants. An Antarctic research outpost designed as a planetary exploration simulation facility would have great potential as a testbed and training site for the operation of future Mars bases and represents a near-term, relatively low-cost alternative to other precursor activities. Antarctica already enjoys an international dimension, an aspect that is more than symbolically appropriate to an international endeavor of unprecedented scientific and social significance--planetary exploration by humans. Potential uses of such a facility include: 1) studying human factors in an isolated environment (including long-term interactions among an international crew); 2) testing emerging technologies (e.g., advanced life support facilities such as a partial bioregenerative life support system, advanced analytical and sample acquisition instrumentation and equipment, etc.); and 3) conducting basic scientific research similar to the research that will be conducted on Mars, while contributing to the planning for human exploration. (Research of this type is already ongoing in Antarctica).

  6. Demonstration, Developmental and Research Project for Programs, Materials, Facilities and Educational Technology for Undereducated Adults: Alabama State Module. Adult Basic Education Materials Demonstration Project. Final Report.

    ERIC Educational Resources Information Center

    Wilson, E. C.

    This catalog contains a listing of the audio-visual aids used in the Alabama State Module of the Appalachian Adult Basic Education Program. Aids listed include filmstrips utilized by the following organizations: Columbia, South Carolina State Department of Education; Raleigh, North Carolina State Department of Education; Alden Films of Brooklyn,…

  7. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Benson; J. Cole; J. Jackson

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less

  8. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  9. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  10. Research and Applications of Chemical Sciences in Forestry: Proceedings of the 4th Southern Station Chemical Sciences Meeting

    Treesearch

    J.A. Vozzo; [Compiler

    1994-01-01

    This proceedings is the result of 65 scientists representing 34 facilities reported in 28 presentations. As titled, Research and Applications of Chemical Sciences in Forestry, the contributors represent academic, basic, and applied researchers from universities and U.S. Department of Agriculture. Their presence and experience represent a significant showing toward...

  11. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  12. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  13. Guidelines for the use of visualization

    DOT National Transportation Integrated Search

    1998-12-01

    This document is the product of a research project into visualization in the design and public review of transportation facilities. The project's goal was to provide NCDOT engineers and managers with a basic primer on this relatively new technology i...

  14. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  15. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  16. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    NASA Astrophysics Data System (ADS)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  17. Cherenkov water detector NEVOD

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  18. A facile and efficient dry transfer technique for two-dimensional Van derWaals heterostructure

    NASA Astrophysics Data System (ADS)

    Xie, Li; Du, Luojun; Lu, Xiaobo; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2017-08-01

    Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500 and 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, and 51572289), the Key Research Program of Frontier Sciences, CAS, (Grant No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program (B), CAS (Grant No. XDB07010100).

  19. Good Practice Recommendations in the Field of Heating, Ventilation, and Air Conditioning for Health Related Research Laboratories.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1966

    1966-01-01

    A collection of laboratory design notes to set forth minimum criteria required in the design of basic medical research laboratory buildings. Recommendations contained are primarily concerned with features of design which affect quality of performance and future flexibility of facility systems. Subjects of economy and safety are discussed where…

  20. Converging Science, Medicine, and Agriculture: An Update on Executing the NADC’s ‘One Health Mission’

    USDA-ARS?s Scientific Manuscript database

    The NADC was established in 1961 to conduct basic and applied research on the livestock and poultry diseases of major economic importance to US agriculture. Now 50 years later, the NADC is the largest US federal animal health research facility focused on high-impact endemic diseases of livestock an...

  1. Status of the national transonic facility

    NASA Technical Reports Server (NTRS)

    Mckinney, L. W.; Gloss, B. B.

    1982-01-01

    The National Transonic Facility at NASA Langley Research Center, scheduled for completion in July, 1982, is described with emphasis on model and instrumentation activities, calibration plans and some initial research plans. Performance capabilities include a Mach number range of 0.2-1.2, a pressure range of 1-9 atmospheres, and a temperature range of 77-350 K, which will produce a maximum Reynolds number of 120 million at a Mach number of 1.0, based on a 0.25 m chord. A comprehensive tunnel calibration program is planned, which will cover basic tunnel calibration, data qualities, and data comparisons with other facilites and flights.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.

    Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less

  3. [Organization of clinical research: in general and visceral surgery].

    PubMed

    Schneider, M; Werner, J; Weitz, J; Büchler, M W

    2010-04-01

    The structural organization of research facilities within a surgical university center should aim at strengthening the department's research output and likewise provide opportunities for the scientific education of academic surgeons. We suggest a model in which several independent research groups within a surgical department engage in research projects covering various aspects of surgically relevant basic, translational or clinical research. In order to enhance the translational aspects of surgical research, a permanent link needs to be established between the department's scientific research projects and its chief interests in clinical patient care. Importantly, a focus needs to be placed on obtaining evidence-based data to judge the efficacy of novel diagnostic and treatment concepts. Integration of modern technologies from the fields of physics, computer science and molecular medicine into surgical research necessitates cooperation with external research facilities, which can be strengthened by coordinated support programs offered by research funding institutions.

  4. Mission Simulation Facility: Simulation Support for Autonomy Development

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael

    2003-01-01

    The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.

  5. New irradiation facilities for development of production methods of medical radionuclides at cyclotrons at Forschungszentrum Jülich

    NASA Astrophysics Data System (ADS)

    Spellerberg, S.; Scholten, B.; Spahn, I.; Felden, O.; Gebel, R.; Qaim, S. M.; Bai, M.; Neumaier, B.

    2017-05-01

    An essential basis for research and development work on radiopharmaceuticals is the efficient production of radionuclides of high quality. In this process research-oriented studies aiming for elucidation of biochemical processes require novel products. The radionuclide development at INM-5 entails basic research, e.g. the determination of nuclear reaction data, as well as technical aspects of practical production, such as high-current targetry, chemical separation, formulation and quality control. In this work developments, adaptation and optimization of irradiation facilities at the BC 1710, JULIC as Injector of COSY and COSY itself are summarized, which shall allow the extension of radionuclide production possibilities, aiming at innovations in medical applications.

  6. How Collecting and Freely Sharing Geophysical Data Broadly Benefits Society

    NASA Astrophysics Data System (ADS)

    Frassetto, A.; Woodward, R.; Detrick, R. S.

    2017-12-01

    Valuable but often unintended observations of environmental and human-related processes have resulted from open sharing of multidisciplinary geophysical observations collected over the past 33 years. These data, intended to fuel fundamental academic research, are part of the Incorporated Research Institutions for Seismology (IRIS), which is sponsored by the National Science Foundation and has provided a community science facility supporting earthquake science and related disciplines since 1984. These community facilities have included arrays of geophysical instruments operated for EarthScope, an NSF-sponsored science initiative designed to understand the architecture and evolution of the North American continent, as well as the Global Seismographic Network, Greenland Ice Sheet Monitoring Network, a repository of data collected around the world, and other community assets. All data resulting from this facility have been made openly available to support researchers across any field of study and this has expanded the impact of these data beyond disciplinary boundaries. This presentation highlights vivid examples of how basic research activities using open data, collected as part of a community facility, can inform our understanding of manmade earthquakes, geomagnetic hazards, climate change, and illicit testing of nuclear weapons.

  7. Protons, Aerospace, and Electronics: A National Interest

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Turflinger, Thomas L.

    2017-01-01

    The aerospace and semiconductor industries lost 2000 hours annually of research access when IUCF closed. An ad hoc team between the U.S. government and industry was formed to evaluate other facility options. In this presentation, we will discuss: 1) Why aerospace, semiconductor manufacturers, and others are interested in proton facility access, as well as, 2) Some of the basics of a typical test for electronics, and 3) We'll conclude with the brief current status on progress.

  8. Protons, Aerospace, and Electronics: A National Interest

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Turflinger, Thomas L.

    2018-01-01

    The aerospace and semiconductor industries lost approximately 2000 hours annually of research access when IUCF closed. An ad hoc team between the U.S. government and industry was formed to evaluate other facility options. In this presentation, we will discuss: 1) Why aerospace, semiconductor manufacturers, and others are interested in proton facility access, as well as, 2) Some of the basics of a typical tests for electronics, and 3) We'll conclude with the brief current status on progress.

  9. Protons, Aerospace, and Electronics: A National Interest

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Turflinger, Thomas L.

    2018-01-01

    The aerospace and semiconductor industries lost approx. 2000 hours annually of research access when IUCF closed. An ad hoc team between the U.S. government and industry was formed to evaluate other facility options. In this presentation, we will discuss: 1) Why aerospace, semiconductor manufacturers, and others are interested in proton facility access, as well as, 2) Some of the basics of a typical test for electronics, and 3) We"ll conclude with the brief current status on progress.

  10. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  11. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  12. Test Stand at the Rocket Engine Test Facility

    NASA Image and Video Library

    1973-02-21

    The thrust stand in the Rocket Engine Test Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Rocket Engine Test Facility was constructed in the mid-1950s to expand upon the smaller test cells built a decade before at the Rocket Laboratory. The $2.5-million Rocket Engine Test Facility could test larger hydrogen-fluorine and hydrogen-oxygen rocket thrust chambers with thrust levels up to 20,000 pounds. Test Stand A, seen in this photograph, was designed to fire vertically mounted rocket engines downward. The exhaust passed through an exhaust gas scrubber and muffler before being vented into the atmosphere. Lewis researchers in the early 1970s used the Rocket Engine Test Facility to perform basic research that could be utilized by designers of the Space Shuttle Main Engines. A new electronic ignition system and timer were installed at the facility for these tests. Lewis researchers demonstrated the benefits of ceramic thermal coatings for the engine’s thrust chamber and determined the optimal composite material for the coatings. They compared the thermal-coated thrust chamber to traditional unlined high-temperature thrust chambers. There were more than 17,000 different configurations tested on this stand between 1973 and 1976. The Rocket Engine Test Facility was later designated a National Historic Landmark for its role in the development of liquid hydrogen as a propellant.

  13. Educational Research in North-East India: A Source Material.

    ERIC Educational Resources Information Center

    Malhotra, Nirmal; Mittal, Pratibha

    The Northeast region of India has a distinct geophysical structure and concomitant socio-economic development. New educational development initiatives for Northeastern states include bridging gaps in basic minimum services, enhancing teachers training facilities, and preparing state specific holistic plans. This annotated bibliography represents…

  14. Structural and Functional Concepts in Current Mouse Phenotyping and Archiving Facilities

    PubMed Central

    Kollmus, Heike; Post, Rainer; Brielmeier, Markus; Fernández, Julia; Fuchs, Helmut; McKerlie, Colin; Montoliu, Lluis; Otaegui, Pedro J; Rebelo, Manuel; Riedesel, Hermann; Ruberte, Jesús; Sedlacek, Radislav; de Angelis, Martin Hrabě; Schughart, Klaus

    2012-01-01

    Collecting and analyzing available information on the building plans, concepts, and workflow from existing animal facilities is an essential prerequisite for most centers that are planning and designing the construction of a new animal experimental research unit. Here, we have collected and analyzed such information in the context of the European project Infrafrontier, which aims to develop a common European infrastructure for high-throughput systemic phenotyping, archiving, and dissemination of mouse models. A team of experts visited 9 research facilities and 3 commercial breeders in Europe, Canada, the United States, and Singapore. During the visits, detailed data of each facility were collected and subsequently represented in standardized floor plans and descriptive tables. These data showed that because the local needs of scientists and their projects, property issues, and national and regional laws require very specific solutions, a common strategy for the construction of such facilities does not exist. However, several basic concepts were apparent that can be described by standardized floor plans showing the principle functional units and their interconnection. Here, we provide detailed information of how individual facilities addressed their specific needs by using different concepts of connecting the principle units. Our analysis likely will be valuable to research centers that are planning to design new mouse phenotyping and archiving facilities. PMID:23043807

  15. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  16. Space construction base support requirements for environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Thiele, R. J.; Secord, T. C.; Murphy, G. L.

    1977-01-01

    A Space Station analysis study is being performed for NASA which identifies cost-effective Space Station options that can provide a space facility capable of performing space construction, space manufacturing, cosmological research, earth services, and other functions. A space construction base concept for the construction of large structures, such as those needed to implement satellite solar power for earth usage, will be used as a basis for discussing requirements that impact the design selection, level of integration, and operation of environmental control and life support systems (ECLSS). The space construction base configuration also provides a basic Space Station facility that can accommodate biological manufacturing modules, ultrapure glasses manufacturing modules, and modules for other services in a building-block fashion. Examples of special problems that could dictate hardware required to augment the basic ECLSS for autonomous modules will be highlighted. Additionally, overall intravehicular (IVA) and extravehicular (EVA) activities and requirements that could impact the basic station ECLSS degree of closure are discussed.

  17. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  18. Basic Hydrodynamics of Richtmyer-Meshkov-type Growth and Oscillations in the ICF-Relevant Conditions

    DTIC Science & Technology

    2010-01-01

    Washington, DC 20375 3ARTEP Inc ., Ellicott City, Maryland 21042 4Department of Mechanical Engineering, Ben Gurion University, Beer Sheva, Israel...the 56-beam Nike KrF laser facility at the Naval Research Laboratory (3 kJ in 0.248 μm, see Obenschain et al. 1996). Basic hydrodynamics of Richtmyer...2000 Nike (NRL) 0.248 8-13 4 400 40 30, 45 1.85 Si monochrom. Ablative RMI, feedout, classical RMI, impulsive loading, re- shock

  19. Development of a Multiple Linear Regression Model to Forecast Facility Electrical Consumption at an Air Force Base.

    DTIC Science & Technology

    1981-09-01

    corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John

  20. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  1. Emergency and urgent care capacity in a resource-limited setting: an assessment of health facilities in western Kenya

    PubMed Central

    Burke, Thomas F; Hines, Rosemary; Ahn, Roy; Walters, Michelle; Young, David; Anderson, Rachel Eleanor; Tom, Sabrina M; Clark, Rachel; Obita, Walter; Nelson, Brett D

    2014-01-01

    Objective Injuries, trauma and non-communicable diseases are responsible for a rising proportion of death and disability in low-income and middle-income countries. Delivering effective emergency and urgent healthcare for these and other conditions in resource-limited settings is challenging. In this study, we sought to examine and characterise emergency and urgent care capacity in a resource-limited setting. Methods We conducted an assessment within all 30 primary and secondary hospitals and within a stratified random sampling of 30 dispensaries and health centres in western Kenya. The key informants were the most senior facility healthcare provider and manager available. Emergency physician researchers utilised a semistructured assessment tool, and data were analysed using descriptive statistics and thematic coding. Results No lower level facilities and 30% of higher level facilities reported having a defined, organised approach to trauma. 43% of higher level facilities had access to an anaesthetist. The majority of lower level facilities had suture and wound care supplies and gloves but typically lacked other basic trauma supplies. For cardiac care, 50% of higher level facilities had morphine, but a minority had functioning ECG, sublingual nitroglycerine or a defibrillator. Only 20% of lower level facilities had glucometers, and only 33% of higher level facilities could care for diabetic emergencies. No facilities had sepsis clinical guidelines. Conclusions Large gaps in essential emergency care capabilities were identified at all facility levels in western Kenya. There are great opportunities for a universally deployed basic emergency care package, an advanced emergency care package and facility designation scheme, and a reliable prehospital care transportation and communications system in resource-limited settings. PMID:25260371

  2. Research activities at the Loma Linda University and Proton Treatment Facility--an overview

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.

    2001-01-01

    The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.

  3. Engaging local industry in the development of basic research infrastructure and instrumentation – The case of HIE-ISOLDE and ESS Scandinavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahlander, Claes, E-mail: claes.fahlander@nuclear.lu.se

    Two world-class research facilities, the European Spallation Source, ESS, and the light-source facility MAX-IV, are being built in southern Sweden. They will primarily, when completed, be used for research in the fields of material sciences, life sciences, medicine and pharmacology. Their construction and the operation and maintenance of them for many years will create new business opportunities for companies in Europe in general and in Sweden, Denmark and Norway in particular in many different sectors. A project, CATE, Cluster for Accelerator Technology, was set up with the aim to strengthen the skills of companies in the Öresund-Kattegat-Skagerrak region in Scandinaviamore » in the field of accelerator technology such that they will become competitive and be able to take advantage of the potential of these two research facilities. CATE was strategically important and has helped to create partnerships between companies and new business opportunities in the region.« less

  4. Engaging local industry in the development of basic research infrastructure and instrumentation - The case of HIE-ISOLDE and ESS Scandinavia

    NASA Astrophysics Data System (ADS)

    Fahlander, Claes

    2016-07-01

    Two world-class research facilities, the European Spallation Source, ESS, and the light-source facility MAX-IV, are being built in southern Sweden. They will primarily, when completed, be used for research in the fields of material sciences, life sciences, medicine and pharmacology. Their construction and the operation and maintenance of them for many years will create new business opportunities for companies in Europe in general and in Sweden, Denmark and Norway in particular in many different sectors. A project, CATE, Cluster for Accelerator Technology, was set up with the aim to strengthen the skills of companies in the Öresund-Kattegat-Skagerrak region in Scandinavia in the field of accelerator technology such that they will become competitive and be able to take advantage of the potential of these two research facilities. CATE was strategically important and has helped to create partnerships between companies and new business opportunities in the region.

  5. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  6. Basic aerodynamic research facility for comparative studies of flow diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Gartrell, Luther R.; Stainback, P. Calvin

    1987-01-01

    Current flow diagnostic research efforts are focusing on higher order flow field data bases, such as those generated by laser velocimetry (LV), hot-wire anemometry, and multi-hole pressure probes. Recent low-speed comparisons of results obtained with LV and hot wires have revealed strengths and weaknesses of each instrument. A seeding study will be initiated to determine particulate tracking ability.

  7. NCI Core Open House Shines Spotlight on Supportive Science and Basic Research | Poster

    Cancer.gov

    The lobby of Building 549 at NCI at Frederick bustled with activity for two hours on Tuesday, May 1, as several dozen scientists and staff gathered for the NCI Core Open House. The event aimed to encourage discussion and educate visitors about the capabilities of the cores, laboratories, and facilities that offer support to NCI’s Center for Cancer Research.

  8. The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance

    NASA Astrophysics Data System (ADS)

    Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.

    2017-12-01

    The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview of the vision for the RAPID facility, the equipment that will be available for use, the facility's operations, and opportunities for user training and facility use.

  9. Space Station life sciences guidelines for nonhuman experiment accommodation

    NASA Technical Reports Server (NTRS)

    Arno, R.; Hilchey, J.

    1985-01-01

    Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.

  10. Naval Medical Research Institute Summaries of Research for 1985

    DTIC Science & Technology

    1985-01-01

    FUNCTION. IN: PROSTACYCLIN-- CLINICAL TRIALS . EDITED BY RICHARD J. ;RYGLEWSKI, ET AL. NOW YORK, RAVEN PRESS, 1985. PP.33-93. HYPERSARIC !EDICINE M0099.0C.0001...BUBBLE DETECTION AND D9C3MPRESSrON SICKNESS: A PROSPECTIVE CLINICAL TRIAL * UND3RSEA BIOMEDICAL RESEARCH 1985 SEP;12(3):327-32 HYPERBARIC MEDICINE...P1STITUTE IS THE . AVV S LARGEST IONDIC SREISERCH FACILITY ,-COISS ONED IN -19 42,-HE .&STITUTE’S MISSION IS TO CONDUCT BASIC AND APPLIED RESEARCH AIMED

  11. University Research Consortium annual review meeting program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  12. Financial Literacy Curriculum: The Effect on Offender Money Management Skills

    ERIC Educational Resources Information Center

    Koenig, Lori A.

    2007-01-01

    Offenders involved in this study lacked basic financial knowledge which presented a barrier to their success upon release. The researcher modified existing curriculum and created a course in financial literacy for offenders within a medium security correctional facility based upon their personal experiences. The offenders gained financial…

  13. Nonvolatile Resistive Switching and Physical Mechanism in LaCrO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Hu, Wan-Jing; Hu, Ling; Wei, Ren-Huai; Tang, Xian-Wu; Song, Wen-Hai; Dai, Jian-Ming; Zhu, Xue-Bin; Sun, Yu-Ping

    2018-04-01

    Not Available Supported by the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility under Grant No U1532149, and the National Basic Research Program of China under Grant No 2014CB931704.

  14. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  15. 41 CFR 102-74.10 - What is the basic facility management policy?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY...

  16. An Incidental Finding of Eisenmenger Syndrome in an Adult Following a Motor Vehicle Accident

    DTIC Science & Technology

    2017-05-19

    and your department has told you they cannot fund your publication, the 59th Clinical Research Division may pay for your basic journal publishing...you in your future publication/presentation efforts. ~EL-GOODWIN, Col, USAF, BSC Director, Clinical Investigations & Research Support Warrior Medics...being struck by a motor vehicle, initially intubated for airway protection, admitted to our facility as a trauma patient. Noted orthopedic injuries

  17. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  18. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  19. Laboratory Design for Microbiological Safety

    PubMed Central

    Phillips, G. Briggs; Runkle, Robert S.

    1967-01-01

    Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771

  20. Progress in superconductivity: The Indian Scenario

    NASA Technical Reports Server (NTRS)

    Multani, Manu; Mishra, V. K.

    1995-01-01

    India has made rapid progress in the field of high temperature superconductivity, beginning at the time of publication of the Zeitschrift fur Physik paper by Bednorz and Muller. Phase 1 of the program was conceived by the Department of Science & Technology of the Government of India. It consisted of 42 projects in the area of basic research, 23 projects in applications and 4 short-term demonstration studies. The second phase started in October 1991 and will run through March 1995. It consists of 50 basic research programs and 24 application programs. The total investment, mainly consisting of infrastructural development to supplement existing facilities and hiring younger people, has amounted to about Indian Rupees 40 crores, equivalent to about US$ 13 million. The expenditure for the period 1992-1997 shall be up to about Rs. 27 crores, equivalent to about US$ 9 million. The basic idea is to keep pace with developments around the world.

  1. Inhalation Toxicology Research Institute annual report, October 1, 1994--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bice, D.E.; Hahn, F.F.; Hoover, M.D.

    1995-12-01

    The mission of the Inhalation Toxicology Research Institute (ITRI) is to conduct basic and applied research to improve the understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disordersmore » of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the largest laboratory dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  2. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  3. El Camino College Master Plan.

    ERIC Educational Resources Information Center

    El Camino Coll., Torrance, CA.

    This document is the educational Master Plan for El Camino Community College District. The purpose of the plan is to develop a research-based document that will be used as a foundation for decisions regarding instructional programs, support services, staffing and facilities. It is intended to serve as the basic foundation for all other plans of…

  4. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  5. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  6. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  7. SLAC All Access: FACET

    ScienceCinema

    Hogan, Mark

    2018-02-13

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  8. Service readiness, health facility management practices, and delivery care utilization in five states of Nigeria: a cross-sectional analysis.

    PubMed

    Gage, Anastasia J; Ilombu, Onyebuchi; Akinyemi, Akanni Ibukun

    2016-10-06

    Existing studies of delivery care in Nigeria have identified socioeconomic and cultural factors as the primary determinants of health facility delivery. However, no study has investigated the association between supply-side factors and health facility delivery. Our study analyzed the role of supply-side factors, particularly health facility readiness and management practices for provision of quality maternal health services. Using linked data from the 2005 and 2009 health facility and household surveys in the five states in which the Community Participation for Action in the Social Sector (COMPASS) project was implemented, indices of health service readiness and management were developed based on World Health Organization guidelines. Multilevel logistic regression models were run to determine the association between these indices and health facility delivery among 2710 women aged 15-49 years whose last child was born within the five years preceding the surveys and who lived in 51 COMPASS LGAs. The health facility delivery rate increased from 25.4 % in 2005 to 44.1 % in 2009. Basic amenities for antenatal care provision, readiness to deliver basic emergency obstetric and newborn care, and management practices supportive of quality maternal health services were suboptimal in health facilities surveyed and did not change significantly between 2005 and 2009. The LGA mean index of basic amenities for antenatal care provision was more positively associated with the odds of health facility delivery in 2009 than in 2005, and in rural than in urban areas. The LGA mean index of management practices was associated with significantly lower odds of health facility delivery in rural than in urban areas. The LGA mean index of facility readiness to deliver basic emergency obstetric and neonatal care declined slightly from 5.16 in 2005 to 3.98 in 2009 and was unrelated to the odds of health facility delivery. Supply-side factors appeared to play a role in health facility delivery after controlling for socio-demographic factors. Improving uptake of delivery care would require greater attention to rural-urban inequities and health facility management practices, and to increasing the number of health facilities with fundamental elements for delivery of basic emergency obstetric and neonatal care.

  9. 40 CFR 60.140 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...

  10. 40 CFR 60.140 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...

  11. 40 CFR 60.140 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...

  12. 40 CFR 60.140 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...

  13. 40 CFR 60.140 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...

  14. The Biological Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1991-01-01

    NASA Ames Research Center is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately 30 years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially, the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5-m diam centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  15. International Directory of Facilities for Education and Training in Basic Subjects Related to the Peaceful Uses of Outer Space.

    ERIC Educational Resources Information Center

    United Nations, New York, NY.

    International facilities are described in the first section of this directory on the facilities for education and training in basic subjects related to the peaceful uses of outer space. Entries are organized into these categories: organizations of the United Nations system; intergovernmental agencies; international agencies; international…

  16. Proposal for continued research in intelligent machines at the Center for Engineering Systems Advanced Research (CESAR) for FY 1988 to FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1987-03-01

    This document reviews research accomplishments achieved by the staff of the Center for Engineering Systems Advanced Research (CESAR) during the fiscal years 1984 through 1987. The manuscript also describes future CESAR objectives for the 1988-1991 planning horizon, and beyond. As much as possible, the basic research goals are derived from perceived Department of Energy (DOE) needs for increased safety, productivity, and competitiveness in the United States energy producing and consuming facilities. Research areas covered include the HERMIES-II Robot, autonomous robot navigation, hypercube computers, machine vision, and manipulators.

  17. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  18. Facilities available for biomedical science research in the public universities in Lagos, Nigeria.

    PubMed

    John, T A

    2010-03-01

    Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.

  19. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    PubMed Central

    2010-01-01

    Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787

  20. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    PubMed

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  1. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  2. The Sea-Floor Mapping Facility at the U.S. Geological Survey Woods Hole Field Center, Woods Hole, Massachusetts

    USGS Publications Warehouse

    Deusser, Rebecca E.; Schwab, William C.; Denny, Jane F.

    2002-01-01

    Researchers of the sea-floor mapping facility at the U.S. Geological Survey (USGS) Woods Hole Field Center in Woods Hole, Mass., use state-of-the-art technology to produce accurate geologic maps of the sea floor. In addition to basic bathymetry and morphology, sea-floor maps may contain information about the distribution of sand resources, patterns of coastal erosion, pathways of pollutant transport, and geologic controls on marine biological habitats. The maps may also show areas of human impacts, such as disturbance by bottom fishing and pollution caused by offshore waste disposal. The maps provide a framework for scientific research and provide critical information to decisionmakers who oversee resources in the coastal ocean.

  3. NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.

  4. Development of an integrated transuranic waste management system for a large research facility: NUCEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao

    1997-03-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less

  5. The International Space Station as a Research Laboratory: A View to 2010 and Beyond

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Sotomayor, Jorge L.

    2007-01-01

    Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent a threefold increase from the current research laboratory infrastructure on ISS. In addition, the increase in resident crew size will increase from three to six in 2009, will provide the long-term capacity for completing research on board ISS. Transportation to and from ISS for crew and cargo will be provided by a fleet of vehicles from the United States, Russia, ESA and Japan, including accommodations for thermally-conditioned cargo. The completed ISS will have robust research accommodations to support the multidisciplinary research objective of scientists worldwide.

  6. Development of a Rotating Human Research Facility

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Caldwell, William F.; Tucker, John; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A unique facility has been developed at the NASA Ames Research Center to provide scientists with unusual research opportunities at greater than Earth's gravity. In addition to its use for basic research, this facility will help provide answers to many of the questions posed by proponents of rotating human space vehicles. This paper describes the design and planned use of this facility, the Spaceflight Environmental Simulator. Using an existing 52-foot diameter cylindrical rotating platform design centrifuge, the revised facility design includes the provision of two human habitats for long duration studies of the effects of hypergravity. Up to four humans (per habitat) will be able to live at up to 2 G for as long as one month without stopping the centrifuge. Each habitat, constructed of lightweight honeycomb sandwich panels, is nominally 9 ft high x 11 ft wide x 25 1/2 ft long. A radial positioning system provides for positioning each habitat at a distance of 15 to 21 feet from the centrifuge's axis of rotation to the midpoint of the habitat's interior floor. As centrifugal acceleration changes with rotation rate, a habitat floor-mounted accelerometer signal provides automatic servo controlled adjustment of each habitat's angle of inclination to provide an environment for the habitat's crew and cargo in which the resultant gravity vector is normal to the habitat floor at all times. Design of the habitats and modifications to the centrifuge are complete, and are currently under construction. Design philosophy and operational rationale are presented along with complete descriptions of the facility and its systems.

  7. The Biological Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  8. Langley aerospace test highlights, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  9. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  10. Collaborative translational research leading to multicenter clinical trials in Duchenne muscular dystrophy: the Cooperative International Neuromuscular Research Group (CINRG).

    PubMed

    Escolar, Diana M; Henricson, Erik K; Pasquali, Livia; Gorni, Ksenija; Hoffman, Eric P

    2002-10-01

    Progress in the development of rationally based therapies for Duchenne muscular dystrophy has been accelerated by encouraging multidisciplinary, multi-institutional collaboration between basic science and clinical investigators in the Cooperative International Research Group. We combined existing research efforts in pathophysiology by a gene expression profiling laboratory with the efforts of animal facilities capable of conducting high-throughput drug screening and toxicity testing to identify safe and effective drug compounds that target different parts of the pathophysiologic cascade in a genome-wide drug discovery approach. Simultaneously, we developed a clinical trial coordinating center and an international network of collaborating physicians and clinics where those drugs could be tested in large-scale clinical trials. We hope that by bringing together investigators at these facilities and providing the infrastructure to support their research, we can rapidly move new bench discoveries through animal model screening and into therapeutic testing in humans in a safe, timely and cost-effective setting.

  11. Basic Requirements for Systems Software Research and Development

    NASA Technical Reports Server (NTRS)

    Kuszmaul, Chris; Nitzberg, Bill

    1996-01-01

    Our success over the past ten years evaluating and developing advanced computing technologies has been due to a simple research and development (R/D) model. Our model has three phases: (a) evaluating the state-of-the-art, (b) identifying problems and creating innovations, and (c) developing solutions, improving the state- of-the-art. This cycle has four basic requirements: a large production testbed with real users, a diverse collection of state-of-the-art hardware, facilities for evalua- tion of emerging technologies and development of innovations, and control over system management on these testbeds. Future research will be irrelevant and future products will not work if any of these requirements is eliminated. In order to retain our effectiveness, the numerical aerospace simulator (NAS) must replace out-of-date production testbeds in as timely a fashion as possible, and cannot afford to ignore innovative designs such as new distributed shared memory machines, clustered commodity-based computers, and multi-threaded architectures.

  12. Characterization of the Inductively Heated Plasma Source IPG6-B

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2014-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6). The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160 m3/h in combination with a butterfly valve allows pressure control over a wide range. Intended fields of research include basic investigation into thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. those found in fusion devices or during atmospheric re-entry of spacecraft. After moving the IPG6-B facility to the Baylor Research and Innovation Collaborative (BRIC) it was placed back into operation during the summer of 2014. Initial characterization in the new lab, using a heat flux probe, Pitot probe and cavity calorimeter, has been conducted for Air, Argon and Helium. The results of this characterization are presented.

  13. Biological research on a Space Station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Johnson, Catherine C.

    1990-01-01

    A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

  14. A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management

    NASA Astrophysics Data System (ADS)

    Kim, Tae Woo; Yun, Hong Sik

    2017-04-01

    The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).

  15. Chinese-Mandarin: Basic Dialogues for Airport Facilities.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This booklet seeks to introduce basic dialogues for utilization at airport facilities. The English version of the phraseology is provided with the Chinese Mandarin text. The phraseology includes material on: (1) departure control, (2) high altitude penetration, (3) beacon identification, (4) arrival control, (5) circling approach, (6) final…

  16. COMPENSATORY EDUCATION PROGRAM. NEWSLETTER.

    ERIC Educational Resources Information Center

    Fresno City Unified School District, CA.

    TWO NEWSLETTERS FROM THE COMPENSATORY EDUCATION PROGRAM IN FRESNO INCLUDED PLANS FOR THE PLANNING GRANT PROGRAM, THE BASIC PROGRAM, AND THE INTENSIVE PROGRAM. THE BASIC PROGRAM SHOULD REDUCE PUPIL-TEACHER RATIO, PROVIDE PRESCHOOL PROJECTS THROUGH THE USE OF EITHER SCHOOL FACILITIES OR PRIVATE FACILITIES, PROVIDE REMEDIAL AND CORRECTIVE PROGRAMS IN…

  17. An update of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1990-01-01

    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.

  18. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  19. MSFC ISS Resource Reel 2016

    NASA Image and Video Library

    2016-04-01

    International Space Station Resource Reel. This video describes shows the International Space Station components, such as the Destiny laboratory and the Quest Airlock, being manufactured at NASA's Marshall Space Flight Center in Huntsville, Ala. It provides manufacturing and ground testing video and in-flight video of key space station components: the Microgravity Science Glovebox, the Materials Science Research Facility, the Window Observational Research Facility, the Environmental Control Life Support System, and basic research racks. There is video of people working in Marshall's Payload Operations Integration Center where controllers operate experiments 24/7, 365 days a week. Various crews are shown conducting experiments on board the station. PAO Name:Jennifer Stanfield Phone Number:256-544-0034 Email Address: JENNIFER.STANFIELD@NASA.GOV Name/Title of Video: ISS Resource Reel Description: ISS Resource Reel Graphic Information: NASA PAO Name:Tracy McMahan Phone Number:256-544-1634 Email Address: tracy.mcmahan@nasa.gov

  20. A high arctic experience of uniting research and monitoring

    NASA Astrophysics Data System (ADS)

    Schmidt, Niels Martin; Christensen, Torben R.; Roslin, Tomas

    2017-07-01

    Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"—particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system—to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.

  1. A Cross Sectional Study of the Association between Sanitation Type and Fecal Contamination of the Household Environment in Rural Bangladesh.

    PubMed

    Huda, Tarique Md Nurul; Schmidt, Wolf-Peter; Pickering, Amy J; Mahmud, Zahid Hayat; Islam, Mohammad Sirajul; Rahman, Md Sajjadur; Luby, Stephen P; Biran, Adam

    2018-04-01

    We conducted a cross sectional study to assess 1) the association between access to basic sanitation and fecal contamination of sentinel toy balls and 2) if other sanitation factors such as shared use and cleanliness are associated with fecal contamination of sentinel toy balls. We assessed sanitation facilities in 454 households with a child aged 6-24 months in rural Bangladesh. We defined "basic" sanitation as access to improved sanitation facilities (pit latrine with a slab or better) not shared with other households. In each household, an identical toy ball was given to the target child. After 24 hours, the balls were rinsed to enumerate fecal coliforms as an indicator of household fecal contamination. Households with basic sanitation had lower fecal coliform contamination than households with no access to basic sanitation (adjusted difference in means: -0.31 log 10 colony forming units [CFU]/toy ball; 95% confidence interval [CI]: -0.61, -0.01). Shared sanitation facilities of otherwise improved type were more likely to have visible feces on the latrine slab compared with private facilities. Among households with access to improved sanitation, households with no visible feces on the latrine slab had less toy ball contamination than households with visible feces on the latrine slab (adjusted difference in means: -0.38 log 10 CFU/toy ball; 95% CI: -0.77, 0.02). Access to basic sanitation may prevent fecal contamination of the household environment. An Improved sanitation facility used by an individual household may be better in preventing household fecal contamination compared with improved facilities shared with other households.

  2. Space station systems analysis study. Part 1, volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.

  3. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  4. Biosafety and biosecurity measures: management of biosafety level 3 facilities.

    PubMed

    Zaki, Adel N

    2010-11-01

    With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.

  5. A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, Leroy J.; Rollins, Katherine E.; Smith, Karen P.

    2015-01-01

    There are two basic types of solar energy technology: photovoltaic and concentrating solar power. As the number of utility-scale solar energy facilities using these technologies is expected to increase in the United States, so are the potential impacts on wildlife and their habitats. Recent attention is on the risk of fatality to birds. Understanding the current rates of avian mortality and existing monitoring requirements is an important first step in developing science-based mitigation and minimization protocols. The resulting information also allows a comparison of the avian mortality rates of utility-scale solar energy facilities with those from other technologies and sources,more » as well as the identification of data gaps and research needs. This report will present and discuss the current state of knowledge regarding avian issues at utility-scale solar energy facilities.« less

  6. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    PubMed

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  7. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    PubMed Central

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122

  8. Summaries of FY 1982 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less

  9. A random distribution reacting mixing layer model

    NASA Technical Reports Server (NTRS)

    Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.

    1994-01-01

    A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.

  10. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues inmore » the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic theoretical models. Visualization and Analysis: Supporting near-real-time feedback for experiment optimization and new ways to extract and communicate critical information from large data sets. Data Processing and Management: Outlining needs in computational and communication approaches and infrastructure needed to handle unprecedented data volume and information content. It should be noted that almost all participants recognized that there were unlikely to be any turn-key solutions available due to the unique, diverse nature of the BES community, where research at adjacent beamlines at a given light source facility often span everything from biology to materials science to chemistry using scattering, imaging and/or spectroscopy. However, it was also noted that advances supported by other programs in data research, methodologies, and tool development could be implemented on reasonable time scales with modest effort. Adapting available standard file formats, robust workflows, and in-situ analysis tools for user facility needs could pay long-term dividends. Workshop participants assessed current requirements as well as future challenges and made the following recommendations in order to achieve the ultimate goal of enabling transformative science in current and future BES facilities: Theory and analysis components should be integrated seamlessly within experimental workflow. Develop new algorithms for data analysis based on common data formats and toolsets. Move analysis closer to experiment. Move the analysis closer to the experiment to enable real-time (in-situ) streaming capabilities, live visualization of the experiment and an increase of the overall experimental efficiency. Match data management access and capabilities with advancements in detectors and sources. Remove bottlenecks, provide interoperability across different facilities/beamlines and apply forefront mathematical techniques to more efficiently extract science from the experiments. This workshop report examines and reviews the status of several BES facilities and highlights the successes and shortcomings of the current data and communication pathways for scientific discovery. It then ascertains what methods and tools are needed to mitigate present and projected data bottlenecks to science over the next 10 years. The goal of this report is to create the foundation for information exchanges and collaborations among ASCR and BES supported researchers, the BES scientific user facilities, and ASCR computing and networking facilities. To jumpstart these activities, there was a strong desire to see a joint effort between ASCR and BES along the lines of the highly successful Scientific Discovery through Advanced Computing (SciDAC) program in which integrated teams of engineers, scientists and computer scientists were engaged to tackle a complete end-to-end workflow solution at one or more beamlines, to ascertain what challenges will need to be addressed in order to handle future increases in data« less

  11. An update of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1990-01-01

    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.

  12. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  13. JPRS Report, Science & Technology. Europe: Economic Competitiveness

    DTIC Science & Technology

    1991-08-09

    cost . Under the current funding scheme, support is only available through a system of reimbursable interest-free loans. With the currently proposed... system , basic indus- trial research will henceforth be financed by subsidies (of up to 50 percent of gross costs ). Small- and medium- sized...extremely cost -effective installations. • To market the MD110 as a foundation for office automation facilities. • To target very large system

  14. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are reported. The conference focussed on lightning protection, detection, and forecasting. The conference was divided into 26 sessions based on research in lightning, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on lightning prediction and detection and on safety for ground facilities, aircraft, and aerospace vehicles.

  15. THE ACCEPTANCE OF CARPET AS A SCHOOL FLOOR COVERING. AN ADDRESS TO MASSACHUSETTS ASSOCIATION OF SCHOOL COMMITTEES, (CHICOPEE, MASSACHUSETTS, MAY 21, 1964).

    ERIC Educational Resources Information Center

    GARRETT, JOE B.

    THIS SPEECH DISCUSSES THE ACOUSTICAL, INSULATIVE, LOW-MAINTENANCE FLOOR COVERING KNOWN AS CARPET AND ITS USE IN SCHOOL FACILITIES. IT REVIEWS THE BASIC INDEPENDENT RESEARCH WHICH HAS BEEN DONE, DOCUMENTING THE ACOUSTICAL AND MAINTENANCE PROPERTIES AS A SCHOOL FLOOR COVERING, AND TRACES THE ACTUAL EXPERIENCE OF A NUMBER OF CARPETED SCHOOLS.…

  16. Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions

    NASA Astrophysics Data System (ADS)

    Li, Xue; He, Da-Wei; Wang, Yong-Sheng; Hu, Yin; Zhao, Xuan; Fu, Chen; Wu, Jing-Yan

    2018-05-01

    Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61335006, 61527817, and 61378073), the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China, and the National Basic Research Program of China (Grant No. KSJB17030536).

  17. Lewis Research Center R and D Facilities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  18. Langley aerospace test highlights, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.

  19. Data Crosscutting Requirements Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin; Shoshani, Arie; Plata, Charity

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities.more » They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.« less

  20. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  1. Langley aerospace test highlights - 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  2. Langley aerospace test highlights, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

  3. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The life sciences research facilities for the Space Station are being designed to accommodate both animal and plant specimens for long durations studies. This will enable research on how living systems adapt to microgravity, how gravity has shaped and affected life on earth, and further the understanding of basic biological phenomena. This would include multigeneration experiments on the effects of microgravity on the reproduction, development, growth, physiology, behavior, and aging of organisms. To achieve these research goals, a modular habitat system and on-board variable gravity centrifuges, capable of holding various animal, plant, cells and tissues, is proposed for the science laboratory.

  4. Luminosity measurements for the R scan experiment at BESIII

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2017-06-01

    By analyzing the large-angle Bhabha scattering events e+e- → (γ)e+e- and diphoton events e+e- → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are important inputs for the R value and J/ψ resonance parameter measurements. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11322544, 11335008, 11375170, 11275189, 11079030, 11475164, 11475169, 11005109, 10979095, 11275211), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201, U1532102). (KJCX2-YW-N29, KJCX2-YW-N45). 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  5. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  6. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  7. Measuring facility capability to provide routine and emergency childbirth care to mothers and newborns: An appeal to adjust for delivery caseload of facilities

    PubMed Central

    Allen, Stephanie M.; Opondo, Charles; Campbell, Oona M. R.

    2017-01-01

    Background Measurement of Emergency Obstetric Care capability is common, and measurement of newborn and overall routine childbirth care has begun in recent years. These assessments of facility capabilities can be used to identify geographic inequalities in access to functional health services and to monitor improvements over time. This paper develops an approach for monitoring the childbirth environment that accounts for the delivery caseload of the facility. Methods We used data from the Kenya Service Provision Assessment to examine facility capability to provide quality childbirth care, including infrastructure, routine maternal and newborn care, and emergency obstetric and newborn care. A facility was considered capable of providing a function if necessary tracer items were present and, for emergency functions, if the function had been performed in the previous three months. We weighted facility capability by delivery caseload, and compared results with those generated using traditional “survey weights”. Results Of the 403 facilities providing childbirth care, the proportion meeting criteria for capability were: 13% for general infrastructure, 6% for basic emergency obstetric care, 3% for basic emergency newborn care, 13% and 11% for routine maternal and newborn care, respectively. When the new caseload weights accounting for delivery volume were applied, capability improved and the proportions of deliveries occurring in a facility meeting capability criteria were: 51% for general infrastructure, 46% for basic emergency obstetric care, 12% for basic emergency newborn care, 36% and 18% for routine maternal and newborn care, respectively. This is because most of the caseload was in hospitals, which generally had better capability. Despite these findings, fewer than 2% of deliveries occurred in a facility capable of providing all functions. Conclusion Reporting on the percentage of facilities capable of providing certain functions misrepresents the capacity to provide care at the national level. Delivery caseload weights allow adjustment for patient volume, and shift the denominator of measurement from facilities to individual deliveries, leading to a better representation of the context in which facility births take place. These methods could lead to more standardized national datasets, enhancing their ability to inform policy at a national and international level. PMID:29049412

  8. The basics of animal biosafety and biocontainment training.

    PubMed

    Pritt, Stacy; Hankenson, F Claire; Wagner, Ted; Tate, Mallory

    2007-06-01

    The threat of biocontamination in an animal facility is best subdued by training. 'Training' is an ambiguous designation that may not be adequately appreciated in all animal facilities. The authors set down concrete training topics and provide practical advice on incorporating the basic principles of facility biosafety training--as well as the precautions and procedures that employees must know in case of accident or emergency--into various training models. They also discuss the current biosafety publications and guidelines and their relationship to biosafety training.

  9. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  10. Jefferson Lab 12 GEV Cebaf Upgrade

    NASA Astrophysics Data System (ADS)

    Rode, C. H.

    2010-04-01

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  11. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  12. LANDSAT-4 TM image data quality analysis for energy-related applications

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Foote, H. P.

    1983-01-01

    LANDSAT-4 Thematic Mapper (TM) data performance and utility characteristics from an energy research and technology perspective is evaluated. The program focuses on evaluating applicational implications of using such data, in combination with other digital data, for current and future energy research and technology activities. Prime interest is in using TM data for siting, developing and operating federal energy facilities. Secondary interests involve the use of such data for resource exploration, environmental monitoring and basic scientific initiatives such as in support of the Continental Scientific Drilling Program.

  13. NASA Aeronautics: Research and Technology Program Highlights

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.

  14. Modeling of High-Velocity Flows in ITAM Impulse Facilities

    DTIC Science & Technology

    2010-04-01

    up to 150 ms; Adiabatic compression wind tunnels up to 100 ms; Shock tubes... shock tubes. Basic and applied aerodynamic research has been performed in these wind tunnels in the range of Mach numbers М = 6 20 for many years...passage of a shock wave propagating over a cold rarefied gas filling the wind tunnel . When the gas heated in the shock wave (plug) passes around the

  15. Military Compensation: Past, Present and Future. Volume 1. Executive Summary.

    DTIC Science & Technology

    1976-01-01

    Chapter 3 provides an overview of the current military compen- sation system -- i.e., the military pay and allowances system. The major subsystems to...research efforts produced processes for control of shrinkageof wool fabrics. In the US textile industry, wooliteis are nowtreated by these processes...led to development of .4,4continuous dyeing. Ilodern dyeing facilities of large textile • actories throughout the world trace their basic technology

  16. Industrial Mobilization: The Relevant History. Revised

    DTIC Science & Technology

    1983-01-01

    purpose was much too narrow and, in fact, wrong in its basic premise. In- stead, I adopted a more useful goal, i.e., to describe and analyze the...production of defense Items or research and development for DOD and the Atomic Energy Commission. The hearings had resultod from competition between two...I II| rll ll ll I.I -. _- History of Korean War Ere such as atomic energy plants and facilities housing heavy presses

  17. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  18. Ion Beam Facility at the University of Chile; Applications and Basic Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, P. A.; Morales, J. R.; Cancino, S.

    2010-08-04

    The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago,more » Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.« less

  19. Ion Beam Facility at the University of Chile; Applications and Basic Research

    NASA Astrophysics Data System (ADS)

    Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepúlveda, A.; Ortiz, P.; Rojas, S.

    2010-08-01

    The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile. Basic physics research is being carried out by measuring low-energy cross section values for the reactions 63Cu(d,p)64Cu and NatZn(p,x)67Ga. Both radionuclide 64Cu and 67Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.

  20. Langley aerospace test highlights, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

  1. Program director`s overview report for the Office of Health & Environmental Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, D.

    1994-02-01

    LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work formore » non-OHER organizations DOE; critical issues; and resource orientation.« less

  2. Assessment of programs in space biology and medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past 30 or more years, the National Research Council Space Studies Board and its various committees have published hundreds of recommendations concerning life sciences research. Several particularly noteworthy themes appear consistently: (1) Balance - the need for a well-balanced research program in terms of ground versus flight, basic versus clinical, and internal versus extramural; (2) Excellence - because of the extremely limited number of flight opportunities (as well as their associated relative costs), the need for absolute excellence in the research that is conducted, in terms of topic, protocol, and investigator, and (3) Facilities - the single most important facility for life sciences research in space, an on-board, variable force centrifuge. In this first assessment report, the Committee on Space Biology and Medicine emphasizes that these long-standing themes remain as essential today as when first articulated. On the brink of the twenty-first century, the nation is contemplating the goal of human space exploration; consequently, the themes bear repeating. Each is a critical component of what will be necessary to successfully achieve such a goal.

  3. Use of a geographic information system to assess accessibility to health facilities providing emergency obstetric and newborn care in Bangladesh.

    PubMed

    Chowdhury, Mahbub E; Biswas, Taposh K; Rahman, Monjur; Pasha, Kamal; Hossain, Mollah A

    2017-08-01

    To use a geographic information system (GIS) to determine accessibility to health facilities for emergency obstetric and newborn care (EmONC) and compare coverage with that stipulated by UN guidelines (5 EmONC facilities per 500 000 individuals, ≥1 comprehensive). A cross-sectional study was undertaken of all public facilities providing EmONC in 24 districts of Bangladesh from March to October 2012. Accessibility to each facility was assessed by applying GIS to estimate the proportion of catchment population (comprehensive 500 000; basic 100 000) able to reach the nearest facility within 2 hours and 1 hour of travel time, respectively, by existing road networks. The minimum number of public facilities providing comprehensive and basic EmONC services (1 and 5 per 500 000 individuals, respectively) was reached in 16 and 3 districts, respectively. However, after applying GIS, in no district did 100% of the catchment population have access to these services. A minimum of 75% and 50% of the population had accessibility to comprehensive services in 11 and 5 districts, respectively. For basic services, accessibility was much lower. Assessing only the number of EmONC facilities does not ensure universal coverage; accessibility should be assessed when planning health systems. © 2017 International Federation of Gynecology and Obstetrics.

  4. Justification for, and design of, an economical programmable multiple flight simulator

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Wittenber, J.; Macdonald, G.

    1981-01-01

    The considered research interests in air traffic control (ATC) studies revolve about the concept of distributed ATC management based on the assumption that the pilot has a cockpit display of traffic and navigation information (CDTI) via CRT graphics. The basic premise is that a CDTI equipped pilot can, in coordination with a controller, manage a part of his local traffic situation thereby improving important aspects of ATC performance. A modularly designed programmable flight simulator system is prototyped as a means of providing an economical facility of up to eight simulators to interface with a mainframe/graphics system for ATC experimentation, particularly CDTI-distributed management in which pilot-pilot interaction can have a determining effect on system performance. Need for a multiman simulator facility is predicted on results from an earlier three simulator facility.

  5. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel

    PubMed Central

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-01-01

    Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806

  6. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    PubMed

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  7. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  8. Zebrafish housing systems: a review of basic operating principles and considerations for design and functionality.

    PubMed

    Lawrence, Christian; Mason, Timothy

    2012-01-01

    The strategies for housing zebrafish used in biomedical research have evolved considerably over the past three decades. To keep pace with the rapid expansion and development of the zebrafish model system, the field has generally moved from keeping fish at the level of aquarium hobbyist to that of industrialized, recirculating aquaculture. Numerous commercial system vendors now offer increasingly sophisticated housing systems based on design principles that maximize the number of animals that can be housed in a given space footprint, and they are thus able to support large and diverse research programs. This review is designed to provide managers, lab animal veterinarians, investigators, and other parties responsible for care and use of these animals with a comprehensive overview of the basic operating and design principles of zebrafish housing systems. This information can be used to help plan the construction of new facilities and/or the upgrade and maintenance of existing operations.

  9. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Carole; Leroy, Christine

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the productionmore » schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut-down, maintenance and surveillance expenditure. The authorization is issued by a decree adopted upon advice of the French Nuclear Safety Authority and after a public enquiry. In accordance with Decree No. 2007-1557 of November 2, 2007, the application is filed with the ministries responsible for nuclear safety and the Nuclear Safety Authority. It consists of twelve files and four records information. The favorable opinion of the Nuclear Safety Authority on the folder is required to start the public inquiry. Once the public inquiry is completed, the building permit is issued by the prefect. (authors)« less

  10. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less

  11. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  12. FY 1984 Science Budget overview

    NASA Astrophysics Data System (ADS)

    Astronomy, engineering, and the physical sciences as a whole were among the best funded programs in the fiscal 1984 budget that President Ronald Reagan sent to Congress last week. In addition, science education got a shot in the arm: The Reagan proposal includes plans for the nation's universities to upgrade scientific instrumentation and to attract and support high caliber scientists and engineers.Reagan proposes that federal funding for research and development, including R&D facilities, total $47 billion in fiscal 1984, up 17% from the fiscal 1983 level. Defense research and development programs would be increased 29%; nondefense R&D would be increased 0.4%. Total basic research would be boosted 10%.

  13. Physics division annual report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less

  14. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less

  15. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less

  16. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  17. University of Kansas Medical center Cancer Research Equipment Award Type: Construction Grant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Jamie

    A major mechanism to strengthen the overall cancer focus of KUCC and expand specific research programs is through targeted recruitment of additional cancer researchers to increase the national and international status of the Cancer Center, enhance the number of NCI/cancer-related grants, fill critical research needs, and enable new collaborative projects. Over the last five years KUCC has demonstrated the ability to recruit nationally recognized basic, translational and clinical scientists to fill key leadership positions and strengthen our research programs. These researchers require new and renovated research facilities require state-of-the-art laboratory equipment. This includes standard equipment for the renovated laboratories andmore » more specialized equipment as part of new investigator start-up packages. This funding is used to support recruitment, facilities, equipment, shared resources, administration, and patient care services. KUCC is committed to recruiting additional cancer researchers to increase the national and international status of the Cancer Center, enhance the number of NCI/cancer-related grants, fill critical research positions and build the four cancer research programs. Each purposeful hire aims to further the scientific vision, mission, and goals of the Cancer Center research programs. The funds requested will be used to supplement the recruitment packages of future cancer center recruits primarily through purchase of key equipment items.« less

  18. An analytical investigation of acquisition techniques and system integration studies for a radar aircraft guidance research facility, phase 2

    NASA Technical Reports Server (NTRS)

    Thompson, W. S.; Ruedger, W. H.

    1973-01-01

    A review of user requirements and updated instrumentation plans are presented for the aircraft tracking and guidance facility at NASA Wallops Station. User demand has increased as a result of new flight research programs; however, basic requirements remain the same as originally reported. Instrumentation plans remain essentially the same but with plans for up- and down-link telemetry more firm. With slippages in the laser acquisition schedule, added importance is placed on the FPS-16 radar as the primary tracking device until the laser is available. Limited simulation studies of a particular Kalman-type filter are also presented. These studies simulated the use of the filter in a helicopter guidance loop in a real-time mode. Disadvantages and limitations of this mode of operation are pointed out. Laser eyesafety calculations show that laser tracking of aircraft is readily feasible from the eyesafety viewpoint.

  19. Demonstration, Developmental and Research Project for Programs, Materials, Facilities and Educational Technology for Undereducated Adults: Ohio State Module. ABE Life-Centered Curriculum Development and Teaching Technique. Final Report.

    ERIC Educational Resources Information Center

    Morehead State Univ., KY.

    This workshop was held for the purpose of training selected staff members of the Ohio Module Field Unit of the Appalachian Adult Basic Education Demonstration Center (AABEDC). Twelve persons, six teachers and six paraprofessionals, were selected to participate in the workshop. While their specific jobs vary, all will be concerned with utilization…

  20. Measurement of the absolute branching fraction of D+ → K̅0 e+νe via K̅0 → π 0 π 0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lü, H. J.; Lü, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lü, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-11-01

    By analyzing 2.93 fb-1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ → K̅0 e+νe to be ℬ(D + → K̅0 e+νe) = (8.59 ± 0.14 ± 0.21)% using , where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.. Supported by National Key Basic Research Program of China (2009CB825204, 2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11125525, 11235011, 11305180, 11322544, 11335008, 11425524, 11475123), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201, U1532101), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11405046, U1332103), Russian Foundation for Basic Research (14-07-91152), Swedish Resarch Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  1. Maintenance Staffing Guidelines For Educational Facilities.

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, Alexandria, VA.

    The purpose of this publication is to provide a resource or guide for educational facilities in establishing or developing a maintenance trades organization that is sufficient to accomplish basic facilities maintenance functions. The guidelines are intended to suggest staffing levels for those routine facilities maintenance activities that are…

  2. Signal functions for emergency obstetric care as an intervention for reducing maternal mortality: a survey of public and private health facilities in Lusaka District, Zambia.

    PubMed

    Tembo, Tannia; Chongwe, Gershom; Vwalika, Bellington; Sitali, Lungowe

    2017-09-06

    Zambia's maternal mortality ratio was estimated at 398/100,000 live births in 2014. Successful aversion of deaths is dependent on availability and usability of signal functions for emergency obstetric and neonatal care. Evidence of availability, usability and quality of signal functions in urban settings in Zambia is minimal as previous research has evaluated their distribution in rural settings. This survey evaluated the availability and usability of signal functions in private and public health facilities in Lusaka District of Zambia. A descriptive cross sectional study was conducted between November 2014 and February 2015 at 35 public and private health facilities. The Service Availability and Readiness Assessment tool was adapted and administered to overall in-charges, hospital administrators or maternity ward supervisors at health facilities providing maternal and newborn health services. The survey quantified infrastructure, human resources, equipment, essential drugs and supplies and used the UN process indicators to determine availability, accessibility and quality of signal functions. Data on deliveries and complications were collected from registers for periods between June 2013 and May 2014. Of the 35 (25.7% private and 74.2% public) health facilities assessed, only 22 (62.8%) were staffed 24 h a day, 7 days a week and had provided obstetric care 3 months prior to the survey. Pre-eclampsia/ eclampsia and obstructed labor accounted for most direct complications while postpartum hemorrhage was the leading cause of maternal deaths. Overall, 3 (8.6%) and 5 (14.3%) of the health facilities had provided Basic and Comprehensive EmONC services, respectively. All facilities obtained blood products from the only blood bank at a government referral hospital. The UN process indicators can be adequately used to monitor progress towards maternal mortality reduction. Lusaka district had an unmet need for BEmONC as health facilities fell below the minimum UN standard. Public health facilities with capacity to perform signal functions should be upgraded to Basic EmONC status. Efforts must focus on enhancing human resource capacity in EmONC and improving infrastructure and supply chain. Obstetric health needs and international trends must drive policy change.

  3. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Majormore » chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.« less

  4. Lead in Drinking Water in Schools and Childcare Facilities

    MedlinePlus

    ... Lead in Drinking Water in Schools and Childcare Facilities Basic Information 3Ts Full Toolkit Partners Related Links ... Best Management Practices For Schools and Child Care Facilities Drinking water best management practices for schools and ...

  5. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.

  6. SSERVI Analog Regolith Simulant Testbed Facility

    NASA Astrophysics Data System (ADS)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities, as well as public outreach and education opportunities.

  7. User-Friendly Interface Developed for a Web-Based Service for SpaceCAL Emulations

    NASA Technical Reports Server (NTRS)

    Liszka, Kathy J.; Holtz, Allen P.

    2004-01-01

    A team at the NASA Glenn Research Center is developing a Space Communications Architecture Laboratory (SpaceCAL) for protocol development activities for coordinated satellite missions. SpaceCAL will provide a multiuser, distributed system to emulate space-based Internet architectures, backbone networks, formation clusters, and constellations. As part of a new effort in 2003, building blocks are being defined for an open distributed system to make the satellite emulation test bed accessible through an Internet connection. The first step in creating a Web-based service to control the emulation remotely is providing a user-friendly interface for encoding the data into a well-formed and complete Extensible Markup Language (XML) document. XML provides coding that allows data to be transferred between dissimilar systems. Scenario specifications include control parameters, network routes, interface bandwidths, delay, and bit error rate. Specifications for all satellite, instruments, and ground stations in a given scenario are also included in the XML document. For the SpaceCAL emulation, the XML document can be created using XForms, a Webbased forms language for data collection. Contrary to older forms technology, the interactive user interface makes the science prevalent, not the data representation. Required versus optional input fields, default values, automatic calculations, data validation, and reuse will help researchers quickly and accurately define missions. XForms can apply any XML schema defined for the test mission to validate data before forwarding it to the emulation facility. New instrument definitions, facilities, and mission types can be added to the existing schema. The first prototype user interface incorporates components for interactive input and form processing. Internet address, data rate, and the location of the facility are implemented with basic form controls with default values provided for convenience and efficiency using basic XForms operations. Because different emulation scenarios will vary widely in their component structure, more complex operations are used to add and delete facilities.

  8. SSERVI Analog Regolith Simulant Testbed Facility

    NASA Astrophysics Data System (ADS)

    Minafra, J.; Schmidt, G. K.

    2016-12-01

    SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.

  9. Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Corlett, W. A.

    1982-01-01

    The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.

  10. Fiscal 1983 Science Budget

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drryl P. Butt; Brian Jaques

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  12. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert; Tedder, Sarah

    2016-01-01

    This paper presents results from tests in a NASA Glenn Research Center (GRC) flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include 2D, planar laser-based imaging as well as basic flow visualization of the flame. Four conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics and Environmentally Responsible Aviation Projects were tested.

  13. Basic requirements and parameter optimization for boron neutron capture therapy of extracorporeal irradiated and auto-transplanted organs.

    PubMed

    Wortmann, Birgit; Knorr, Jürgen

    2012-08-01

    In 2001 and 2003, at the University of Pavia, Italy, boron neutron capture therapy (BNCT) has been successfully used in the treatment of hepatic colorectal metastases (Pinelli et al., 2002; Zonta et al., 2006). The treatment procedure (TAOrMINA protocol) is characterised by the auto-transplantation and extracorporeal irradiation of the liver using a thermal neutron beam. The clinical use of this approach requires well founded data and an optimized irradiation facility. In order to start with this work and to decide upon its feasibility at the research reactor TRIGA Mainz, basic data and requirements have been considered (Wortmann, 2008). Computer calculations using the ATTILA (Transpire Inc. 2006) and MCNP (LANL, 2005) codes have been performed, including data from conventional radiation therapy, from the TAOrMINA approach, resulting in reasonable estimations. Basic data and requirements and optimal parameters have been worked out, especially for use at an optimized TRIGA irradiation facility (Wortmann, 2008). Advantages of the extracorporeal irradiation with auto-transplantation and the potential of an optimized irradiation facility could be identified. Within the requirements, turning the explanted organ over by 180° appears preferable to a whole side source, similar to a permanent rotation of the organ. The design study and the parameter optimization confirm the potential of this approach to treat metastases in explanted organs. The results do not represent actual treatment data but a first estimation. Although all specific values refer to the TRIGA Mainz, they may act as a useful guide for other types of neutron sources. The recommended modifications (Wortmann, 2008) show the suitability of TRIGA reactors as a radiation source for BNCT of extracorporeal irradiated and auto-transplanted organs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uraniummore » Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.« less

  15. ENHANCING RESEARCH ETHICS REVIEW SYSTEMS IN EGYPT: THE FOCUS OF AN INTERNATIONAL TRAINING PROGRAM INFORMED BY AN ECOLOGICAL DEVELOPMENTAL APPROACH TO ENHANCING RESEARCH ETHICS CAPACITY

    PubMed Central

    Edwards, Hillary Anne; Hifnawy, Tamer; Silverman, Henry

    2014-01-01

    Recently, training programs in research ethics have been established to enhance individual and institutional capacity in research ethics in the developing world. However, commentators have expressed concern that the efforts of these training programs have placed “too great an emphasis on guidelines and research ethics review”, which will have limited effect on ensuring ethical conduct in research. What is needed instead is a culture of ethical conduct supported by national and institutional commitment to ethical practices that are reinforced by upstream enabling conditions (strong civil society, public accountability, and trust in basic transactional processes), which are in turn influenced by developmental conditions (basic freedoms of political freedoms, economic facilities, social opportunities, transparency guarantees, and protective security). Examining this more inclusive understanding of the determinants of ethical conduct enhances at once both an appreciation of the limitations of current efforts of training programs in research ethics and an understanding of what additional training elements are needed to enable trainees to facilitate national and institutional policy changes that enhance research practices. We apply this developmental model to a training program focused in Egypt to describe examples of such additional training activities. PMID:24894063

  16. Enhancing Research Ethics Review Systems in Egypt: The Focus of an International Training Program Informed by an Ecological Developmental Approach to Enhancing Research Ethics Capacity.

    PubMed

    Edwards, Hillary Anne; Hifnawy, Tamer; Silverman, Henry

    2015-12-01

    Recently, training programs in research ethics have been established to enhance individual and institutional capacity in research ethics in the developing world. However, commentators have expressed concern that the efforts of these training programs have placed 'too great an emphasis on guidelines and research ethics review', which will have limited effect on ensuring ethical conduct in research. What is needed instead is a culture of ethical conduct supported by national and institutional commitment to ethical practices that are reinforced by upstream enabling conditions (strong civil society, public accountability, and trust in basic transactional processes), which are in turn influenced by developmental conditions (basic freedoms of political freedoms, economic facilities, social opportunities, transparency guarantees, and protective security). Examining this more inclusive understanding of the determinants of ethical conduct enhances at once both an appreciation of the limitations of current efforts of training programs in research ethics and an understanding of what additional training elements are needed to enable trainees to facilitate national and institutional policy changes that enhance research practices. We apply this developmental model to a training program focused in Egypt to describe examples of such additional training activities. © 2014 John Wiley & Sons Ltd.

  17. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  18. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  19. Panoramic View Of Challenges And Opportunities For Primary Healthcare Systems In Pakistan.

    PubMed

    Sharif, Hina; Sughra, Ume; Butt, Zahid

    2016-01-01

    Pakistan has a broad system of primary health care facilities to achieve mission of "Health for all". Over the last seven years health expenditure by government of Pakistan has been increased to attain this goal. This study was conducted with the aim to assess all blocks of service readiness (basic equipment, basic amenities, laboratory capacity, standard precautions and essential medicines) in public-primary health care facilities of tehsil Rawalpindi, Pakistan. A cross-sectional survey was carried out utilizing two separate structured questionnaires for basic health units and rural health centres. Information was collected from administrative heads along with other staff where required, of all public-primary health care facilities of Tehsil Rawalpindi. Data were analysed by using SPSS version.17. A total of 26 health facilities were assessed; only 56% BHUs had a sign board that was available in readable form. BHUs with women medical officer as administrative head constituted 52%. Backup for electricity and toilet were the most neglected areas. Basic amenities, standard precautions and laboratory capacity of Basic Health Units (BHUs) showed a clear deviation from standards and is thus a challenge for Pakistan's Primary Health care (PHC). On the other hand for Rural Health Centres (RHCs), most were on the way to meet expectations. Pakistan's government is undoubtedly putting efforts in order to achieve targets of primary healthcare but it needs better mainstreaming of political, institutional and social commitments with modified standards for PHC.

  20. Atmospheric verification mission for the TSS/STARFAC tethered satellite

    NASA Technical Reports Server (NTRS)

    Wood, George M., Jr.; Stuart, Thomas D.; Crouch, Donald S.; Deloach, Richard; Brown, Kenneth G.

    1991-01-01

    Two types of a tethered satellite system (TSS) - a basic 1.8-m-diameter spherical spacecraft and the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are considered. Issues related to the deployment and retrieval of a large satellite with exceedingly long tethers are discussed, and the objectives of an Atmospheric Verification Mission (ATM) are outlined. Focus is concentrated on the ATM satellite which will fly after TSS-1 and before the fully instrumented and costlier TSS-2. The differences between the AVM and TSS-2, including the configuration of the aerodynamic stabilizers, instrumentation, and the materials of construction are outlined. The basic Kevlar tether defined for the TSS-2 is being considered for use with the AVM, however, a complex tether is under consideration as well.

  1. Significance of biological resource collection and tumor tissue bank creation.

    PubMed

    Yu, Ying-Yan; Zhu, Zheng-Gang

    2010-01-15

    Progress in the molecular oncology of gastrointestinal carcinomas depends on high quality cancer tissues for research. Recent acceleration on new technological platforms as well as the "omics" revolution increases the demands on tissues and peripheral blood for research at the DNA, mRNA and protein levels. Tissue bank creation emerges as a priority. Tumor tissue banks are facilities that are organized to collect, store and distribute samples of tumor and normal tissue for further use in basic and translational cancer research. The samples are generally obtained immediately after excision, prior to fixation, to ensure optimal preservation of proteins and nucleic acids. It is possible for surgeons or pathologists to collect fresh tissue prospectively during their routine dissection procedures. Most tissue banks are "project-driven" tumor banks, which are specialized collections of tumor samples on which their research is based. Systematic collection of all available tumor tissue is much rarer. High quality tissue banks need the collaboration of clinicians and basic scientists, but also the informed consent of patients and ethical approval. Through the standard operation procedure, snap frozen fresh tissue collection, storage and quality control for cryopreserved tissues are the pivotal factors on tissue bank construction and maintaining. The purpose of the tissue bank creation is enhancing the quality and speed on both the basic and translational research on gastrointestinal cancer. The quality assurance and quality control are handled based on reviewing HE staining slides or touch imprint cytology by pathologists.

  2. Emergency obstetric and newborn care signal functions in public and private facilities in Bangladesh.

    PubMed

    Roy, Lumbini; Biswas, Taposh Kumar; Chowdhury, Mahbub Elahi

    2017-01-01

    Signal functions for emergency obstetric and newborn care (EmONC) are the major interventions for averting maternal and neonatal mortalities. Readiness of the facilities is essential to provide all the basic and comprehensive signal functions for EmONC to ensure emergency services from the designated facilities. The study assessed population coverage and availability of EmONC services in public and private facilities in Bangladesh. An assessment was conducted in all the public and private facilities providing obstetric care in to in-patients 24 districts. Data were collected on the performance of signal functions for EmONC from the study facilities in the last three months prior to the date of assessment. Trained data-collectors interviewed the facility managers and key service providers, along with review of records, using contextualized tools. Population coverage of signal functions was assessed by estimating the number of facilities providing the signal functions for EmONC compared to the United Nations requirements. Availability was assessed in terms of the proportion of facilities providing the services by type of facilities and by district. Caesarean section (CS) delivery and blood transfusion (BT) services (the two major components of comprehensive EmONC) were respectively available in 6.4 (0.9 public and 5.5 private) and 5.6 (1.3 public and 4.3 private) facilities per 500,000 population. The signal functions for basic EmONC, except two (parental anticonvulsants and assisted vaginal delivery), were available in a minimum of 5 facilities (public and private sectors combined) per 500,000 population. A major inter-district variation in the availability of signal functions was observed in each public- and private-sector facility. Among the various types of facilities, only the public medical college hospitals had all the signal functions. The situation was poor in other public facilities at the district and sub-district levels as well as in private facilities. In the public sector, CS delivery and BT services were available in the minimum required number of facilities. However, to ensure basic EmONC services, participation of the private sector is necessary. Public-private partnership should be promoted for nationwide coverage of signal functions for EmONC in Bangladesh.

  3. Unmanned launch vehicle impacts on existing major facilities : V23

    DOT National Transportation Integrated Search

    1984-10-18

    This study measures the impact on the existing major facilities of Space Launch Complex (SLC-6) to accommodate the launching of an Unmanned Launch Vehicle (ULV). Modifications to the existing facilities were determined for two basic vehicle concepts,...

  4. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  5. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space.

  6. Security basics for long-term care facilities.

    PubMed

    Green, Martin

    2015-01-01

    The need for Long-Term Care (LTC) facilities is growing, the author reports, and along with it the need for programs to address the major security concerns of such facilities. In this article he explains how to apply the IAHSS Healthcare Security Industry Guidelines and the Design Guidelines to achieve a safer LTC facility.

  7. A user-friendly approach to cost accounting in laboratory animal facilities.

    PubMed

    Baker, David G

    2011-08-19

    Cost accounting is an essential management activity for laboratory animal facility management. In this report, the author describes basic principles of cost accounting and outlines steps for carrying out cost accounting in laboratory animal facilities. Methods of post hoc cost accounting analysis for maximizing the efficiency of facility operations are also described.

  8. [Substance use disorders as a cause and consequence of childhood abuse. Basic research, therapy and prevention in the BMBF-funded CANSAS-Network].

    PubMed

    Schäfer, Ingo; Barnow, Sven; Pawils, Silke

    2016-01-01

    Substance use disorders (SUDs) belong to the most frequent behavioural consequences of childhood abuse and neglect (CAN). In community samples, about 20% of adults with experiences of abuse or neglect in childhood have a lifetime diagnosis of an SUD. About 30% of individuals seeking treatment for a post-traumatic disorder have an SUD and 24–67% of all patients in treatment for an SUD have a history of CAN. About 16% of all children and adolescents under the age of 20 in Germany grow up in families where an alcohol- and/or drug-dependence is present. The children of parents with SUDs have, in addition to other risks to their development in cognitive and psychosocial domains, an increased risk of experiencing violence and neglect. Regarding both perspectives, SUD as a cause and as a consequence of CAN, a better understanding of relevant mediators and risk factors is necessary to improve prevention and develop adequate treatments. The aims of the BMBF-funded research network CANSAS are: 1. To gain a better understanding of the relationships between these two important public health problems (basic research), 2. To provide evidence-based treatments for survivors of CAN with SUDs and to increase the awareness for the necessity to diagnose CAN in patients with SUDs in counselling and treatment facilities (research on diagnostics and therapy), 3. To improve the systematic evaluation of child welfare among children of parents with SUDs through counselling services and to promote links between addiction services and youth welfare services (prevention research and health services research). In a multidisciplinary approach, the CANSAS network brings together experts in the fields of trauma treatment, epidemiology, basic research, health services research, prevention research as well as addiction services.

  9. Role of Non-Governmental Organizations for the Development of Basic Education in Punjab, Pakistan

    ERIC Educational Resources Information Center

    Iqbal, Javed

    2010-01-01

    The purpose of the study was to investigate the general working structure of non-governmental organizations (NGOs) and to examine the services and facilities provided by NGOs for basic education in Punjab, Pakistan. The population comprised 112 NGOs working for the promotion of basic education in Punjab, 3980 teachers working in basic education…

  10. Medical Image Analysis Facility

    NASA Technical Reports Server (NTRS)

    1978-01-01

    To improve the quality of photos sent to Earth by unmanned spacecraft. NASA's Jet Propulsion Laboratory (JPL) developed a computerized image enhancement process that brings out detail not visible in the basic photo. JPL is now applying this technology to biomedical research in its Medical lrnage Analysis Facility, which employs computer enhancement techniques to analyze x-ray films of internal organs, such as the heart and lung. A major objective is study of the effects of I stress on persons with heart disease. In animal tests, computerized image processing is being used to study coronary artery lesions and the degree to which they reduce arterial blood flow when stress is applied. The photos illustrate the enhancement process. The upper picture is an x-ray photo in which the artery (dotted line) is barely discernible; in the post-enhancement photo at right, the whole artery and the lesions along its wall are clearly visible. The Medical lrnage Analysis Facility offers a faster means of studying the effects of complex coronary lesions in humans, and the research now being conducted on animals is expected to have important application to diagnosis and treatment of human coronary disease. Other uses of the facility's image processing capability include analysis of muscle biopsy and pap smear specimens, and study of the microscopic structure of fibroprotein in the human lung. Working with JPL on experiments are NASA's Ames Research Center, the University of Southern California School of Medicine, and Rancho Los Amigos Hospital, Downey, California.

  11. Can India’s primary care facilities deliver? A cross-sectional assessment of the Indian public health system’s capacity for basic delivery and newborn services

    PubMed Central

    Leslie, Hannah H; Regan, Mathilda; Nambiar, Devaki; Kruk, Margaret E

    2018-01-01

    Objectives To assess input and process capacity for basic delivery and newborn (intrapartum care hereafter) care in the Indian public health system and to describe differences in facility capacity between rural and urban areas and across states. Design Cross-sectional study. Setting Data from the nationally representative 2012–2014 District Level Household and Facility Survey, which includes a census of community health centres (CHC) and sample of primary health centres (PHC) across 30 states and union territories in India. Participants 8536 PHCs and 4810 CHCs. Outcome measures We developed a summative index of 33 structural and process capacity items matching the Indian Public Health Standards for PHCs as a metric of minimum facility capacity for intrapartum care. We assessed differences in performance on this index across facility type and location. Results About 30% of PHCs and 5% of CHCs reported not offering any intrapartum care. Among those offering services, volumes were low: median monthly delivery volume was 8 (IQR=13) in PHCs and 41 (IQR=73) in CHCs. Both PHCs and CHCs failed to meet the national standards for basic intrapartum care capacity. Mean facility capacity was low in PHCs in both urban (0.64) and rural (0.63) areas, while in CHCs, capacity was slightly higher in urban areas (0.77vs0.74). Gaps were most striking in availability of skilled human resources and emergency obstetric services. Poor capacity facilities were more concentrated in the more impoverished states, with 37% of districts from these states receiving scores in the lowest third of the facility capacity index (<0.70), compared with 21% of districts otherwise. Conclusions Basic intrapartum care capacity in Indian public primary care facilities is weak in both rural and urban areas, especially lacking in the poorest states with worst health outcomes. Improving maternal and newborn health outcomes will require focused attention to quality measurement, accountability mechanisms and quality improvement. Policies to address deficits in skilled providers and emergency service availability are urgently required. PMID:29866726

  12. Can India's primary care facilities deliver? A cross-sectional assessment of the Indian public health system's capacity for basic delivery and newborn services.

    PubMed

    Sharma, Jigyasa; Leslie, Hannah H; Regan, Mathilda; Nambiar, Devaki; Kruk, Margaret E

    2018-06-04

    To assess input and process capacity for basic delivery and newborn (intrapartum care hereafter) care in the Indian public health system and to describe differences in facility capacity between rural and urban areas and across states. Cross-sectional study. Data from the nationally representative 2012-2014 District Level Household and Facility Survey, which includes a census of community health centres (CHC) and sample of primary health centres (PHC) across 30 states and union territories in India. 8536 PHCs and 4810 CHCs. We developed a summative index of 33 structural and process capacity items matching the Indian Public Health Standards for PHCs as a metric of minimum facility capacity for intrapartum care. We assessed differences in performance on this index across facility type and location. About 30% of PHCs and 5% of CHCs reported not offering any intrapartum care. Among those offering services, volumes were low: median monthly delivery volume was 8 (IQR=13) in PHCs and 41 (IQR=73) in CHCs. Both PHCs and CHCs failed to meet the national standards for basic intrapartum care capacity. Mean facility capacity was low in PHCs in both urban (0.64) and rural (0.63) areas, while in CHCs, capacity was slightly higher in urban areas (0.77vs0.74). Gaps were most striking in availability of skilled human resources and emergency obstetric services. Poor capacity facilities were more concentrated in the more impoverished states, with 37% of districts from these states receiving scores in the lowest third of the facility capacity index (<0.70), compared with 21% of districts otherwise. Basic intrapartum care capacity in Indian public primary care facilities is weak in both rural and urban areas, especially lacking in the poorest states with worst health outcomes. Improving maternal and newborn health outcomes will require focused attention to quality measurement, accountability mechanisms and quality improvement. Policies to address deficits in skilled providers and emergency service availability are urgently required. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Spec Tool; an online education and research resource

    NASA Astrophysics Data System (ADS)

    Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.

    2016-06-01

    Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.

  14. Clinical and perceived quality of care for maternal, neonatal and antenatal care in Kenya and Namibia: the service provision assessment.

    PubMed

    Diamond-Smith, Nadia; Sudhinaraset, May; Montagu, Dominic

    2016-08-11

    The majority of women in sub-Saharan Africa now deliver in a facility, however, little is known about the quality of services for maternal and newborn basic and emergency care, nor how this is associated with patient's perception of their experiences. Using data from the Service Provision Assessment (SPA) survey from Kenya 2010 and Namibia 2009, we explore whether facilities have the necessary signal functions for providing emergency and basic maternal (EmOC) and newborn care (EmNC), and antenatal care (ANC) using descriptives and multivariate regression. We explore differences by type of facility (hospital, center or other) and by private and public facilities. Finally, we see if patient satisfaction (taken from exit surveys at antenatal care) is associated with the quality of services (specific services provided). We find that most facilities do not have all of the signal functions, with 46 and 27 % in Kenya and 18 and 5 % in Namibia of facilities have high/basic scores in routine and emergency obstetric care, respectively. We found that hospitals preform better than centers in general and few differences emerged between public and private facilities. Patient perceptions were not consistently associated with services provided; however, patients had fewer complaints in private compared to public facilities in Kenya (-0.46 fewer complaints in private) and smaller facilities compared to larger in Namibia (-0.26 fewer complaints in smaller facilities). Service quality itself (measured in scores), however, was only significantly better in Kenya for EmOC and EmNC. This analysis sheds light on the inadequate levels of care for saving maternal and newborn lives in most facilities in two countries of Africa. It also highlights the disconnect between patients' perceptions and clinical quality of services. More effort is needed to ensure that high quality supply of services is present to meet growing demand as an increasing number of women deliver in facilities.

  15. 7 CFR 1735.17 - Facilities financed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF... Basic Policies § 1735.17 Facilities financed. (a) RUS makes hardship and guaranteed loans to finance the... apparatus owned by the borrower, headquarters facilities, and vehicles not used primarily in construction...

  16. 7 CFR 1735.17 - Facilities financed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF... Basic Policies § 1735.17 Facilities financed. (a) RUS makes hardship and guaranteed loans to finance the... apparatus owned by the borrower, headquarters facilities, and vehicles not used primarily in construction...

  17. 7 CFR 1735.17 - Facilities financed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF... Basic Policies § 1735.17 Facilities financed. (a) RUS makes hardship and guaranteed loans to finance the... apparatus owned by the borrower, headquarters facilities, and vehicles not used primarily in construction...

  18. 7 CFR 1735.17 - Facilities financed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF... Basic Policies § 1735.17 Facilities financed. (a) RUS makes hardship and guaranteed loans to finance the... apparatus owned by the borrower, headquarters facilities, and vehicles not used primarily in construction...

  19. The dominance of the private sector in the provision of emergency obstetric care: studies from Gujarat, India.

    PubMed

    Salazar, Mariano; Vora, Kranti; De Costa, Ayesha

    2016-07-07

    India has experienced a steep rise in institutional childbirth. The relative contributions of public and private sector facilities to emergency obstetric care (EmOC) has not been studied in this setting. This paper aims to study in three districts of Gujarat state, India:(a) the availability of EmOC facilities in the public and private sectors; (b) the availability and distribution of human resources for birth attendance in the two sectors; and (c) to benchmark the above against 2005 World Health Report benchmarks (WHR2005). A cross-sectional survey of obstetric care facilities reporting 30 or more births in the last three months was conducted (n = 159). Performance of EmOC signal functions and availability of human resources were assessed. EmOC provision was dominated by private facilities (112/159) which were located mainly in district headquarters or small urban towns. The number of basic and comprehensive EmOC facilities was below WHR2005 benchmarks. A high number of private facilities performed C-sections but not all basic signal functions (72/159). Public facilities were the main EmOC providers in rural areas and 40/47 functioned at less than basic EmOC level. The rate of obstetricians per 1000 births was higher in the private sector. The private sector is the dominant EmOC provider in the state. Given the highly skewed distribution of facilities and resources in the private sector, state led partnerships with the private sector so that all women in the state receive care is important alongside strengthening the public sector.

  20. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  1. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide andmore » the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.« less

  2. The state of emergency obstetric care services in Nairobi informal settlements and environs: Results from a maternity health facility survey

    PubMed Central

    Ziraba, Abdhalah K; Mills, Samuel; Madise, Nyovani; Saliku, Teresa; Fotso, Jean-Christophe

    2009-01-01

    Background Maternal mortality in Sub-Saharan Africa remains a challenge with estimates exceeding 1,000 maternal deaths per 100,000 live births in some countries. Successful prevention of maternal deaths hinges on adequate and quality emergency obstetric care. In addition to skilled personnel, there is need for a supportive environment in terms of essential drugs and supplies, equipment, and a referral system. Many household surveys report a reasonably high proportion of women delivering in health facilities. However, the quality and adequacy of facilities and personnel are often not assessed. The three delay model; 1) delay in making the decision to seek care; 2) delay in reaching an appropriate obstetric facility; and 3) delay in receiving appropriate care once at the facility guided this project. This paper examines aspects of the third delay by assessing quality of emergency obstetric care in terms of staffing, skills equipment and supplies. Methods We used data from a survey of 25 maternity health facilities within or near two slums in Nairobi that were mentioned by women in a household survey as places that they delivered. Ethical clearance was obtained from the Kenya Medical Research Institute. Permission was also sought from the Ministry of Health and the Medical Officer of Health. Data collection included interviews with the staff in-charge of maternity wards using structured questionnaires. We collected information on staffing levels, obstetric procedures performed, availability of equipment and supplies, referral system and health management information system. Results Out of the 25 health facilities, only two met the criteria for comprehensive emergency obstetric care (both located outside the two slums) while the others provided less than basic emergency obstetric care. Lack of obstetric skills, equipment, and supplies hamper many facilities from providing lifesaving emergency obstetric procedures. Accurate estimation of burden of morbidity and mortality was a challenge due to poor and incomplete medical records. Conclusion The quality of emergency obstetric care services in Nairobi slums is poor and needs improvement. Specific areas that require attention include supervision, regulation of maternity facilities; and ensuring that basic equipment, supplies, and trained personnel are available in order to handle obstetric complications in both public and private facilities. PMID:19284626

  3. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  4. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  5. DOE Fundamentals Handbook: Mathematics, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less

  6. DOE Fundamentals Handbook: Mathematics, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less

  7. Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2013-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.

  8. The development of a Space Shuttle Research Animal Holding Facility

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1980-01-01

    The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

  9. 1992 IEEE Annual Conference on Nuclear and Space Radiation Effects, 29th, New Orleans, LA, July 13-17, 1992, Proceedings

    NASA Technical Reports Server (NTRS)

    Van Vonno, Nick W. (Editor)

    1992-01-01

    The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.

  10. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  11. Zebrafish Housing Systems: A Review of Basic Operating Principles and Considerations for Design and Functionality

    PubMed Central

    Lawrence, Christian; Mason, Timothy

    2015-01-01

    The strategies for housing zebrafish used in biomedical research have evolved considerably over the past three decades. To keep pace with the rapid expansion and development of the zebrafish model system, the field has generally moved from keeping fish at the level of aquarium hobbyist to that of industrialized, recirculating aquaculture. Numerous commercial system vendors now offer increasingly sophisticated housing systems based on design principles that maximize the number of animals that can be housed in a given space footprint, and they are thus able to support large and diverse research programs. This review is designed to provide managers, lab animal veterinarians, investigators, and other parties responsible for care and use of these animals with a comprehensive overview of the basic operating and design principles of zebrafish housing systems. This information can be used to help plan the construction of new facilities and/or the upgrade and maintenance of existing operations. PMID:23382349

  12. Interfacial nanobubbles produced by long-time preserved cold water

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun

    2017-09-01

    Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)

  13. LLE 2009 annual report, October 2008-September 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2010-01-01

    The fiscal year ending September 2009 (FY2009) concluded the second year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year. It also reports on LLE’s progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the National Laser Users’ Facility (NLUF), and other external users; and programs focusingon the education of high school, undergraduate, and graduate students during the year.

  14. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  15. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  16. The development of methods for predicting and measuring distribution patterns of aerial sprays

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1979-01-01

    The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  17. Emergency obstetric and newborn care signal functions in public and private facilities in Bangladesh

    PubMed Central

    2017-01-01

    Background Signal functions for emergency obstetric and newborn care (EmONC) are the major interventions for averting maternal and neonatal mortalities. Readiness of the facilities is essential to provide all the basic and comprehensive signal functions for EmONC to ensure emergency services from the designated facilities. The study assessed population coverage and availability of EmONC services in public and private facilities in Bangladesh. Methods An assessment was conducted in all the public and private facilities providing obstetric care in to in-patients 24 districts. Data were collected on the performance of signal functions for EmONC from the study facilities in the last three months prior to the date of assessment. Trained data-collectors interviewed the facility managers and key service providers, along with review of records, using contextualized tools. Population coverage of signal functions was assessed by estimating the number of facilities providing the signal functions for EmONC compared to the United Nations requirements. Availability was assessed in terms of the proportion of facilities providing the services by type of facilities and by district. Results Caesarean section (CS) delivery and blood transfusion (BT) services (the two major components of comprehensive EmONC) were respectively available in 6.4 (0.9 public and 5.5 private) and 5.6 (1.3 public and 4.3 private) facilities per 500,000 population. The signal functions for basic EmONC, except two (parental anticonvulsants and assisted vaginal delivery), were available in a minimum of 5 facilities (public and private sectors combined) per 500,000 population. A major inter-district variation in the availability of signal functions was observed in each public- and private-sector facility. Among the various types of facilities, only the public medical college hospitals had all the signal functions. The situation was poor in other public facilities at the district and sub-district levels as well as in private facilities. Conclusions In the public sector, CS delivery and BT services were available in the minimum required number of facilities. However, to ensure basic EmONC services, participation of the private sector is necessary. Public-private partnership should be promoted for nationwide coverage of signal functions for EmONC in Bangladesh. PMID:29091965

  18. Multiple criteria approach to site selection of radioactive waste disposal facility in the Republic of Croatia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaller, A.; Skanata, D.

    1995-12-31

    Site selection approach to radioactive waste disposal facility, which is under way in Croatia, is presented in the paper. This approach is based on application of certain relevant terrestrial and technical criteria in the site selection process. Basic documentation used for this purpose are regional planning documents prepared by the Regional Planning Institute of Croatia. The basic result of research described in the paper is the proposal of several potential areas which are suitable for siting a radioactive waste repository. All relevant conclusions are based on both data groups -- generic and on-field experienced (measured). Out of a dozen potentialmore » areas, four have been chosen as representative by the authors. The presented comparative analysis was made by means of the VISA II computer code, developed by the V. Belton and SPV Software Products. The code was donated to the APO by the IAEA. The main objective of the paper is to initiate and facilitate further discussions on possible ways of evaluation and comparison of potential areas for sitting of radioactive waste repository in this country, as well as to provide additional contributions to the current site selection process in the Republic of Croatia.« less

  19. The Cline Observatory at Guilford Technical Community College

    NASA Astrophysics Data System (ADS)

    English, T.; Martin, A.; Herrick, D.; Cline, D.

    2003-12-01

    The Cline Observatory at the Jamestown, NC campus of Guilford Technical Community College (GTCC) was dedicated in 1997. It is the only such facility in the community college systems of the Carolinas. GTCC employs two astronomy faculty and offers multiple sections of introductory courses. The facility utilizes a 16-inch Meade LX-200 under a 6-meter dome, along with accessories for digital imaging and basic spectroscopic studies. An outside observing pad with permanent piers allows smaller instruments to be set up for sessions. In addition to supporting introductory and basic observational astronomy classes, the observatory provides regular outreach programs to serve a variety of constituencies. Public viewings are held once a week; school and community groups schedule visits throughout the year; special lectures bring the latest astronomical topics to the public; and annual conferences are hosted for regional amateur astronomers and for faculty/students from NC academic/research institutions. Volunteer support staff for such programs has been developed through partnership with the local astronomy club and through training via the observational astronomy course. Our courses and outreach programs have been very popular and successful, and the observatory now serves as a focal point of GTCC's public image.

  20. Education Facilities Sector-Specific Plan: An Annex to the Government Facilities Sector-Specific Plan

    ERIC Educational Resources Information Center

    US Department of Homeland Security, 2010

    2010-01-01

    Critical infrastructure and key resources (CIKR) provide the essential services that support basic elements of American society. Compromise of these CIKR could disrupt key government and industry activities, facilities, and systems, producing cascading effects throughout the Nation's economy and society and profoundly affecting the national…

  1. Lewis Information Network (LINK): Background and overview

    NASA Technical Reports Server (NTRS)

    Schulte, Roger R.

    1987-01-01

    The NASA Lewis Research Center supports many research facilities with many isolated buildings, including wind tunnels, test cells, and research laboratories. These facilities are all located on a 350 acre campus adjacent to the Cleveland Hopkins Airport. The function of NASA-Lewis is to do basic and applied research in all areas of aeronautics, fluid mechanics, materials and structures, space propulsion, and energy systems. These functions require a great variety of remote high speed, high volume data communications for computing and interactive graphic capabilities. In addition, new requirements for local distribution of intercenter video teleconferencing and data communications via satellite have developed. To address these and future communications requirements for the next 15 yrs, a project team was organized to design and implement a new high speed communication system that would handle both data and video information in a common lab-wide Local Area Network. The project team selected cable television broadband coaxial cable technology as the communications medium and first installation of in-ground cable began in the summer of 1980. The Lewis Information Network (LINK) became operational in August 1982 and has become the backbone of all data communications and video.

  2. Nitrogen removal process optimization in New York City WPCPS: a case study of Wards Island WPCP.

    PubMed

    Ramalingam, K; Fillos, J; Musabyimana, M; Deur, A; Beckmann, K

    2009-01-01

    The New York City Department of Environmental Protection has been engaged in a continuous process to develop a nitrogen removal program to reduce the nitrogen mass discharge from its water pollution control plants, (WPCPs), from 49,158 kg/d to 20,105 kg/d by the year 2017 as recommended by the Long Island Sound Study. As part of the process, a comprehensive research effort was undertaken involving bench, pilot and full scale studies to identify the most effective way to upgrade and optimize the existing WPCPs. Aeration tank 13 (AT-13) at the Wards Island WPCP was particularly attractive as a full-scale research facility because its aeration tank with its dedicated final settling tanks and RAS pumps could be isolated from the remaining treatment facilities. The nitrogen removal performance of AT-13, which, at the time, was operated as a "basic step feed BNR Facility", was evaluated and concurrently nitrification kinetic parameters were measured using in-situ bench scale experiments. Additional bench scale experiments provided denitrification rates using different sources of carbon and measurement of the maximum specific growth rate of nitrifying bacteria. The combined findings were then used to upgrade AT-13 to a "full" BNR facility with carbon and alkalinity addition. This paper will focus on the combined bench and full scale results that were the basis for the consequent upgrade.

  3. Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee

    2012-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.

  4. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    NASA Astrophysics Data System (ADS)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  5. Space Infrared Telescope Facility (SIRTF) science instruments

    NASA Technical Reports Server (NTRS)

    Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.

  6. Basic instrumentation for Hall A at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Alcorn, J.; Anderson, B. D.; Aniol, K. A.; Annand, J. R. M.; Auerbach, L.; Arrington, J.; Averett, T.; Baker, F. T.; Baylac, M.; Beise, E. J.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Black, T.; Boeglin, W. U.; Boykin, D. V.; Brash, E. J.; Breton, V.; Breuer, H.; Brindza, P.; Brown, D.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Carr, R.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Choi, S.; Chudakov, E.; Churchwell, S.; Coman, M.; Cisbani, E.; Colilli, S.; Colombel, N.; Crateri, R.; Dale, D. S.; Degrande, N.; de Jager, C. W.; De Leo, R.; Deur, A.; Dezern, G.; Diederich, B.; Dieterich, S.; di Salvo, R.; Djawotho, P.; Domingo, J.; Ducret, J.-E.; Dutta, D.; Egiyan, K.; Epstein, M. B.; Escoffier, S.; Esp, S.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Folts, E.; Fonvieille, H.; Frois, B.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gavalya, A.; Gayou, O.; Gilad, S.; Gilman, R.; Giuliani, F.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Gorringe, T.; Gricia, M.; Griffioen, K.; Hamilton, D.; Hansen, J.-O.; Hersman, F. W.; Higinbotham, D. W.; Holmes, R.; Holmgren, H.; Holtrop, M.; d'Hose, N.; Hovhannisyan, E.; Howell, C.; Huber, G. M.; Hughes, E.; Hyde-Wright, C. E.; Ibrahim, H.; Incerti, S.; Iodice, M.; Iommi, R.; Ireland, D.; Jaminion, S.; Jardillier, J.; Jensen, S.; Jiang, X.; Jones, C. E.; Jones, M. K.; Joo, K.; Jutier, C.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khandaker, M.; Khayat, M.; Kino, K.; Kominis, I.; Korsch, W.; Kox, S.; Kramer, K.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Leone, A.; LeRose, J. J.; Marie, F.; Levchuk, L.; Leuschner, M.; Lhuillier, D.; Liang, M.; Livingston, K.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Lucentini, M.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martine, J.; Mayilyan, S.; McCarthy, J. S.; McCormick, K.; Mclntyre, J.; McKeown, R. D.; Meekins, D.; van der Meer, R. L. J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, J. A.; Miller, W.; Mitchell, J.; Mougey, J.; Nanda, S.; Nathan, A.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Petrosyan, A.; Pierangeli, L.; Platchkov, S.; Pomatsalyuk, R.; Pripstein, D.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quéméner, G.; Ransomez, R. D.; Ravel, O.; Reitz, B.; Roblin, Y.; Roche, R.; Roedelbronn, M.; Rondon-Aramayo, O. A.; Roos, P. G.; Rosner, G.; Rowntree, D.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatavenere, F.; Saha, A.; Saito, T.; Santavenere, F.; Sarty, A. J.; Schneider, W. J.; Segal, J. P.; Serdarevic-Offermann, A.; Shahinyan, A.; Slifer, K.; Smith, T. P.; Soldi, A.; Sorokin, P.; Souder, P.; Spiegel, S. L.; Stevens, M. A.; Strauch, S.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Todor, L.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Van Hoorebeke, L.; Van de Vyver, R.; van Verst, S.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Walter, R.; Watson, J. W.; Watts, D. P.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Xiang, H.; Xiong, F.; Xu, W.; Zainea, D. G.; Zeps, V.; Zhao, J.; Zheng, X.; Zhou, Z.-L.; Zhu, L.; Zolnierczuk, P. A.

    2004-04-01

    The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro- and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2×10 -4. A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10 38 cm-2 s-1. The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium.

  7. Evaluation of RayXpert® for shielding design of medical facilities

    NASA Astrophysics Data System (ADS)

    Derreumaux, Sylvie; Vecchiola, Sophie; Geoffray, Thomas; Etard, Cécile

    2017-09-01

    In a context of growing demands for expert evaluation concerning medical, industrial and research facilities, the French Institute for radiation protection and nuclear safety (IRSN) considered necessary to acquire new software for efficient dimensioning calculations. The selected software is RayXpert®. Before using this software in routine, exposure and transmission calculations for some basic configurations were validated. The validation was performed by the calculation of gamma dose constants and tenth value layers (TVL) for usual shielding materials and for radioisotopes most used in therapy (Ir-192, Co-60 and I-131). Calculated values were compared with results obtained using MCNPX as a reference code and with published values. The impact of different calculation parameters, such as the source emission rays considered for calculation and the use of biasing techniques, was evaluated.

  8. Issues central to a useful image understanding environment

    NASA Astrophysics Data System (ADS)

    Beveridge, J. Ross; Draper, Bruce A.; Hanson, Allen R.; Riseman, Edward M.

    1992-04-01

    A recent DARPA initiative has sparked interested in software environments for computer vision. The goal is a single environment to support both basic research and technology transfer. This paper lays out six fundamental attributes such a system must possess: (1) support for both C and Lisp, (2) extensibility, (3) data sharing, (4) data query facilities tailored to vision, (5) graphics, and (6) code sharing. The first three attributes fundamentally constrain the system design. Support for both C and Lisp demands some form of database or data-store for passing data between languages. Extensibility demands that system support facilities, such as spatial retrieval of data, be readily extended to new user-defined datatypes. Finally, data sharing demands that data saved by one user, including data of a user-defined type, must be readable by another user.

  9. Research briefing on contemporary problems in plasma science

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented.

  10. Delays in hiring Air Traffic Collegiate Training Initiative (AT-CTI) graduates and the impact on their training success rate

    NASA Astrophysics Data System (ADS)

    Jorgenson, Terra A.

    This research project identified three distinct groups of individuals the Federal Aviation Administration (FAA) utilizes when filling the employee ranks of Air Traffic Controllers (ATC). After a nationwide strike, President Reagan fired the entire ATC workforce in 1981 (Pavel, 2012). Since then the FAA has worked very diligently in filling the vacant positions. Now three decades later the impending retirements and attrition of those hired earlier is estimated at nearly 14,000 controllers over the next 10 years (FAA CWP, 2012). In response to this shortage it would be advantageous for the FAA to minimize the time lapsed in the selection, hiring and training processes. If the hiring process time was decreased, it would save the FAA money in terms of a reduction in the initial cost of training Air Traffic Controllers (GAO, 2012; IRP, 2011). Traditionally the FAA hires from three distinct groups of people. The first is those with prior ATC experience which was usually obtained through the military. Second the general public with no experience and third the Air Traffic Collegiate Training Initiative (AT-CTI) candidates. The AT-CTI program is a valued partner with the FAA that helps educate the next generation of Air Traffic Controllers; however in the past the program has had difficulty producing the total number of replacement controllers needed. Due to the delay some CTI graduates may choose other career paths rather than wait and be hired to go to the FAA Academy which will further reduce the number of candidates for the FAA to hire. To date, no public research has been done pertaining to the time delay in the hiring process of AT-CTI candidates and the impact on training success at the FAA Academy and at the CTI's first FAA facility. This study used a survey tool to gather information on how long AT-CTI graduates wait to be hired to attend the FAA Academy. Information was gathered on the factors that may affect the time lapse between graduation and the time they arrive at the FAA Academy. In addition, the effect of the wait on the success rate of training at the FAA Academy and at the candidate's first facility was examined. Data was collected to examine the relationship between a CTI graduate's performance in the CTI program and the individual's performance during FAA training at the FAA Academy and assignment to their first facility. Through correlation analysis of the Air Traffic Basics (AT-Basic), Air Traffic Selection and Training (AT-SAT) and Performance Verification (PV) scores there was significant correlation between the AT-Basic and PV scores. As the AT-Basic score increases so does the PV scores. There needs to be future research on GPA's, PV's, AT-SAT and AT-Basics scores to determine if any of them are predictors of CTI's success in training. If the FAA can better predict if an applicant will be successful in training, it can save the FAA money in the selection, hiring and training process.

  11. An IACUC Perspective on Songbirds and Their Use in Neurobiological Research

    PubMed Central

    Schmidt, Marc F.

    2011-01-01

    Laboratory research using songbirds as a model system for investigating basic questions of neurobiological function has expanded rapidly and recently, with approximately 120 laboratories working with songbirds worldwide. In the United States alone, of the approximately 80 such laboratories nearly a third have been established in the past 10 years. Yet many animal facilities are not outfitted to manage these animals, and as a consequence laboratories often use alternative housing arrangements established by institutional animal care and use committees (IACUCs). These committees invariably differ in their expertise level with birds and thus guidelines also vary considerably from one institution to another. In this article I address a number of factors to consider for effective oversight of research involving songbirds. PMID:21131718

  12. Ge Detector Data Classification with Neural Networks

    NASA Astrophysics Data System (ADS)

    Wilson, Carly; Martin, Ryan; Majorana Collaboration

    2014-09-01

    The Majorana Demonstrator experiment is searching for neutrinoless double beta-decay using p-type point contact PPC germanium detectors at the Sanford Underground Research Facility, in South Dakota. Pulse shape discrimination can be used in PPC detectors to distinguish signal-like events from backgrounds. This research program explored the possibility of building a self-organizing map that takes data collected from germanium detectors and classifies the events as either signal or background. Self organizing maps are a type of neural network that are self-learning and less susceptible to being biased from imperfect training data. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  13. Data communication network at the ASRM facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Robert J., III; Smith, Wayne D.; Nirgudkar, Ravi; Dement, James

    1994-01-01

    This three-year project (February 1991 to February 1994) has involved analyzing and helping to design the communication network for the Advanced Solid Rocket Motor (ASRM) facility at Yellow Creek, near Iuka, MS. The principal concerns in the analysis were the bandwidth (both on average and in the worst case) and the expandability of the network. As the communication network was designed and modified, a careful evaluation of the bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network was required. The overall network, which was heterogeneous in protocol and bandwidth, needed to be modeled, analyzed, and simulated to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of our analysis did have an impact on the design and operation of the ASRM facility. During 1993 we analyzed many configurations of this basic network structure. The analyses are described in detail in Section 2 and 3 herein. Section 2 reports on an analysis of the whole network. The preliminary results of that research indicated that the most likely bottleneck as the network traffic increased would be the hubs. Thus a study of Cabletron hubs was initiated. The results of that study are in Section 3. Section 4 herein reports on the final network configuration analyzed. When the ASRM facility was mothballed in December of 1993, this was basically the planned and partially installed network. A briefing was held at NASA/MSFC on December 7, 1993, at which time our final analysis and conclusions were disseminated. This report contains a written record of most of the information disseminated at that briefing.

  14. International Space Station Research: Accomplishments and Pathways for Exploration and Fundamental Research

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.

  15. Soviet ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.; Carlson, H.C.; Djuth, F.T.

    1988-07-01

    Soviet published literature in ionospheric modification research by high-power radio waves is assessed, including an evaluation of its impact on and applications to future remote-sensing and telecommunications systems. This assessment is organized to place equal emphasis on basic research activities, designed to investigate both the natural geophysical environment and fundamental plasma physics; advanced research programs, such as those studying artificial ionization processes and oblique high-power radio propagation and practical system applications and operational limitations addressed by this research. The assessment indicates that the Soviet Union sustains high-quality theoretical and experimental research programs in ionospheric modification, with a breadth and levelmore » of effort greatly exceeding comparable Western programs. Soviet theoretical research tends to be analytical and intuitive, as compared to the Western emphasis on numerical simulation techniques. The Soviet experimental approach is less exploratory, designed principally to confirm theoretical predictions. Although limited by inferior diagnostic capabilities, Soviet experimental facilities are more numerous, operate on a more regular basis, and transmit radio wave powers exceeding those os Western facilities. Because of its broad scope of activity, the Soviet Union is better poised to quickly exploit new technologies and system applications as they are developed. This panel has identified several key areas of Soviet research activity and emerging technology that may offer long-term opportunities for remote-sensing and telecommunications advantages. However, we have found no results that suggest imminent breakthrough discoveries in these fields.« less

  16. Communication and computing technology in biocontainment laboratories using the NEIDL as a model.

    PubMed

    McCall, John; Hardcastle, Kath

    2014-07-01

    The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, is a globally unique biocontainment research facility housing biosafety level 2 (BSL-2), BSL-3, and BSL-4 laboratories. Located in the BioSquare area at the University's Medical Campus, it is part of a national network of secure facilities constructed to study infectious diseases of major public health concern. The NEIDL allows for basic, translational, and clinical phases of research to be carried out in a single facility with the overall goal of accelerating understanding, treatment, and prevention of infectious diseases. The NEIDL will also act as a center of excellence providing training and education in all aspects of biocontainment research. Within every detail of NEIDL operations is a primary emphasis on safety and security. The ultramodern NEIDL has required a new approach to communications technology solutions in order to ensure safety and security and meet the needs of investigators working in this complex building. This article discusses the implementation of secure wireless networks and private cloud computing to promote operational efficiency, biosecurity, and biosafety with additional energy-saving advantages. The utilization of a dedicated data center, virtualized servers, virtualized desktop integration, multichannel secure wireless networks, and a NEIDL-dedicated Voice over Internet Protocol (VoIP) network are all discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Industrial applications of the microgravity environment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Opportunities for commercialization of the microgravity environment will depend upon the success of basic research projects performed in space. Significant demands for manufacturing opportunities are unlikely in the near term. The microgravity environment is to be considered primarily as a tool for research and secondarily as a manufacturing site. This research tool is unique, valuable, and presently available to U.S. investigators only through resources provided by NASA. The United States has an obligation to facilitate corporate research, maintain a flexible international policy, foster use of and assure access to a wide variety of facilities, and develop a posture of national and international leadership in and stewardship of research and materials processing in the microgravity environment. The National Research Council's Committee on Industrial Applications of the Microgravity Environment recommends six actions that strengthen this posture, including the formation of an authoritative organization to oversee the implementation of a program of microgravity research and its industrial applications.

  18. Resuscitation and Obstetrical Care to Reduce Intrapartum-Related Neonatal Deaths: A MANDATE Study.

    PubMed

    Kamath-Rayne, Beena D; Griffin, Jennifer B; Moran, Katelin; Jones, Bonnie; Downs, Allan; McClure, Elizabeth M; Goldenberg, Robert L; Rouse, Doris; Jobe, Alan H

    2015-08-01

    To evaluate the impact of neonatal resuscitation and basic obstetric care on intrapartum-related neonatal mortality in low and middle-income countries, using the mathematical model, Maternal and Neonatal Directed Assessment of Technology (MANDATE). Using MANDATE, we evaluated the impact of interventions for intrapartum-related events causing birth asphyxia (basic neonatal resuscitation, advanced neonatal care, increasing facility birth, and emergency obstetric care) when implemented in home, clinic, and hospital settings of sub-Saharan African and India for 2008. Total intrapartum-related neonatal mortality (IRNM) was acute neonatal deaths from intrapartum-related events plus late neonatal deaths from ongoing intrapartum-related injury. Introducing basic neonatal resuscitation in all settings had a large impact on decreasing IRNM. Increasing facility births and scaling up emergency obstetric care in clinics and hospitals also had a large impact on decreasing IRNM. Increasing prevalence and utilization of advanced neonatal care in hospital settings had limited impact on IRNM. The greatest improvement in IRNM was seen with widespread advanced neonatal care and basic neonatal resuscitation, scaled-up emergency obstetric care in clinics and hospitals, and increased facility deliveries, resulting in an estimated decrease in IRNM to 2.0 per 1,000 live births in India and 2.5 per 1,000 live births in sub-Saharan Africa. With more deliveries occurring in clinics and hospitals, the scale-up of obstetric care can have a greater effect than if modeled individually. Use of MANDATE enables health leaders to direct resources towards interventions that could prevent intrapartum-related deaths. A lack of widespread implementation of basic neonatal resuscitation, increased facility births, and emergency obstetric care are missed opportunities to save newborn lives.

  19. Research study on multi-KW-DC distribution system

    NASA Technical Reports Server (NTRS)

    Berkery, E. A.; Krausz, A.

    1975-01-01

    A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles.

  20. The influence of distance and level of care on delivery place in rural Zambia: a study of linked national data in a geographic information system.

    PubMed

    Gabrysch, Sabine; Cousens, Simon; Cox, Jonathan; Campbell, Oona M R

    2011-01-25

    Maternal and perinatal mortality could be reduced if all women delivered in settings where skilled attendants could provide emergency obstetric care (EmOC) if complications arise. Research on determinants of skilled attendance at delivery has focussed on household and individual factors, neglecting the influence of the health service environment, in part due to a lack of suitable data. The aim of this study was to quantify the effects of distance to care and level of care on women's use of health facilities for delivery in rural Zambia, and to compare their population impact to that of other important determinants. Using a geographic information system (GIS), we linked national household data from the Zambian Demographic and Health Survey 2007 with national facility data from the Zambian Health Facility Census 2005 and calculated straight-line distances. Health facilities were classified by whether they provided comprehensive EmOC (CEmOC), basic EmOC (BEmOC), or limited or substandard services. Multivariable multilevel logistic regression analyses were performed to investigate the influence of distance to care and level of care on place of delivery (facility or home) for 3,682 rural births, controlling for a wide range of confounders. Only a third of rural Zambian births occurred at a health facility, and half of all births were to mothers living more than 25 km from a facility of BEmOC standard or better. As distance to the closest health facility doubled, the odds of facility delivery decreased by 29% (95% CI, 14%-40%). Independently, each step increase in level of care led to 26% higher odds of facility delivery (95% CI, 7%-48%). The population impact of poor geographic access to EmOC was at least of similar magnitude as that of low maternal education, household poverty, or lack of female autonomy. Lack of geographic access to emergency obstetric care is a key factor explaining why most rural deliveries in Zambia still occur at home without skilled care. Addressing geographic and quality barriers is crucial to increase service use and to lower maternal and perinatal mortality. Linking datasets using GIS has great potential for future research and can help overcome the neglect of health system factors in research and policy. Please see later in the article for the Editors' Summary.

  1. Strategic benefits of master facility plans.

    PubMed

    Shannon, K

    1996-02-01

    In recent years, many healthcare executives have stopped developing master facility plans due to some basic misconceptions about them, namely that master facility plans are too rigid or require major capital commitment. By getting past these misconceptions, healthcare executives can help their organizations develop and implement master facility plans that serve as flexible, reliable blueprints in guiding the organizations toward achieving their strategic, operational, and financial goals.

  2. Storage and handling of aviation fuels at airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This standard covers the basic principles for the design of fuel handling facilities and equipment at airports. It provides a reference for the planning and operation of aviation fuel handling facilities and associated equipment.

  3. 48 CFR 1422.101-4 - Removal of items from contractors' facilities affected by work stoppages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITIONS Basic Labor Policies 1422.101-4 Removal of items from contractors' facilities affected by work... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Removal of items from contractors' facilities affected by work stoppages. 1422.101-4 Section 1422.101-4 Federal Acquisition...

  4. [Structure of pain management facilities in Germany : Classification of medical and psychological pain treatment services-Consensus of the Joint Commission of the Professional Societies and Organizations for Quality in Pain Medicine].

    PubMed

    Müller-Schwefe, G H H; Nadstawek, J; Tölle, T; Nilges, P; Überall, M A; Laubenthal, H J; Bock, F; Arnold, B; Casser, H R; Cegla, T H; Emrich, O M D; Graf-Baumann, T; Henning, J; Horlemann, J; Kayser, H; Kletzko, H; Koppert, W; Längler, K H; Locher, H; Ludwig, J; Maurer, S; Pfingsten, M; Schäfer, M; Schenk, M; Willweber-Strumpf, A

    2016-06-01

    On behalf of the Medical/Psychological Pain Associations, Pain Patients Alliance and the Professional Association of Pain Physicians and Psychologists, the Joint Commission of Professional Societies and Organizations for Quality in Pain Medicine, working in close collaboration with the respective presidents, has developed verifiable structural and process-related criteria for the classification of medical and psychological pain treatment facilities in Germany. Based on the established system of graded care in Germany and on existing qualifications, these criteria also argue for the introduction of a basic qualification in pain medicine. In addition to the first-ever comprehensive description of psychological pain facilities, the criteria presented can be used to classify five different levels of pain facilities, from basic pain management facilities, to specialized institutions, to the Centre for Interdisciplinary Pain Medicine. The recommendations offer binding and verifiable criteria for quality assurance in pain medicine and improved pain treatment.

  5. Determination of the number of J/ψ events with inclusive J/ψ decays

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2017-01-01

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 106, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 106. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ± 7.0) × 106, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (10805053, 11125525, 11175188, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1232107, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  6. Considerations on fundamental issues in establishing a universal coverage system for health in China.

    PubMed

    Lei, Hai Chao

    2008-11-01

    This study discusses basic health services in China. In this study common sense and international experience in establishing a high-performing health system were introduced. Five components are identified: basic qualified human resources for health; basic infrastructure; essential medicines; essential technology and procedures; and basic service pathways. Recommendations were presented based upon the Chinese situation. They are: increase public financing and lower private out-of-pocket payment for services; revitalize the functions of public facilities; merge different health financing schemes; co-ordinate public fiscal and pricing policies; prioritize public financing to preventive and primary healthcare; establish and strengthen the partnership between public and private facilities and insurance schemes; and re-organize the administrative system in health-based upon the rules of simplicity, unity, and efficiency. © 2008 Blackwell Publishing Asia Pty Ltd and Chinese Cochrane Center, West China Hospital of Sichuan University.

  7. View of Soviet ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.; Showen, R.L.

    1990-10-01

    We have reviewed and provided a technical assessment of Soviet research of the past five to ten years in ionospheric modification by high-power radio waves. This review includes a comprehensive survey of Soviet published literature, conference proceedings, and direct discussions with the involved Soviet researchers. The current state of the art for Soviet research in this field is evaluated, identifying areas of potential breakthrough discoveries, and discussing implications of this work for emerging technologies and future applications. This assessment is divided into the categories of basic research, advanced research, and applications. Basic research is further subdivided into studies of themore » modified natural geophysical environment, nonlinear plasma physics, and polar geophysical studies. Advanced research topics include the generation of artificial ionization mirrors and high-power oblique propagation effects. A separate comparative assessment of Soviet theoretical work also is included in this analysis. Our evaluation of practical and potential applications of this research discusses the utility of ionospheric modification in creating disturbed radio wave propagation environments, and its role in current and future remote-sensing and telecommunications systems. This technical assessment does not include consideration of ionospheric modification by means other than high-power radio waves. The Soviet effort in ionospheric modification sustains theoretical and experimental research at activity levels considerably greater than that found in comparable programs in the West. Notable strengths of the Soviet program are its breadth of coverage, large numbers of scientific participation, theoretical creativity and insight, and its powerful radio wave transmitting facilities.« less

  8. Research Associate | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  9. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.« less

  10. Opportunity for academic research in a low-gravity environment - Crystal growth

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Wargo, M. J.; Witt, A. F.

    1986-01-01

    The history of basic and applied research on crystal growth (CG), especially of semiconductor materials, is reviewed, stressing the dominance (at least in the U.S.) of industrial R&D projects over academic programs and the need for more extensive fundamental investigations. The NASA microgravity research program and the recommendations of the University Space Research Association are examined as they affect the availability of space facilities for academic CG research. Also included is a report on ground experiments on the effectiveness of magnetic fields in controlling vertical Bridgman CG and melt stability, using the apparatus employed in the Apollo-Soyuz experiments (Witt et al., 1978); the results are presented in graphs and briefly characterized. The role of NASA's microgravity CG program in stimulating academic work on CG, the importance of convection effects, CG work on materials other than semiconductors, and NSF support of CG research are discussed in a comment by R. F. Sekerka.

  11. How to Improve Engineering Competencies for Students with Special Needs?

    NASA Astrophysics Data System (ADS)

    Maknun, J.; Barliana, M. S.; Cahyani, D.

    2018-02-01

    The problem of vocational education for Children with Special Needs (CSN) is not only about the service profile, spectrum relevance and competency level, but also the carrying capacity of educational facilities. In this regard, two important things are highlighted. First, the different characteristics of the design of educational facilities between regular and exceptional schools. Second, the distinctive characteristics of the design of the school facilities are extraordinary for general education (academic) and vocational education. The purpose of this study is to describe the level of suitability of the architectural design of educational facilities with the needs of vocational learning behavior for children with special needs in West Java, Indonesia. The entire research used the Education Research and Development (R & D) method of Developing the Architectural Facility Design Guide to Support the Vocational Competence of Crew Competence in accordance with the stages developed by Thiagarajan (1974) known as Four-D Model. To achieve the above objectives, then the stages of the R & D method that is done is the define, design and develop stage. Evaluation results show the infrastructure of education of Special School (SLB) Cicendo, Indonesia has met the standards set by the government, especially on aspects of land and building areas have met the standards. Most aspects of accessibility such as the basic size of space, pedestrian pathways, and doors have been met. But other aspects such as guiding lines, ram, ladders, toilets, showers, sinks, furniture and signs do not meet accessibility requirements. The conclusion is the educational infrastructure of the school in general has met the standards set by the government.

  12. 48 CFR 2922.101-4 - Removal of items from contractor facilities affected by work stoppages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations System DEPARTMENT OF LABOR SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Basic Labor Policies 2922.101-4 Removal of items from contractor facilities affected by work...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrick, M.

    These proceedings document a number of aspects of a big science facility and its impact on science, on technology, and on the continuing program of a major US research institution. The Zero Gradient Synchrotron (ZGS) was a 12.5 GeV weak focusing proton accelerator that operated at Argonne for fifteen years--from 1964 to 1979. It was a major user facility which led to new close links between the Laboratory and university groups: in the research program; in the choice of experiments to be carried out; in the design and construction of beams and detectors; and even in the Laboratory management. Formore » Argonne, it marked a major move from being a Laboratory dominated by nuclear reactor development to one with a stronger basic research orientation. The present meeting covered the progress in accelerator science, in the applications of technology pioneered or developed by people working at the ZGS, as well as in physics research and detector construction. At this time, when the future of the US research programs in science is being questioned as a result of the ending of the Cold War and plans to balance the Federal budget, the specific place of the National Laboratories in the spectrum of research activities is under particular examination. This Symposium highlights one case history of a major science program that was completed more than a decade ago--so that the further developments of both the science and the technology can be seen in some perspective. The subsequent activities of the people who had worked in the ZGS program as well as the redeployment of the ZGS facilities were addressed. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  14. Astronomy as a Tool for Training the Next Generation Technical Workforce

    NASA Astrophysics Data System (ADS)

    Romero, V.; Walsh, G.; Ryan, W.; Ryan, E.

    A major challenge for today's institutes of higher learning is training the next generation of scientists, engineers, and optical specialists to be proficient in the latest technologies they will encounter when they enter the workforce. Although research facilities can offer excellent hands-on instructional opportunities, integrating such experiential learning into academic coursework without disrupting normal operations at such facilities can be difficult. Also, motivating entry level students to increase their skill levels by undertaking and successfully completing difficult coursework can require more creative instructional approaches, including fostering a fun, non-threatening environment for enhancing basic abilities. Astronomy is a universally appealing subject area, and can be very effective as a foundation for cultivating advanced competencies. We report on a project underway at the New Mexico Institute of Mining and Technology (NM Tech), a science and engineering school in Socorro, NM, to incorporate a state-of-the-art optical telescope and laboratory experiments into an entry-level course in basic engineering. Students enrolled in an explosive engineering course were given a topical problem in Planetary Astronomy: they were asked to develop a method to energetically mitigate a potentially hazardous impact between our planet and a Near-Earth asteroid to occur sometime in the future. They were first exposed to basic engineering training in the areas of fracture and material response to failure under different environmental conditions through lectures and traditional laboratory exercises. The students were then given access to NM Tech's Magdalena Ridge Observatory's (MRO) 2.4-meter telescope to collect physical characterization data, (specifically shape information) on two potentially hazardous asteroids (one roughly spherical, the other an elongated ellipsoid). Finally, the students used NM Tech's Energetic Materials Research and Testing Center (EMRTC) to perform field experiments to discern how an object's shape affects disruptive outcomes, and what must be factored into mitigation schemes to attain the desired result of complete destruction of the object. The scientific findings (details will be presented) derived by the students were valuable, and the students benefited from this non-traditional teaching approach such that they acquired a superior appreciation for research and experimentation, and exited the course with an increased motivation to continue their engineering training.

  15. Stem cell research and policy in India: current scenario and future perspective.

    PubMed

    Sharma, Alka

    2009-01-01

    Stem cell research is an exciting area of biomedical research, with potential to advance cell biology, and other new modalities of treatment for many untreatable diseases. The potential resides in the ability of these cells to develop into many different cell types in the body. In India, efforts are being made on several fronts to promote this area in an integrated way. The main features of the strategy are: explore the full potential of adult and embryonic stem cells (ESCs) through basic and translational research; generate patient specific human ESC lines; enhance creation of animal models for pre-clinical studies; virtual network of Centres; creation institutions; generation of well trained manpower; build partnership with large companies in path-breaking areas; promote closer interactions amongst basic scientists, clinical researchers and the industry. Newer initiatives include: establishment of a dedicated institute for stem cell science and regenerative medicine with its translational units; GMP and clean room facilities in medical schools; creation of a system for multi-centric clinical studies using autologous adult stem cells; national and international training courses for providing training to the students and the young scientists in the both embryonic and adult stem cells; and formulation of guidelines to conduct stem cell research in a responsible and ethically sensitive manner in the country. The core capacity must be nurtured and built to create the required critical mass to have impact.

  16. Adaptive identification and control of structural dynamics systems using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Montgomery, R. C.; Williams, J. P.

    1985-01-01

    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.

  17. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.

    Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.

  18. Formal Technical Reports and Publications Completed Under Fuels and Lubricants RDTE Programs 1960 thru 1987

    DTIC Science & Technology

    1988-01-01

    Synthetic Motor Oils Basic Research on Mist Flamma- AFLRL-97 A046345 Sep 77 D.W. Naegeli bility--Phase I, Experimental W.D. Weatherford, Jr. Facility...Fuels on Combustor Properties D.W. Naegeli Application of Energy Dispersive AFLRL-102 A062792 Feb 78 M.K. Greenberg X-Ray Fluorescence Spectroscopy...the Literature J.P. Cuellar, Jr. Military Fuels Refined From AFLRL-131 A101069 Mar 81 J.N. Bowden Paraho-Il Shale Oil E.C. Owens D.W. Naegeli L.L

  19. 41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...

  20. 41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...

  1. 41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...

  2. 41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...

  3. 41 CFR 102-72.67 - What work is covered under an ancillary repair and alteration delegation?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-complex in nature, such as routine painting or carpeting, simple hanging of drywall, basic electrical or... buildings, roads, parking lots, and other facilities; (2) Complex repair and alteration of entire facilities...

  4. CosmoQuest: Exploring the Needs of Current & Future Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Bracey, G.; Glushko, A.; Bakerman, M. N.; Gay, P.; Buxner, S.

    2016-12-01

    The CosmoQuest Virtual Research Facility aims to engage and support professional scientists and the general public-including parents, children, teachers, and students-in learning and doing science. Through the facility's online portal (cosmoquest.org), anyone with internet access can participate in NASA Science Mission Directorate related research by engaging in several online citizen science projects. To support this endeavor, the CosmoQuest team is developing a variety of programs, opportunities, and resources that parallel those available in real-world institutions and that have the potential to reach and impact a large and diverse audience. In order to guide this development and ensure the success of the facility, it is essential to assess the needs of the growing CosmoQuest community. In this presentation, we present the results of a suite of online surveys designed to gauge the interests, motivations, and needs of several groups within the CosmoQuest Community : teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. Each survey was targeted to a particular group and a particular CosmoQuest program. All surveys asked about attitudes towards technology and social media use. Basic demographics were also collected. We discuss the needs of the various groups and share plans for meeting these needs.

  5. Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method

    NASA Astrophysics Data System (ADS)

    Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.

    2016-02-01

    In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).

  6. Routine Immunization Service Delivery Through the Basic Package of Health Services Program in Afghanistan: Gaps, Challenges, and Opportunities.

    PubMed

    Mbaeyi, Chukwuma; Kamawal, Noor Shah; Porter, Kimberly A; Azizi, Adam Khan; Sadaat, Iftekhar; Hadler, Stephen; Ehrhardt, Derek

    2017-07-01

    The Basic Package of Health Services (BPHS) program has increased access to immunization services for children living in rural Afghanistan. However, multiple surveys have indicated persistent immunization coverage gaps. Hence, to identify gaps in implementation, an assessment of the BPHS program was undertaken, with specific focus on the routine immunization (RI) component. A cross-sectional survey was conducted in 2014 on a representative sample drawn from a sampling frame of 1858 BPHS health facilities. Basic descriptive analysis was performed, capturing general characteristics of survey respondents and assessing specific RI components, and χ2 tests were used to evaluate possible differences in service delivery by type of health facility. Of 447 survey respondents, 27% were health subcenters (HSCs), 30% were basic health centers, 32% were comprehensive health centers, and 12% were district hospitals. Eighty-seven percent of all respondents offered RI services, though only 61% of HSCs did so. Compared with other facility types, HSCs were less likely to have adequate stock of vaccines, essential cold-chain equipment, or proper documentation of vaccination activities. There is an urgent need to address manpower and infrastructural deficits in RI service delivery through the BPHS program, especially at the HSC level. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  8. Implementation of a Water Flow Control System into the ISS'S Planned Fluids & Combustion Facility

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2003-01-01

    The Fluids and Combustion Facility (FCF) will become an ISS facility capable of performing basic combustion and fluids research. The facility consists of two independent payload racks specifically configured to support multiple experiments over the life of the ISS. Both racks will depend upon the ISS's Moderate Temperature Loop (MTL) for removing waste heat generated by the avionics and experiments operating within the racks. By using the MTL, constraints are imposed by the ISS vehicle on how the coolant resource is used. On the other hand, the FCF depends upon effective thermal control for maximizing life of the hardware and for supplying proper boundary conditions for the experiments. In the implementation of a design solution, significant factors in the selection of the hardware included ability to measure and control relatively low flow rates, ability to throttle flow within the time constraints of the ISS MTL, conserve energy usage, observe low mass and small volume requirements. An additional factor in the final design solution selection was considering how the system would respond to a loss of power event. This paper describes the method selected to satisfy the FCF design requirements while maintaining the constraints applied by the ISS vehicle.

  9. Progress in alternative neutron detection to address the helium-3 shortage

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply could no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland securitymore » (since 2002), the supply has dwindled, and can no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.« less

  11. How Big Science Came to Long Island: The Birth of Brookhaven Laboratory (429th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, Robert P.

    Robert P. Crease, historian for the U.S. Department of Energy's Brookhaven National Laboratory and Chair of the Philosophy Department at Stony Brook University, will give two talks on the Laboratory's history on October 31 and December 12. Crease's October 31 talk, titled "How Big Science Came to Long Island: The Birth of Brookhaven Lab," will cover the founding of the Laboratory soon after World War II as a peacetime facility to construct and maintain basic research facilities, such as nuclear reactors and particle accelerators, that were too large for single institutions to build and operate. He will discuss the keymore » figures involved in starting the Laboratory, including Nobel laureates I.I. Rabi and Norman Ramsey, as well as Donald Dexter Van Slyke, one of the most renowned medical researchers in American history. Crease also will focus on the many problems that had to be overcome in creating the Laboratory and designing its first big machines, as well as the evolving relations of the Laboratory with the surrounding Long Island community and news media. Throughout his talk, Crease will tell fascinating stories about Brookhaven's scientists and their research.« less

  12. Integrating Antarctic Science Into Geospace System Science

    NASA Astrophysics Data System (ADS)

    Kelly, J. D.

    2010-12-01

    Addressing the scientific, technical, and sociological challenges of the future requires both detailed basic research and system based approaches to the entire geospace system from the Earth’s core, through solid Earth, ice, oceans, atmosphere, ionosphere, and magnetosphere to the Sun’s outer atmosphere and even beyond. Fully integrating Antarctic science, and fully exploiting the scientific research possibilities of the Antarctic continent through effective and efficient support infrastructure, will be a very important contribution to future success. Amongst many new facilities and programs which can and are being proposed, the Moveable Antarctic Incoherent Scatter Radar (MAISR) at McMurdo illustrates the potential for innovative future science. This poster uses some of the proposed science programs to show how the scientific community can use the data products of this facility, and how they can contribute to the development of the tools and mechanisms for proposing, executing, and utilizing such new research capabilities. In particular, incoherent scatter radars played a big role in data collection during the recent International Polar Year and plans for future extended operations, including those in Antarctica, will be discussed in the light of lessons learnt in applying observations to global modeling developments.

  13. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department ofmore » Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.« less

  14. Back to Basics.

    ERIC Educational Resources Information Center

    May, Abigail

    1998-01-01

    Offers some key business principles with the hope of helping educational facilities managers improve their operations. Looks at customer service, disparate databases, technological concerns, the mission of facility management, how to improve the bottom line, staffing ideas, future planning, and management suggestions. Lists seven habits of…

  15. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  16. 42 CFR 422.53 - Eligibility to elect an MA plan for senior housing facility residents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Eligibility to elect an MA plan for senior housing... Eligibility, Election, and Enrollment § 422.53 Eligibility to elect an MA plan for senior housing facility residents. (a) Basic eligibility requirements. To be eligible to elect an MA senior housing facility plan...

  17. 42 CFR 422.53 - Eligibility to elect an MA plan for senior housing facility residents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Eligibility to elect an MA plan for senior housing... Eligibility, Election, and Enrollment § 422.53 Eligibility to elect an MA plan for senior housing facility residents. (a) Basic eligibility requirements. To be eligible to elect an MA senior housing facility plan...

  18. 42 CFR 422.53 - Eligibility to elect an MA plan for senior housing facility residents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Eligibility to elect an MA plan for senior housing..., Election, and Enrollment § 422.53 Eligibility to elect an MA plan for senior housing facility residents. (a) Basic eligibility requirements. To be eligible to elect an MA senior housing facility plan, the...

  19. 42 CFR 422.53 - Eligibility to elect an MA plan for senior housing facility residents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Eligibility to elect an MA plan for senior housing... Eligibility, Election, and Enrollment § 422.53 Eligibility to elect an MA plan for senior housing facility residents. (a) Basic eligibility requirements. To be eligible to elect an MA senior housing facility plan...

  20. Facilities Information Management: A Guide for State and Local Education Agencies. NCES 2003-400

    ERIC Educational Resources Information Center

    National Center for Education Statistics (ED), Washington, DC.

    This Guide has been developed to provide a framework for decision makers, school facility managers, and the public to identify a basic set of school facilities data elements, including definitions that will meet their information needs. Chapter 1 describes the purpose, scope, and intended audience for this guide. Chapter 2 describes how to use the…

  1. Baseline experiments in teleoperator control

    NASA Technical Reports Server (NTRS)

    Hankins, W. W., III; Mixon, R. W.

    1986-01-01

    Studies have been conducted at the NASA Langley Research Center (LaRC) to establish baseline human teleoperator interface data and to assess the influence of some of the interface parameters on human performance in teleoperation. As baseline data, the results will be used to assess future interface improvements resulting from this research in basic teleoperator human factors. In addition, the data have been used to validate LaRC's basic teleoperator hardware setup and to compare initial teleoperator study results. Four subjects controlled a modified industrial manipulator to perform a simple task involving both high and low precision. Two different schemes for controlling the manipulator were studied along with both direct and indirect viewing of the task. Performance of the task was measured as the length of time required to complete the task along with the number of errors made in the process. Analyses of variance were computed to determine the significance of the influences of each of the independent variables. Comparisons were also made between the LaRC data and data taken earlier by Grumman Aerospace Corp. at their facilities.

  2. Turning science into health solutions: KEMRI's challenges as Kenya's health product pathfinder.

    PubMed

    Simiyu, Ken; Masum, Hassan; Chakma, Justin; Singer, Peter A

    2010-12-13

    A traditional pathway for developing new health products begins with public research institutes generating new knowledge, and ends with the private sector translating this knowledge into new ventures. But while public research institutes are key drivers of basic research in sub-Saharan Africa, the private sector is inadequately prepared to commercialize ideas that emerge from these institutes, resulting in these institutes taking on the role of product development themselves to alleviate the local disease burden. In this article, the case study method is used to analyze the experience of one such public research institute: the Kenya Medical Research Institute (KEMRI). Our analysis indicates that KEMRI's product development efforts began modestly, and a manufacturing facility was constructed with a strategy for the facility's product output which was not very successful. The intended products, HIV and Hepatitis B diagnostic kits, had a short product life cycle, and an abrupt change in regulatory requirements left KEMRI with an inactive facility. These problems were the result of poor innovation management capacity, variability in domestic markets, lack of capital to scale up technologies, and an institutional culture that lacked innovation as a priority.However, KEMRI appears to have adapted by diversifying its product line to mitigate risk and ensure continued use of its manufacturing facility. It adopted an open innovation business model which linked it with investors, research partnerships, licensing opportunities, and revenue from contract manufacturing. Other activities that KEMRI has put in place over several years to enhance product development include the establishment of a marketing division, development of an institutional IP policy, and training of its scientists on innovation management. KEMRI faced many challenges in its attempt at health product development, including shifting markets, lack of infrastructure, inadequate financing, and weak human capital with respect to innovation. However, it overcame them through diversification, partnerships and changes in culture. The findings could have implications for other research institutes in Sub-Saharan Africa seeking to develop health products. Such institutes must analyze potential demand and uptake, yet be prepared to face the unexpected and develop appropriate risk-mitigating strategies.

  3. Five Years of NASA Research on ISS: A Continuing Saga

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2005-01-01

    The first NASA experiments reached ISS in September 2000, a very modest beginning to what later became a more robust, diverse and overall highly successful research program, continuing essentially uninterrupted since March 2001. Along the way, several major challenges had to be overcome. First, there were delays in the initial construction of the station. Second, maintenance of the station exceeded earlier assumptions resulting in less crew time being available for research. Third, the lengthy interruption of Shuttle flights after the Columbia accident significantly, but temporarily, reduced the research traffic to and from ISS. And fourth, the Vision of Space Exploration as caused a refocusing of NASA's research efforts on ISS from a multi-disciplinary basic and applied science program to one dedicated to solving the critical questions to enable exploration missions. The principal factors that allowed these challenges to be overcome have been flexibility and cooperation. Flexibility on the part of the ISS Program to minimize impacts to research from delays and resource bottlenecks, flexibility on the part of researchers to adapt their research to changing environments, and flexibility to be able to use existing and planned facilities not only for their original basic science purpose but also for new applications. And cooperation not only between the ISS Program and the research community, but also among NASA and its International Partners to continually strive to optimize the research conducted aboard ISS. Once the challenges were overcome, the research program has been remarkably successful, with an expanding on-orbit capability. Over 80 investigations have been completed, many resulting in publications.

  4. Global Security, Medical Isotopes, and Nuclear Science

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  5. 40 CFR 35.917-5 - Public participation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification and evaluation of locations for waste water treatment facilities and of alternative treatment... treatment, reduce waste water volume, and encourage multiple use of facilities; (3) The evaluation of social... planning issues and decisions. (b) Basic Public Participation Program. Since waste water treatment...

  6. Spatial distribution of emergency obstetric and newborn care services in Ghana: Using the evidence to plan interventions.

    PubMed

    Bosomprah, Samuel; Tatem, Andrew J; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-01-01

    To provide clear policy directions for gaps in the provision of signal function services and sub-regions requiring priority attention using data from the 2010 Ghana Emergency Obstetric and Newborn Care (EmONC) survey. Using 2010 survey data, the fraction of facilities with only one or two signal functions missing was calculated for each facility type and EmONC designation. Thematic maps were used to provide insight into inequities in service provision. Of 1159 maternity facilities, 89 provided all the necessary basic or comprehensive EmONC signal functions 3months prior to the 2010 survey. Only 21% of facility-based births were in fully functioning EmONC facilities, but an additional 30% occurred in facilities missing one or two basic signal functions-most often assisted vaginal delivery and removal of retained products. Tackling these missing signal functions would extend births taking place in fully functioning facilities to over 50%. Subnational analyses based on estimated total pregnancies in each district revealed a pattern of inequity in service provision across the country. Upgrading facilities missing only one or two signal functions will allow Ghana to meet international standards for availability of EmONC services. Reducing maternal deaths will require high national priority given to addressing inequities in the distribution of EmONC services. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Assessment and documentation of non-healing, chronic wounds in inpatient health care facilities in the Czech Republic: an evaluation study.

    PubMed

    Pokorná, Andrea; Leaper, David

    2015-04-01

    The foundation of health care management of patients with non-healing, chronic wounds needs accurate evaluation followed by the selection of an appropriate therapeutic strategy. Assessment of non-healing, chronic wounds in clinical practice in the Czech Republic is not standardised. The aim of this study was to analyse the methods being used to assess non-healing, chronic wounds in inpatient facilities in the Czech Republic. The research was carried out at 77 inpatient medical facilities (8 university/faculty hospitals, 63 hospitals and 6 long- term hospitals) across all regions of the Czech Republic. A mixed model was used for the research (participatory observation including creation of field notes and content analysis of documents for documentation and analysis of qualitative and quantitative data). The results of this research have corroborated the suspicion of inconsistencies in procedures used by general nurses for assessment of non-healing, chronic wounds. However, the situation was found to be more positive with regard to evaluation of basic/fundamental parameters of a wound (e.g. size, depth and location of a wound) compared with the evaluation of more specific parameters (e.g. exudate or signs of infection). This included not only the number of observed variables, but also the action taken. Both were significantly improved when a consultant for wound healing was present (P = 0·047). The same applied to facilities possessing a certificate of quality issued by the Czech Wound Management Association (P = 0·010). In conclusion, an effective strategy for wound management depends on the method and scope of the assessment of non-healing, chronic wounds in place in clinical practice in observed facilities; improvement may be expected following the general introduction of a 'non-healing, chronic wound assessment' algorithm. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  9. LANDSAT TM image data quality analysis for energy-related applications

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Foote, H. P.; Petrie, G. M.; Barnard, J. C.; Eliason, J. R.

    1985-01-01

    This project represents a no-cost agreement between National Aeronautic Space Administration Goddard Space Flight Center (NASA GSFC) and the Pacific Northwest Laboratory (PNL). PNL is a Department of Energy (DOE) national laboratory operted by Battelle Memorial Institute at its Pacific Northwest Laboratories in Richland, Washington. The objective of this investigation is to evaluate LANDSAT's thematic mapper (TM) data quality and utility characteristics from an energy research and technological perspective. Of main interest is the extent to which repetitive TM data might support DOE efforts relating to siting, developing, and monitoring energy-related facilities, and to basic geoscientific research. The investigation utilizes existing staff and facility capabilities, and ongoing programmatic activities at PNL and other DOE national laboratories to cooperatively assess the potential usefulness of the improved experimental TM data. The investigation involves: (1) both LANDSAT 4 and 5 TM data, (2) qualitative and quantitative use consideration, and 3) NASA P (corrected) and A (uncorrected) CCT analysis for a variety of sites of DOE interest. Initial results were presented at the LANDSAT Investigator's Workshops and at specialized LANDSAT TM sessions at various conferences.

  10. Animal experimentation in Japan: regulatory processes and application for microbiological studies.

    PubMed

    Takahashi-Omoe, H; Omoe, K

    2007-07-01

    We have conducted animal experimentation as a highly effective technique in biological studies. Also in microbiological studies, we have used experimentation to prevent and treat many infectious diseases in humans and animals. In Japan, the 'Law for the Humane Treatment and Management of Animals', which covers the consideration of the three R principles, refinement, replacement and reduction for an international humane approach to animal experimentation came into effect in June 2006. Looking towards the straightforward operation of the law in animal experimentation, three government ministries established new basic guidelines for experimentation performed in their jurisdictional research and testing facilities. For future microbiological studies involving animals in Japan, we need to perform animal experiments according to the basic guidelines in association with overseas management systems. In this report, we discussed essential actions for the management of animal experimentation in microbiological studies in Japan.

  11. The Influence of Distance and Level of Care on Delivery Place in Rural Zambia: A Study of Linked National Data in a Geographic Information System

    PubMed Central

    Gabrysch, Sabine; Cousens, Simon; Cox, Jonathan; Campbell, Oona M. R.

    2011-01-01

    Background Maternal and perinatal mortality could be reduced if all women delivered in settings where skilled attendants could provide emergency obstetric care (EmOC) if complications arise. Research on determinants of skilled attendance at delivery has focussed on household and individual factors, neglecting the influence of the health service environment, in part due to a lack of suitable data. The aim of this study was to quantify the effects of distance to care and level of care on women's use of health facilities for delivery in rural Zambia, and to compare their population impact to that of other important determinants. Methods and Findings Using a geographic information system (GIS), we linked national household data from the Zambian Demographic and Health Survey 2007 with national facility data from the Zambian Health Facility Census 2005 and calculated straight-line distances. Health facilities were classified by whether they provided comprehensive EmOC (CEmOC), basic EmOC (BEmOC), or limited or substandard services. Multivariable multilevel logistic regression analyses were performed to investigate the influence of distance to care and level of care on place of delivery (facility or home) for 3,682 rural births, controlling for a wide range of confounders. Only a third of rural Zambian births occurred at a health facility, and half of all births were to mothers living more than 25 km from a facility of BEmOC standard or better. As distance to the closest health facility doubled, the odds of facility delivery decreased by 29% (95% CI, 14%–40%). Independently, each step increase in level of care led to 26% higher odds of facility delivery (95% CI, 7%–48%). The population impact of poor geographic access to EmOC was at least of similar magnitude as that of low maternal education, household poverty, or lack of female autonomy. Conclusions Lack of geographic access to emergency obstetric care is a key factor explaining why most rural deliveries in Zambia still occur at home without skilled care. Addressing geographic and quality barriers is crucial to increase service use and to lower maternal and perinatal mortality. Linking datasets using GIS has great potential for future research and can help overcome the neglect of health system factors in research and policy. Please see later in the article for the Editors' Summary PMID:21283606

  12. 12 CFR 614.4910 - Basic authorities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., except a bank for cooperatives, with direct lending authority may originate agricultural real estate loans for sale to one or more certified agricultural mortgage marketing facilities under title VIII of... operate as an agricultural mortgage marketing facility under title VIII of the Act, either acting alone or...

  13. Assessment of primary health care facilities' service readiness in Nigeria.

    PubMed

    Oyekale, Abayomi Samuel

    2017-03-01

    Effective delivery of healthcare services requires availability of adequate infrastructure, diagnostic medical equipment, drugs and well-trained medical personnel. In Nigeria, poor funding and mismanagement often characterize healthcare service delivery thereby affecting coverage and quality of healthcare services. Therefore, the state of service delivery in Nigeria's health sector has come under some persistent criticisms. This paper analyzed service readiness of Primary Health Care (PHC) facilities in Nigeria with focus on availability of some essential drugs and medical equipment. Service Delivery Indicator (SDI) data for PHC in Nigeria were used. The data were collected from 2480 healthcare facilities from 12 states in the Nigeria's 6 geopolitical zones between 2013 and 2014. Data were analyzed with descriptive statistics, Principal Component Analysis (PCA) and Ordinary Least Square regression. Medical disposables such as hand gloves and male condoms were reported to be available in 77.18 and 44.03% of all the healthcare facilities respectively, while immunization services were provided by 86.57%. Functional stethoscopes were reported by 77.22% of the healthcare facilities, while only 68.10% had sphygmomanometers. In the combined healthcare facilities, availability of some basic drugs such as Azithromycin, Nifedipine, Dexamethasone and Misoprostol was low with 10.48, 25.20, 21.94 and 17.06%, respectively, while paracetamol and folic acid both had high availability with 74.31%. Regression results showed that indices of drug and medical equipment availability increased significantly (p < 0.05) among states in southern Nigeria and with presence of some power sources (electricity, generators, batteries and solar), but decreased among dispensaries/health posts. Travel time to headquarters and rural facilities significantly reduced indices of equipment availability (p < 0.05). It was concluded that for Nigeria to ensure better equity in access to healthcare facilities, which would facilitate achievement of some health-related sustainable development goals (SDGs), quality of services at its healthcare facilities should be improved. Given some differences between availability of basic medical equipment and their functionality, and lack of some basic drugs, proper inventory of medical services should be taken with effort put in place to increase funding and ensure proper management of healthcare resources.

  14. The Role of a National Biocontainment Laboratory in Emergencies.

    PubMed

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  15. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  16. The Video Handbook.

    ERIC Educational Resources Information Center

    1972

    In order to provide basic technical and production information for closed-circuit television, the editors have assembled this series of papers. Deisgned as an introductory guide for those entering the field, the handbook covers the basic areas of non-broadcast television. Starting with facilities and equipment the guide outlines the planning and…

  17. Southeastern Community College Annual Progress Report, December 1995.

    ERIC Educational Resources Information Center

    Gardner, R. Gene

    Presenting information on the status of Southeastern Community College (SCC), in Iowa, this annual progress report highlights basic institutional data, financial information, and improvements and planned changes of the college as of 1995. Part 1 presents basic data on SCC, including facility locations, assessed property valuation, district…

  18. A cost-effective approach to establishing a surgical skills laboratory.

    PubMed

    Berg, David A; Milner, Richard E; Fisher, Carol A; Goldberg, Amy J; Dempsey, Daniel T; Grewal, Harsh

    2007-11-01

    Recent studies comparing inexpensive low-fidelity box trainers to expensive computer-based virtual reality systems demonstrate similar acquisition of surgical skills and transferability to the clinical setting. With new mandates emerging that all surgical residency programs have access to a surgical skills laboratory, we describe our cost-effective approach to teaching basic and advanced open and laparoscopic skills utilizing inexpensive bench models, box trainers, and animate models. Open models (basic skills, bowel anastomosis, vascular anastomosis, trauma skills) and laparoscopic models (basic skills, cholecystectomy, Nissen fundoplication, suturing and knot tying, advanced in vivo skills) are constructed using a combination of materials found in our surgical research laboratories, retail stores, or donated by industry. Expired surgical materials are obtained from our hospital operating room and animal organs from food-processing plants. In vivo models are performed in an approved research facility. Operation, maintenance, and administration of the surgical skills laboratory are coordinated by a salaried manager, and instruction is the responsibility of all surgical faculty from our institution. Overall, the cost analyses of our initial startup costs and operational expenditures over a 3-year period revealed a progressive decrease in yearly cost per resident (2002-2003, $1,151; 2003-2004, $1,049; and 2004-2005, $982). Our approach to surgical skills education can serve as a template for any surgery program with limited financial resources.

  19. Delivering the EarthScope Transportable Array as a Community Asset

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Woodward, R.; Simpson, D. W.; Hafner, K.

    2009-12-01

    The Transportable Array element of EarthScope/USArray is a culmination of years of coordination and planning for a large science initiative via the NSF MREFC program. US researchers and the IRIS Consortium conceived of the science objectives for a continental scale array and, together with the geodetic (PBO) and fault drilling (SAFOD) communities and NSF, successfully merged these scientific objectives with a compelling scientific and technical proposal, accompanied with the budget and schedule to accomplish it. The Transportable Array is now an efficient and exacting execution of an immense technical challenge that, by many measures, is yielding exciting science return, both expected and unanticipated. The technical facility is first-rate in its implementation, yet responsive to science objectives and discovery, actively engaging the community in discussion and new direction. The project is carried out by a core of dedicated and professional staff , guided and advised through considerable feedback from science users who have unprecedented access to high-quality data. This, in a sense, lets seismologists focus on research, rather than be administrators, drivers, shippers, battery mules, electronic technicians and radio hams. Now that USArray is operational, it is interesting to reflect on whether the TA, as a professionally executed project, could succeed as well if it were an independent endeavor, managed and operated outside of the resources developed and available through IRIS and its core programs. We detail how the support the USArray facility provides improves data accessibility and enhances interdisciplinary science. We suggest that the resources and community leadership provided by the IRIS Consortium, and the commitment to the principle of free and open data access, have been basic underpinnings for the success of the TA. This involvement of community-based, scientific leadership in the development of large facilities should be considered in planning future large Earth science or even basic science endeavors. The Global Seismographic Network provides another example where, with strong scientific leadership, the technical objectives have returned far more than expected results from all manner of application of new techniques to high quality data. Again, the key ingredient may be that the project oversight is driven by scientists with free and open access to data and broad and evolving expectations as to how the facility might be applied towards research objectives. Major projects must clearly follow defined plans and budgets; but, while it is important to have managers to motivate schedules and control costs, the energy, vigor and effort to optimize new measures and discover new applications derive from the insights and enthusiasm of the science community.

  20. New measurements for hadrontherapy and space radiation: biology

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  1. Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing

    NASA Astrophysics Data System (ADS)

    Lotz, Christoph; Wessarges, Yvonne; Hermsdorf, Jörg; Ertmer, Wolfgang; Overmeyer, Ludger

    2018-04-01

    Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000 kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.

  2. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less

  4. New Boundary Layer Facility at Andøya, 69N 16E

    NASA Astrophysics Data System (ADS)

    Gausa, M. A.; Reuder, J.; Blindheim, S.

    2016-12-01

    The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the same reason natural aerosols and anthropogenic pollutants form and change in the PBL due to chemical and coagulation processes upward transport of energy are gravity (buoyancy) waves, which in many cases originate from the PBL precise measurements of precipitation under difficult meteorological conditions

  5. Valuing a long-term care facility.

    PubMed

    Mellen, C M

    1992-10-01

    The business valuation industry generally uses at least one of three basic approaches to value a long-term care facility: the cost approach, sales comparison approach, or income approach. The approach that is chosen and the resulting weight that is applied to it depend largely on the circumstances involved. Because a long-term care facility is a business enterprise, more weight usually is given to the income approach which factors into the estimate of value both the tangible and intangible assets of the facility.

  6. Cellular Therapies Clinical Research Roadmap: Lessons learned on how to move a cellular therapy into a clinical trial

    PubMed Central

    Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M.

    2014-01-01

    A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, via and Investigational New Drug (IND) application, into early phase clinical trials. The roadmap describes four key areas; basic and preclinical research, resource development, translational research and good manufacturing practice (GMP), and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value using a model of the relevant disease. During resource development the appropriate specialists and the required expertise to bring this product into the clinic are identified (e.g., researchers, regulatory specialists, GMP manufacturing staff, clinicians, and clinical trials staff, etc.). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase the plan to translate the research product into a clinical grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States this is done by filing an IND application with the Food and Drug Administration. The NHLBI-funded Production Assistance for Cellular Therapies (PACT) program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five PACT facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly, and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. PMID:25484311

  7. Techbelt Energy Innovation Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marie, Hazel; Nestic, Dave; Hripko, Michael

    This project consisted of three main components 1) The primary goal of the project was to renovate and upgrade an existing commercial building to the highest possible environmentally sustainable level for the purpose of creating an energy incubator. This initiative was part of the Infrastructure Technologies Program, through which a sustainable energy demonstration facility was to be created and used as a research and community outreach base for sustainable energy product and process incubation; 2) In addition, fundamental energy related research on wind energy was performed; a shrouded wind turbine on the Youngstown State University campus was commissioned; and educationalmore » initiatives were implemented; and 3) The project also included an education and outreach component to inform and educate the public in sustainable energy production and career opportunities. Youngstown State University and the Tech Belt Energy Innovation Center (TBEIC) renovated a 37,000 square foot urban building which is now being used as a research and development hub for the region’s energy technology innovation industry. The building houses basic research facilities and business development in an incubator format. In addition, the TBEIC performs community outreach and education initiatives in advanced and sustainable energy. The building is linked to a back warehouse which will eventually be used as a build-out for energy laboratory facilities. The projects research component investigated shrouded wind turbines, and specifically the “Windcube” which was renamed the “Wind Sphere” during the course of the project. There was a specific focus on the development in the theory of shrouded wind turbines. The goal of this work was to increase the potential efficiency of wind turbines by improving the lift and drag characteristics. The work included computational modeling, scale models and full-sized design and construction of a test turbine. The full-sized turbine was built on the YSU campus as a grid-tie system that supplies the YSU research facility. Electrical power meters and weather monitors were installed to record the power generated and aid in continued study. In addition, an education/outreach component to help elicit creative engineering and design from amongst area students, faculty, entrepreneurs, and small business in the energy related fields was performed.« less

  8. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and documentation; refinement of the selected conceptual design through additional trades and analyses; design, fabrication, and test of the Development Model; and design, fabrication, and test of the Interrack Demonstration Unit; and support of the requirements definition review (RDR). The purpose of part 2 was to prove concept feasibility.

  9. Guidelines and Recommendations for New Hampshire Public Elementary Schools, Kindergarten--Grade 6.

    ERIC Educational Resources Information Center

    New Hampshire State Dept. of Education, Concord.

    Sections concerned with facilities deal with library services, equipment and facilities for science and physical education, and the school building. Recommendations for library service include check lists and standards pertaining to objectives, basic equipment and supplies, individual classroom collections, audio visual collections, library…

  10. Instructional Media Center. Educational Facility Series. A Guide to Planning.

    ERIC Educational Resources Information Center

    Esposito, Nicholas A., Ed.

    General recommendations are set forth regarding aesthetics, acoustics, lighting, temperature control, location, and layout of the instructional media center. Consideration is given to spatial relationships, equipment and furnishings, and suggestions are included regarding basic and advance facilities for primary, middle and secondary schools. (FS)

  11. Fundraising Basics for Private School Facilities.

    ERIC Educational Resources Information Center

    Roach, Arthur H.

    This report examines the process behind setting up and implementing a "capital campaign," a program for raising money for new or renovated facilities at private K-12 schools. The report briefly covers tax information regarding gifts to institutions, then offers advice for setting up a comprehensive development program, including…

  12. MSRR Rack Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.

  13. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  14. Predictors of Physical Altercation among Adolescents in Residential Substance Abuse Treatment

    PubMed Central

    Crawley, Rachel D.; Becan, Jennifer Edwards; Knight, Danica Kalling; Joe, George W.; Flynn, Patrick M.

    2014-01-01

    This study tested the hypothesis that basic social information-processing components represented by family conflict, peer aggression, and pro-aggression cognitive scripts are related to aggression and social problems among adolescents in substance abuse treatment. The sample consisted of 547 adolescents in two community-based residential facilities. Correlation results indicated that more peer aggression is related to more pro-aggression scripts; scripts, peer aggression, and family conflict are associated with social problems; and in-treatment physical altercation involvement is predicted by higher peer aggression. Findings suggest that social information-processing components are valuable for treatment research. PMID:26622072

  15. Using herbs.

    PubMed

    Mcmillen, H; Scheinman, D

    1999-01-01

    In Tanzania, the Tanga AIDS Working Group (TAWG) encourages traditional healers and biomedical health workers to work together to improve HIV prevention and care. It is active in three regional towns and provides care for over 400 people living with AIDS. Its services include pretest and posttest counseling. It also dispenses traditional medicines and biomedicines for the treatment of opportunistic infections symptoms. TAWG is also involved in researching potentially useful herbal remedies. Moreover, the group conducts seminars with local traditional healers and traditional birth attendants on topics such as basic facts about HIV/AIDS, transmission and prevention, and when and where to refer people to biomedical facilities.

  16. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-07-01

    The Marshall Space Flight Center was activated on July 1, 1960 as a part of NASA, which had been established on October 1, 1958 by Congressional passage of the National Aeronautics and Space Act. The nucleus of NASA was the Advisory Committee for Aeronautics later named the National Advisory Committee for Aeronauts (NACA). The NACA was founded in 1915 to study the problems of flight and to recommend practical solutions to basic aircraft design and construction problems. NACA's wind turnels and other research facilities made NACA technical reports the basis for aviation progress for more than 40 years.

  17. Measurements of pressures on the wing of an aircraft model during steady rotation

    NASA Technical Reports Server (NTRS)

    Martin, Colin A.; Gage, Peter J.; Hultberg, Randy S.; Bowman, James S., Jr.

    1990-01-01

    An investigation has been conducted in the Spin Tunnel Facility at the NASA Langley Research Center to measure the pressures on the wing surfaces of a model of a Basic Training Aircraft during steady rotation. The tests were made to determine the nature of the wing pressure distribution during rotations typical of spin entry and steady spin. Comparisons are made between the forces and moments obtained from integrating the pressure field with those measured directly during rotary balance force tests. The results are also compared with estimates determined from a simple numerical model of the wing aerodynamic forces.

  18. Lunar interferometric astronomy: Some basic questions

    NASA Technical Reports Server (NTRS)

    Woolf, Neville

    1992-01-01

    The author examines some basic questions as to why there should be astronomical facilities on the far side of the moon. The questions are ones of appropriateness, i.e., is this a proper use for human resources, what the real goals are, and are the present concepts the best match for the goals.

  19. Dive into Scuba

    ERIC Educational Resources Information Center

    Coelho, Jeffrey; Fielitz, Lynn R.

    2006-01-01

    Scuba is a unique physical education activity that middle school and high school students can experience in physical education to provide them with the basic skills needed to enjoy the sport for many years to come. This article describes the basic scuba diving equipment, proper training and certification for instructors and students, facilities,…

  20. Promoting Inclusive Education in Ghana

    ERIC Educational Resources Information Center

    Djietror, Beauty B. K.; Okai, Edward; Kwapong, Olivia A. T. Frimpong

    2011-01-01

    Inclusive education is critical for nation building. The government of Ghana has put in measures for promoting inclusion from basic through to tertiary level of education. Some of these measures include expansion of school facilities, implementation of the Free Compulsory Universal Basic Education (FCUBE); the change of policy on girls who drop…

  1. The insertion device magnetic measurement facility: Prototype and operational procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  2. Patterns and determinants of pathways to reach comprehensive emergency obstetric and neonatal care (CEmONC) in South Sudan: qualitative diagrammatic pathway analysis.

    PubMed

    Elmusharaf, Khalifa; Byrne, Elaine; AbuAgla, Ayat; AbdelRahim, Amal; Manandhar, Mary; Sondorp, Egbert; O'Donovan, Diarmuid

    2017-08-29

    Maternity referral systems have been under-documented, under-researched, and under-theorised. Responsive emergency referral systems and appropriate transportation are cornerstones in the continuum of care and central to the complex health system. The pathways that women follow to reach Emergency Obstetric and Neonatal Care (EmONC) once a decision has been made to seek care have received relatively little attention. The aim of this research was to identify patterns and determinants of the pathways pregnant women follow from the onset of labour or complications until they reach an appropriate health facility. This study was conducted in Renk County in South Sudan between 2010 and 2012. Data was collected using Critical Incident Technique (CIT) and stakeholder interviews. CIT systematically identified pathways to healthcare during labour, and factors associated with an event of maternal mortality or near miss through a series of in-depth interviews with witnesses or those involved. Face-to-face stakeholder interviews were conducted with 28 purposively identified key informants. Diagrammatic pathway and thematic analysis were conducted using NVIVO 10 software. Once the decision is made to seek emergency obstetric care, the pregnant woman may face a series of complex steps before she reaches an appropriate health facility. Four pathway patterns to CEmONC were identified of which three were associated with high rates of maternal death: late referral, zigzagging referral, and multiple referrals. Women who bypassed nonfunctional Basic EmONC facilities and went directly to CEmONC facilities (the fourth pathway pattern) were most likely to survive. Overall, the competencies of the providers and the functionality of the first point of service determine the pathway to further care. Our findings indicate that outcomes are better where there is no facility available than when the woman accesses a non-functioning facility, and the absence of a healthcare provider is better than the presence of a non-competent provider. Visiting non-functioning or partially functioning healthcare facilities on the way to competent providers places the woman at greater risk of dying. Non-functioning facilities and non-competent providers are likely to contribute to the deaths of women.

  3. How to Design a Genetic Mating Scheme: A Basic Training Package for Drosophila Genetics

    PubMed Central

    Roote, John; Prokop, Andreas

    2013-01-01

    Drosophila melanogaster is a powerful model organism for biological research. The essential and common instrument of fly research is genetics, the art of applying Mendelian rules in the specific context of Drosophila with its unique classical genetic tools and the breadth of modern genetic tools and strategies brought in by molecular biology, transgenic technologies and the use of recombinases. Training newcomers to fly genetics is a complex and time-consuming task but too important to be left to chance. Surprisingly, suitable training resources for beginners currently are not available. Here we provide a training package for basic Drosophila genetics, designed to ensure that basic knowledge on all key areas is covered while reducing the time invested by trainers. First, a manual introduces to fly history, rationale for mating schemes, fly handling, Mendelian rules in fly, markers and balancers, mating scheme design, and transgenic technologies. Its self-study is followed by a practical training session on gender and marker selection, introducing real flies under the dissecting microscope. Next, through self-study of a PowerPoint presentation, trainees are guided step-by-step through a mating scheme. Finally, to consolidate knowledge, trainees are asked to design similar mating schemes reflecting routine tasks in a fly laboratory. This exercise requires individual feedback but also provides unique opportunities for trainers to spot weaknesses and strengths of each trainee and take remedial action. This training package is being successfully applied at the Manchester fly facility and may serve as a model for further training resources covering other aspects of fly research. PMID:23390611

  4. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  5. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  6. Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2002-10-01

    The Center for Nanophase Materials Sciences (CNMS) will be a user facility with a strong component of joint, collaborative research. CNMS is being developed, together with the scientific community, with support from DOE's Office of Basic Energy Sciences. The Center will provide a thriving, multidisciplinary environment for research as well as the education of students and postdoctoral scholars. It will be co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS). The CNMS will integrate nanoscale research with neutron science, synthesis science, and theory/modeling/simulation, bringing together four areas in which the United States has clear national research and educational needs. The Center's research will be organized under three scientific thrusts: nano-dimensioned "soft" materials (including organic, hybrid, and interfacial nanophases); complex "hard" materials systems (including the crosscutting areas of interfaces and reduced dimensionality that become scientifically critical on the nanoscale); and theory/modeling/simulation. This presentation will summarize the progress towards identification of the specific research focus topics for the Center. Currently proposed topics, based on two workshops with the potential user community, include catalysis, nanomagnetism, synthetic and bio-inspired macromolecular materials, nanophase biomaterials, nanofluidics, optics/photonics, carbon-based nanostructures, collective behavior, nanoscale interface science, virtual synthesis and nanomaterials design, and electronic structure, correlations, and transport. In addition, the proposed 80,000 square foot facility (wet/dry labs, nanofabrication clean rooms, and offices) and the associated technical equipment will be described. The CNMS is scheduled to begin construction in spring, 2003. Initial operations are planned for late in 2004.

  7. Access to Drugs and Out of Pocket Expenditure in Primary Health Facilities.

    PubMed

    Thapa, A K; Ghimire, N; Adhikari, S R

    2016-09-01

    The Government of Nepal promulgated health as a human right via Interim constitution and implemented Free Health Service Program in 2008 as a commitment to universalize basic health care services. So, the aim of this study was to understand reported access to medicine and health care services received by outpatients in public primary facilities. The study followed cross sectional study design. Two hundred and thirty-four For data 234 out patients were interviewed on the day of the field visit in March and October 2014 across 28 primary health facilities of seven purposively selected districts representing three ecological belts and five development regions of the country. Our study revealed that the average number of medicines prescribed per patient was 2.65 per case in primary public health facilities, of which 91.2% were dispensed. Around 86.6% dispensed medicines were appropriately labeled and 84% of outpatients had proper knowledge of dosage and timing of medicine use. Around 55.6% of outpatients purchased some or all prescribed medicines from nearby private facilities which were not available in public facilities. Around 40% of them travelled more than half an hour to reach the facility. The gap in medicines prescribed and dispensed, Out of Pocket expenditure coupled with opportunity cost of travelling, appear as hurdles in access to basic health care services. So increasing free medicines list in public primary facilities with all round the year availability might answer major part of the problem.

  8. Some Suggestions for Conducting Film Competitions and Film Festivals.

    ERIC Educational Resources Information Center

    Eastman Kodak Co., Rochester, NY.

    Four essentials in staging film festivals and competitions are: facilities, films, equipment, and an audience. Basic steps in getting these essentials together are outlined. Surveying available facilities first helps you gauge the scale of the festival, estimate the likely costs and receipts, and plan for the projection equipment necessary.…

  9. RETRAINING OF THE UNDERPRIVILEGED--THE JOB CORPS AND PROGRAMS FOR WELFARE RECIPIENTS.

    ERIC Educational Resources Information Center

    HOOS, IDA R.

    THIS STUDY ASSESSES JOB CORPS CURRICULUM AND FACILITIES FOR BASIC ORIENTATION AND EDUCATION OF UNEMPLOYED, DISADVANTAGED, POORLY MOTIVATED YOUTH, AND REVIEWS TRAINING PROGRAMS FOR WELFARE RECIPIENTS IN SANTA CLARA AND ALAMEDA COUNTIES, CALIFORNIA. OBSERVATIONS OF SELECTED JOB CORPS CENTERS REVEALED SUPERIOR PHYSICAL FACILITIES BUT LESS THAN…

  10. The Appraisal of Investments in Educational Facilities.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France). Programme on Educational Building.

    This collection of papers covers, from a European perspective, the basic aspects of investments in physical educational facilities, as well as important issues in the economics of education. Four themes are covered. The first presents the art of the economic analysis of educational projects. The second focuses on the contribution of performance…

  11. Design for Medical Education. The Development and Planning of a Medical College and Care Center.

    ERIC Educational Resources Information Center

    Peery, Thomas M.; Green, Alan C.

    Planning and design procedures which one medical education center employed in translating its educational objectives, philosophy and techniques into laboratory, classroom and clinic facilities are described. Basic planning considerations included--(1) determination of the curriculum, (2) facility utilization rate, (3) housing of research…

  12. Interior Design Factors in Library Facilities.

    ERIC Educational Resources Information Center

    Jackson, Patricia Ann

    When planning the interior of a library facility, the planning team of librarian, library consultant, architect, and interior design consultant must focus attention on the basic principles of interior design and the psychological needs of the user. Colors for an interior should be selected with careful regard to space, light, and emotional and…

  13. 76 FR 39127 - Manufacturer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Administration (DEA) to be registered as a bulk manufacturer of Remifentanil (9739) the basic class of controlled substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the... primary manufacturing facility in West Deptford, New Jersey. The controlled substances manufactured in...

  14. 77 FR 5849 - Manufacturer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... (DEA) to be registered as a bulk manufacturer of Remifentanil (9739), the basic class of controlled substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the... manufacturing facility in West Deptford, New Jersey. The controlled substances manufactured in bulk at this...

  15. Fundraising Basics for Private School Facilities

    ERIC Educational Resources Information Center

    Roach, Arthur H.

    2009-01-01

    This report examines the process behind setting up and implementing a "capital campaign": a program for raising money for new or renovated facilities at private K-12 schools. The report covers tax information regarding gifts to institutions then offers advice for setting up a comprehensive development program, including fundraising software and…

  16. Radiological Worker II Training, Course 20301 (Live), Course 12909 (Test)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Jimmy D.

    Radiological worker training is the basic building block for any additional radiological training you may receive. Upon completing radiological worker training, you will have the basic knowledge needed to work safely, using proper radiological practices, in areas where radiological hazards exist. You will also have a better understanding of the hazards and responsibilities associated with radiological work to help prevent the carelessness that can occur when working continually with or around radioactive material. This course does not qualify you for any specific radiological work. You may be required to take additional training at individual facilities to address facility- and job-specificmore » hazards and procedures.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  18. [Cooperative Cardiovascular Disease Research Network (RECAVA)].

    PubMed

    García-Dorado, David; Castro-Beiras, Alfonso; Díez, Javier; Gabriel, Rafael; Gimeno-Blanes, Juan R; Ortiz de Landázuri, Manuel; Sánchez, Pedro L; Fernández-Avilés, Francisco

    2008-01-01

    Today, cardiovascular disease is the principal cause of death and hospitalization in Spain, and accounts for an annual healthcare budget of more than 4000 million euros. Consequently, early diagnosis, effective prevention, and the optimum treatment of cardiovascular disease present a significant social and healthcare challenge for the country. In this context, combining all available resources to increase the efficacy and healthcare benefits of scientific research is a priority. This rationale prompted the establishment of the Spanish Cooperative Cardiovascular Disease Research Network, or RECAVA (Red Temática de Investigación Cooperativa en Enfermedades Cardiovasculares), 5 years ago. Since its foundation, RECAVA's activities have focused on achieving four objectives: a) to facilitate contacts between basic, clinical and epidemiological researchers; b) to promote the shared use of advanced technological facilities; c) to apply research results to clinical practice, and d) to train a new generation of translational cardiovascular researchers in Spain. At present, RECAVA consists of 41 research groups and seven shared technological facilities. RECAVA's research strategy is based on a scientific design matrix centered on the most important cardiovascular processes. The level of RECAVA's research activity is reflected in the fact that 28 co-authored articles were published in international journals during the first six months of 2007, with each involving contributions from at least two groups in the network. Finally, RECAVA also participates in the work of the Spanish National Center for Cardiovascular Research, or CNIC (Centro Nacional de Investigación Cardiovascular), and some established Biomedical Research Network Centers, or CIBER (Centros de Investigación Biomédica en RED), with the aim of consolidating the development of a dynamic multidisciplinary research framework that is capable of meeting the growing challenge that cardiovascular disease will present in the future.

  19. Staff Clinicians | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies.  The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who are dedicated to developing new therapies and improving outcomes for patients with primary brain and spinal cord tumors. The NOB is one of the first trans-institutional initiatives at the National Institutes of Health. The Branch is focused on developing an integrated clinical, translational, and basic research program that engages the strengths and resources of the National Cancer Institutes (NCI) and the National Institutes of Neurological Disorders and Stroke (NINDS) for the purpose of developing novel experimental therapeutics for individuals with primary central nervous system (CNS) malignancies. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is the intramural research component of the National Cancer Institute (NCI).  CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-risk, high-impact laboratory- and clinic-based investigations.  Investigators are supported by a wide array of intellectual, technological, and research resources, including surgical and pathology facilities, animal facilities, and dedicated, high-quality technology cores in areas such as imaging/microscopy, chemistry/purification, mass spectrometry, flow cytometry, genomics/DNA sequencing, transgenics and knock-out mice, arrays/molecular profiling, and human genetics/bioinformatics.  For an overview of CCR, please visit http://ccr.cancer.gov/.

  20. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.; Rudd, Robert E.; Wark, Justin S.

    2015-09-01

    Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.

  1. Development of a New Hypersonic Shock Tunnel Facility to Investigate Electromagnetic Energy Addition for Flow Control and Basic Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B.; Pereira, A. L.; Nagamatsu, H. T.

    2006-05-01

    A new 0.6-m. diameter Hypersonic Shock Tunnel is been designed, fabricated and will be installed at the Laboratory of Aerothermodynamics and Hypersonics IEAv-CTA, Brazil. The brand new hypersonic facility, designated as T3, is primarily intended to be used as an important tool in the investigation of supersonic combustion management and of electromagnetic energy addition for flow control. The design of the runnel enables relatively long test times, 2-10 milliseconds, suitable for basic supersonic combustion and energy addition by laser experiments. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures of 200 atm. and 5,500 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization and the new facility is expected to be commissioned by the end of 2006.

  2. Capital Financing For Private & Independent Schools

    ERIC Educational Resources Information Center

    Online Submission, 2005

    2005-01-01

    This paper is a primer for school boards and management. It provides a basic overview of the key issues, considerations and options associated with the use of debt by private schools to address facility financing needs. In addition, for a school which has decided to pursue debt financing, it provides basic guidelines for the choice of debt…

  3. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  4. 38 CFR 51.40 - Basic per diem.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Per Diem Payments § 51.40 Basic per diem. Except as... home for nursing home care the lesser of the following for nursing home care provided to an eligible... each subsequent Fiscal Year, VA will pay a facility recognized as a State home for nursing home care...

  5. 38 CFR 51.40 - Basic per diem.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FOR NURSING HOME CARE OF VETERANS IN STATE HOMES Per Diem Payments § 51.40 Basic per diem. Except as... home for nursing home care the lesser of the following for nursing home care provided to an eligible... each subsequent Fiscal Year, VA will pay a facility recognized as a State home for nursing home care...

  6. Mobility of Adult Basic Education Students in BC: The 2004-05 Cohort

    ERIC Educational Resources Information Center

    Lawrance, Jill

    2008-01-01

    British Columbia offers multiple educational pathways to address the literacy and academic needs of its adult population. In BC, Adult Basic Education (ABE) is offered through two public systems: the secondary system offers the Adult Graduation program in various school district facilities, typically through Continuing Education, and the public…

  7. Building Type Basics for College and University Facilities. Building Type Basics.

    ERIC Educational Resources Information Center

    Neuman, David J.; Kliment, Stephen A.

    This book provides indepth information that is needed to initiate a variety of building projects on a diverse range of college and university campuses. Filled with project photographs, diagrams, floor plans, sections, and details, the book combines highly illustrative, specialized material from industry leaders with nuts-and-bolts design…

  8. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  9. Emergency, anaesthetic and essential surgical capacity in the Gambia

    PubMed Central

    Shivute, Nestor; Bickler, Stephen; Cole-Ceesay, Ramou; Jargo, Bakary; Abdullah, Fizan; Cherian, Meena

    2011-01-01

    Abstract Objective To assess the resources for essential and emergency surgical care in the Gambia. Methods The World Health Organization’s Tool for Situation Analysis to Assess Emergency and Essential Surgical Care was distributed to health-care managers in facilities throughout the country. The survey was completed by 65 health facilities – one tertiary referral hospital, 7 district/general hospitals, 46 health centres and 11 private health facilities – and included 110 questions divided into four sections: (i) infrastructure, type of facility, population served and material resources; (ii) human resources; (iii) management of emergency and other surgical interventions; (iv) emergency equipment and supplies for resuscitation. Questionnaire data were complemented by interviews with health facility staff, Ministry of Health officials and representatives of nongovernmental organizations. Findings Important deficits were identified in infrastructure, human resources, availability of essential supplies and ability to perform trauma, obstetric and general surgical procedures. Of the 18 facilities expected to perform surgical procedures, 50.0% had interruptions in water supply and 55.6% in electricity. Only 38.9% of facilities had a surgeon and only 16.7% had a physician anaesthetist. All facilities had limited ability to perform basic trauma and general surgical procedures. Of public facilities, 54.5% could not perform laparotomy and 58.3% could not repair a hernia. Only 25.0% of them could manage an open fracture and 41.7% could perform an emergency procedure for an obstructed airway. Conclusion The present survey of health-care facilities in the Gambia suggests that major gaps exist in the physical and human resources needed to carry out basic life-saving surgical interventions. PMID:21836755

  10. U.S. Army Central and U.S. Army Contracting Command-Rock Island Need to Improve Facility Maintenance at King Abdullah II Special Operations Training Center

    DTIC Science & Technology

    2016-03-23

    cleaned so that they are free of dust, dirt, lint and human waste, and trash.” However, the contract did not explicitly state that the facilities...be free of mold/mildew. ACC–RI and ARCENT should review and modify the basic life support services contract, as necessary, to include measures...Responsibility, “The Sand Book,” July 18, 2014. 16 Unified Facility Criteria 1-202-01, “Host Nation Facilities in Support of Military Operations,” September 1

  11. Water Infrastructure Needs and Investment: Review and Analysis of Key Issues

    DTIC Science & Technology

    2008-11-24

    the Rural Development Act of 1972, as amended (7 U.S.C. § 1926). The purpose of these USDA programs is to provide basic amenities, alleviate health...nonregulatory costs (e.g., routine replacement of basic infrastructure).12 Wastewater Needs. The most recent wastewater survey, conducted in 2004 and issued...1.6 billion just to implement the most basic steps needed to improve security (such as better controlling access to facilities with fences, locks

  12. The Leicester AATSR Global Analyser (LAGA) - Giving Young Students the Opportunity to Examine Space Observations of Global Climate-Related Processes

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, David; Good, Simon; Corlett, Gary

    A pc-based analysis package has been developed, for the dual purposes of, firstly, providing ‘quick-look' capability to research workers inspecting long time-series of global satellite datasets of Sea-surface Temperature (SST); and, secondly, providing an introduction for students, either undergraduates, or advanced high-school students to the characteristics of commonly used analysis techniques for large geophysical data-sets from satellites. Students can also gain insight into the behaviour of some basic climate-related large-scale or global processes. The package gives students immediate access to up to 16 years of continuous global SST data, mainly from the Advanced Along-Track Scanning Radiometer, currently flying on ESA's Envisat satellite. The data are available and are presented in the form of monthly averages and spatial averaged to half-degree or one-sixth degree longitude-latitude grids. There are simple button-operated facilities for defining and calculating box-averages; producing time-series of such averages; defining and displaying transects and their evolution over time; and the examination anomalous behaviour by displaying the difference between observed values and values derived from climatological means. By using these facilities a student rapidly gains familiarity with such processes as annual variability, the El Nĩo effect, as well as major current systems n such as the Gulf Stream and other climatically important phenomena. In fact, the student is given immediate insights into the basic methods of examining geophysical data in a research context, without needing to acquire special analysis skills are go trough lengthy data retrieval and preparation procedures which are more generally required, as precursors to serious investigation, in the research laboratory. This software package, called the Leicester AAATSR Global Analyser (LAGA), is written in a well-known and widely used analysis language and the package can be run by using software that is readily available free-of-charge.

  13. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Definition of basic research. 272.3 Section 272...) MISCELLANEOUS ADMINISTRATION AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.3 Definition of basic research. Basic research is systematic study directed toward greater knowledge or understanding of...

  14. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Definition of basic research. 272.3 Section 272...) MISCELLANEOUS ADMINISTRATION AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.3 Definition of basic research. Basic research is systematic study directed toward greater knowledge or understanding of...

  15. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  16. Optimal Facility Location Tool for Logistics Battle Command (LBC)

    DTIC Science & Technology

    2015-08-01

    64 Appendix B. VBA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Appendix C. Story...should city planners have located emergency service facilities so that all households (the demand) had equal access to coverage?” The critical...programming language called Visual Basic for Applications ( VBA ). CPLEX is a commercial solver for linear, integer, and mixed integer linear programming problems

  17. Keys to Success: School Facilities Primer, Questions & Answers 101.

    ERIC Educational Resources Information Center

    Brady, Jim

    This publication provides answers to basic questions to help school board members more fully address the complexities of the planning, design, and construction process in order to maximize the goal of student success. The 101 questions and answers are in the areas of: facility planning; learning environment; information technology; safe schools;…

  18. 40 CFR 270.310 - What equipment information must I keep at my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (e.g., identify the hazardous waste management unit on a facility plot plan). (3) Type of equipment... compliance test required by 40 CFR 264.1033(j). (3) A design analysis, specifications, drawings, schematics... acceptable to the Director that present basic control device design information. The design analysis must...

  19. Discipline and Grievance Procedures: Juvenile Detention and Correctional Facilities.

    ERIC Educational Resources Information Center

    Illinois Univ., Champaign. Community Research Center.

    The purpose of sound disciplinary practices and grievance procedures in juvenile detention and correctional facilities is outlined and a philosophy on discipline and grievance procedures is discussed. The use of secure confinement or restriction as a means of treatment, and the effects of restriction are considered. The basics of good discipline…

  20. 75 Hour Nurse Aide Course.

    ERIC Educational Resources Information Center

    Iowa Univ., Iowa City. Coll. of Education.

    This 75-hour nurse aide course has been designed to meet the training requirements of the Omnibus Budget Reconciliation Act of 1987 for aides working in nursing facilities and skilled nursing facilities. Emphasis in the course is on students achieving a basic level of knowledge and demonstrating skills to provide safe, effective resident care. The…

  1. Production of Medical Isotopes with Electron Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotsch, D A; Alford, K.; Bailey, J. L.

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around formore » decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.« less

  2. Rare isotope accelerator project in Korea and its application to high energy density sciences

    NASA Astrophysics Data System (ADS)

    Chung, M.; Chung, Y. S.; Kim, S. K.; Lee, B. J.; Hoffmann, D. H. H.

    2014-01-01

    As a national science project, the Korean government has recently established the Institute for Basic Science (IBS) with the goal of conducting world-class research in basic sciences. One of the core facilities for the IBS will be the rare isotope accelerator which can produce high-intensity rare isotope beams to investigate the fundamental properties of nature, and also to support a broad research program in material sciences, medical and biosciences, and future nuclear energy technologies. The construction of the accelerator is scheduled to be completed by approximately 2017. The design of the accelerator complex is optimized to deliver high average beam current on targets, and to maximize the production of rare isotope beams through the simultaneous use of Isotope Separation On-Line (ISOL) and In-Flight Fragmentation (IFF) methods. The proposed accelerator is, however, not optimal for high energy density science, which usually requires very high peak currents on the target. In this study, we present possible beam-plasma experiments that can be done within the scope of the current accelerator design, and we also investigate possible future extension paths that may enable high energy density science with intense pulsed heavy ion beams.

  3. Status Update Report for the Peregrine 100km Sounding Rocket Project

    NASA Technical Reports Server (NTRS)

    Dyer, Jonny; Zilliac, Greg; Doran, Eric; Marzona, Mark Thadeus; Lohner, Kevin; Karlik, Evan; Cantwell, Brian; Karabeyoglu, Arif

    2008-01-01

    The Peregrine Sounding Rocket Program is a joint basic research program of NASA Ames Research Center, NASA Wallops, Stanford University and the Space Propulsion Group, Inc. (SPG). The goal is to determine the applicability of liquifying hybrid technology to a small launch system. The approach is to design, build, test and y a stable, efficient liquefying fuel hybrid rocket vehicle to an altitude of 100 km. The program was kicked o in October of 2006 and has seen considerable progress in the subsequent 18 months. Two virtually identical vehicles will be constructed and own out of the NASA Sounding Rocket Facility at Wallops Island. This paper presents the current status of the project as of June 2008. For background on the project, the reader is referred to last year's paper.

  4. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  5. LLE 2010 Annual Report October 2009 - September 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    The fiscal year ending September 2010 (FY10) concluded the third year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year including work on the National Ignition Campaign (NIC). It also reports on LLE's progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the NIC and high-energy density (HED) campaigns, the National Laser Users Facility (NLUF), and for other external users; andmore » programs focusing on the education of high school, undergraduate, and graduate students during the year.« less

  6. NASA's Role in Aeronautics: A Workshop. Volume 2: Military aviation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    While the National Aeronautics and Space Act of 1958 makes DOD primarily responsible for military aeronautics, it stipulates a role for NASA in providing direct and indirect support for national defense. The existing role of NASA in support of military aeronautics is working well and is well coordinated. The role needs only to be kept effective and then improved by increasing its responsiveness to changing military requirements and by the selective application of additional people. Funding resources should also be made available to NASA for research. Specific roles that NASA could or should play were examined. It was determined that the most important areas for this support are in basic research, generic technology evolution, and facility support in the fields of aerodynamics, structures and materials, and propulsion.

  7. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less

  8. Hearing in Laboratory Animals: Strain Differences and Nonauditory Effects of Noise

    PubMed Central

    Parrish, Jennifer L.; Hughes, Larry F.; Toth, Linda A.; Caspary, Donald M.

    2013-01-01

    Hearing in laboratory animals is a topic that traditionally has been the domain of the auditory researcher. However, hearing loss and exposure to various environmental sounds can lead to changes in multiple organ systems, making what laboratory animals hear of consequence for researchers beyond those solely interested in hearing. For example, several inbred mouse strains commonly used in biomedical research (e.g., C57BL/6, DBA/2, and BALB/c) experience a genetically determined, progressive hearing loss that can lead to secondary changes in systems ranging from brain neurochemistry to social behavior. Both researchers and laboratory animal facility personnel should be aware of both strain and species differences in hearing in order to minimize potentially confounding variables in their research and to aid in the interpretation of data. Independent of genetic differences, acoustic noise levels in laboratory animal facilities can have considerable effects on the inhabitants. A large body of literature describes the nonauditory impact of noise on the biology and behavior of various strains and species of laboratory animals. The broad systemic effects of noise exposure include changes in endocrine and cardiovascular function, sleep–wake cycle disturbances, seizure susceptibility, and an array of behavioral changes. These changes are determined partly by species and strain; partly by noise intensity level, duration, predictability, and other characteristics of the sound; and partly by animal history and exposure context. This article reviews some of the basic strain and species differences in hearing and outlines how the acoustic environment affects different mammals. PMID:15766204

  9. Lifesaving emergency obstetric services are inadequate in south-west Ethiopia: a formidable challenge to reducing maternal mortality in Ethiopia.

    PubMed

    Girma, Meseret; Yaya, Yaliso; Gebrehanna, Ewenat; Berhane, Yemane; Lindtjørn, Bernt

    2013-11-04

    Most maternal deaths take place during labour and within a few weeks after delivery. The availability and utilization of emergency obstetric care facilities is a key factor in reducing maternal mortality; however, there is limited evidence about how these institutions perform and how many people use emergency obstetric care facilities in rural Ethiopia. We aimed to assess the availability, quality, and utilization of emergency obstetric care services in the Gamo Gofa Zone of south-west Ethiopia. We conducted a retrospective review of three hospitals and 63 health centres in Gamo Gofa. Using a retrospective review, we recorded obstetric services, documents, cards, and registration books of mothers treated and served in the Gamo Gofa Zone health facilities between July 2009 and June 2010. There were three basic and two comprehensive emergency obstetric care qualifying facilities for the 1,740,885 people living in Gamo Gofa. The proportion of births attended by skilled attendants in the health facilities was 6.6% of expected births, though the variation was large. Districts with a higher proportion of midwives per capita, hospitals and health centres capable of doing emergency caesarean sections had higher institutional delivery rates. There were 521 caesarean sections (0.8% of 64,413 expected deliveries and 12.3% of 4,231 facility deliveries). We recorded 79 (1.9%) maternal deaths out of 4,231 deliveries and pregnancy-related admissions at institutions, most often because of post-partum haemorrhage (42%), obstructed labour (15%) and puerperal sepsis (15%). Remote districts far from the capital of the Zone had a lower proportion of institutional deliveries (<2% of expected births compared to an overall average of 6.6%). Moreover, some remotely located institutions had very high maternal deaths (>4% of deliveries, much higher than the average 1.9%). Based on a population of 1.7 million people, there should be 14 basic and four comprehensive emergency obstetric care (EmOC) facilities in the Zone. Our study found that only three basic and two comprehensive EmOC service qualifying facilities serve this large population which is below the UN's minimum recommendation. The utilization of the existing facilities for delivery was also low, which is clearly inadequate to reduce maternal deaths to the MDG target.

  10. Cellular Therapies Clinical Research Roadmap: lessons learned on how to move a cellular therapy into a clinical trial.

    PubMed

    Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M

    2015-04-01

    A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Preliminary Consideration of the ADS Research in China

    NASA Astrophysics Data System (ADS)

    Fang, Shouxian; Fu, Shinian

    2002-08-01

    Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator Driven Subcritical system), can avoid these troubles and it is recognized as a most prospective power system for fission energy. So during the early time of nuclear power development in our country, it is worthwhile to exploit this novel idea. In this paper, the ADS research program and a proposed verification facility are described. It consists of an 300MeV/3mA low energy accelerator, a swimming pool reactor and some basic research equipment. Beam physics, such as beam halo formation, in the intense-beam accelerator is also discussed.

  12. Leveraging the national cyberinfrastructure for biomedical research.

    PubMed

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  13. Leveraging the national cyberinfrastructure for biomedical research

    PubMed Central

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the ‘Big Data’ challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community. PMID:23964072

  14. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.

    2017-03-01

    This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less

  15. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Charles; Bell, Greg; Canon, Shane

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less

  16. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  17. Microgravity

    NASA Image and Video Library

    2004-04-15

    The M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF) tested and demonstrated a facility approach for materials process experimentation in space. It also provided a basic apparatus and a common interface for a group of metallic and nonmetallic materials experiments. The MPF consisted of a vacuum work chamber and associated mechanical and electrical controls. The M518 Multipurpose Electric Furnace (MEF) was an electric furnace system in which solidification, crystal growth, and other experiments involving phase changes were performed.

  18. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  19. Towards sustainable solid waste management: Investigating household participation in solid waste management

    NASA Astrophysics Data System (ADS)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  20. Clinical Practice Guideline Implementation Strategy Patterns in Veterans Affairs Primary Care Clinics

    PubMed Central

    Hysong, Sylvia J; Best, Richard G; Pugh, Jacqueline A

    2007-01-01

    Background The Department of Veterans Affairs (VA) mandated the system-wide implementation of clinical practice guidelines (CPGs) in the mid-1990s, arming all facilities with basic resources to facilitate implementation; despite this resource allocation, significant variability still exists across VA facilities in implementation success. Objective This study compares CPG implementation strategy patterns used by high and low performing primary care clinics in the VA. Research Design Descriptive, cross-sectional study of a purposeful sample of six Veterans Affairs Medical Centers (VAMCs) with high and low performance on six CPGs. Subjects One hundred and two employees (management, quality improvement, clinic personnel) involved with guideline implementation at each VAMC primary care clinic. Measures Participants reported specific strategies used by their facility to implement guidelines in 1-hour semi-structured interviews. Facilities were classified as high or low performers based on their guideline adherence scores calculated through independently conducted chart reviews. Findings High performing facilities (HPFs) (a) invested significantly in the implementation of the electronic medical record and locally adapting it to provider needs, (b) invested dedicated resources to guideline-related initiatives, and (c) exhibited a clear direction in their strategy choices. Low performing facilities exhibited (a) earlier stages of development for their electronic medical record, (b) reliance on preexisting resources for guideline implementation, with little local adaptation, and (c) no clear direction in their strategy choices. Conclusion A multifaceted, yet targeted, strategic approach to guideline implementation emphasizing dedicated resources and local adaptation may result in more successful implementation and higher guideline adherence than relying on standardized resources and taxing preexisting channels. PMID:17355583

  1. Facility design, construction, and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, includingmore » uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.« less

  2. Extending Basic Learning Opportunities: Challenge and Response. UNESCO-UNICEF Co-operative Programme Digest No. 16.

    ERIC Educational Resources Information Center

    Prakasha, Veda; And Others

    This digest focuses on problems encountered in the expansion of facilities for universal primary education and responses being developed to overcome these problems. The central message of the document is that nonformal structures of learning and community involvement play a key role in the expansion of basic learning opportunities in the…

  3. Trust Territory of the Pacific Islands Adult Basic Education Program. Evaluation Report, Fiscal Year 1979.

    ERIC Educational Resources Information Center

    McCune, Donald A.

    The Adult Basic Education (ABE) program conducted by the Trust Territory of the Pacific Islands was evaluated. Data were collected via staff interviews and record reviews during site visits at ABE facilities located in five of six district comprising the Trust Territory. Focus of the evaluation activities was on program administration,…

  4. A Statewide Profile of Adult Basic Education.

    ERIC Educational Resources Information Center

    Essex, Martin W.; And Others

    A survey of 72 adult basic education (ABE) programs in Ohio was conducted during the 1968-69 school year. Sixty-nine directors handled 447 ABE classes; however, about 40% were handled by three of them. Public school classrooms were the most frequently used facilities (68%). Night classes accounted for 85%. Most of the directors' time was devoted…

  5. A Comparative Evaluation of Public Health Centers with Private Health Training Centers on Primary Healthcare Parameters in India: a Study by Data Envelopment Analysis Technique

    PubMed Central

    Davey, Sanjeev; Raghav, Santosh Kumar; Singh, Jai Vir; Davey, Anuradha; Singh, Nirankar

    2015-01-01

    Background: The evaluation of primary healthcare services provided by health training centers of a private medical college has not been studied in comparison with government health facilities in Indian context. Data envelopment analysis (DEA) is one such technique of operations research, which can be used on health facilities for identifying efficient operating practices and strategies for relatively efficient or inefficient health centers by calculating their efficiency scores. Materials and Methods: This study was carried out by DEA technique by using basic radial models (constant ratio to scale (CRS)) in linear programming via DEAOS free online Software among four decision making units (DMUs; by comparing efficiency of two private health centers of a private medical college of India with two public health centers) in district Muzaffarnagar of state Uttar Pradesh. The input and output records of all these health facilities (two from private and two from Government); for 6 months duration from 1st Jan 2014 to 1st July 2014 was taken for deciding their efficiency scores. Results: The efficiency scores of primary healthcare services in presence of doctors (100 vs 30%) and presence of health staff (100 vs 92%) were significantly better from government health facilities as compared to private health facilities (P < 0.0001). Conclusions: The evaluation of primary healthcare services delivery by DEA technique reveals that the government health facilities group were more efficient in delivery of primary healthcare services as compared to private training health facilities group, which can be further clarified in by more in-depth studies in future. PMID:26435598

  6. Modular Laboratories—Cost-Effective and Sustainable Infrastructure for Resource-Limited Settings

    PubMed Central

    Bridges, Daniel J.; Colborn, James; Chan, Adeline S. T.; Winters, Anna M.; Dengala, Dereje; Fornadel, Christen M.; Kosloff, Barry

    2014-01-01

    High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. PMID:25223943

  7. Facile generation of cell microarrays using vacuum degassing and coverslip sweeping.

    PubMed

    Wang, Min S; Luo, Zhen; Cherukuri, Sundar; Nitin, Nitin

    2014-07-15

    A simple method to generate cell microarrays with high-percentage well occupancy and well-defined cell confinement is presented. This method uses a synergistic combination of vacuum degassing and coverslip sweeping. The vacuum degassing step dislodges air bubbles from the microwells, which in turn enables the cells to enter the microwells, while the physical sweeping step using a glass coverslip removes the excess cells outside the microwells. This low-cost preparation method provides a simple solution to generating cell microarrays that can be performed in basic research laboratories and point-of-care settings for routine cell-based screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period aremore » also included.« less

  9. Extreme Facial Expressions Classification Based on Reality Parameters

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Rad, Abdolvahab Ehsani; Rehman, Amjad; Altameem, Ayman

    2014-09-01

    Extreme expressions are really type of emotional expressions that are basically stimulated through the strong emotion. An example of those extreme expression is satisfied through tears. So to be able to provide these types of features; additional elements like fluid mechanism (particle system) plus some of physics techniques like (SPH) are introduced. The fusion of facile animation with SPH exhibits promising results. Accordingly, proposed fluid technique using facial animation is the real tenor for this research to get the complex expression, like laugh, smile, cry (tears emergence) or the sadness until cry strongly, as an extreme expression classification that's happens on the human face in some cases.

  10. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  11. 78 FR 28272 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... systems operated by NASDAQ, including the Nasdaq Market Center, the FINRA/NASDAQ Trade Reporting Facility... using any facility or system which the Exchange operates or controls. All similarly situated members are...) for use of VTE terminals. A VTE terminal is a basic front- end user interface used by NASDAQ members...

  12. Sampling. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    A brief overview of the basic concepts and philosophies for sampling water and waste water systems is presented in this module. The module is not intended to specify sampling procedures, frequencies, or locations for specific treatment facilities but rather to outline those general procedures which should be followed when sampling under most…

  13. Physical layer simulation study for the coexistence of WLAN standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlader, M. K.; Keiger, C.; Ewing, P. D.

    This paper presents the results of a study on the performance of wireless local area network (WLAN) devices in the presence of interference from other wireless devices. To understand the coexistence of these wireless protocols, simplified physical-layer-system models were developed for the Bluetooth, Wireless Fidelity (WiFi), and Zigbee devices, all of which operate within the 2.4-GHz frequency band. The performances of these protocols were evaluated using Monte-Carlo simulations under various interference and channel conditions. The channel models considered were basic additive white Gaussian noise (AWGN), Rayleigh fading, and site-specific fading. The study also incorporated the basic modulation schemes, multiple accessmore » techniques, and channel allocations of the three protocols. This research is helping the U.S. Nuclear Regulatory Commission (NRC) understand the coexistence issues associated with deploying wireless devices and could prove useful in the development of a technical basis for guidance to address safety-related issues with the implementation of wireless systems in nuclear facilities. (authors)« less

  14. DESIGN CRITERIA FOR FUEL DISSOLUTION SYSTEMS AND ASSOCIATED SERVICE FACILITIES. PLANT MODIFICATIONS FOR REPROCESSING NON-PRODUCTION REACTOR FUELS. PROJECT CGC-830

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierman, S.R.; Graf, W.A.; Kass, M.

    1960-07-29

    Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)

  15. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  16. 32 CFR Appendix A to Part 272 - Principles for the Conduct and Support of Basic Research

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Research A Appendix A to Part 272 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS ADMINISTRATION AND SUPPORT OF BASIC RESEARCH BY THE... Research 1. Basic research is an investment. The DoD Components are to view and manage basic research...

  17. Centrifuge Facility for the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from other 0 environmental factors and to examine artificial gravity as a potential countermeasure for the physical deconditioning observed during spaceflight.

  18. Properties of immobile hydrogen confined in microporous carbon

    DOE PAGES

    Bahadur, Jitendra; Bhabha Atomic Research Centre; Contescu, Cristian I.; ...

    2017-03-06

    The mobility of H2 confined in microporous carbon was studied as a function of temperature and pressure using inelastic neutron scattering, and the translational and rotational motion of H2 molecules has been probed. At low loading, rotation of H2 molecules adsorbed in the smallest carbon pores (~6 ) is severely hindered, suggesting that the interaction between H2 and the host matrix is anisotropic. At higher loading, H2 molecules behave as nearly free rotor, implying lower anisotropic interactions with adsorption sites. At supercritical temperatures where bulk H2 is a gas, the inelastic spectrum of confined H2 provides evidence of a significantmore » fraction of immobile, solid-like hydrogen. The onset temperature for molecular mobility depends strongly on the loaded amount. The fraction of immobile molecules increases with pressure and attains a plateau at high pressures. Surprisingly, immobile H2 is present even at temperatures as high as ~110 K. This research at ORNL s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. CIC and NCG acknowledge support from the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy.« less

  19. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less

  20. CISP: Simulation Platform for Collective Instabilities in the BRing of HIAF project

    NASA Astrophysics Data System (ADS)

    Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Zhao, H.; Ruan, S.; Wu, B.

    2018-02-01

    To simulate collective instabilities during the complicated beam manipulation in the BRing (Booster Ring) of HIAF (High Intensity heavy-ion Accelerator Facility) or other high intensity accelerators, a code, named CISP (Simulation Platform for Collective Instabilities), is designed and constructed in China's IMP (Institute of Modern Physics). The CISP is a scalable multi-macroparticle simulation platform that can perform longitudinal and transverse tracking when chromaticity, space charge effect, nonlinear magnets and wakes are included. And due to its well object-oriented design, the CISP is also a basic platform used to develop many other applications (like feedback). Several simulations, completed by the CISP in this paper, agree with analytical results very well, which shows that the CISP is fully functional now and it is a powerful platform for the further collective instability research in the BRing or other accelerators. In the future, the CISP can also be extended easily into a physics control system for HIAF or other facilities.

  1. The Status of Turkish Accelerator Center Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Oe.

    2007-04-23

    Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeVmore » electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.« less

  2. The MPC&A Questionnaire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    The questionnaire is the instrument used for recording performance data on the nuclear material protection, control, and accountability (MPC&A) system at a nuclear facility. The performance information provides a basis for evaluating the effectiveness of the MPC&A system. The goal for the questionnaire is to provide an accurate representation of the performance of the MPC&A system as it currently exists in the facility. Performance grades for all basic MPC&A functions should realistically reflect the actual level of performance at the time the survey is conducted. The questionnaire was developed after testing and benchmarking the material control and accountability (MC&A) systemmore » effectiveness tool (MSET) in the United States. The benchmarking exercise at the Idaho National Laboratory (INL) proved extremely valuable for improving the content and quality of the early versions of the questionnaire. Members of the INL benchmark team identified many areas of the questionnaire where questions should be clarified and areas where additional questions should be incorporated. The questionnaire addresses all elements of the MC&A system. Specific parts pertain to the foundation for the facility's overall MPC&A system, and other parts pertain to the specific functions of the operational MPC&A system. The questionnaire includes performance metrics for each of the basic functions or tasks performed in the operational MPC&A system. All of those basic functions or tasks are represented as basic events in the MPC&A fault tree. Performance metrics are to be used during completion of the questionnaire to report what is actually being done in relation to what should be done in the performance of MPC&A functions.« less

  3. Worlds Have Collided and Modes Have Merged: Classroom Evidence of Changed Literacy Practices

    ERIC Educational Resources Information Center

    Walsh, Maureen

    2008-01-01

    Debates continue in public and in educational policy forums about the "basics" of literacy while many have not recognised that these basics may never be the same again. Rapid changes in digital communication provide facilities for reading and writing to be combined with various and often quite complex aspects of music, photography and film. At the…

  4. Development of high temperature liquid metal test facilities for qualification of materials and investigations of thermoelectrical modules

    NASA Astrophysics Data System (ADS)

    Onea, A.; Hering, W.; Reiser, J.; Weisenburger, A.; Diez de los Rios Ramos, N.; Lux, M.; Ziegler, R.; Baumgärtner, S.; Stieglitz, R.

    2017-07-01

    Three classes of experimental liquid metal facilities have been completed during the LIMTECH project aiming the qualification of materials, investigation of thermoelectrical modules, investigation of sodium transitional regimes and fundamental thermo-dynamical flows in concentrating solar power (CSP) relevant geometries. ATEFA facility is dedicated to basic science investigation focussed on the alkali metal thermal-to-electric converter (AMTEC) technology. Three SOLTEC facilities are aimed to be used in different laboratories for long term material investigation sodium environment up to a 1000 K temperature and for long term tests of AMTEC modules. The medium scale integral facility KASOLA is planned as the backbone for CSP development and demonstration.

  5. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less

  6. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    PubMed

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p < 0.0001). The five-day molecular biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. CentNet—A deployable 100-station network for surface exchange research

    NASA Astrophysics Data System (ADS)

    Oncley, S.; Horst, T. W.; Semmer, S.; Militzer, J.; Maclean, G.; Knudson, K.

    2014-12-01

    Climate, air quality, atmospheric composition, surface hydrology, and ecological processes are directly affected by the Earth's surface. Complexity of this surface exists at multiple spatial scales, which complicates the understanding of these processes. NCAR/EOL currently provides a facility to the research community to make direct eddy-covariance flux observations to quantify surface-atmosphere interactions. However, just as model resolution has continued to increase, there is a need to increase the spatial density of flux measurements to capture the wide variety of scales that contribute to exchange processes close to the surface. NCAR/EOL now has developed the CentNet facility, that is envisioned to have on the order of 100 surface flux stations deployable for periods of months to years. Each station would measure standard meteorological variables, all components of the surface energy balance (including turbulence fluxes and radiation), atmospheric composition, and other quantities to characterize the surface. Thus, CentNet can support observational research in the biogeosciences, hydrology, urban meteorology, basic meteorology, and turbulence. CentNet has been designed to be adaptable to a wide variety of research problems while keeping operations manageable. Tower infrastructure has been designed to be lightweight, easily deployed, and with a minimal set-up footprint. CentNet uses sensor networks to increase spatial sampling at each station. The data system saves every sample on site to retain flexibility in data analysis. We welcome guidance on development and funding priorities as we build CentNet.

  8. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.

  9. Near quantitative agreement of model free DFT- MD predictions with XAFS observations of the hydration structure of highly charged transition metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Bylaska, Eric J.; Bogatko, Stuart A.

    DFT-MD simulations (PBE96 and PBE0) with MD-XAFS scattering calculations (FEFF9) show near quantitative agreement with new and existing XAFS measurements for a comprehensive series of transition metal ions which interact with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE's Office ofmore » Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  10. Environmental Compliance and Pollution Prevention Training Manual for Campus-Based Organizations--Operational and Facility Maintenance Personnel.

    ERIC Educational Resources Information Center

    New York State Dept. of Environmental Conservation, Albany.

    This manual was designed to be used as part of the Workshop on Environmental Compliance and Pollution Prevention for campus-based facilities. It contains basic information on New York state and federal laws, rules, and regulations for protecting the environment. The information presented is a summary with emphasis on those items believed to be…

  11. Health Occupations Curriculum. Skills and Theory for Health Assistant. Volume I, Units 1-4.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Education, Phoenix.

    This volume consists of the first four units of a basic core curriculum that is intended for all health workers. The units deal with the following topics: (1) the health care facility, the long-term care facility, the health team, and the nursing team; (2) verbal and nonverbal communication, written communication, human behavior, ethical behavior,…

  12. A Facility and Architecture for Autonomy Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

  13. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  14. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  15. Turning science into health solutions: KEMRI’s challenges as Kenya’s health product pathfinder

    PubMed Central

    2010-01-01

    Background A traditional pathway for developing new health products begins with public research institutes generating new knowledge, and ends with the private sector translating this knowledge into new ventures. But while public research institutes are key drivers of basic research in sub-Saharan Africa, the private sector is inadequately prepared to commercialize ideas that emerge from these institutes, resulting in these institutes taking on the role of product development themselves to alleviate the local disease burden. In this article, the case study method is used to analyze the experience of one such public research institute: the Kenya Medical Research Institute (KEMRI). Discussion Our analysis indicates that KEMRI’s product development efforts began modestly, and a manufacturing facility was constructed with a strategy for the facility’s product output which was not very successful. The intended products, HIV and Hepatitis B diagnostic kits, had a short product life cycle, and an abrupt change in regulatory requirements left KEMRI with an inactive facility. These problems were the result of poor innovation management capacity, variability in domestic markets, lack of capital to scale up technologies, and an institutional culture that lacked innovation as a priority. However, KEMRI appears to have adapted by diversifying its product line to mitigate risk and ensure continued use of its manufacturing facility. It adopted an open innovation business model which linked it with investors, research partnerships, licensing opportunities, and revenue from contract manufacturing. Other activities that KEMRI has put in place over several years to enhance product development include the establishment of a marketing division, development of an institutional IP policy, and training of its scientists on innovation management. Summary KEMRI faced many challenges in its attempt at health product development, including shifting markets, lack of infrastructure, inadequate financing, and weak human capital with respect to innovation. However, it overcame them through diversification, partnerships and changes in culture. The findings could have implications for other research institutes in Sub-Saharan Africa seeking to develop health products. Such institutes must analyze potential demand and uptake, yet be prepared to face the unexpected and develop appropriate risk-mitigating strategies. PMID:21144070

  16. The availability and functional status of focused antenatal care laboratory services at public health facilities in Addis Ababa, Ethiopia.

    PubMed

    Desalegn, Daniel Melese; Abay, Serebe; Taye, Bineyam

    2016-08-11

    Provision of quality laboratory services is an essential aspect of a promoting safe motherhood and better outcomes for newborn. Therefore; this study was intended to assess status of focused antenatal care (FANC) laboratory services at public health facilities in Addis Ababa, Ethiopia. Institution based, descriptive cross-sectional study was conducted from April to May 2015. The study included 13 randomly selected health facilities and 13 purposively selected laboratory service providers. The status of FANC laboratory service was assessed by using pre-tested structured questionnaire and observation checklist. The study supplemented with qualitative data through in-depth interview of laboratory service providers. The quantitative data were coded and analysed by using SPSS Version 20 software and qualitative data was transcribed, coded, categorized and thematically analysed by the principal investigator. Only 5 (38.5 %) out of 13 visited health facilities reported the availability of all types of basic FANC laboratory investigations. Comparing the availability of individual tests in the study facilities, urine dipstick, urine microscopy and stool examination were available in all institutions. However, only 7 (53.8 %) of the health facilities reported the availability of hepatitis B virus screening test. Rapid syphilis (RPR) test was found in 10 (76.9 %) facilities. All laboratory facilities had at least one or more basic FANC laboratory tests interruption for more than a day within the last 1 year due to shortage of reagent and electric power disruption. Majority of the health facilities reported incomplete provision of FANC laboratory investigations. Laboratory supply shortage and electric power disruption were the facilities' major challenge to screen pregnant women for pregnancy related health conditions. Since such conditions may affect the outcome of pregnancy, therefore extensive efforts should be targeted to avoid services interruption by taking improvement measures including the fulfilment of all FANC laboratory resources.

  17. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  18. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  19. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  20. 9 CFR 2.37 - Federal research facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Federal research facilities. 2.37... AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish an Institutional Animal Care and Use Committee which shall have the same...

  1. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science was as important as the hardware functionality. How the CVTE payload was designed and what it is capable of, the philosophy of including the scientists in design and operations decisions, and the lessons learned during the integration process are descussed.

  2. Compact anti-radon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajt, L.; Kouba, P.; Mamedov, F.

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  3. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less

  4. Are Health Facility Management Committees in Kenya ready to implement financial management tasks: findings from a nationally representative survey.

    PubMed

    Waweru, Evelyn; Opwora, Antony; Toda, Mitsuru; Fegan, Greg; Edwards, Tansy; Goodman, Catherine; Molyneux, Sassy

    2013-10-10

    Community participation in peripheral public health facilities has in many countries focused on including community representatives in Health Facility Management Committees (HFMCs). In Kenya, HFMC roles are being expanded with the phased implementation of the Health Sector Services Fund (HSSF). Under HSSF, HFMCs manage facility funds which are dispersed directly from central level into facility bank accounts. We assessed how prepared HFMCs were to undertake this new role in advance of HSSF roll out, and considered the implications for Kenya and other similar settings. Data were collected through a nationally representative sample of 248 public health centres and dispensaries in 24 districts in 2010. Data collection included surveys with in-charges (n = 248), HFMC members (n = 464) and facility users (n = 698), and record reviews. These data were supplemented by semi-structured interviews with district health managers in each district. Some findings supported preparedness of HFMCs to take on their new roles. Most facilities had bank accounts and HFMCs which met regularly. HFMC members and in-charges generally reported positive relationships, and HFMC members expressed high levels of motivation and job satisfaction. Challenges included users' low awareness of HFMCs, lack of training and clarity in roles among HFMCs, and some indications of strained relations with in-charges. Such challenges are likely to be common to many similar settings, and are therefore important considerations for any health facility based initiatives involving HFMCs. Most HFMCs have the basic requirements to operate. However to manage their own budgets effectively and meet their allocated roles in HSSF implementation, greater emphasis is needed on financial management training, targeted supportive supervision, and greater community awareness and participation. Once new budget management roles are fully established, qualitative and quantitative research on how HFMCs are adapting to their expanded roles, especially in financial management, would be valuable in informing similar financing mechanisms in Kenya and beyond.

  5. Are Health Facility Management Committees in Kenya ready to implement financial management tasks: findings from a nationally representative survey

    PubMed Central

    2013-01-01

    Background Community participation in peripheral public health facilities has in many countries focused on including community representatives in Health Facility Management Committees (HFMCs). In Kenya, HFMC roles are being expanded with the phased implementation of the Health Sector Services Fund (HSSF). Under HSSF, HFMCs manage facility funds which are dispersed directly from central level into facility bank accounts. We assessed how prepared HFMCs were to undertake this new role in advance of HSSF roll out, and considered the implications for Kenya and other similar settings. Methods Data were collected through a nationally representative sample of 248 public health centres and dispensaries in 24 districts in 2010. Data collection included surveys with in-charges (n = 248), HFMC members (n = 464) and facility users (n = 698), and record reviews. These data were supplemented by semi-structured interviews with district health managers in each district. Results Some findings supported preparedness of HFMCs to take on their new roles. Most facilities had bank accounts and HFMCs which met regularly. HFMC members and in-charges generally reported positive relationships, and HFMC members expressed high levels of motivation and job satisfaction. Challenges included users’ low awareness of HFMCs, lack of training and clarity in roles among HFMCs, and some indications of strained relations with in-charges. Such challenges are likely to be common to many similar settings, and are therefore important considerations for any health facility based initiatives involving HFMCs. Conclusion Most HFMCs have the basic requirements to operate. However to manage their own budgets effectively and meet their allocated roles in HSSF implementation, greater emphasis is needed on financial management training, targeted supportive supervision, and greater community awareness and participation. Once new budget management roles are fully established, qualitative and quantitative research on how HFMCs are adapting to their expanded roles, especially in financial management, would be valuable in informing similar financing mechanisms in Kenya and beyond. PMID:24107094

  6. The biobank for the molecular classification of kidney disease: research translation and precision medicine in nephrology.

    PubMed

    Muruve, Daniel A; Mann, Michelle C; Chapman, Kevin; Wong, Josee F; Ravani, Pietro; Page, Stacey A; Benediktsson, Hallgrimur

    2017-07-26

    Advances in technology and the ability to interrogate disease pathogenesis using systems biology approaches are exploding. As exemplified by the substantial progress in the personalized diagnosis and treatment of cancer, the application of systems biology to enable precision medicine in other disciplines such as Nephrology is well underway. Infrastructure that permits the integration of clinical data, patient biospecimens and advanced technologies is required for institutions to contribute to, and benefit from research in molecular disease classification and to devise specific and patient-oriented treatments. We describe the establishment of the Biobank for the Molecular Classification of Kidney Disease (BMCKD) at the University of Calgary, Alberta, Canada. The BMCKD consists of a fully equipped wet laboratory, an information technology infrastructure, and a formal operational, ethical and legal framework for banking human biospecimens and storing clinical data. The BMCKD first consolidated a large retrospective cohort of kidney biopsy specimens to create a population-based renal pathology database and tissue inventory of glomerular and other kidney diseases. The BMCKD will continue to prospectively bank all kidney biopsies performed in Southern Alberta. The BMCKD is equipped to perform molecular, clinical and epidemiologic studies in renal pathology. The BMCKD also developed formal biobanking procedures for human specimens such as blood, urine and nucleic acids collected for basic and clinical research studies or for advanced diagnostic technologies in clinical care. The BMCKD is guided by standard operating procedures, an ethics framework and legal agreements with stakeholders that include researchers, data custodians and patients. The design and structure of the BMCKD permits its inclusion in a wide variety of research and clinical activities. The BMCKD is a core multidisciplinary facility that will bridge basic and clinical research and integrate precision medicine into renal pathology and nephrology.

  7. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.

    2017-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.

  8. Infection prevention and control in outpatient settings in China-structure, resources, and basic practices.

    PubMed

    Qiao, Fu; Huang, Wenzhi; Zong, Zhiyong; Yin, Weijia

    2018-01-25

    More than 7 billion visits are made by patients to ambulatory services every year in mainland China. Healthcare-associated infections are becoming a new source of illness for outpatients. Little is known about infection prevention, control structure, resources available, and basic practices in outpatient settings. In 2014, we conducted a multisite survey. Five provinces were invited to participate based on geographic dispersion. Self-assessment questionnaires regarding the structure, infrastructure, apparatus and materials, and basic activities of infection prevention and control were issued to 25 hospitals and 5 community health centers in each province. A weight was assigned to each question according to its importance. Overall, 146 of 150 facilities (97.3%) participated in this study. The average survey score was 77.6 (95% confidence interval 75.7-79.5) and varied significantly between the different gross domestic product areas (P < .01), but scores were not significantly different between the 5 facility types (P = .07). The main lapse of infrastructure was in providing hand hygiene equipment (43.4%) and masks (38.7%) for patients in the waiting areas and main entrances. In a sample of ambulatory facilities in 5 provinces in China, infection prevention and control was practiced consistently, although there were lapses in some areas. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials.

    PubMed

    Koenig, Kristi L; Boatright, Connie J; Hancock, John A; Denny, Frank J; Teeter, David S; Kahn, Christopher A; Schultz, Carl H

    2008-01-01

    Since the US terrorist attacks of September 11, 2001, concern regarding use of chemical, biological, or radiological weapons is heightened. Many victims of such an attack would present directly to health care facilities without first undergoing field decontamination. This article reviews basic tenets and recommendations for health care facility-based decontamination, including regulatory concerns, types of contaminants, comprehensive decontamination procedures (including crowd control, triage, removal of contaminated garments, cleaning of body contaminants, and management of contaminated materials and equipment), and a discussion of methods to achieve preparedness.

  10. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  11. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  12. Post-Occupancy Evaluation (POE) Methodologies for School Facilities: A Case Study of the V. Sue Cleveland High School Post Occupancy Evaluation

    ERIC Educational Resources Information Center

    Harmon, Marcel; Larroque, Andre; Maniktala, Nate

    2012-01-01

    The New Mexico Public School Facilities Authority (NMPSFA) is the agency responsible for administering state-funded capital projects for schools statewide. Post occupancy evaluation (POE) is the tool selected by NMPSFA for measuring project outcomes. The basic POE process for V. Sue Cleveland High School (VSCHS) consisted of a series of field…

  13. S=2 quasi-one-dimensional spin waves in CrCl2

    NASA Astrophysics Data System (ADS)

    Stone, Matthew; Ehlers, Georg; Granroth, Garrett

    2014-03-01

    We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc /Jb = 9 . 1 +/- 2 . 2 . However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase. The research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

  14. Modular laboratories--cost-effective and sustainable infrastructure for resource-limited settings.

    PubMed

    Bridges, Daniel J; Colborn, James; Chan, Adeline S T; Winters, Anna M; Dengala, Dereje; Fornadel, Christen M; Kosloff, Barry

    2014-12-01

    High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. © The American Society of Tropical Medicine and Hygiene.

  15. Science-based stockpile stewardship at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, J.

    1995-10-01

    Let me tell you a little about the Los Alamos Neutron Science Center (LANSCE) and how some of the examples you heard about from Sig Hecker and John Immele fit together in this view of a different world in the future where defense, basic and industrial research overlap. I am going to talk about science-based stockpile stewardship at LANSCE; the accelerator production of tritium (APT), which I think has a real bearing on the neutron road map; the world-class neutron science user facility, for which I will provide some examples so you can see the connection with defense science; andmore » lastly, testing concepts for a high-power spallation neutron target and waste transmutation.« less

  16. Technology | FNLCR Staging

    Cancer.gov

    The Frederick National Lab develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  17. Basic nursing care: The most provided, the least evidence based - A discussion paper.

    PubMed

    Zwakhalen, Sandra M G; Hamers, Jan P H; Metzelthin, Silke F; Ettema, Roelof; Heinen, Maud; de Man-Van Ginkel, Janneke M; Vermeulen, Hester; Huisman-de Waal, Getty; Schuurmans, Marieke J

    2018-06-01

    To describe and discuss the "Basic Care Revisited" (BCR) research programme, a collaborative initiative that contributes to evidence-based basic nursing care and raises awareness about the importance of basic nursing care activities. While basic nursing care serves nearly all people at some point in their lifetime, it is poorly informed by evidence. There is a need to prioritise and evaluate basic nursing care activities to improve patient outcomes and improve the quality of care. Discussion paper METHOD: The discussion presented in this paper is based on nursing literature and theory and supported by the authors' clinical and research experiences. We present the developmental process and content of a research programme called "Basic Care Revisited" (BCR) as a solution to move forward and improve basic nursing care. To prioritise basic nursing care, we propose a research programme entitled "Basic Care Revisited" that aims to create awareness and expand knowledge on evidence-based basic nursing care by addressing four basic nursing care themes (bathing and dressing, communication, mobility, and nutrition) in different settings. The paper discusses a pathway to create a sustainable and productive research collaborative on basic nursing care and addresses issues to build research capacity. Revaluation of these important nursing activities will not only positively influence patient outcomes, but also have an impact on staff outcomes and organisational outcomes. © 2018 John Wiley & Sons Ltd.

  18. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  19. OPENMED: A facility for biomedical experiments based on the CERN Low Energy Ion Ring (LEIR)

    NASA Astrophysics Data System (ADS)

    Carli, Christian

    At present protons and carbon ions are in clinical use for hadron therapy at a growing number of treatment centers all over the world. Nevertheless, only limited direct clinical evidence of their superiority over other forms of radiotherapy is available [1]. Furthermore fundamental studies on biological effects of hadron beams have been carried out at different times (some a long time ago) in different laboratories and under different conditions. Despite an increased availability of ion beams for hadron therapy, beam time for preclinical studies is expected to remain insufficient as the priority for therapy centers is to treat the maximum number of patients. Most of the remaining beam time is expected to be required for setting up and measurements to guarantee appropriate good quality beams for treatments. The proposed facility for biomedical research [2] in support of hadron therapy centers would provide ion beams for interested research groups and allow them to carry out basic studies under well defined conditions. Typical studies would include radiobiological phenomena like relative biological effectiveness with different energies, ion species, and intensities. Furthermore possible studies include the development of advanced dosimetry in heterogeneous materials that resemble the human body, imaging techniques and, at a later stage, when the maximum energy with the LEIR magnets can be reached, fragmentation.

  20. Rehabilitation in Madagascar: Challenges in implementing the World Health Organization Disability Action Plan.

    PubMed

    Khan, Fary; Amatya, Bhasker; Mannan, Hasheem; Burkle, Frederick M; Galea, Mary P

    2015-09-01

    To provide an update on rehabilitation in Madagascar by using local knowledge to outline the potential barriers and facilitators for implementation of the World Health Organization (WHO) Disability Action Plan (DAP). A 14-day extensive workshop programme (September-October 2014) was held at the University Hospital Antananarivo and Antsirabe, with the Department of Health Madagascar, by rehabilitation staff from Royal Melbourne Hospital, Australia. Attendees were rehabilitation professionals (n=29) from 3 main rehabilitation facilities in Madagascar, who identified various challenges faced in service provision, education and attitudes/approaches to people with disabilities. Their responses and suggested barriers/facilitators were recorded following consensus agreement, using objectives listed in the DAP. The barriers and facilitators outlined by participants in implementing the DAP objectives include: engagement of health professionals and institutions using a multi-sectoral approach, new partnerships, strategic collaboration, provision of technical assistance, future policy directions, and research and development. Other challenges for many basic policies included: access to rehabilitation services, geographical coverage, shortage of skilled work-force, limited info-technology systems; lack of care-models and facility/staff accreditation standards; limited health services infrastructure and "disconnect" between acute and community-based rehabilitation. The DAP summary actions were useful planning tools to improve access, strengthen rehabilitation services and community-based rehabilitation, and collate data for outcome research.

Top