Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-08-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.
What is Basic Research? Insights from Historical Semantics.
Schauz, Désirée
2014-01-01
For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.
The Effect of Home Related Science Activities on Students' Performance in Basic Science
ERIC Educational Resources Information Center
Obomanu, B. J.; Akporehwe, J. N.
2012-01-01
Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…
Clinical caring science as a scientific discipline.
Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å
2017-09-01
Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.
ERIC Educational Resources Information Center
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-01-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
ERIC Educational Resources Information Center
Maherally, Uzma Nooreen
2014-01-01
The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…
Basic Science Living Skills for Today's World. Teacher's Edition.
ERIC Educational Resources Information Center
Zellers (Robert W.) Educational Services, Johnstown, PA.
This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…
Cause and Effect: Testing a Mechanism and Method for the Cognitive Integration of Basic Science.
Kulasegaram, Kulamakan; Manzone, Julian C; Ku, Cheryl; Skye, Aimee; Wadey, Veronica; Woods, Nicole N
2015-11-01
Methods of integrating basic science with clinical knowledge are still debated in medical training. One possibility is increasing the spatial and temporal proximity of clinical content to basic science. An alternative model argues that teaching must purposefully expose relationships between the domains. The authors compared different methods of integrating basic science: causal explanations linking basic science to clinical features, presenting both domains separately but in proximity, and simply presenting clinical features First-year undergraduate health professions students were randomized to four conditions: (1) science-causal explanations (SC), (2) basic science before clinical concepts (BC), (3) clinical concepts before basic science (CB), and (4) clinical features list only (FL). Based on assigned conditions, participants were given explanations for four disorders in neurology or rheumatology followed by a memory quiz and diagnostic test consisting of 12 cases which were repeated after one week. Ninety-four participants completed the study. No difference was found on memory test performance, but on the diagnostic test, a condition by time interaction was found (F[3,88] = 3.05, P < .03, ηp = 0.10). Although all groups had similar immediate performance, the SC group had a minimal decrease in performance on delayed testing; the CB and FL groups had the greatest decreases. These results suggest that creating proximity between basic science and clinical concepts may not guarantee cognitive integration. Although cause-and-effect explanations may not be possible for all domains, making explicit and specific connections between domains will likely facilitate the benefits of integration for learners.
Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer
2016-04-29
Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase their motivation and engagement.
Pima College Students' Knowledge of Selected Basic Physical Science Concepts.
ERIC Educational Resources Information Center
Iadevaia, David G.
In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…
A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy
ERIC Educational Resources Information Center
Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf
2009-01-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…
Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science
ERIC Educational Resources Information Center
Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.
2016-01-01
The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
Contexts, concepts and cognition: principles for the transfer of basic science knowledge.
Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey
2017-02-01
Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise conceptual structure. This means teaching must focus on conserved basic science knowledge and de-emphasise superficial features. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
The Conservation of Energy Concept in Ninth Grade General Science, Final Report.
ERIC Educational Resources Information Center
Shockley, William; And Others
Discussed is an instructional approach, "concept-distillation," which involves experiences, games, and puzzles that have the "distilled essence" of the basic concepts of the physical sciences. This approach is designed to impart a vivid and dramatic meaning and structure of the sciences for transfer in scientific thinking. The…
All about Flight. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Up, up and away! A hot air balloon, an airplane and even the space shuttle all defy the force of gravity, but they all do it in different ways. Children will learn about the basic concepts that make flight possible. With clear demonstrations and a hands-on project, students will be able to understand more easily the basic concepts behind various…
ERIC Educational Resources Information Center
Trumper, Ricardo
2006-01-01
In view of students' alternative conceptions about basic concepts in astronomy, we conducted a series of constructivist activities with future elementary and junior high school teachers aimed at changing their conceptions about the cause of seasonal changes, and of several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…
Basic Curriculum Guide--Science. Grades K-6.
ERIC Educational Resources Information Center
Starr, John W., 3rd., Ed.
GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…
The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics
ERIC Educational Resources Information Center
Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.
2015-01-01
Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…
Soapy Science. Teaching Science.
ERIC Educational Resources Information Center
Leyden, Michael
1997-01-01
Describes a science and math activity that involves bubbles, shapes, colors, and solid geometry. Students build geometric shapes with soda straws and submerge the shapes in soapy water, allowing them to review basic geometry concepts, test hypotheses, and learn about other concepts such as diffraction, interference colors, and evaporation. (TJQ)
Prospective Science Teachers' Conceptions about Astronomical Subjects
ERIC Educational Resources Information Center
Küçüközer, Hüseyin
2007-01-01
The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…
Teaching Basic Probability in Undergraduate Statistics or Management Science Courses
ERIC Educational Resources Information Center
Naidu, Jaideep T.; Sanford, John F.
2017-01-01
Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…
Teaching for Conceptual Change in Space Science
ERIC Educational Resources Information Center
Brunsell, Eric; Marcks, Jason
2007-01-01
Nearly 20 years after the release of The Harvard-Smithsonian Center for Astrophysics' video, "A Private Universe", much research has been done in relation to students' understanding of space-science concepts and how to effectively change these ideas. However, student difficulties with basic space-science concepts still persist. This article will…
ERIC Educational Resources Information Center
Trumper, Ricardo
2006-01-01
Bearing in mind students' misconceptions about basic concepts in astronomy, the present study conducted a series of constructivist activities aimed at changing future elementary and junior high school teachers' conceptions about the cause of seasonal changes, and several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
ERIC Educational Resources Information Center
Mercer County Community Coll., Trenton, NJ.
Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…
ERIC Educational Resources Information Center
Busch, Phyllis S.
1985-01-01
Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)
ERIC Educational Resources Information Center
Rice, Diana C.; Kaya, Sibel
2012-01-01
This study investigated the relations among preservice elementary teachers' ideas about evolution, their understanding of basic science concepts and college science coursework. Forty-two percent of 240 participants did not accept the theory of human evolution, but held inconsistent ideas about related topics, such as co-existence of humans and…
ERIC Educational Resources Information Center
Busch, Phyllis S.
1985-01-01
Provides directions for basic science experiments which demonstrate the rain cycle, fundamentals of cloud formation, and testing for the presence of acidity in local rainwater. Describes materials required, step-by-step instructions, and discussion topics. (NEC)
NASA Astrophysics Data System (ADS)
Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.
2018-05-01
To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.
Basic College-Level Pharmacology: Therapeutic Drug Range Lesson Plan.
ERIC Educational Resources Information Center
Laipply, Richelle S.
2000-01-01
Investigations of scientific concepts using inquiry can be included in the traditional college lecture. This lesson uses the Learning Cycle to demonstrate therapeutic drug range, a basic concept in pharmaceutical science. Students use graphing to discover patterns as a part of data analysis and interpretation of provided investigation data.…
ERIC Educational Resources Information Center
Taylor, Amy; Jones, Gail
2009-01-01
The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…
Integration of Basic Sciences in Health's Courses
ERIC Educational Resources Information Center
Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.
2012-01-01
Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…
NASA Astrophysics Data System (ADS)
Satria, E.
2018-03-01
Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides opportunities for engaging students in scientific investigations, offering a hands-on approach that encourages students to understand science concepts, gives them ways to apply the concepts, and introduces and reinforces the skills they need to become independent investigators. The basic outline and objectives of each section of…
Certain Basic Concepts of Teaching Turkish as a Foreign Language
ERIC Educational Resources Information Center
Sen, Ülker
2016-01-01
Concept that is defined to be the intangible and general designs emerging in a mind that belongs to an object or thought, has become both subject and object of a very large field ranging from philosophy to linguistics, from social sciences to science. Regardless of which field is in question, the unity of concept is important in order to pave the…
ERIC Educational Resources Information Center
Heilprin, Laurence B.
The literature of knowledge is a very large system in the cybernetic sense of intractibility to control. Improving access to it needs some simplifying theory. A step in this direction is a hypothesis constructed from basic concepts. These include cybernetic concepts of variety and requisite variety; a version of the mathematical concept of…
Pre-Service Teachers' Mental Models of Basic Astronomy Concepts
ERIC Educational Resources Information Center
Arslan, A. Saglam; Durikan, U.
2016-01-01
The aim of the present study is to determine pre-service teachers' mental models related to basic astronomy concepts. The study was conducted using a survey method with 293 pre-service teachers from 4 different departments; physics education, science education, primary teacher education and early childhood education. An achievement test with…
Introduction to Probability, Part 1 - Basic Concepts. Student Text. Revised Edition.
ERIC Educational Resources Information Center
Blakeslee, David W.; And Others
This book is designed to introduce the reader to some fundamental ideas about probability. The mathematical theory of probability plays an increasingly important role in science, government, industry, business, and economics. An understanding of the basic concepts of probability is essential for the study of statistical methods that are widely…
ERIC Educational Resources Information Center
Karakuyu, Yunus
2011-01-01
The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…
Using Ontologies for Knowledge Management: An Information Systems Perspective.
ERIC Educational Resources Information Center
Jurisica, Igor; Mylopoulos, John; Yu, Eric
1999-01-01
Surveys some of the basic concepts that have been used in computer science for the representation of knowledge and summarizes some of their advantages and drawbacks. Relates these techniques to information sciences theory and practice. Concepts are classified in four broad ontological categories: static ontology, dynamic ontology, intentional…
Cognition before curriculum: rethinking the integration of basic science and clinical learning.
Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N
2013-10-01
Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.
Cor, M Ken
Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
ERIC Educational Resources Information Center
Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.
2009-01-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…
ERIC Educational Resources Information Center
Lunetta, Vincent N.; And Others
1984-01-01
Advocates including environmental issues balanced with basic science concepts/processes to provide a sound science foundation. Suggests case studies of regional environmental issues to sensitize/motivate students while reflecting complex nature of science/society issues. Issues considered include: fresh water quality, earthquake predication,…
Geographies of American Popular Music: Introducing Students to Basic Geographic Concepts
ERIC Educational Resources Information Center
McClain, Stephen S.
2010-01-01
Popular music can be used to study many subjects and issues related to the social sciences. "Geographies of American Popular Music" was a workshop that not only examined the history and development of select genres of American music, it also introduced students to basic geographic concepts such as the culture hearth and spatial diffusion. Through…
Spatial Thinking Concepts in Early Grade-Level Geography Standards
ERIC Educational Resources Information Center
Anthamatten, Peter
2010-01-01
Research in the cognition and learning sciences has demonstrated that the human brain contains basic structures whose functions are to perform a variety of specific spatial reasoning tasks and that children are capable of learning basic spatial concepts at an early age. There has been a call from within geography to recognize research on spatial…
Love, Power, and Conflict: A Systems Model of Interparty Negotiation.
ERIC Educational Resources Information Center
Slawski, Carl
Some basic hypotheses and corresponding definitions of concepts are presented in an effort to succinctly state the relationship between three of the most basic concepts of social science, namely love, power and conflict. This novel theory is an example of limited reduction. However, it is cast so as to be applicable to both micro and macro levels…
Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.
Lisk, Kristina; Agur, Anne M R; Woods, Nicole N
2016-06-01
Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.
Swinford, A E; McKeag, D B
1990-01-01
There has been recent interest in the development of problem-based human genetics curricula in U.S. medical schools. The College of Human Medicine at Michigan State University has had a problem-based curriculum since 1974. The vertical integration of genetics within the problem-based curriculum, called "Track II," has recently been revised. On first inspection, the curriculum appeared to lack a significant genetics component; however, on further analysis it was found that many genetics concepts were covered in the biochemistry, microbiology, pathology, and clinical science components. Both basic science concepts and clinical applications of genetics are covered in the curriculum by providing appropriate references for basic concepts and including inherited conditions within the differential diagnosis in the cases studied. Evaluations consist of a multiple-choice content exam and a modified essay exam based on a clinical case, allowing evaluation of both basic concepts and problem-solving ability. This curriculum prepares students to use genetics in a clinical context in their future careers. PMID:2220816
Radiological Dispersion Devices and Basic Radiation Science
NASA Astrophysics Data System (ADS)
Bevelacqua, Joseph John
2010-05-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.
Teaching basic science to optimize transfer.
Norman, Geoff
2009-09-01
Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.
A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature
ERIC Educational Resources Information Center
Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.
2008-01-01
Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…
Artist Concept of Mars 2020 Rover
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
The concept of nature in Islamic science teaching
NASA Astrophysics Data System (ADS)
Zarman, Wendi
2016-02-01
Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other
ERIC Educational Resources Information Center
Sim, Joong Hiong; Daniel, Esther Gnanamalar Sarojini
2014-01-01
Representational competence is defined as "skills in interpreting and using representations". This study attempted to compare students' of high, medium, and low levels of understanding of (1) basic chemical concepts, and (2) chemical representations, in their representational competence. A total of 411 Form 4 science students (mean age =…
An Analysis of Teachers' Concept Confusion Concerning Electric and Magnetic Fields
ERIC Educational Resources Information Center
Hekkenberg, Ans; Lemmer, Miriam; Dekkers, Peter
2015-01-01
In an exploratory study, 36 South African physical science teachers' understanding of basic concepts concerning electric and magnetic fields was studied from a perspective of possible concept confusion. Concept confusion is said to occur when features of one concept are incorrectly attributed to a different concept, in the case of this study to…
Artist Concept of Mars 2020 Rover, Annotated
2013-07-09
Planning for NASA 2020 Mars rover envisions a basic structure that capitalizes on existing design and engineering, but with new science instruments selected through competition for accomplishing different science objectives.
ERIC Educational Resources Information Center
Conway, Lorraine
Based on the idea that active participation stimulates the processes by which learning takes place, this document provides teachers and students with a variety of information and learning activities dealing with chemistry. Basic concepts about chemistry are presented through the use of laboratory experiments, demonstrations, worksheet exercises…
Color, Temperature and Heat: Exploring University Students Mental Thoughts
ERIC Educational Resources Information Center
Canlas, Ian Phil
2016-01-01
Color, temperature and heat are among the concepts in science that are interconnected. These concepts are introduced to learners even before they enter the basic education. On the other hand, in school, it is formally introduced to them not only in science but also in the humanities. The foregoing study attempted to explore the mental thoughts of…
Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry
ERIC Educational Resources Information Center
Bliss, Joseph M.; Reid, Christopher W.
2013-01-01
Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…
ERIC Educational Resources Information Center
Meyer, Amanda J.; Armson, Anthony; Losco, C. Dominique; Losco, Barrett; Walker, Bruce F.
2015-01-01
It has been demonstrated that a positive correlation exists between clinical knowledge and retained concepts in basic sciences. Studies have demonstrated a modest attrition of anatomy knowledge over time, which may be influenced by students' perceived importance of the basic sciences and the learning styles adopted. The aims of this study were to:…
ERIC Educational Resources Information Center
de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.
2009-01-01
We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…
ERIC Educational Resources Information Center
Singh-Pillay, Asheena; Alant, Busisiwe P.; Nwokocha, Godson
2017-01-01
The discussion on how to integrate African indigenous knowledge (IK) into mainstream Science and Technology schooling prevails. Nigeria's colonised school curriculum is antithetical to its rich IK heritage. Guided by postcolonial theory, and the need for a culturally relevant and decolonised curriculum, this paper sought to explore seven basic 7-9…
ERIC Educational Resources Information Center
Redlich, Otto
1972-01-01
The foundation of science, and of thermodynamics in particular, can be developed cogently and without arbitrariness. The goal of science, description of nature, is externally given; it requires a set of basic concepts as indispensable tools. Mathematics has no similar externally given goal. (Author/TS)
E-Basics: Online Basic Training in Program Evaluation
ERIC Educational Resources Information Center
Silliman, Ben
2016-01-01
E-Basics is an online training in program evaluation concepts and skills designed for youth development professionals, especially those working in nonformal science education. Ten hours of online training in seven modules is designed to prepare participants for mentoring and applied practice, mastery, and/or team leadership in program evaluation.…
Back to the Basics: Kansas City, Missouri
ERIC Educational Resources Information Center
Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan
2004-01-01
"Back to the Basics" is an innovation of the WETMAAP Program (Wetland Education Through Maps and Aerial Photography) which offers a series of workshops that provide training in basics ecological concepts, technological skills, and methods of interpretation necessary for assessing geography and earth science topics. The precept of the…
Educational Intervention in a Medically Underserved Area.
Atance, Joel; Mickalis, Morgan; Kincade, Brianna
2018-04-01
Medical students from rural and medically underserved areas (MUAs) are more likely than their peers to practice medicine in rural areas and MUAs. However, students from MUAs are also more likely to face socioeconomic barriers to a career in medicine. To determine whether a week-long summer enrichment experience (SEE) at Edward Via College of Osteopathic Medicine-Carolinas could successfully teach high school students from MUAs basic biomedical concepts and foster an interest in medicine and the health sciences. The SEE program is open to high school students in the Spartanburg, South Carolina, area. The program includes interactive lectures, laboratories, demonstrations on gross anatomy prosections, demonstrations on medical simulation models, tours of emergency vehicles, an introduction to osteopathic manipulative medicine, and student-led research projects. Participants were asked to complete a 15-question quiz that assessed their knowledge of basic biomedical concepts and a 10-question survey that assessed their attitudes toward careers in medicine and health sciences. Both the quiz and the survey were completed on both the first and final days of the program. The data were analyzed using paired t tests. Participant knowledge of basic biomedical concepts, as determined by the quiz scores, increased after completion of the program (9.1 average correct answers vs 12.6 average correct answers) (P<.001). Participant attitude toward medicine and the health sciences improved in 9 of the 10 items surveyed after completion of the program (P<.05). Participant knowledge of basic biomedical concepts and their knowledge of and interest in careers in the health sciences improved after completing the SEE program. These findings suggest that educational interventions for high school students could help to develop primary care physicians for rural areas and MUAs and that there is a role for osteopathic medical schools to nurture these students as early as possible.
ERIC Educational Resources Information Center
Schon, Isabel
1992-01-01
A guide for teachers and librarians covering over 50 Spanish-language books that introduce children to various animals; the world around them; colors, shapes, and numbers; the universe; basic science concepts; and the process of conception, pregnancy, and birth. (MDH)
Impact of Cybernetics on Information Science, and Vice Versa.
ERIC Educational Resources Information Center
Heilprin, Laurence B.
The impact of cybernetics on information science occurs chiefly through the concepts of variety, the law of requisite variety, and theory of transformations. Through these it pervades every aspect of information science. However, other basic sciences such as physics, biology, psychology are in their spheres equally pervasive, and information…
Teaching microbiology to undergraduate students in the humanities and the social sciences.
Oren, Aharon
2015-10-01
This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Connecting Science and Society: Basic Research in the Service of Social Objectives
NASA Astrophysics Data System (ADS)
Sonnert, Gerhard
2007-03-01
A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.
Ebner, Susanne; Fabritius, Cornelia; Ritschl, Paul; Oberhuber, Rupert; Günther, Julia; Kotsch, Katja
2014-10-01
A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research. © 2014 Steunstichting ESOT.
ERIC Educational Resources Information Center
Mikulecky, Larry
Interactive computer programs, developed at Indiana University's Learning Skills Center, were designed to model effective strategies for reading biology and psychology textbooks. For each subject area, computer programs and textbook passages were used to instruct and model for students how to identify key concepts, compare and contrast concepts,…
ERIC Educational Resources Information Center
Martins, Isabel P.; Veiga, Luisa
2001-01-01
Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)
ERIC Educational Resources Information Center
Mikulecky, Larry
A study evaluated the effectiveness of a series of print materials and interactive computer-guided study programs designed to lead undergraduate students to apply basic textbook reading and concept mapping strategies to the study of science and social science textbooks. Following field testing with 25 learning skills students, 50 freshman biology…
Science and Cooking: Motivating the Study of Freshman Physics
NASA Astrophysics Data System (ADS)
Weitz, David
2011-03-01
This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.
The Metamorphosis of an Introduction to Computer Science.
ERIC Educational Resources Information Center
Ben-Jacob, Marion G.
1997-01-01
Introductory courses in computer science at colleges and universities have undergone significant changes in 20 years. This article provides an overview of the history of introductory computer science (FORTRAN, ANSI flowchart symbols, BASIC, data processing concepts, and PASCAL) and its future (robotics and C++). (PEN)
Village Science: A Resource Handbook for Rural Alaskan Teachers.
ERIC Educational Resources Information Center
Dick, Alan
A resource handbook for rural Alaskan teachers covers village science, to make basic science concepts relevant to the physical environment in villages. Material is intended for use as filler for weeks that come up short on science materials, to provide stimulation for students who cannot see the relevance of science in their lives, and to help…
Teaching Science in Elementary and Middle School: A Cognitive and Cultural Approach. Second Edition
ERIC Educational Resources Information Center
Buxton, Cory A.; Provenzo, Eugene F., Jr.
2010-01-01
Featuring an increased emphasis on the way today's changing science and technology is shaping our culture, this Second Edition of "Teaching Science in Elementary and Middle School" provides pre- and in-service teachers with an introduction to basic science concepts and methods of science instruction, as well as practical strategies for the…
NASA Astrophysics Data System (ADS)
Syafrina, R.; Rohman, I.; Yuliani, G.
2018-05-01
This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.
Answers to Science Questions from the "Stop Faking It!" Guy
ERIC Educational Resources Information Center
Robertson, William C.
2009-01-01
This valuable and entertaining compendium of Bill Robertson's popular "Science 101" columns, from NSTA member journal "Science and Children," proves you don't have to be a science geek to understand basic scientific concepts. The author of the best-selling "Stop Faking It!" series explains everything from quarks to photosynthesis, telescopes to…
ERIC Educational Resources Information Center
Bektasli, Behzat
2016-01-01
Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…
Energy. Physical Science in Action. Teacher's Manual and Workbook.
ERIC Educational Resources Information Center
Sneider, Cary I.; Piccotto, Henri
The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…
Sound. Physical Science in Action. Teacher's Manual and Workbook.
ERIC Educational Resources Information Center
Chan, Janis Fisher; Friedland, Mary
The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of physical science. Six separate units…
Animals. Life Science in Action. Teacher's Manual and Workbook.
ERIC Educational Resources Information Center
Roderman, Winifred Ho; Booth, Gerald
The Science in Action series is designed to teach practical science concepts to special-needs students. It is intended to develop students' problem-solving skills by teaching them to observe, record, analyze, conclude, and predict. This document contains a student workbook which deals with basic principles of life science. Six separate units…
Developing an Achievement Test for the Subject of Sound in Science Education
ERIC Educational Resources Information Center
Sözen, Merve; Bolat, Mualla
2016-01-01
The purpose of this study is to develop an achievement test which includes the basic concepts about the subject of sound and its properties in middle school science lessons and which at the same time aims to reveal the alternative concepts that the students already have. During the process of the development of the test, studies in the field and…
BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…
This product is a powerpoint presentation. The presentation describes the science of toxicology and basic concepts in dose-response analysis. The presentation provides an example of computational toxicology approaches used to develop toxicity data for thousands of chemicals. The ...
Science of Food and Cooking: A Non-Science Majors Course
ERIC Educational Resources Information Center
Miles, Deon T.; Bachman, Jennifer K.
2009-01-01
Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…
Teaching Conceptually Oriented Social Science Education Programs in the Elementary School.
ERIC Educational Resources Information Center
Mahlios, Marc C.
Approaches to elementary social studies education that focus on concept and inquiry learning are outlined. The basic goal of the teacher in concept teaching is to aid the student in developing relationships among factual learning, conceptualization, and personal behavior. Learning activities should focus on the process concept (i.e., one that is…
ERIC Educational Resources Information Center
Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.
2000-01-01
Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…
Del Pinal, Guillermo; Reuter, Kevin
2017-04-01
The concepts expressed by social role terms such as artist and scientist are unique in that they seem to allow two independent criteria for categorization, one of which is inherently normative (Knobe, Prasada, & Newman, 2013). This study presents and tests an account of the content and structure of the normative dimension of these "dual character concepts." Experiment 1 suggests that the normative dimension of a social role concept represents the commitment to fulfill the idealized basic function associated with the role. Background information can affect which basic function is associated with each social role. However, Experiment 2 indicates that the normative dimension always represents the relevant commitment as an end in itself. We argue that social role concepts represent the commitments to basic functions because that information is crucial to predict the future social roles and role-dependent behavior of others. Copyright © 2016 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
A critical narrative review of transfer of basic science knowledge in health professions education.
Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole
2018-06-01
'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
NASA Astrophysics Data System (ADS)
Krall, Rebecca Mcnall; Lott, Kimberly H.; Wymer, Carol L.
2009-02-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers’ conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was utilized to assess 76 inservice elementary and middle school teachers from the central Appalachian region. Outcomes from four tasks assessing photosynthesis and respiration concepts are discussed. Findings revealed similarities between non-scientific conceptions the teachers demonstrated and non-scientific conceptions reported in the research literature on elementary and middle school students’ understanding of the concepts. Findings also informed subsequent inservice teacher professional development efforts in life science and the development of a biology course for preservice elementary teachers.
Atoms and Molecules: Do They Have a Place in Primary Science?
ERIC Educational Resources Information Center
Lee, Kam-Wah Lucille; Tan, Swee-Ngin
2004-01-01
In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…
A Method of Synthesizing Large Bodies of Knowledge in the Social Sciences.
ERIC Educational Resources Information Center
Thiemann, Francis C.
Employing concepts of formal symbolic logic, the philosophy of science, computer technology, and the work of Hans Zetterberg, a format is suggested for synthesizing and increasing use of the rapidly expanding knowledge of the social sciences. Steps in the process include formulating basic propositions, utilizing computers to establish sets, and…
Streamlining Science: Three New Science Tools Make Data Collection a Snap
ERIC Educational Resources Information Center
Brown, Mike
2006-01-01
Today, collecting, evaluating, and analyzing data--the basic concepts of scientific study--usually involves electronic probeware. Probeware combines sensors that collect data with software that analyzes it once it has been sent to a computer or calculator. Science inquiry has benefited greatly from the use of electronic probeware, providing…
Demonstration Assessment: Measuring Conceptual Understanding and Critical Thinking with Rubrics.
ERIC Educational Resources Information Center
Radford, David L.; And Others
1995-01-01
Presents the science demonstration assessment as an authentic- assessment technique to assess whether students understand basic science concepts and can use them to solve problems. Uses rubrics to prepare students for the assessment and to assign final grades. Provides examples of science demonstration assessments and the scoring of rubrics in the…
Science: A Practical View. Volume I. Teacher Edition. Applied Basic Curriculum Series.
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the first in a series of three, provides the intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) ecology (what marine science…
Your World and Welcome To It, Science (Experimental): 5314.03.
ERIC Educational Resources Information Center
Kleinman, David Z.
Presented is a beginning course in biology with emphasis on ecology for students with limited interest and few experiences in science. These students most likely will not take many more science courses. Included are the basic ecological concepts of communities, population, societies and the effects humans have on the environment. Like all other…
Translational Epidemiology in Psychiatry
Weissman, Myrna M.; Brown, Alan S.; Talati, Ardesheer
2012-01-01
Translational research generally refers to the application of knowledge generated by advances in basic sciences research translated into new approaches for diagnosis, prevention, and treatment of disease. This direction is called bench-to-bedside. Psychiatry has similarly emphasized the basic sciences as the starting point of translational research. This article introduces the term translational epidemiology for psychiatry research as a bidirectional concept in which the knowledge generated from the bedside or the population can also be translated to the benches of laboratory science. Epidemiologic studies are primarily observational but can generate representative samples, novel designs, and hypotheses that can be translated into more tractable experimental approaches in the clinical and basic sciences. This bedside-to-bench concept has not been explicated in psychiatry, although there are an increasing number of examples in the research literature. This article describes selected epidemiologic designs, providing examples and opportunities for translational research from community surveys and prospective, birth cohort, and family-based designs. Rapid developments in informatics, emphases on large sample collection for genetic and biomarker studies, and interest in personalized medicine—which requires information on relative and absolute risk factors—make this topic timely. The approach described has implications for providing fresh metaphors to communicate complex issues in interdisciplinary collaborations and for training in epidemiology and other sciences in psychiatry. PMID:21646577
The Mediating Effect of Context Variation in Mixed Practice for Transfer of Basic Science
ERIC Educational Resources Information Center
Kulasegaram, Kulamakan; Min, Cynthia; Howey, Elizabeth; Neville, Alan; Woods, Nicole; Dore, Kelly; Norman, Geoffrey
2015-01-01
Applying a previously learned concept to a novel problem is an important but difficult process called transfer. Practicing multiple concepts together (mixed practice mode) has been shown superior to practicing concepts separately (blocked practice mode) for transfer. This study examined the effect of single and multiple practice contexts for both…
A basic recursion concept inventory
NASA Astrophysics Data System (ADS)
Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.
2017-04-01
Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.
Science in Connecticut Classrooms.
ERIC Educational Resources Information Center
Bourquin, Eugene
1985-01-01
Outlines a science-industrial arts survey course which presents basic concepts of chemistry as applied to practical experiences. Course topics include: paints; solvents; finishes; metallurgy of iron; precious metals; calorimetry; fossil fuels; batteries; adhesives; cement; and others. The short units were designed for students with limited…
The Impact of Emotion on Learners' Application of Basic Science Principles to Novel Problems.
McConnell, Meghan M; Monteiro, Sandra; Pottruff, Molly M; Neville, Alan; Norman, Geoff R; Eva, Kevin W; Kulasegaram, Kulamakan
2016-11-01
Training to become a physician is an emotionally laden experience. Research in cognitive psychology indicates that emotions can influence learning and performance, but the materials used in such research (e.g., word lists) rarely reflect the complexity of material presented in medical school. The present study examined whether emotions influence learning of basic science principles. Fifty-five undergraduate psychology students were randomly assigned to write about positive, negative, or neutral life events for nine minutes. Participants were then taught three physiological concepts, each in the context of a single organ system. Testing consisted of 13 clinical cases, 7 presented with the same concept/organ system pairing used during training ("near transfer") and 6 with novel pairings ("far transfer"). Testing was repeated after one week with 13 additional cases. Forty-nine students provided complete data. Higher test scores were found when the concept/organ system pairing was held constant (near transfer = 51% correct vs. far = 33%; P < .001). Emotion condition influenced participants' overall performance, with individuals in the neutral condition (50.1%) performing better than those in the positive (38.2%, P < .05) and negative (37.7%, P < .001) emotion conditions. These data suggest that regardless of whether the emotion is positive or negative, mild affective states can impair learning of basic science concepts by novices. Demands on working memory and subsequent cognitive load provide a potential explanation. Future work will examine the extent to which these findings generalize to medical trainees.
Project Clarion: Three Years of Science Instruction in Title I Schools among K-Third Grade Students
NASA Astrophysics Data System (ADS)
Kim, Kyung Hee; VanTassel-Baska, Joyce; Bracken, Bruce A.; Feng, Annie; Stambaugh, Tamra; Bland, Lori
2012-10-01
The purpose of the study was to measure the effects of higher level, inquiry-based science curricula on students at primary level in Title I schools. Approximately 3,300 K-3 students from six schools were assigned to experimental or control classes ( N = 115 total) on a random basis according to class. Experimental students were exposed to concept-based science curriculum that emphasized `deep learning' though concept mastery and investigation, whereas control classes learned science from traditional school-based curricula. Two ability measures, the Bracken Basic Concept Scale-Revised (BBCS-R, Bracken 1998) and the Naglieri Nonverbal Intelligence Test (NNAT, Naglieri 1991), were used for baseline information. Additionally, a standardized measure of student achievement in science (the MAT-8 science subtest), a standardized measure of critical thinking, and a measure for observing teachers' classroom behaviors were used to assess learning outcomes. Results indicated that all ability groups of students benefited from the science inquiry-based approach to learning that emphasized science concepts, and that there was a positive achievement effect for low socio-economic young children who were exposed to such a curriculum.
Plant Content in the National Science Education Standards
ERIC Educational Resources Information Center
Hershey, David R.
2005-01-01
The National Science Education Standards (NSES) provides few resources for teaching about plants. To assure students understand and appreciate plants, the author advocates teaching about plants as a basic biological concept, avoiding animal chauvinism in biology coursework, correcting pseudoscience and anthropomorphisms about plants, and making…
Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans
NASA Astrophysics Data System (ADS)
Kendrick, E. O.; Deegan, L.
2011-12-01
Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.
ERIC Educational Resources Information Center
Kleinschmidt, Andy
2011-01-01
The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…
Janice VanCleave's the Human Body for Every Kid: Easy Activities That Make Learning Science Fun.
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides fun experiments that teach known concepts about the human body. It is designed to teach facts, concepts, and problem-solving strategies. The scientific concepts presented can be applied to many similar situations, and the exercises and activities were selected for their ability to be explained in basic terms with little…
ERIC Educational Resources Information Center
Yager, Robert E.; Choi, AeRan; Yager, Stuart O.; Akcay, Hakan
2009-01-01
Fifteen 4th-, 5th-, and 6th-grade teachers from five school districts each taught two sections of science--one with a Science-Technology-Society (STS) approach and the other with a more traditional textbook approach in which basic science concepts were the major organizers. Local, current, and personally relevant issues provided the context and…
Learning basic programming using CLIS through gamification
NASA Astrophysics Data System (ADS)
Prabawa, H. W.; Sutarno, H.; Kusnendar, J.; Rahmah, F.
2018-05-01
The difficulty of understanding programming concept is a major problem in basic programming lessons. Based on the results of preliminary studies, 60% of students reveal the monotonous of learning process caused by the limited number of media. Children Learning in Science (CLIS) method was chosen as solution because CLIS has facilitated students’ initial knowledge to be optimized into conceptual knowledge. Technological involvement in CLIS (gamification) helped students to understand basic programming concept. This research developed a media using CLIS method with gamification elements to increase the excitement of learning process. This research declared that multimedia is considered good by students, especially regarding the mechanical aspects of multimedia, multimedia elements and aspects of multimedia information structure. Multimedia gamification learning with the CLIS model showed increased number of students’ concept understanding.
Teaching through Trade Books: You Light up My Life
ERIC Educational Resources Information Center
Royce, Christine Anne
2016-01-01
The abstract nature of physical science concepts often means that they are the most challenging for elementary students to grasp. Understanding how light behaves allows students to form a foundation for their future understanding. This month's trade books and activities engage students in basic concepts related to light.
Understanding Thermal Equilibrium through Activities
ERIC Educational Resources Information Center
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-01-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…
NASA to Launch Mars Rover in 2020 Artist Concept
2016-07-14
NASA's Mars 2020 Project will re-use the basic engineering of NASA's Mars Science Laboratory/Curiosity to send a different rover to Mars, with new objectives and instruments. This artist's concept depicts the top of the 2020 rover's mast. http://photojournal.jpl.nasa.gov/catalog/PIA20760
Teaching Embedded System Concepts for Technological Literacy
ERIC Educational Resources Information Center
Winzker, M.; Schwandt, A.
2011-01-01
A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…
Marketing the Health Sciences Library.
ERIC Educational Resources Information Center
Norman, O. Gene
The basic activities of marketing are discussed, including gathering information and determining needs, designing a program around the elements of the marketing mix, and managing the marketing program. Following a general discussion, applications of the marketing concepts to a health sciences library are described. The administrator of the health…
Engineering a Classroom Discussion.
ERIC Educational Resources Information Center
Smith, Walter E.
1983-01-01
Describes physical science activities that civil/mechanical engineers (serving as resource persons) can use with students during units on force, work, center of gravity, simple machines, and other basic mechanics concepts. Activities are adapted from Career Oriented Modules to Explore Topics in Science for grades 5-9 (COMETS). (Author/JN)
Horii, Ikuo
2016-01-01
Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision medicine are to be addressed for the new aspect of efficacy and safety evaluation.
Identifying Opportunities for Vertical Integration of Biochemistry and Clinical Medicine.
Wendelberger, Karen J.; Burke, Rebecca; Haas, Arthur L.; Harenwattananon, Marisa; Simpson, Deborah
1998-01-01
Objectives: Retention of basic science knowledge, as judged by National Board of Medical Examiners' (NBME) data, suffers due to lack of apparent relevance and isolation of instruction from clinical application, especially in biochemistry. However, the literature reveals no systematic process for identifying key biochemical concepts and associated clinical conditions. This study systematically identified difficult biochemical concepts and their common clinical conditions as a critical step towards enhancing relevance and retention of biochemistry.Methods: A multi-step/ multiple stakeholder process was used to: (1) identify important biochemistry concepts; (2) determine students' perceptions of concept difficulty; (3) assess biochemistry faculty, student, and clinical teaching scholars' perceived relevance of identified concepts; and (4) identify associated common clinical conditions for relevant and difficult concepts. Surveys and a modified Delphi process were used to gather data, subsequently analyzed using SPSS for Windows.Results: Sixteen key biochemical concepts were identified. Second year medical students rated 14/16 concepts as extremely difficult while fourth year students rated nine concepts as moderately to extremely difficult. On average, each teaching scholar generated common clinical conditions for 6.2 of the 16 concepts, yielding a set of seven critical concepts and associated clinical conditions.Conclusions: Key stakeholders in the instructional process struggle to identify biochemistry concepts that are critical, difficult to learn and associated with common clinical conditions. However, through a systematic process beginning with identification of concepts and associated clinical conditions, relevance of basic science instruction can be enhanced.
Public's Knowledge of Science and Technology
ERIC Educational Resources Information Center
Pew Research Center, 2013
2013-01-01
The public's knowledge of science and technology varies widely across a range of questions on current topics and basic scientific concepts, according to a new quiz by the Pew Research Center and "Smithsonian" magazine. About eight-in-ten Americans (83%) identify ultraviolet as the type of radiation that sunscreen protects against. Nearly…
Sociotechnical Systems Design: An Engineering Program for Social-Science Students.
ERIC Educational Resources Information Center
Harrison, Howard L.; And Others
The University of Wisconsin College of Engineering's Sociotechnical Systems Design (STSD) Program, which was developed to provide social science students with systems concepts and basic technological skills necessary for attacking these problems, is considered. The need for such professionals, current educational responses, the organization of the…
Teaching Cell Anatomy with a Fabric Model
ERIC Educational Resources Information Center
Kluka, Michelle
2005-01-01
Middle schoolers are often first introduced to detailed cellular anatomy through one-dimensional drawings in basic life science books, fill-in-the blank handouts accompanied by notes from the teacher, or desktop hard-plastic commercial models that resemble giant lollipops. One of the most important, yet difficult, life science concepts for…
ERIC Educational Resources Information Center
Cobbs, Georgia A.; Cranor-Buck, Edith
2011-01-01
This article describes a particular activity, the Motorized Toy unit, which supports science, technology, engineering, and mathematics (STEM) goals and teaches students the basic concept of ratio. The unit addresses both mathematics and science standards and is part of a team-teaching activity. The unit comes from a curriculum titled A World In…
ERIC Educational Resources Information Center
Polman, Joseph; Newman, Alan; Farrar, Cathy; Saul, E. Wendy
2012-01-01
Much of the National Science Education Standards (NRC 1996), aside from the inquiry and teaching sections, focus on content. The authors' call is instead to build standards that focus on what students need to be scientifically literate in 10 or 15 years. Although a basic understanding of important scientific concepts and an understanding of how…
Cycles for Science: Curriculum Supplement for Chemistry (Grades 9-12).
ERIC Educational Resources Information Center
Rogers, Diana, Ed.
This document was developed in cooperation with secondary teachers and solid waste management professionals. The goal is to integrate steel recycling, natural resource conservation, and solid waste management into science learning. Basic concepts from the following chemistry units have been used to design the lessons and activities: transition…
What Does Culture Have to Do with Teaching Science?
ERIC Educational Resources Information Center
Madden, Lauren; Joshi, Arti
2013-01-01
In nearly every elementary school, plants are an important part of the science curriculum. Understanding basic ideas about plants prepares children to study more complicated scientific concepts including cell biology, genetics and heredity, complex ecosystem interactions, and evolution. It is especially important that teachers of children at the…
Third Grade Elementary Students' Perception of Science
ERIC Educational Resources Information Center
Demir, Metin
2015-01-01
The current study investigated which dimensions of scientific process are capitalized on by elementary school third graders to explain the concept of science at conceptual level. The study was conducted by using "Basic Qualitative Research", one of the qualitative research approaches with the participation of 225 elementary school third…
Columbus: Investigate His Quest.
ERIC Educational Resources Information Center
Sneider, Cary; And Others
1992-01-01
Uses Columbus' journey to teach science concepts. Reports on a questionnaire for grade 4-8 students (n=279) designed to determine what basic information the students knew about Columbus' journey, peoples' beliefs about the earth at that time, what Columbus discovered, and the effect on Native Americans. Integrated science activities on the size…
A roadmap for bridging basic and applied research in forensic entomology.
Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S
2011-01-01
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
ERIC Educational Resources Information Center
Moyer-Packenham, Patricia S.; Westenskow, Arla
2012-01-01
Intense focus on student achievement results in mathematics and science has brought about claims that K-12 teachers should be better prepared to teach basic concepts in these disciplines. The focus on teachers' mathematics and science content knowledge has been met by efforts to increase teacher knowledge through funded national initiatives…
Conserving Our Environment. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 13.
ERIC Educational Resources Information Center
Brophy, M.; Fryars, M.
Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit focuses on: (1) basic ecological and conservation concepts; (2) problems and complexities of…
NASA Astrophysics Data System (ADS)
Garman, Jamie L.
The purpose of the study was to document how individuals' experiences and understanding of genetics concepts affects their medical experiences. Recently pregnant women were interviewed because they represent a population that needs to comprehend biological and genetic information to understand their health. Three women were designated as science experts (SE) defined as having extensive university level science education and three women were designated as science non-experts (SNE). In general, SEs described a more positive pregnancy experience. Both SEs and SNEs demonstrated a basic understanding of genetic concepts but varied in the application of concepts to personal medical issues. Participants' views and experiences of pre and postnatal tests were linked to their understanding of nature of science components such as recognition that tests have limitations. Results from this study indicate an incomplete understanding of the nature of science among participants may have led to unsatisfactory medical experiences.
Van Decker, William A; Villafana, Theodore
2008-01-01
The teaching of basic science with regard to physics, instrumentation, and radiation safety has been part of nuclear cardiology training since its inception. Although there are clear educational and quality rationale for such, regulations associated with the Nuclear Regulatory Commission Subpart J of old 10 CFR section 35 (Title 10, Code of Federal Regulations, Part 35) from the 1960s mandated such prescriptive instruction. Cardiovascular fellowship training programs now have a new opportunity to rethink their basic science imaging curriculums with the era of "revised 10 CFR section 35" and the growing implementation of multimodality imaging training and expertise. This review focuses on the history and the why, what, and how of such a curriculum arising in one city and suggests examples of future implementation in other locations.
Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples
ERIC Educational Resources Information Center
Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun
2014-01-01
System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…
Is Acculturation in Hispanic Health Research a Flawed Concept? JSRI Working Paper.
ERIC Educational Resources Information Center
Ponce, Carlos; Comer, Brendon
Some health researchers have used the concept of acculturation to explain health behaviors or illnesses prevalent among Hispanic people. This paper reviews studies in health, educational, and social science research among Hispanics and argues that acculturation studies are seriously limited by several basic conceptual and methodological problems.…
ERIC Educational Resources Information Center
Jones, C. E.
1972-01-01
Describes various parts of a mini car and their chemical composition. Useful information is included for science teachers to relate basic chemistry concepts and techniques with their application in automobile industry. (PS)
ERIC Educational Resources Information Center
Okulu, Hasan Zuhtu; Oguz-Unver, Ayse
2015-01-01
From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…
Comparative planetology - Basic concepts, terminology, and definitions
NASA Astrophysics Data System (ADS)
Sliuta, Evgenii N.; Ivanov, Mikhail A.; Ivanov, Andrei V.
The book presents an alphabetical list of Russian terms, and their English equivalents, used in comparative planetology, space chemistry, and meteoritics, as well as many terms used in geology, geophysics, geochemistry, and sciences related to space studies. Besides giving the definitions of these terms, this work also contains basic information on planets, their satellites, and the largest asteroids.
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the first in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) ecology (what…
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the second in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. This guide is divided into three components. The first component…
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the third in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) the scientific…
Study of airborne science experiment management concepts for application to space shuttle, volume 2
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1973-01-01
Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.
ERIC Educational Resources Information Center
Wang, Su; Liu, Xiufeng; Zhao, Yandong
2012-01-01
As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science…
ERIC Educational Resources Information Center
Menuhin, Yehudi
1987-01-01
To support the statement that intuitive process is as important as the scientific, two axioms are explored by the violinist: no phenomenon discovered or created by science is possible unless its equivalent has already existed in nature; and the basic revelations of science can be formulated by intuition through meditation. (Author/KM)
Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry
ERIC Educational Resources Information Center
Knutson, Cassandra M.; Schneiderman, Deborah K.; Yu, Ming; Javner, Cassidy H.; Distefano, Mark D.; Wissinger, Jane E.
2017-01-01
With new K-12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for…
Devising Your Own Investigations Using Common Classroom and Household Materials.
ERIC Educational Resources Information Center
Wentworth, Daniel F.
Many elementary classroom teachers must overcome the following problems in order to teach science effectively: (1) a lack of background in scientific concepts and general information; (2) a scarcity of science equipment and supplies on hand or insufficient funds to purchase them; (3) little basic knowledge of the skills, processes and attitudes…
ERIC Educational Resources Information Center
Tscholl, Michael; Lindgren, Robb
2016-01-01
This research investigates the social learning affordances of a room-sized, immersive, and interactive augmented reality simulation environment designed to support children's understanding of basic physics concepts in a science center. Conversations between 97 parent-child pairs were analyzed in relation to categories of talk through which…
Agriscience Education for the Middle School. Instructional Units. Grade 7: Agriscience Exploration.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
Designed to supplement the Agriscience Education for the Middle School curriculum guide, this instructional packet provides lessons to enable agriscience teachers to bring basic science concepts into the classroom through practical, hands-on activities and experiments. The course is designed to assist seventh-grade students in exploring science as…
Career Exploration in the Physical Sciences.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
The purpose of the teacher's guide is to acquaint ninth grade students with the areas of physical science and the possible occupations within those areas. By exploring some of the basic concepts of chemistry, physics, metallurgy, and geology, students gain insight into the knowledge and skill required by those in occupations related to these…
Ciencia: Nivel A (Science: Level A).
ERIC Educational Resources Information Center
Duron, Dolores; And Others
A teacher's manual was developed for an elementary level science course in Spanish as part of an immersion program for English speaking children. The Level A manual is designed for kindergarten and grade 1 pupils. The five units cover the basic concepts of the weather, colors, animals, plants, and the five senses. Each unit includes vocabulary,…
Three Short Films about Water: Presenting Basic Concepts to Students and Stakeholders
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Hooper, R. P.; Michel, A.; Wilde, P.; Lilienfeld, L.
2011-12-01
Three short form (3 - 5 minute) movies were produced for CUAHSI, to convey basic concepts such as a hydrologic budget, stores and fluxes of water, and the flowpaths and residence time of water. The films were originally intended to be used by scientists to explain the concepts behind potential environmental observatories, but evolved into serving a broader purpose. The films combine still photos, satellite images, animation and video clips, and interviews with CUAHSI members explaining hydrologic concepts in simple, accessible terms. In producing these films, we have found the importance of engaging scientists in conversation first, to develop a script around key accessible concepts and relevant information. Film and communication professionals play a critical role in distilling the scientific explanation and concepts into accessible, engaging film material. The films have been widely distributed through CD and online to educators for use in courses. Additionally, they provide a way to engage stakeholders, particularly land owners, by conveying basic concepts that are necessary to understand the hydrologic and earth science foundation of many of today's political and environmental issues. The films can be viewed online at the CUAHSI website, which also contains links to other film related resources and programs.
The Concept of Energy in Psychological Theory. Cognitive Science Program, Technical Report No. 86-2.
ERIC Educational Resources Information Center
Posner, Michael I.; Rothbart, Mary Klevjord
This paper describes a basic framework for integration of computational and energetic concepts in psychological theory. The framework is adapted from a general effort to understand the neural systems underlying cognition. The element of the cognitive system that provides the best basis for attempting to relate energetic and computational ideas is…
Stop Faking It! Finally Understanding Science So You Can Teach It. Force and Motion.
ERIC Educational Resources Information Center
Robertson, William C.
This book aims to develop an understanding of basic physics concepts among school teachers in grades 3-8. The concepts covered in this book include force, motion, gravity, and circular motion without intimidating detailed units and formulas. Chapters include: (1) "Newton's First One"; (2) "In Which We Describe Motion and Then Change…
Dubois, Eline Agnès; Franson, Kari Lanette
2009-09-01
Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.
Aural mapping of STEM concepts using literature mining
NASA Astrophysics Data System (ADS)
Bharadwaj, Venkatesh
Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.
The Integration of Nutrition Education in the Basic Biomedical Sciences
ERIC Educational Resources Information Center
Raw, Isaias
1977-01-01
At the Center for Biomedical Education at the City University of New York, nutrition is integrated into the chemistry-biochemistry sequence of a six-year B.S.-M.D. program. Students perform an actual analysis of a sample of their own food, learning basic techniques and concepts, and also carry on experiments with rats on other diets. (Editor/LBH)
ERIC Educational Resources Information Center
Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboglu, Canan
2013-01-01
Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society,…
Hands-On Life Science Activities for Middle Schools. Teacher's Edition. First Edition.
ERIC Educational Resources Information Center
Newman, Barbara; Kramer, Stephanie
This book provides 50 enrichment activities for the science curriculum that provide concrete connections with important world events. Each activity is self-contained and provides everything the student needs to gain a basic understanding of a concept or to work through a project. The activities include innovative and traditional projects for both…
Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules
ERIC Educational Resources Information Center
Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie
2016-01-01
Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…
ERIC Educational Resources Information Center
Coordinating Council for Education in the Health Sciences for San Diego and Imperial Counties, CA.
Community college administrators and faculty in the areas of anatomy, physiology, chemistry, physics, and microbiology attended an 11-day workshop to redefine, modify, and develop science concepts for a core curriculum in the allied health field. To achieve workshop objectives, the committee heard presentations by consultants, visited clinical…
Teachers' Manual: Using Teams-Games-Tournament (TGT) in the Physical Science Classroom.
ERIC Educational Resources Information Center
Hollifield, John H.; Leavey, Marshall B.
This teacher's manual provides general and specific guidelines for use of Teams-Games-Tournaments (TGT) Physical Science Curriculum materials at the junior high-middle school level. TGT is an innovative instructional model which focuses on the learning of basic skills, information, and concepts, rewarding students in small teams rather than at the…
Aquatic Activities for Middle School Children. A Focus on the Effects of Acid Precipitation.
ERIC Educational Resources Information Center
Minnesota Univ., Minneapolis. Minnesota Sea Grant Program.
Basic water-related concepts and underlying principles of acid rain are described in this curriculum in a manner that young children can understand. The curriculum consists of activities presented in four units: Background Unit, Earth Science Unit, Life Science Unit, and Extension Unit. The first three units consist of several modules, each module…
Motivating Students To Read Physics Content.
ERIC Educational Resources Information Center
Sprague, Marsha M.; Cotturone, Jennifer
2003-01-01
Describes effective projects that made students effectively read scientific materials in the physics content area. Suggests using trade books in science to enhance student learning of basic physics concepts and comprehension of technical reading matter. (KHR)
NASA Astrophysics Data System (ADS)
Zuhaida, A.
2018-04-01
Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.
ERIC Educational Resources Information Center
Fang, Su-Chi; Hart, Christina; Clarke, David
2016-01-01
The amount of substance and its unit the mole is a basic concept in chemistry. However, previous research has shown that teaching and learning the concept are challenging tasks for both teachers and students. The purpose of this study was to pinpoint the problems which emerge in the teaching and learning process, and provide integrated suggestions…
ERIC Educational Resources Information Center
Aydin, Sinan
2014-01-01
Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…
ERIC Educational Resources Information Center
Kanli, Uygar
2014-01-01
Nowadays, the importance given to astronomy teaching in science and physics education has been gradually increasing. At the same time, teachers play an important role in remediating the misconceptions about astronomy concepts held by students. The present study aims to determine the misconceptions of pre-service physics teachers (n = 117),…
ERIC Educational Resources Information Center
Bianco, Andrew S.
2014-01-01
All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…
ERIC Educational Resources Information Center
Gkouskou, Eirini; Tunnicliffe, Sue Dale
2017-01-01
?he nature of scientific research goes beyond the learning of concepts and basic manipulation to the key factors of engaging students in identifying relevant evidence and reflecting on its interpretation. It is argued that young children have the ability to acquire viable, realistic concepts of the living world when involved in relevant activities…
A concept of a space hazard counteraction system: Astronomical aspects
NASA Astrophysics Data System (ADS)
Shustov, B. M.; Rykhlova, L. V.; Kuleshov, Yu. P.; Dubov, Yu. N.; Elkin, K. S.; Veniaminov, S. S.; Borovin, G. K.; Molotov, I. E.; Naroenkov, S. A.; Barabanov, S. I.; Emel'yanenko, V. V.; Devyatkin, A. V.; Medvedev, Yu. D.; Shor, V. A.; Kholshevnikov, K. V.
2013-07-01
The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.
Farley, Alistair; Hendry, Charles; McLafferty, Ella
This article, which forms part of the life sciences series, aims to promote understanding of the basic structure and function of cells. It assists healthcare professionals to appreciate the complex anatomy and physiology underpinning the functioning of the human body. Several introductory chemical concepts and terms are outlined. The basic building blocks of all matter, atoms, are examined and the way in which they may interact to form new compounds within the body is discussed. The basic structures and components that make up a typical cell are considered.
ERIC Educational Resources Information Center
McWethy, Patricia J., Ed.
Science is not a phenomenon restricted to one group of people. Instead it is something that is experienced by all, though often its form is unrecognized. Because science is experienced by many, one would expect that different groups of people would share common experiences in science. In an effort to determine whether there are similarities in…
Around the World in Science Class.
ERIC Educational Resources Information Center
Rubino, Ann M; Duerling, Carolyn K.
1991-01-01
Interdisciplinary learning modules called "Maude Visits..." are described. The modules apply basic scientific concepts to current and future problems facing people in various countries such as the Soviet Union. Activities using maps, money, and convection currents are included. (KR)
Teaching Basic Science Environmentally. Concept: Plants Reproduce Their Own Kind.
ERIC Educational Resources Information Center
Busch, Phyllis
1987-01-01
Offers suggestions for spring activities focusing on plant reproduction both indoors and outdoors. Suggests planting seeds to observe, measure, and record effects of temperature, moisture, fertilizer. Recommends outdoor study of the horsetail plant. (NEC)
NASA Astrophysics Data System (ADS)
Wang, Su; Liu, Xiufeng; Zhao, Yandong
2012-09-01
As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.
NGSS and the Next Generation of Science Teachers
NASA Astrophysics Data System (ADS)
Bybee, Rodger W.
2014-03-01
This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.
Smartphones: Powerful Tools for Geoscience Education
NASA Astrophysics Data System (ADS)
Johnson, Zackary I.; Johnston, David W.
2013-11-01
Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.
Relating the Learned Knowledge and Acquired Skills to Real Life: Function Sample
ERIC Educational Resources Information Center
Albayrak, Mustafa; Yazici, Nurullah; Simsek, Mertkan
2017-01-01
Considering that Mathematics is a multidimensional problem-solving method that can be effective in all areas of cultural life, it is of great importance because of its contribution to other sciences such as physical and social sciences. It is known that the basic concepts of mathematics, which can also be expressed as a way of life, have helped to…
Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course
ERIC Educational Resources Information Center
Miles, Deon T.; Borchardt, Adrienne C.
2014-01-01
Several years ago, a new nonscience majors course, The Science of Food and Cooking, was developed at our institution. The course covered basic scientific concepts that would normally be discussed in a typical introductory chemistry course, in the context of food and food preparation. Recently, the course has been revamped in three major ways: (1)…
Electricity. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Most people know that the flip of a switch will power up toys, appliances and lights with electricity and enable them to work. But why? What is it about electricity that makes it so powerful and so dangerous? Students will learn the basic concepts of positive and negative charges, current flow and open/closed circuits, and discover why getting a…
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
A brief simulation intervention increasing basic science and clinical knowledge.
Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David
2016-01-01
Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.
Operationalist Fallacies in Biology
NASA Astrophysics Data System (ADS)
Mahner, Martin
This paper examines - from a realist perspective - the influence of phenomenalism and its offshoot, operationalism, on concept formation in biology, as well as its implications for science education. To this end, the basic tenets of phenomenalism, versus those of realism, are expounded. The influence of phenomenalism and operationalism on current biology is criticized for leading to the confusion of cause with symptom - a mistake known as the operationalist fallacy. This fallacy consists in accepting pseudodefinitions, i.e., the so-called operational definitions such as An acid is a substance that turns litmus paper red, and pseudoexplanations such as The weather got worse because the barometer reading dropped. Many instances of this confusion can be found in science. This analysis, however, focuses on biology; it starts with more or less blatant examples, such as behaviorism and the concepts of genotype and homology, turning then to much less obvious examples, such as the definition of selection in terms of differential reproduction, the concept of a species as a reproductive community, the concept of isolating mechanisms, and thus the relational concept of biospecies. While it is maintained that operationalist fallacies are always to be avoided in science, it is discussed whether at least some of them are permissible in science education.
``Physics with a Smile''-Explaining Phenomena with a Qualitative Problem-Solving Strategy
NASA Astrophysics Data System (ADS)
Mualem, Roni; Eylon, Bat-Sheva
2007-03-01
Various studies indicate that high school physics students and even college students majoring in physics have difficulties in qualitative understanding of basic concepts and principles of physics.1-5 For example, studies carried out with the Force Concept Inventory (FCI)1,6 illustrate that qualitative tasks are not easy to solve even at the college level. Consequently, "conceptual physics" courses have been designed to foster qualitative understanding, and advanced high school physics courses as well as introductory college-level courses strive to develop qualitative understanding. Many physics education researchers emphasize the importance of acquiring some qualitative understanding of basic concepts in physics as early as middle school or in the context of courses that offer "Physics First" in the ninth grade before biology or chemistry.7 This trend is consistent with the call to focus the science curriculum on a small number of basic concepts and ideas, and to instruct students in a more "meaningful way" leading to better understanding. Studies7-10 suggest that familiar everyday contexts (see Fig. 1) are useful in fostering qualitative understanding.
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
God particles in the perspective of The AlQuran Surah Yunus: 61 and modern science
NASA Astrophysics Data System (ADS)
Jumini, Sri
2017-01-01
The Qur'an is the book of Allah revealed to guide human beings, settting the rules of life to enable them to achieve happiness in this world and hereafter. The Qur'an has mentioned various scientific nature detailly and accurately so we are able to find new knowledge which is previously unknown by human being. One was about the God particle (Higgs Boson). This article aims to provide a deeper understanding of the concept of the Higgs Boson, the Higgs Boson explained this concept in detail relatated to 1) Perspective of science 2) Perspective of Al-Qur'an 3) Development of technology or science and technology. This study is a qualitative research using library research (library research) that examines and analyzes the books relating directly or indirectly. The results of the analysis states that 1) The concept of the Higgs Boson particle in terms of basic science is also the reason why almost all elementary particles have a greater mass, 2) The concept of the Higgs Boson in the Qur'an is implied from the results of the comparison interpretation of the commentators in Surah Yunus paragraph 61 related to Atom concepts and smaller particles theory of (Higgs Boson), interpretation of Al-Maraghi, and Al-Misbah. 3) The concept of the Higgs Boson in science and technology provide the most advance technology and it is the greatest achievement in the world of science and technology.
An overview of conceptual understanding in science education curriculum in Indonesia
NASA Astrophysics Data System (ADS)
Widiyatmoko, A.; Shimizu, K.
2018-03-01
The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.
The concept verification testing of materials science payloads
NASA Technical Reports Server (NTRS)
Griner, C. S.; Johnston, M. H.; Whitaker, A.
1976-01-01
The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.
Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning
NASA Astrophysics Data System (ADS)
Novak, Joseph D.
2005-03-01
This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.
Diagnostic Tests for Entering and Departing Undergraduate Students
NASA Astrophysics Data System (ADS)
Waltham, Chris; Kotlicki, A.
2006-12-01
A diagnostic test administered at the start of a class should test basic concepts which are recognized as course prerequisites. The questions should not be over-packaged: e.g. students should be required to create models, rather than this being done for them each time. Students should be allowed great latitude in their answers, so we can discover what they are thinking. When administered at the end of a class the goals should be similar: testing concepts taught in the class itself and the retention of necessary concepts from previous classes. Great care has to be taken to avoid teaching to the test. In assessing an entire program, for example an undergraduate majors degree in physics, then one looks for very general skills and knowledge not specific to any one course. The purpose of an undergraduate degree in physics (or indeed any science) is to equip the students with a set of problem-solving skills and basic knowledge which can be applied in a large variety of workplace settings and to allow that student to contribute to civic society as a science-literate person. The creator of any diagnostic test should always have these big goals in mind. We have developed a set of questions which we think fulfill these criteria, yet are not specific to any particular level of science education. They have been administered to students in secondary schools across Canada, incoming first-year science students and final-year physics students at the University of British Columbia. The results will be presented.
Binstock, Judith; Junsanto-Bahri, Tipsuda
2014-04-01
The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.
Something's Fishy in Paxton Lake: A Case on Speciation in Sticklebacks.
ERIC Educational Resources Information Center
Sharp, Joan
2002-01-01
Introduces a case study on speciation and evolutionary mechanisms. Teaches science process skills as well as natural selection, biological species concepts, basic genetic terminology, and classification. Includes teaching notes and classroom management strategies. (Contains 14 references.) (YDS)
Fundamentals of nutrigenetics and nutrigenomics
USDA-ARS?s Scientific Manuscript database
This volume of Progress in Molecular Biology and Translational Science is devoted to the exciting and promising field of nutrigenetics and nutrigenomics. The introductory chapter defines the basic concepts necessary for the interpretation of the material covered in the remainder of the volume. Empha...
Properties of the ion-ion hybrid resonator in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less
Simple Machines. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
In today's world, kids are aware that there are machines all around them. What they may not realize is that the function of all machines is to make work easier in some way. Simple Machines uses engaging visuals and colorful graphics to explain the concept of work and how humans use certain basic tools to help get work done. Students will learn…
ERIC Educational Resources Information Center
Dogan, Nihal
2017-01-01
In 2016, the Program for International Student Assessment (PISA) showed that approximately 44.4% of students in Turkey obtained very low grades when their scientific knowledge was evaluated. In addition, the vast majority of students were shown to have no knowledge of basic scientific terms or concepts. Science teachers play a significant role in…
ERIC Educational Resources Information Center
Khatri, Daryao
2011-01-01
Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences. This…
ERIC Educational Resources Information Center
Conway, Lorraine
Based on the idea that active participation stimulates the processes by which learning takes place, this document provides teachers and students with a variety of information and learning activities that deal with plants and animals in nature. Basic concepts are presented through the use of laboratory experiments, worksheet exercises, diagrams,…
Open Science: a first step towards Science Communication
NASA Astrophysics Data System (ADS)
Grigorov, Ivo; Tuddenham, Peter
2015-04-01
As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.
Basic Science Considerations in Primary Total Hip Replacement Arthroplasty
Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif
2010-01-01
Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240
Clinical physiology grand rounds.
Richards, Jeremy; Schwartzstein, Richard; Irish, Julie; Almeida, Jacqueline; Roberts, David
2013-04-01
Clinical Physiology Grand Rounds (CPGR) is an interactive, case-based conference for medical students designed to: (1) integrate preclinical and clinical learning; (2) promote inductive clinical reasoning; and (3) emphasise students as peer teachers. CPGR specifically encourages mixed learning level student interactions and emphasises the use of concept mapping. We describe the theoretical basis and logistical considerations for an interactive, integrative, mixed-learner environment such as CPGR. In addition, we report qualitative data regarding students' attitudes towards and perceptions of CPGR. Medical students from first to fourth year participate in a monthly, interactive conference. The CPGR was designed to bridge gaps and reinforce linkages between basic science and clinical concepts, and to incorporate interactive vertical integration between preclinical and clinical students. Medical education and content experts use Socratic, interactive teaching methods to develop real-time concept maps to emphasise the presence and importance of linkages across curricula. Student focus groups were held to assess attitudes towards and perceptions of the mixed-learner environment and concept maps in CPGR. Qualitative analyses of focus group transcripts were performed to develop themes and codes describing the students' impressions of CPGR. CPGR is a case-based, interactive conference designed to help students gain an increased appreciation of linkages between basic science and clinical medicine concepts, and an increased awareness of clinical reasoning thought processes. Success is dependent upon explicit attention being given to goals for students' integrated learning. © Blackwell Publishing Ltd 2013.
NASA Astrophysics Data System (ADS)
Selkin, P. A.; Cline, E. T.; Beaufort, A.
2008-12-01
In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.
ERIC Educational Resources Information Center
Anderson, Steven W.; Libarkin, Julie C.
2016-01-01
Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…
ERIC Educational Resources Information Center
Doganay, Ahmet
2010-01-01
The scores of Turkish students on the international tests such as TIMMS and PISA, which assess basic science concepts, reading and problem-solving abilities, are among the lowest. Although understanding the concept of democracy has been studied across the countries, it has not been clearly researched in Turkey. For this reason, the focus of this…
A simulation for teaching the basic and clinical science of fluid therapy.
Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf
2009-09-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.
White light Sagnac interferometer—a common (path) tale of light
NASA Astrophysics Data System (ADS)
Schwartz, Eyal
2017-11-01
White or polychromatic light sources are vastly abundant in nature and lie in our most basic understanding of the theory of light, beginning from stars like our Sun and extending to every common household light bulb or street lamp. In this paper, I present concepts of white light interferometery using a common-path Sagnac interferometer, manifested in a straightforward laboratory experiment. I further show the use of this as a Fourier transform spectrometer while presenting a basic overview of the theoretical concepts and spectrum of different light sources obtained experimentally. This work, both experimentally and analytically, is suitable for upper-level undergraduate physics or engineering courses where electromagnetic theory and optics are discussed. The experiment and theory presents important deep concepts and aspects in modern optics and physics that every science student should acquire.
Envisioning Science Environment Technology and Society
NASA Astrophysics Data System (ADS)
Maknun, J.; Busono, T.; Surasetja, I.
2018-02-01
Science Environment Technology and Society (SETS) approach helps students to connect science concept with the other aspects. This allows them to achieve a clearer depiction of how each concept is linked with the other concepts in SETS. Taking SETS into account will guide students to utilize science as a productive concept in inventing and developing technology, while minimizing its negative impacts on the environment and society. This article discusses the implementation of Sundanese local wisdoms, that can be found in the local stilt house (rumah panggung), in the Building Construction subject in vocational high school on Building Drawing Technique expertise. The stilt house structural system employs ties, pupurus joints, and wedges on its floor, wall, and truss frames, as well as its beams. This local knowledge was incorporated into the Building Construction learning program and applied on the following basic competences: applying wood’s specification and characteristics for building construction, managing wood’s specification and characteristics for building construction, analyzing building structure’s type and function based on their characteristics, reasoning building structure’s type and function based on their characteristics, categorizing wood construction works, and reasoning wood construction works. The research result is the Sundanese traditional-local-wisdom-based learning design of the Building Construction subject.
Body Structure and Function. Teacher Edition.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This curriculum guide contains the materials required to teach a course in body structure and function. The following topics are covered in the course's 17 instructional units: basic concepts of physical and life sciences; microbiology and bacteriology; the integumentary, skeletal, muscular, digestive, circulatory, respiratory, urinary, central…
Teaching Basic Science Environmentally.
ERIC Educational Resources Information Center
Busch, Phyllis S.
1984-01-01
Five activities on the concept of evaporation as a cooling process is presented. Activities include discovering which hand, the wet one or dry one, is cooler; reviving a wilted plant; measuring surface area of leaves; collecting water vapor from leaves; and finding out the cooling effect of trees. (ERB)
Students' Mental Models of Atomic Spectra
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis; Wang, Lu
2016-01-01
Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…
Bioinformatics and the Undergraduate Curriculum
ERIC Educational Resources Information Center
Maloney, Mark; Parker, Jeffrey; LeBlanc, Mark; Woodard, Craig T.; Glackin, Mary; Hanrahan, Michael
2010-01-01
Recent advances involving high-throughput techniques for data generation and analysis have made familiarity with basic bioinformatics concepts and programs a necessity in the biological sciences. Undergraduate students increasingly need training in methods related to finding and retrieving information stored in vast databases. The rapid rise of…
Educator's Guide for Mission to Earth: LANDSAT Views the World
NASA Technical Reports Server (NTRS)
Tindal, M. A.
1978-01-01
This teacher's guide is specifically designed to provide information and suggestions for using LANDSAT imagery to teach basic concepts in several content areas. Content areas include: (1) Earth science and geology; (2) environmental studies; (3) geography; and (4) social and urban studies.
Cajal and the Conceptual Weakness of Neural Sciences
Delgado-García, José M.
2015-01-01
The experimental and conceptual contributions of Santiago Ramón y Cajal remain almost as fresh and valuable as when his original proposals were published more than a century ago—a rare example, contrasting with other related sciences. His basic concepts on the neuron as the main building block of the central nervous system, the dynamic polarization principle as a way to understand how neurons deal with ongoing active processes, and brain local structural arrangements as a result of the functional specialization of selected neural circuits are concepts still surviving in present research papers dealing with brain function during the performance of cognitive and/or behavioral activities. What is more, the central dogma of the Neuroscience of today, i.e., brain plasticity as the morpho-functional substrate of memory and learning processes, was already proposed and documented with notable insights by Ramón y Cajal. From this background, I will try to discuss in this chapter which new functional and structural concepts have been introduced in contemporary Neuroscience and how we will be able to construct a set of basic principles underlying brain functions for the twenty-first century. PMID:26483644
Validating concepts of mental disorder: precedents from the history of science.
Miller, Robert
2014-10-01
A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Sackes, Mesut
2010-01-01
It is important to help young children make connections between events in their lives and science concepts in preschool classrooms, so introducing basic meteorology ideas offer a great opportunity to make weather connections and awaken scientific curiosity (Spiropoulou, Kostopoulos, and Jacovides 1999). Therefore, this article presents a science…
Human Gene Therapy: Genes without Frontiers?
ERIC Educational Resources Information Center
Simon, Eric J.
2002-01-01
Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…
Teaching Psychology Students Computer Applications.
ERIC Educational Resources Information Center
Atnip, Gilbert W.
This paper describes an undergraduate-level course designed to teach the applications of computers that are most relevant in the social sciences, especially psychology. After an introduction to the basic concepts and terminology of computing, separate units were devoted to word processing, data analysis, data acquisition, artificial intelligence,…
Agriscience Education for the Middle School.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
This curriculum guide, which is intended for middle school agriculture teachers in Virginia, outlines a three-course competency-based agriscience program to give middle school students an understanding of basic science concepts through agriculture. The guide begins with a program description that includes descriptions of the program's three…
Entropy and Information: A Multidisciplinary Overview.
ERIC Educational Resources Information Center
Shaw, Debora; Davis, Charles H.
1983-01-01
Cites representative extensions of concept of entropy (measure of the amount of energy unavailable for useful work; from the second law of thermodynamics) noting basic relationships between entropy, order, information, and meaning in such disciplines as biology, economics, information science, the arts, and religion. Seventy-eight references are…
University Students' Understanding of Electromagnetic Induction
ERIC Educational Resources Information Center
Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina
2013-01-01
This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…
Installing a practical research project and interpreting research results
R. Kasten Dumroese; David L. Weny
2002-01-01
We review the basic concepts of science and research and the scientific process. Using an example from a bareroot nursery, we show how a practical research project can be done at any type of nursery, meshing sound statistical principles with limitations of busy nursery managers.
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
ERIC Educational Resources Information Center
Wright, Emmett L.; Perna, Jack A.
1992-01-01
Presents the four program goals for biology set forth in the National Science Teacher Association's "A Focus on Excellence: Biology Revisited" to (1) address biosphere, human society, and individual needs; (2) encourage students to experience, understand, and appreciate of natural systems; (3) apply the basic concept of the biosphere; and (4)…
Existential/Phenomenology as a Philosophical Base for a Feminist Psychology.
ERIC Educational Resources Information Center
Boukydis, Kathleen McGuire
Concepts of existential/phenomenology philosophy more closely reflect women's experience of the world and provide a better base for a feminist science of psychology. Womens' experience includes basic cooperation, nurturance, empathy, and egalitarian morality. Logical positivist psychology discriminates against women by excluding inner experiencing…
[Introduction to Exploratory Factor Analysis (EFA)].
Martínez, Carolina Méndez; Sepúlveda, Martín Alonso Rondón
2012-03-01
Exploratory Factor Analysis (EFA) has become one of the most frequently used statistical techniques, especially in the medical and social sciences. Given its popularity, it is essential to understand the basic concepts necessary for its proper application and to take into consideration the main strengths and weaknesses of this technique. To present in a clear and concise manner the main applications of this technique, to determine the basic requirements for its use providing a description step by step of its methodology, and to establish the elements that must be taken into account during its preparation in order to not incur in erroneous results and interpretations. Narrative review. This review identifies the basic concepts and briefly describes the objectives, design, assumptions, and methodology to achieve factor derivation, global adjustment evaluation, and adequate interpretation of results. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Proposed BISOL Facility - a Conceptual Design
NASA Astrophysics Data System (ADS)
Ye, Yanlin
2018-05-01
In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.
NASA Astrophysics Data System (ADS)
Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.
2017-12-01
The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.
Design concepts for the Centrifuge Facility Life Sciences Glovebox
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Horkachuck, Michael J.; Mckeown, Kellie A.
1989-01-01
The Life Sciences Glovebox will provide the bioisolated environment to support on-orbit operations involving non-human live specimens and samples for human life sceinces experiments. It will be part of the Centrifuge Facility, in which animal and plant specimens are housed in bioisolated Habitat modules and transported to the Glovebox as part of the experiment protocols supported by the crew. At the Glovebox, up to two crew members and two habitat modules must be accommodated to provide flexibility and support optimal operations. This paper will present several innovative design concepts that attempt to satisfy the basic Glovebox requirements. These concepts were evaluated for ergonomics and ease of operations using computer modeling and full-scale mockups. The more promising ideas were presented to scientists and astronauts for their evaluation. Their comments, and the results from other evaluations are presented. Based on the evaluations, the authors recommend designs and features that will help optimize crew performance and facilitate science accommodations, and specify problem areas that require further study.
NASA Astrophysics Data System (ADS)
Wang, Kaiwei; Wang, Xiaoping
2017-08-01
In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.
Fundamentals of neurogastroenterology: basic science.
Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D
2006-04-01
The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.
Motivating students' participation in a computer networks course by means of magic, drama and games.
Hilas, Constantinos S; Politis, Anastasios
2014-01-01
The recent economic crisis has forced many universities to cut down expenses by packing students into large lecture groups. The problem with large auditoria is that they discourage dialogue between students and faculty and they burden participation. Adding to this, students in computer science courses usually find the field to be full of theoretical and technical concepts. Lack of understanding leads them to lose interest and / or motivation. Classroom experience shows that the lecturer could employ alternative teaching methods, especially for early-year undergraduate students, in order to grasp their interest and introduce basic concepts. This paper describes some of the approaches that may be used to keep students interested and make them feel comfortable as they comprehend basic concepts in computer networks. The lecturing procedure was enriched with games, magic tricks and dramatic representations. This approach was used experimentally for two semesters and the results were more than encouraging.
The Anatomy of Learning Anatomy
ERIC Educational Resources Information Center
Wilhelmsson, Niklas; Dahlgren, Lars Owe; Hult, Hakan; Scheja, Max; Lonka, Kirsti; Josephson, Anna
2010-01-01
The experience of clinical teachers as well as research results about senior medical students' understanding of basic science concepts has much been debated. To gain a better understanding about how this knowledge-transformation is managed by medical students, this work aims at investigating their ways of setting about learning anatomy.…
Demonstrating Proof by Contrapositive and Contradiction through Physical Analogs.
ERIC Educational Resources Information Center
Kaiser, Mark J.
1993-01-01
Presents examples where mathematical and physical reasoning complement each other in interpreting and analyzing some basic science concepts using proof by contradiction and contrapositive. Examples involve the rotation of the moon, the stability of electrons and protons, the electron's orbit about the nucleus, and the earth's liquid core. (MDH)
More than Meets the Eye--Infrared Cameras in Open-Ended University Thermodynamics Labs
ERIC Educational Resources Information Center
Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan
2016-01-01
Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property.…
The Problem of "Bildung" and the Basic Structure of "Bildungstheorie"
ERIC Educational Resources Information Center
Rucker, Thomas; Gerónimo, Eric Dan
2017-01-01
In this article, an attempt is made to introduce a systematization of the loosely connected group of authors called "Bildungstheorie". This ought to not only be of significance for German-speaking educational science, for the concept of "Bildung" is also increasingly used internationally for the formulation and development of…
Composition, Philosophy, and Rhetoric: The "Problem of Power."
ERIC Educational Resources Information Center
Sebberson, David
1993-01-01
Remarks on moments in Louise Wetherbee Phelps' book "Composition as a Human Science" where the absence of power presents a problematic for composition. Presents Jurgen Habermas for and against Phelps, noting the gestures of both authors against scientism while drawing on several of Habermas' basic concepts. Proposes rereading Aristotle's…
Bringing Science Research into Secondary Schools
ERIC Educational Resources Information Center
Allwood, Dan A.; Dean, Julian; Bryan, Matthew T.; Baker, Alan
2009-01-01
Finite element modelling software has been used to allow secondary school students to study nanoscale magnetic materials for hard drive recording applications. The students were introduced to the basic concepts of finite element modelling using a freely available internet game before modelling the magnetization reversal of single magnetic grains.…
Introduction to the theory of machines and languages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidhaas, P. P.
1976-04-01
This text is intended to be an elementary ''guided tour'' through some basic concepts of modern computer science. Various models of computing machines and formal languages are studied in detail. Discussions center around questions such as, ''What is the scope of problems that can or cannot be solved by computers.''
Students' and Teachers' Application of Surface Area to Volume Relationships
ERIC Educational Resources Information Center
Taylor, Amy R.; Jones, M. Gail
2013-01-01
The "National Science Education Standards" emphasize teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale (NRC 2011). Scale includes understanding that different characteristics, properties, or relationships within a system might change as its dimensions are increased or decreased…
Traditional Labs + New Questions = Improved Student Performance.
ERIC Educational Resources Information Center
Rezba, Richard J.; And Others
1992-01-01
Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…
Introduction to Electrical Science.
ERIC Educational Resources Information Center
LePage, Wilbur R.; Balabanian, Norman
This text (in mimeographed form) was developed under contract with the United States Office of Education and is intended as material of a first course in the electrical engineering sequence. Introductory concepts such as charge, fields, potential difference, current, and some of the basic physical laws are presented in Chapter I. Subsequent…
Basic Statistical Concepts and Methods for Earth Scientists
Olea, Ricardo A.
2008-01-01
INTRODUCTION Statistics is the science of collecting, analyzing, interpreting, modeling, and displaying masses of numerical data primarily for the characterization and understanding of incompletely known systems. Over the years, these objectives have lead to a fair amount of analytical work to achieve, substantiate, and guide descriptions and inferences.
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2005-10-01
A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.
Translational Medicine is developing in China: a new venue for collaboration.
Wang, Xiangdong; Wang, Ena; Marincola, Francesco M
2011-01-04
Translational Medicine is an emerging area comprising multidisciplinary Research from basic sciences to medical applications well summarized by the Bench-to-Beside concept; this entails close collaboration between clinicians and basic scientists across institutes. We further clarified that Translational Medicine should be regarded as a two-way road: Bench-to-Bedside and Bedside-to-Bench, to complement testing of novel therapeutic strategies in humans with feedback understanding of how they respond to them. It is, therefore, critical and important to define and promote Translational Medicine among clinicians, basic Researchers, biotechnologists, politicians, ethicists, sociologists, investors and coordinate these efforts among different Countries, fostering aspects germane only to this type of Research such as, as recently discussed, biotechnology entrepreneurship. Translational Medicine as an inter-disciplinary science is developing rapidly and widely and, in this article, we will place a special emphasis on China.
Basic science research in urology training.
Eberli, D; Atala, A
2009-04-01
The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.
Machine learning for Big Data analytics in plants.
Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng
2014-12-01
Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
A theory of eu-estrogenemia: a unifying concept
Turner, Ralph J.; Kerber, Irwin J.
2017-01-01
Abstract Objective: The aim of the study was to propose a unifying theory for the role of estrogen in postmenopausal women through examples in basic science, randomized controlled trials, observational studies, and clinical practice. Methods: Review and evaluation of the literature relating to estrogen. Discussion: The role of hormone therapy and ubiquitous estrogen receptors after reproductive senescence gains insight from basic science models. Observational studies and individualized patient care in clinical practice may show outcomes that are not reproduced in randomized clinical trials. The understanding gained from the timing hypothesis for atherosclerosis, the critical window theory in neurosciences, randomized controlled trials, and numerous genomic and nongenomic actions of estrogen discovered in basic science provides new explanations to clinical challenges that practitioners face. Consequences of a hypo-estrogenemic duration in women's lives are poorly understood. The Study of Women Across the Nation suggests its magnitude is greater than was previously acknowledged. We propose that the healthy user bias was the result of surgical treatment (hysterectomy with oophorectomy) for many gynecological maladies followed by pharmacological and physiological doses of estrogen to optimize patient quality of life. The past decade of research has begun to demonstrate the role of estrogen in homeostasis. Conclusions: The theory of eu-estrogenemia provides a robust framework to unify the timing hypothesis, critical window theory, randomized controlled trials, the basic science of estrogen receptors, and clinical observations of patients over the past five decades. PMID:28562489
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Myers, Michael K.
2011-01-01
This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.
NASA Astrophysics Data System (ADS)
Bich Ha, Nguyen
2011-12-01
Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the main aims of the textbook. The book consists of 15 chapters. According to their detailed contents they can be divided into three groups. In five chapters forming the first group (Introduction, Structure, Length Scales, Types of Nanostructures, Absorption and Emission Basics) the author presents the notions, definitions and concepts related to nanosystems, as well as the length scales of all their physical parameters. The contents of these chapters have been written for all readers studying any undergraduate academic programme in natural sciences and engineering. The subsequent seven chapters forming the second group (A Quantum Mechanics Review, Model Quantum Mechanics Problems, Additional Model Problems, Density of States, Bands, Time-Dependent Perturbation Theory, Interband Transitions) contain a comprehensive and easily understandable presentation of the theoretical basics of nanoscience. The last three chapters (Synthesis, Characterization, Applications) contain presentations on the fundamental methods in the experimental studies and applications of nanosystems. This book is very useful not only for training beginners in research and engineering in nanoscience and nanotechnology, but also for attracting the interest of specialists in other scientific disciplines to the application of the achievements of this new emerging multidisciplinary scientific field.
How Effective Is Our Teaching?
NASA Astrophysics Data System (ADS)
Wyckoff, S.
2002-05-01
More than 90% of U.S. university introductory physics courses are taught using lecture methods in spite of the large amount of research indicating that interactive teaching is considerably more effective. A brief overview of physics education research will be given, together with relevant connections with astronomy education research. Large enrollment classrooms have in the past presented obstacles to converting from lecture to interactive teaching. However, classroom communication systems (CCS) now provide a cost-effective way to convert any science classroom into an interactive learning environment. A pretest-posttest study using control groups of ten large enrollment introductory physics courses will be described. A new instrument, the Physics Concept Survey (PCS), developed to measure student understanding of basic concepts will be described, together with a classroom observation instrument, the Reformed Teaching Observation Protocol (RTOP), for measuring the extent that interactive teaching is used in a science classroom. We find that student conceptual understanding was enhanced by a factor of three in the interactive classrooms compared with the traditional lecture (control) courses. Moreover, a correlation between the PCS normalized gains and the RTOP scores is indicative that the interaction in the classrooms is the cause of the students' improved learning of basic physics concepts. This research was funded by the NSF (DUE 9453610).
Science-based stockpile stewardship at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, J.
1995-10-01
Let me tell you a little about the Los Alamos Neutron Science Center (LANSCE) and how some of the examples you heard about from Sig Hecker and John Immele fit together in this view of a different world in the future where defense, basic and industrial research overlap. I am going to talk about science-based stockpile stewardship at LANSCE; the accelerator production of tritium (APT), which I think has a real bearing on the neutron road map; the world-class neutron science user facility, for which I will provide some examples so you can see the connection with defense science; andmore » lastly, testing concepts for a high-power spallation neutron target and waste transmutation.« less
The Bobath concept in contemporary clinical practice.
Graham, Julie Vaughan; Eustace, Catherine; Brock, Kim; Swain, Elizabeth; Irwin-Carruthers, Sheena
2009-01-01
Future development in neurorehabilitation depends upon bringing together the endeavors of basic science and clinical practice. The Bobath concept is widely utilized in rehabilitation following stroke and other neurological conditions. This concept was first developed in the 1950s, based on the neuroscience knowledge of those times. The theoretical basis of the Bobath concept is redefined based on contemporary neuroscience and rehabilitation science. The framework utilized in the Bobath concept for the analysis of movement and movement dysfunction is described. This framework focuses on postural control for task performance, the ability to move selectively, the ability to produce coordinated sequences of movement and vary movement patterns to fit a task, and the role of sensory input in motor behaviour and learning. The article describes aspects of clinical practice that differentiate this approach from other models of practice. Contemporary practice in the Bobath concept utilizes a problem-solving approach to the individual's clinical presentation and personal goals. Treatment is focused toward remediation, where possible, and guiding the individual towards efficient movement strategies for task performance. The aim of this article is to provide a theoretical framework on which future research into the Bobath concept can be based.
A THEORY OF WORK ADJUSTMENT. MINNESOTA STUDIES IN VOCATIONAL REHABILITATION, 15.
ERIC Educational Resources Information Center
DAWIS, RENE V.; AND OTHERS
A THEORY OF WORK ADJUSTMENT WHICH MAY CONTRIBUTE TO THE DEVELOPMENT OF A SCIENCE OF THE PSYCHOLOGY OF OCCUPATIONAL BEHAVIOR IS PROPOSED. IT BUILDS ON THE BASIC PSYCHOLOGICAL CONCEPTS OF STIMULUS, RESPONSE, AND REINFORCEMENT, AND PROVIDES A RESEARCH PARADIGM FOR GENERATING TESTABLE HYPOTHESES. IT WAS DERIVED FROM EARLY RESEARCH EFFORTS OF THE…
Development and Use of a Conceptual Survey in Introductory Quantum Physics
ERIC Educational Resources Information Center
Wuttiprom, Sura; Sharma, Manjula Devi; Johnston, Ian D.; Chitaree, Ratchapak; Soankwan, Chernchok
2009-01-01
Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple-choice conceptual survey to investigate…
I Wonder. Science Worksheets for the Primary Grades.
ERIC Educational Resources Information Center
Daniel, Charlie; Daniel, Becky
Designed to use simple materials that can be found in almost any household, this document provides elementary teachers and students with activities and worksheets that deal with basic scientific concepts. The activities are intended to help students form and test their own hypotheses. Each topic in the booklet is addressed through a simple…
Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.
ERIC Educational Resources Information Center
Anderson, Charles; Biggs, Pat; Brown, Deborah; Culivan, Steve; Ellis, Sue; Gerard, James; Hardwick, Ellen; Poff, Norm; Rosenberg, Carla; Shearer, Deborah; Tripp, Octavia; Ernst, Ron
This educator's guide explains basic aeronautical concepts and provides a background in the history of aviation within the context of flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They were developed by NASA Aerospace Education Services Program specialists who have…
Preliminary Investigation of the 1991 Medical College Admission Test Factor Structure.
ERIC Educational Resources Information Center
Li, Weichang; Mitchell, Karen J.
A substantially revised Medical College Admission Test (MCAT) was introduced in spring 1991. The new examination is designed to assess critical thinking skills, basic concepts and problem solving facility in science, and writing skills. This paper reports preliminary findings on the factor structure of the revised MCAT, which consists of four…
An Introduction to Greenhouse Production.
ERIC Educational Resources Information Center
McMahon, Robert W.
This student manual provides a basic text for those preparing for greenhouse and floriculture work. At the beginning of each chapter, competencies are listed, along with related math and science concepts, and a list of "terms to know"; figures, tables, and photographs may be included. At the end of each chapter, a self-check can be made…
Response: Training Doctoral Students to Be Scientists
ERIC Educational Resources Information Center
Pollio, David E.
2012-01-01
The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
Designed to supplement the Agriscience Education for the Middle School curriculum guide, this instructional packet provides lessons to enable agriscience teachers to bring basic science concepts into the classroom through practical, hands-on activities and experiments. The course is designed to develop in sixth-grade students an awareness of the…
Hello Parents, Where Are You? A Teachers' Call for Involvement.
ERIC Educational Resources Information Center
Lauderdale, Katherine Lynn, Ed.; Bonilla, Carlos A.
For many years, efforts to improve public schools centered on increased funding, teacher training, tougher curriculum (fewer electives, more math and science), and stiffer graduation requirements. But, from all of these attempts at reform, a basic concept became clear to the nation's educators: major reform of the public schools will not occur…
Process versus Product: What Ethic Does the FCS-BOK Uphold?
ERIC Educational Resources Information Center
Roubanis, Jody L.
2017-01-01
Fundamental moral implications for professional practice inherent to the Family and Consumer Sciences Body of Knowledge (FCS-BOK) are revealed by using paradigms conventional to normative ethics. A product-oriented teleological ethic is linked to the FCS-BOK core concepts: basic human needs, individual well-being, family strengths, and community…
Toward Using Games to Teach Fundamental Computer Science Concepts
ERIC Educational Resources Information Center
Edgington, Jeffrey Michael
2010-01-01
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. …
General Science, Ninth Grade: Theme I and Theme II. Experimental.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This document was designed to assist teachers who are helping ninth grade students in New York City learn scientific concepts. In addition, the guide emphasizes basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide contains lessons on what a scientist does,…
Learning from the Land: Teaching Ecology through Stories and Activities.
ERIC Educational Resources Information Center
Ellis, Brian Fox
This book strives to combine creative writing, the whole language approach, thinking skills, and problem-solving strategies with an introduction to ecological concepts. It aims to bring scientific facts to life by creating empathy for wild creatures and teach basic science skills by using creative writing and storytelling. This book contains nine…
The DaVinci Project: Multimedia in Art and Chemistry.
ERIC Educational Resources Information Center
Simonson, Michael; Schlosser, Charles
1998-01-01
Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…
Learning Physics with Digital Game Simulations in Middle School Science
ERIC Educational Resources Information Center
Anderson, Janice L.; Barnett, Mike
2013-01-01
The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with middle school students. To this end, we explored the impact of using a game called "Supercharged!" on middle school students' understanding of electromagnetic concepts compared to students…
Digital Storytelling Teaching Robotics Basics
ERIC Educational Resources Information Center
Scandola, Michele; Fiorini, Paolo
2013-01-01
Digital Storytelling (DST) is a powerful tool for teaching complex concepts. DSTs are typically used in the humanities but several papers have shown that they are also a wonderful tool for the sciences because they are more involving, contextualized and can easily lead to deeper understanding. In the classical use of DST the story is the content,…
Object-Oriented Programming in High Schools the Turing Way.
ERIC Educational Resources Information Center
Holt, Richard C.
This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…
Teaching about Hazardous and Toxic Materials. Teaching Activities in Environmental Education Series.
ERIC Educational Resources Information Center
Disinger, John F.; Lisowski, Marylin
Designed to assist practitioners of both formal and non-formal settings, this 18th volume of the ERIC Clearinghouse for Science, Mathematics, and Environmental Education's Teaching Activities in Environmental Education series specifically focuses on the theme of hazardous and toxic materials. Initially, basic environmental concepts that deal with…
Flipped Classrooms and Student Learning: Not Just Surface Gains
ERIC Educational Resources Information Center
McLean, Sarah; Attardi, Stefanie M.; Faden, Lisa; Goldszmidt, Mark
2016-01-01
The flipped classroom is a relatively new approach to undergraduate teaching in science. This approach repurposes class time to focus on application and discussion; the acquisition of basic concepts and principles is done on the students' own time before class. While current flipped classroom research has focused on student preferences and…
Chow Down! Using Madagascar Hissing Cockroaches to Explore Basic Nutrition Concepts
ERIC Educational Resources Information Center
Wagler, Ron
2009-01-01
The Madagascar hissing cockroach ("Gromphadorhina portentosa") is one of the most exciting and enjoyable animals to incorporate into your science curriculum. Madagascar hissing cockroaches (MHCs) do not bite, are easy to handle, produce little odor compared to many terrarium animals, have a fascinating social structure, are easy to breed, teach…
Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students
NASA Astrophysics Data System (ADS)
Bugdayci, Ilkay; Zahit Selvi, H.
2017-12-01
One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.
Nanomedicine concepts in the general medical curriculum: initiating a discussion
Sweeney, Aldrin E
2015-01-01
Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented. PMID:26677322
Complexity and health professions education: a basic glossary.
Mennin, Stewart
2010-08-01
The study of health professions education in the context of complexity science and complex adaptive systems involves different concepts and terminology that are likely to be unfamiliar to many health professions educators. A list of selected key terms and definitions from the literature of complexity science is provided to assist readers to navigate familiar territory from a different perspective. include agent, attractor, bifurcation, chaos, co-evolution, collective variable, complex adaptive systems, complexity science, deterministic systems, dynamical system, edge of chaos, emergence, equilibrium, far from equilibrium, fuzzy boundaries, linear system, non-linear system, random, self-organization and self-similarity.
Using NASA Space Imaging Technology to Teach Earth and Sun Topics
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.
2011-12-01
We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.
NASA Astrophysics Data System (ADS)
Moraes, A. C.
2014-02-01
This work is part of a research of the academic Masters in Science in Education. It seeks to present the results of the survey conducted among students of the technology course in industrial automation at the Federal Institute of Education, Science and Technology of São Paulo at the Campus Cubatão (IFSP Campus Cubatão). In the first step, the students' lack of knowledge to the related primary concepts of Astronomy turned out. In a second step, a Basic Course in Astronomy was held outside the syllabus, including classes, lectures and films with pertinent content, which corrected initially found erros. Through a special approach, containing diverse teaching strategies, astronomical concepts were learned or relearned. Analysing the responses of this second step it was found that students had a significant improvement in learning.
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
NASA Technical Reports Server (NTRS)
Szuszczewicz, Edward P.
1986-01-01
Large, permanently-manned space platforms can provide exciting opportunities for discoveries in basic plasma and geoplasma sciences. The potential for these discoveries will depend very critically on the properties of the platform, its subsystems, and their abilities to fulfill a spectrum of scientific requirements. With this in mind, the planning of space station research initiatives and the development of attendant platform engineering should allow for the identification of critical science and technology issues that must be clarified far in advance of space station program implementation. An attempt is made to contribute to that process, with a perspective that looks to the development of the space station as a permanently-manned Spaceborne Ionospheric Weather Station. The development of this concept requires a synergism of science and technology which leads to several critical design issues. To explore the identification of these issues, the development of the concept of an Ionospheric Weather Station will necessarily touch upon a number of diverse areas. These areas are discussed.
NASA Astrophysics Data System (ADS)
Handayani, Langlang; Prasetya Aji, Mahardika; Susilo; Marwoto, Putut
2016-08-01
An alternative approach of an arts-based instruction for Basic Physics class has been developed through the implementation of video analysis of a Javanesse traditional dance: Bambangan Cakil. A particular movement of the dance -weapon throwing- was analyzed by employing the LoggerPro software package to exemplify projectile motion. The results of analysis indicated that the movement of the thrown weapon in Bambangan Cakil dance provides some helping explanations of several physics concepts of projectile motion: object's path, velocity, and acceleration, in a form of picture, graph and also table. Such kind of weapon path and velocity can be shown via a picture or graph, while such concepts of decreasing velocity in y direction (weapon moving downward and upward) due to acceleration g can be represented through the use of a table. It was concluded that in a Javanesse traditional dance there are many physics concepts which can be explored. The study recommends to bring the traditional dance into a science class which will enable students to get more understanding of both physics concepts and Indonesia cultural heritage.
Špelda, Daniel
2017-06-01
In the eighteenth century, the historiography of astronomy was part of a wider discussion concerning the history of the human spirit. The concept of the human spirit was very popular among Enlightenment authors because it gave the history of human knowledge continuity, unity and meaning. Using this concept, scientists and historians of science such as Montucla, Lalande, Bailly and Laplace could present the history of astronomy in terms of a progress towards contemporary science that was slow and could be interrupted at times, but was still constant, regular, and necessary. In my paper I intend to explain how the originally philosophical concept of the human spirit was transferred to the history of astronomy. I also introduce the basic principles to which the development of the spirit is subject in astronomy, according to historians of astronomy. The third part of the paper describes how historians of astronomy took into account the effect of social and natural factors on the history of astronomy. Copyright © 2017 Elsevier Ltd. All rights reserved.
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts
NASA Astrophysics Data System (ADS)
Bhatia, Saurabh; Goli, Divakar
2018-05-01
Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.
NASA Astrophysics Data System (ADS)
Jackson, Diann Carol
This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
ERIC Educational Resources Information Center
Westera, Wim
2018-01-01
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…
A Workshop for Developing Learning Modules for Science Classes Based on Biogeochemical Research
ERIC Educational Resources Information Center
Harrington, James M.; Gardner, Terrence G.; Amoozegar, Aziz; Andrews, Megan Y.; Rivera, Nelson A.; Duckworth, Owen W.
2013-01-01
A challenging aspect of educating secondary students is integrating complex scientific concepts related to modern research topics into lesson plans that students can relate to and understand at a basic level. One method of encouraging the achievement of learning outcomes is to use real-world applications and current research to fuel student…
ERIC Educational Resources Information Center
Feldhusen, John; And Others
A description of open and individualized elementary school instruction is provided. The goals of such instruction are to: 1) teach basic skills in language arts, math, science, and social studies; 2) develop higher cognitive abilities, such as problem solving; and 3) develop the child's social competence and self-concept. Open, individualized…
An Interactive Computer Lab of the Galvanic Cell for Students in Biochemistry
ERIC Educational Resources Information Center
Ahlstrand, Emma; Buetti-Dinh, Antoine; Friedman, Ran
2018-01-01
We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as ?rG, ?rH, and ?rS that are calculated but not directly…
Developing a Technology Enhanced CS0 Course for Engineering Students
ERIC Educational Resources Information Center
Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki
2016-01-01
The CS0 course in the curriculum typically has the role of introducing students into basic concepts and terminology of computer science. Hence, it is used to form a base on which the subsequent programming courses can build on. However, much of the effort to build better methodologies for courses is spent on introductory programming courses…
Expanding the Basic Science Debate: The Role of Physics Knowledge in Interpreting Clinical Findings
ERIC Educational Resources Information Center
Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L.; Skye, Aimee L.; Woods, Nicole N.
2012-01-01
Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical…
Applications of statistics to medical science (1) Fundamental concepts.
Watanabe, Hiroshi
2011-01-01
The conceptual framework of statistical tests and statistical inferences are discussed, and the epidemiological background of statistics is briefly reviewed. This study is one of a series in which we survey the basics of statistics and practical methods used in medical statistics. Arguments related to actual statistical analysis procedures will be made in subsequent papers.
ERIC Educational Resources Information Center
Karpa, Kelly; Vakharia, Kavita; Caruso, Catherine A.; Vechery, Colin; Sipple, Lanette; Wang, Adrian
2015-01-01
Engagement of academic medical centers in community outreach provides the public with a better understanding of basic terms and concepts used in biomedical sciences and increases awareness of important health information. Medical students at one academic medical center initiated an educational outreach program, called PULSE, that targets secondary…
Teaching Cell Biology to Nonscience Majors through Forensics, or How to Design a Killer Course
ERIC Educational Resources Information Center
Arwood, Laura
2004-01-01
Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose.…
Explorations in Statistics: Standard Deviations and Standard Errors
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2008-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This series in "Advances in Physiology Education" provides an opportunity to do just that: we will investigate basic concepts in statistics using the free software package R. Because this series uses R solely as a vehicle…
How We Make Energy Work: Grades 4, 5, 6 Science.
ERIC Educational Resources Information Center
National Science Teachers Association, Washington, DC.
This packet of units is designed to focus on the technological aspects of energy. Four units are presented, with from 1-4 lessons included in each unit. Units include: (1) basic concepts and applications of energy; (2) steps and processes of energy production and transmission; (3) fuel acquisition; and (4) energy futures and application of…
A Model System for the Study of Gene Expression in the Undergraduate Laboratory
ERIC Educational Resources Information Center
Hargadon, Kristian M.
2016-01-01
The flow of genetic information from DNA to RNA to protein, otherwise known as the "central dogma" of biology, is one of the most basic and overarching concepts in the biological sciences. Nevertheless, numerous studies have reported student misconceptions at the undergraduate level of this fundamental process of gene expression. This…
The Challenge of the Social Sciences: The Impact of Sociology among First Year Students
ERIC Educational Resources Information Center
Graaff, J. F.
2007-01-01
Sociology invites transformations among first year students which go through at least three distinct levels. At the conceptual level, three basic concepts, debunking, relativizing and system-relating, challenge public opinion modes of thinking. But students in this course go beyond explicit course examples and perform these notions in a more…
Algorithm Animations for Teaching and Learning the Main Ideas of Basic Sortings
ERIC Educational Resources Information Center
Végh, Ladislav; Stoffová, Veronika
2017-01-01
Algorithms are hard to understand for novice computer science students because they dynamically modify values of elements of abstract data structures. Animations can help to understand algorithms, since they connect abstract concepts to real life objects and situations. In the past 30-35 years, there have been conducted many experiments in the…
From Fearing STEM to Playing with It: The Natural Integration of STEM into the Preschool Classroom
ERIC Educational Resources Information Center
Torres-Crespo, Marisel N.; Kraatz, Emily; Pallansch, Lindsey
2014-01-01
The article describes the process of developing and implementing a STEM Summer Camp that allowed Preschoolers to experiment and investigate with materials while learning basic concepts of science, technology, engineering, and mathematics (STEM) through play as part of the educational process. The participants were presented with problems that they…
Why You're You, Teacher's Edition. Probing the Natural World/3.
ERIC Educational Resources Information Center
Florida State Univ., Tallahassee. Dept. of Science Education.
The teacher's edition for the Intermediate Science Curriculum Study Level III unit entitled "Why You're You" provides specific suggestions for teaching the seven chapters included in the unit. The unit deals primarily with the concepts of genetics and a brief discussion is included in the beginning about some of the basic ideas in this…
Equations as Guides to Thinking and Problem Solving
ERIC Educational Resources Information Center
Hewitt, Paul G.
2011-01-01
Science is the study of nature's rules. The most basic of these are the laws of physics, most of which are expressed in equation form. Physics equations show how concepts connect to one another. But does a study of these equations enhance student understanding? Not always, for too often in an introductory course students are tempted (or even…
ERIC Educational Resources Information Center
Hocking, Colin; And Others
This series of educational activities is intended to help teachers communicate basic scientific concepts related to global warming and the greenhouse effect to students grades 7-10. Seven sessions provide laboratory activities, simulations, and discussions that can be used to improve student understanding of a number of important scientific…
The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, C.L., E-mail: cahill@gwu.edu; Feldman, G.; Briscoe, W.J.
The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
ERIC Educational Resources Information Center
Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…
Peiman, Soheil; Mirzazadeh, Azim; Alizadeh, Maryam; Mortaz Hejri, Sara; Najafi, Mohammad-Taghi; Tafakhori, Abbas; Larti, Farnoosh; Rahimi, Besharat; Geraiely, Babak; Pasbakhsh, Parichehr; Hassanzadeh, Gholamreza; Nabavizadeh Rafsanjani, Fatemeh; Ansari, Mohammad; Allameh, Seyed Farshad
2017-04-01
To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists). The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences. Students' reactions were assessed using an immediate post-session evaluation form on a 5-point Likert scale. Six two-hour sessions for 2 cohorts of students, 2013 and 2014 medical students during their two first years of study were implemented from April 2014 to March 2015. 17 faculty members participated in the program, 21 cases were designed, and participation average was 60 % at 6 sessions. Students were highly appreciative of this strategy. The majority of students in each course strongly agreed that this learning practice positively contributed to their learning (78%) and provided better understanding and application of the material learned in an integrated classroom course (74%). They believed that the sessions affected their view about medicine (73%), and should be continued in future courses (80%). The percentage demonstrates the average of all courses. The program helped the students learn how to apply basic sciences concepts to clinical medicine. Evaluation of the program indicated that students found the sessions beneficial to their learning.
Geospatial Education: Working with the NASA Airborne Science Program
NASA Astrophysics Data System (ADS)
Lockwood, C. M.; Handley, L.; Handley, N.
2010-12-01
WETMAAP (Wetland Education Through Maps and Aerial Photography) , a program of CNL World, supports the NASA Strategic Goals and Objectives for Education by providing classroom teachers and formal and informal educators with professional development. WETMAAP promotes science by inquiry through the use of a building-block process, comparative analysis, and analytical observations. Through the WETMAAP workshops and website, educators receive the concepts necessary to provide students with a basic understanding of maps, aerial photography, and satellite and airborne imagery that focus on the study of wetlands and wetland change. The program targets educators, Grades 5 - 12, in earth science, environmental science, biology, geography, and mathematics, and emphasizes a comprehensive curriculum approach.
Wright, Fay; Fessele, Kristen
2017-10-01
As nurses begin to incorporate genetic and genomic sciences into clinical practice, education, and research, it is essential that they have a working knowledge of the terms foundational to the science. The first article in this primer series provided brief definitions of the basic terms (e.g., genetics and genomics) and introduced the concept of phenotype during the discussion of Mendelian inheritance. These terms, however, are inconsistently used in publications and conversations, and the linkage between genotype and phenotype requires clarification. The goal of this fifth article in the series is to elucidate these terms, provide an overview of the research methods used to determine genotype-phenotype associations, and discuss their significance to nursing through examples from the current nursing literature.
Teaching the history of science in physics classrooms—the story of the neutrino
NASA Astrophysics Data System (ADS)
Demirci, Neset
2016-07-01
Because there is little connection between physics concepts and real life, most students find physics very difficult. In this frontline I have provided a timely link of the historical development using the basic story of neutrino physics and integrated this into introductory modern physics courses in high schools or in higher education. In this way an instructor may be able to build on students’ curiosity in order to enhance the curriculum with some remarkable new physics. Using the history of science in the classroom shapes and improves students’ views and knowledge of the nature of science and increase students’ interest in physics.
Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context
NASA Astrophysics Data System (ADS)
Myers, J. D.; Lyford, M. E.; Mayes, R. L.
2010-12-01
Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.
Faculty Performance on the Genomic Nursing Concept Inventory.
Read, Catherine Y; Ward, Linda D
2016-01-01
To use the newly developed Genomic Nursing Concept Inventory (GNCI) to evaluate faculty understanding of foundational genomic concepts, explore relative areas of strength and weakness, and compare the results with those of a student sample. An anonymous online survey instrument consisting of demographic or background items and the 31 multiple-choice questions that make up the GNCI was completed by 495 nursing faculty from across the United States in the fall of 2014. Total GNCI score and scores on four subcategories (genome basics, mutations, inheritance, genomic health) were calculated. Relationships between demographic or background variables and total GNCI score were explored. The mean score on the GNCI was 14.93 (SD = 5.31), or 48% correct; topical category scores were highest on the inheritance and genomic health items (59% and 58% correct, respectively), moderate on the mutations items (54% correct), and lowest on the genome basics items (33% correct). These results are strikingly similar to those of a recent study of nursing students. Factors associated with a higher total score on the GNCI included higher self-rated proficiency with genetic/genomic content, having a doctoral degree, having taken a genetics course for academic credit or continuing education, and having taught either a stand-alone genetic/genomic course or lecture content as part of nursing or related course. Self-rated proficiency with genetic/genomic content was fair or poor (70%), with only 7% rating their proficiency as very good or excellent. Faculty knowledge of foundational genomic concepts is similar to that of the students they teach and weakest in the areas related to basic science information. Genomics is increasingly relevant in all areas of clinical nursing practice, and the faculty charged with educating the next generation of nurses must understand foundational concepts. Faculty need to be proactive in seeking out relevant educational programs that include basic genetic/genomic concepts. © 2015 Sigma Theta Tau International.
ERIC Educational Resources Information Center
Singer, J. David
Offering a new approach to college publishing, the sample module presented here serves as an example of a basic unit from University Programs. Typical modules (each 16 to 64 pages), directed toward graduate and undergraduate students, provide original statements on central concepts, principles, theories, or problems in a particular discipline and…
ERIC Educational Resources Information Center
Boyd, Susan L.
2007-01-01
Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…
ERIC Educational Resources Information Center
Heisler, Christine Aminda
2011-01-01
Medical education underwent standardization at the turn of the 20th century and remained fairly consistent until recently. Incorporation of a patient-centered or case-based curriculum is believed to reinforce basic science concepts. One negative aspect is a reduction in hours spent with cadaveric dissection in the gross anatomy laboratory. For…
Agroforestry Economics and Policy
L.D. Godsey; D. Evan Mercer; Robert K. Grala; Stephen C. Grado; Janaki R.R. Alavalapati
2009-01-01
Essentially every living thing on Earth has applied the basic concepts of economics. That is, every living thing has had to use a limited set of resources to meet a minimum set of needs or wants. Although the study of economics is often confused with the study of markets or finance, economics is simply a social science that studies the choices people make. As a social...
ERIC Educational Resources Information Center
Paul, Richard; And Others
This handbook, designed to help teachers of kindergarten through third grade remodel their own lesson plans, has one basic objective: to demonstrate that it is possible and practical to integrate instruction for critical thinking into the teaching of all subjects. The handbook thoroughly discusses the concept of critical thinking and the…
ERIC Educational Resources Information Center
Saad, Sawsan; Dandashi, Amal; Aljaam, Jihad M.; Saleh, Moataz
2015-01-01
A multimedia-based learning system to teach children with intellectual disabilities (ID) the basic living and science concepts is proposed. The tutorials' development is pedagogically based on Mayer's Cognitive Theory of Multimedia Learning combined with Skinner's Operant Conditioning Model. Two types of tutorials are proposed. In the first type;…
ERIC Educational Resources Information Center
Cowan, Christina E.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…
ERIC Educational Resources Information Center
Russian Education and Society, 1998
1998-01-01
Provides the discussion from the parliamentary hearings of the Russian Committee of the State Duma for Education and Science, held at Moscow State University, that focused on the draft of a plan to change some of the basic elements of Russian education. Offers recommendations of the parliamentary hearings and three letters. (CMK)
ERIC Educational Resources Information Center
Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur
2016-01-01
The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…
Group Solutions, Too! More Cooperative Logic Activities for Grades K-4. Teacher's Guide. LHS GEMS.
ERIC Educational Resources Information Center
Goodman, Jan M.; Kopp, Jaine
There is evidence that structured cooperative logic is an effective way to introduce or reinforce mathematics concepts, explore thinking processes basic to both math and science, and develop the important social skills of cooperative problem-solving. This book contains a number of cooperative logic activities for grades K-4 in order to improve…
ERIC Educational Resources Information Center
Sas, Magdalena; Bendixen, Lisa D.; Crippen, Kent J.; Saddler, Sterling
2017-01-01
Online discussions have become inherent components of both face-to-face and distance education college courses, yet they often fail to provide much benefit to students' learning outcomes. One reason behind this phenomenon is the lack of or inadequate scaffolding or guidance provided to students when participating on asynchronous discussion boards.…
Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.
ERIC Educational Resources Information Center
Cappiello, Jane E.; O'Neil, Karen E.
This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…
The Use of Visual Advance Organizers for Learning Earth Science Concepts.
ERIC Educational Resources Information Center
Weisberg, Joseph S.
This study was designed to determine whether advance organizers in the form of visual aids might serve the same function as Ausubel's verbal advance organizers. The basic design of the study consisted of a 4 X 3 X 2 ANOVA factorial design. Ninety-six eighth-grade students were involved in the study. One group was exposed to a physiographic diagram…
Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness
ERIC Educational Resources Information Center
Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim
2010-01-01
Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…
ERIC Educational Resources Information Center
Yoon, Susan
Even though we live in an age of advancing technology and changing structure of science, especially in genetics engineering, there appears to be a great lack of understanding of these basic concepts by society in general. Society carries responsibilities to both living and non-living things; this lack of understanding may result in combined…
On problems in defining abstract and metaphysical concepts--emergence of a new model.
Nahod, Bruno; Nahod, Perina Vukša
2014-12-01
Basic anthropological terminology is the first project covering terms from the domain of the social sciences under the Croatian Special Field Terminology program (Struna). Problems that have been sporadically noticed or whose existence could have been presumed during the processing of terms mainly from technical fields and sciences have finally emerged in "anthropology". The principles of the General Theory of Terminology (GTT), which are followed in Struna, were put to a truly exacting test, and sometimes stretched beyond their limits when applied to concepts that do not necessarily have references in the physical world; namely, abstract and metaphysical concepts. We are currently developing a new terminographical model based on Idealized Cognitive Models (ICM), which will hopefully ensure a better cross-filed implementation of various types of concepts and their relations. The goal of this paper is to introduce the theoretical bases of our model. Additionally, we will present a pilot study of the series of experiments in which we are trying to investigate the nature of conceptual categorization in special languages and its proposed difference form categorization in general language.
Probability, statistics, and computational science.
Beerenwinkel, Niko; Siebourg, Juliane
2012-01-01
In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
Conceptual astronomy: A novel model for teaching postsecondary science courses
NASA Astrophysics Data System (ADS)
Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter
1997-10-01
An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.
De-implementation: A concept analysis.
Upvall, Michele J; Bourgault, Annette M
2018-04-25
The purpose of this concept analysis is to explore the meaning of de-implementation and provide a definition that can be used by researchers and clinicians to facilitate evidence-based practice. De-implementation is a relatively unknown process overshadowed by the novelty of introducing new ideas and techniques into practice. Few studies have addressed the challenge of de-implementation and the cognitive processes involved when terminating harmful or unnecessary practices. Also, confusion exists regarding the myriad of terms used to describe de-implementation processes. Walker and Avant's method (2011) for describing concepts was used to clarify de-implementation. A database search limited to academic journals yielded 281 publications representing basic research, study protocols, and editorials/commentaries from implementation science experts. After applying exclusion criterion of English language only and eliminating overlap between databases, 41 articles were selected for review. Literature review and synthesis provided a concept analysis and a distinct definition of de-implementation. De-implementation was defined as the process of identifying and removing harmful, non-cost-effective, or ineffective practices based on tradition and without adequate scientific support. The analysis provided further refinement of de-implementation as a significant concept for ongoing theory development in implementation science and clinical practice. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, O.H.
This paper describes a natural language based, semantic information modeling methodology and explores its use and value in clarifying and comparing political science theories and frameworks. As an example, the paper uses this methodology to clarify and compare some of the basic concepts and relationships in the realist (e.g. Waltz) and the liberal (e.g. Rosenau) paradigms for international relations. The methodology can provide three types of benefits: (1) it can clarify and make explicit exactly what is meant by a concept; (2) it can often identify unanticipated implications and consequence of concepts and relationships; and (3) it can help inmore » identifying and operationalizing testable hypotheses.« less
Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar
2016-04-01
Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.
Fleming, John S.; Katz, Ira; Martin, Andrew R.; Schroeter, Jeffry; Usmani, Omar S.; Venegas, Jose
2016-01-01
Abstract Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy. PMID:26829187
Modeling selected emulsions and double emulsions as memristive systems.
Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica
2012-06-15
The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
Araújo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Cláudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Cláudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals. PMID:15257338
A brain-based account of “basic-level” concepts
Bauer, Andrew James; Just, Marcel Adam
2017-01-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947
A brain-based account of "basic-level" concepts.
Bauer, Andrew James; Just, Marcel Adam
2017-11-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.
On the Teaching of Science, Technology and International Affairs.
Weiss, Charles
2012-03-01
Despite the ubiquity and critical importance of science and technology in international affairs, their role receives insufficient attention in traditional international relations curricula. There is little literature on how the relations between science, technology, economics, politics, law and culture should be taught in an international context. Since it is impossible even for scientists to master all the branches of natural science and engineering that affect public policy, the learning goals of students whose primary training is in the social sciences should be to get some grounding in the natural sciences or engineering, to master basic policy skills, to understand the basic concepts that link science and technology to their broader context, and to gain a respect for the scientific and technological dimensions of the broader issues they are addressing. They also need to cultivate a fearless determination to master what they need to know in order to address policy issues, an open-minded but skeptical attitude towards the views of dueling experts, regardless of whether they agree with their politics, and (for American students) a world-view that goes beyond a strictly U.S. perspective on international events. The Georgetown University program in Science, Technology and International Affairs (STIA) is a unique, multi-disciplinary undergraduate liberal arts program that embodies this approach and could be an example that other institutions of higher learning might adapt to their own requirements.
Using Hollywood Movies to Teach Basic Geological Concepts: A Comparison of Student Outcomes
NASA Astrophysics Data System (ADS)
Crowder, M. E.
2008-12-01
Throughout the history of cinema, events based in Earth Science have been the focus of many an action- disaster plot. From the most recent 2008 remake of Journey to the Center of the Earth, to 1965's Crack in the World, and all the way back to the 1925 silent film rendition of The Lost World, Hollywood's obsession with the geological sciences has been clear. These particular sub-genres of disaster films and science fiction present science that, from a Hollywood viewpoint, looks exciting and seems realistic. However, from a scientific viewpoint, the presentations of science are often shockingly incorrect and unfortunately serve to perpetuate common misconceptions. In 2003, Western Kentucky University began offering an elective non-majors science course, Geology and Cinema, to combat these misconceptions while using the framework of Hollywood films as a tool to appeal and connect to a broad student population. To see if this method is truly working, this study performs a student outcome comparison for basic geologic knowledge and general course perception between several sections of standard, lecture-based Introductory Geology courses and concurrent semester sections of Geology and Cinema. Preliminary results indicate that while performance data is similar between the courses, students have a more positive perception of the Cinema sections.
Astronomy: A Self-Teaching Guide, 6th Edition
NASA Astrophysics Data System (ADS)
Moché, Dinah L.
2004-02-01
"A lively, up-to-date account of the basic principles of astronomy and exciting current field of research."-Science Digest For a quarter of a century, Astronomy: A Self-Teaching Guide has been making students and amateur stargazers alike feel at home among the stars. From stars, planets and galaxies, to black holes, the Big Bang and life in space, this title has been making it easy for beginners to quickly grasp the basic concepts of astronomy for over 25 years. Updated with the latest discoveries in astronomy and astrophysics, this newest edition of Dinah Moché's classic guide now includes many Web site addresses for spectacular images and news. And like all previous editions, it is packed with valuable tables, charts, star and moon maps and features simple activities that reinforce readers' grasp of basic concepts at their own pace, as well as objectives, reviews, and self-tests to monitor their progress. Dinah L. Moché, PhD (Rye, NY), is an award-winning author, educator, and lecturer. Her books have sold over nine million copies in seven languages.
Yoruba Ethnoastronomy - "Orisha/Vodun" or How People's Conceptions of the Sky Constructed Science
NASA Astrophysics Data System (ADS)
Sègla, Dafon Aimé
For the Yoruba, the Sky is the domain of the Supreme God. They believe that "Olorun" or "Olodumaré" owns the Sky and communicates through secondary, intermediary deities sent to Earth by the Supreme God. These deities are "Orisha" but are also named by the Fon in the Republic of Benin as Vodun. Nowadays, Orisha, more widely known as Vodun, is regarded as satanic, magical, and demonic. Using basic archaeology of cosmological concepts, this false picture can be rejected and replaced by a logical and realistic one based on scientific evidence whereby Orisha/Vodun is conceived as a variant of several existing world views, a "science of the local". Given that Western skepticism concerning African cultures' knowledge arises mainly from misleading comparisons, there is a need for a reconciliation between non-Western and Western world views.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Jovanović, Gordana
2005-01-01
When Freud began formulating the basic postulates of psychoanalytic theory the concept of instinct was in widespread use. There are very different models of conceptualizing instincts in psychoanalysis: reflex arc, representation, interaction, subject and finally a regressive structure. Freud revised the traditional concept of instinct and his models formed a peculiar metatheoretical history of psychoanalysis. Defining human nature by reference to its determining instinctive essence and commitment to the ideal of natural science led Freud to a naturalistic fallacy. Yet at the same time the hermeneutics of instinct theory reveal a socio-historical meaning of naturalism.
Assessing Cognitive Learning of Analytical Problem Solving
NASA Astrophysics Data System (ADS)
Billionniere, Elodie V.
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
ERIC Educational Resources Information Center
Paul, Richard; And Others
This handbook, designed to help teachers of fourth through sixth grades remodel their own lesson plans, has one basic objective: to demonstrate that it is possible and practical to integrate instruction for critical thinking into the teaching of all subjects. The handbook thoroughly discusses the concept of critical thinking and the principles…
ERIC Educational Resources Information Center
Zimbardo, Philip; Ebbesen, Ebbe B.
In this introductory text to the field of attitude change, the emphasis is on one of the end products of research in social psychology--manipulation and control of attitudes and related behaviors. The text first defines the concept of attitude, then identifies ideas from the areas of history, literature, law, religion, and the social sciences that…
ERIC Educational Resources Information Center
Lin, Min-Jin; Guo, Chorng-Jee; Hsu, Chia-Er
2011-01-01
This study designed and developed a CP-MCT (content-rich, photo-based multiple choice online test) to assess whether college students can apply the basic light concept to interpret daily light phenomena. One hundred college students volunteered to take the CP-MCT, and the results were statistically analyzed by applying t-test or ANOVA (Analysis of…
Science is Cool with NASA's "Space School Musical"
NASA Astrophysics Data System (ADS)
Asplund, S.
2011-10-01
To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery and New Frontiers Programs have collaborated with KidTribe to create "Space School Musical," an innovative approach for teaching about the solar system. It's an educational "hip-hopera" that raps, rhymes, moves and grooves its way into the minds and memories of students and educators alike. The solar system comes alive, combining science content with music, fun lyrics, and choreography. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. The videos, songs, lyrics, and guides are available to all with free downloads at http://discovery.nasa.gov/
Science& Technology Review November 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D
2003-11-01
This issue of Science & Technology Review covers the following topics: (1) We Will Always Need Basic Science--Commentary by Tomas Diaz de la Rubia; (2) When Semiconductors Go Nano--experiments and computer simulations reveal some surprising behavior of semiconductors at the nanoscale; (3) Retinal Prosthesis Provides Hope for Restoring Sight--A microelectrode array is being developed for a retinal prosthesis; (4) Maglev on the Development Track for Urban Transportation--Inductrack, a Livermore concept to levitate train cars using permanent magnets, will be demonstrated on a 120-meter-long test track; and (5) Power Plant on a Chip Moves Closer to Reality--Laboratory-designed fuel processor gives powermore » boost to dime-size fuel cell.« less
Ontology patterns for complex topographic feature yypes
Varanka, Dalia E.
2011-01-01
Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.
Integrating technology education concepts into China's educational system
NASA Astrophysics Data System (ADS)
Yang, Faxian
The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.
[Disciplinar thematic integration in medicine: a proposal from histology and embryology].
Bassan, N D; D'Ottavio, A E
2013-01-01
This paper intends to clarify a concept with multiple meanings and a complex reality. It starts providing varied histological and embryological examples apt to contribute the stimulation of teacher and student imaginations in favor of a crucial skill, as thematic integration is, into the present and changing curricula in Medicine in particular and Health Sciences in general. In this sense, it offers linear and branched sequences as well as consolidation graphics which focusing in both disciplines may also include other basic ones, key for clinic diagnosis, among the competences to be developed. After registering some preliminary results revealing the need of its continuous and progressive training along the complete medical career, its own integrative value and the integrative one for their teachers due to its natural link with other basic ones is outlined, its relevance for undergraduate is reaffirmed and possible future variations for them are previewed, considering the present exponential growth of science and technology.
Symbolic Interaction and Applied Social Research: A FOCUS ON TRANSLATIONAL SCIENCE RESEARCH1.
Kotarba, Joseph A
2014-08-01
In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism's overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This component has also contributed to the basic social scientific literature on complex organizations and the self.
Renegotiating forensic cultures: between law, science and criminal justice.
Roberts, Paul
2013-03-01
This article challenges stereotypical conceptions of Law and Science as cultural opposites, arguing that English criminal trial practice is fundamentally congruent with modern science's basic epistemological assumptions, values and methods of inquiry. Although practical tensions undeniably exist, they are explicable-and may be neutralised-by paying closer attention to criminal adjudication's normative ideals and their institutional expression in familiar aspects of common law trial procedure, including evidentiary rules of admissibility, trial by jury, adversarial fact-finding, cross-examination and the ethical duties of expert witnesses. Effective partnerships between lawyers and forensic scientists are indispensable for integrating scientific evidence into criminal proceedings, and must be renegotiated between individual practitioners on an on-going basis. Fruitful interdisciplinary collaboration between scholars with a shared interest in forensic science should dispense with reductive cultural stereotypes of Science and Law. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
NASA Astrophysics Data System (ADS)
Szczęsna, Joanna
2010-01-01
School education is both a starting point for the development of various scientific disciplines (school educates future researchers) and the result of science. The landscape research is conducted within many scientific disciplines and has a long tradition. Lanscape education, which is the result of a scientific dimension, is implemented in primary school under the nature subject. Primary school education is the only level at which the geographical contents are carried out on landscape. The landscape is of interest to many disciplines: geography, architecture, social sciences and the arts. In recent years, there were many studies which contained an overview of the main strands of the science of landscape, presented the differences in the meaning of the concept and objectives of individual research disciplines. These studies have become the ground for the characterization of the concept of landscape education implemented in Polish school and its evaluation in terms of scientific achievements. A review of educational purposes, the basic content of education and achievements of students, demonstrate the influence of multiple scientific disciplines in school landscape education. The most significant share of the course content are achievements of geography disciplines, particularly: physical geography, environmental protection and landscape ecology. Other scientific fields: literature, art, psychology, sociology, and architecture do not have any impact on the school landscape education or their impact remains marginal.
Using rock art as an alternative science pedagogy
NASA Astrophysics Data System (ADS)
Allen, Casey D.
College-level and seventh-grade science students were studied to understand the power of a field index, the Rock Art Stability Index (RASI), for student learning about complex biophysical environmental processes. In order to determine if the studied population was representative, 584 college and seventh-grade students undertook a concept mapping exercise after they had learned basic weathering science via in-class lecture. Of this large group, a subset of 322 college students and 13 seventh-grade students also learned RASI through a field experience involving the analysis of rock weathering associated with petroglyphs. After learning weathering through RASI, students completed another concept map. This was a college population where roughly 46% had never taken a "lab science" course and nearly 22% were from minority (non-white) populations. Analysis of student learning through the lens of actor-network theory revealed that when landscape is viewed as process (i.e. many practices), science education embodies both an alternative science philosophy and an alternative materialistic worldview. When RASI components were analyzed after only lecture, student understanding of weathering displayed little connection between weathering form and weathering process. After using RASI in the field however, nearly all students made illustrative concept maps rich in connections between weathering form and weathering process for all subcomponents of RASI. When taken as an aggregate, and measured by an average concept map score, learning increased by almost 14%, Among college minority students, the average score increase approached 23%. Among female students, the average score increase was 16%. For seventh-grade students, scores increased by nearly 36%. After testing for normalcy with Kolmogorov-Smirnov, t-tests reveal that all of these increases were highly statistically significant at p<0.001. The growth in learning weathering science by minority students, as compared to non-minority students, was also statistically significant at p<0.01. These findings reveal the power of field work through RASI to strengthen cognitive linkages between complex biophysical processes and the corresponding rock weathering forms.
NASA Astrophysics Data System (ADS)
Rosiek, Roman; Sajka, Mirosława; Ohno, Eizo; Shimojo, Atsushi; Iwata, Michiru; Wcisło, Dariusz
2017-01-01
The paper presents the initial results of a comparative Polish-Japanese study. The research was conducted at the Department of Mathematics, Physics and Technical Science at the Pedagogical University of Cracow and at the University of Hokkaido. The participants of the study were university students of humanistic courses. The research concerns the comparison of the respondents' knowledge and understanding of the concept of force in mechanics and their ways of solving problems in the field of a basic mechanics course. A special theoretical tool was used. It was the standardized, international test diagnosing the understanding of the concept of force - the so-called "Force Concept Inventory" (FCI), in its official Polish and Japanese translations. The eye-tracking method was combined with structured interviews and discussions with all the respondents.
The Impact of Science Fiction Film on Student Understanding of Science
NASA Astrophysics Data System (ADS)
Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan
2006-04-01
Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.
An integrated biochemistry and genetics outreach program designed for elementary school students.
Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A
2012-02-01
Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.
Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.
2003-12-01
An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical formulations as are necessary to express the concept clearly (Invention Phase). To further clarify the concept, exercises will be carried out using Web-accessible SEC mission data to develop facility in use of the mathematical formulations, stimulate a sense of participation in ongoing research, and expand on ways to introduce future pupils to the excitement of real-world exploration (Expansion Phase).
Veritas filia temporis: The origins of the idea of scientific progress.
Špelda, Daniel
2016-10-01
The article provides insight into the epistemological and anthropological aspect of the origination of the idea of scientific progress. It focuses on the relationship between individual's limited lifetime and the immensity of nature. The basic assumption is that the idea of scientific progress offers a solution of the epistemological problem stemming from the finding that there is no (teleological) coincidence between human cognitive abilities and the extent of nature. In order to facilitate the understanding of the origin of the idea of scientific progress, I propose distinction between the descriptive and prescriptive concepts of progress. While the descriptive notion of progress expresses the cumulative character of scientific knowledge and the superiority of the present over preceding generations, the prescriptive concept pertains to progressivist epistemology directing scientific research at the future development of knowledge. This article claims that the prevalent concept in Antiquity was the descriptive concept of scientific progress. The prescriptive notion had developed only in ancient astronomy. Early modern science was faced with similar issues as ancient astronomy - mainly the empirical finding related to the inexhaustible character of nature. Consequently to the introduction of the idea of progress, the progress of sciences became a purpose in itself - hence becoming infinite.
Quantum mechanical wavefunction: visualization at undergraduate level
NASA Astrophysics Data System (ADS)
Chhabra, Mahima; Das, Ritwick
2017-01-01
Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.
Evolution of a Mars Airplane Concept for the ARES Mars Scout Mission
NASA Technical Reports Server (NTRS)
Smith, Stephen C.; Guynn, Mark D.; Smith, Stephen C.; Parks, Robert W.; Gelhausen, Paul A.
2004-01-01
ARES (Aerial Regional-scale Environmental Survey of Mars) is a proposed Mars Scout mission using an airplane to provide high-value science measurements in the areas of atmospheric chemistry, surface geology and mineralogy, and crustal magnetism. The use of an airplane for robotic exploration of Mars has been studied for over 25 years. There are, however, significant challenges associated with getting an airplane to Mars and flying through the thin, carbon dioxide Martian atmosphere. The traditional wisdom for aircraft design does not always apply for this type of vehicle and geometric, aerodynamic, and mission constraints result in a limited feasible design space. The ARES airplane design is the result of a concept exploration and evolution involving a number of trade studies, downselects, and design refinements. Industry, university, and NASA partners initially proposed a number of different concepts, drawing heavily on past Mars airplane design experience. Concept downselects were conducted with qualitative evaluation and high level analyses, focused on the most important parameters for the ARES mission. Following a successful high altitude test flight of the basic configuration, additional design refinement led to the current design. The resulting Mars airplane concept enables the high-value science objectives of the ARES mission to be accomplished while also fulfilling the desire for a simple, low-risk design.
U.S. Army Research Institute Program in Basic Research FY 2004
2005-08-01
reports from these research efforts is available upon request. Paul A. Gade, Chief, Research and Advanced Concepts Office Laura Wheeler Poms, Consortium...subjects during the time when they are most awake; making sure subjects are not sick, hungry , or taking any performance-enhancing drugs other than...received growing confirmation in a range of other sciences. Neuropsychological studies of ultimatum game performance have confirmed the role of brain
Misconceptions and Integration.
Mortaz Hejri, Sara; Mirzazadeh, Azim; Jalili, Mohammad
2015-10-01
Pervasive beliefs regarding curricular reform and integration have flourished among medical students, faculty members and medical school administrators. These concepts have extensively impacted the reform process, sometimes by resisting the reforms and sometimes by diverting the curriculum from its planned objectives. In the current paper, we have tried to address the challenges of integration in MD program by looking at the existing literature and the experience of the international universities. We collected the questions frequently asked during the curricular reform process. We, then, evaluated them, and selected 5 main ideas. In order to find their answers, we searched the literature using these keywords: integration, reform, and undergraduate medical curriculum. The findings are discussed in five sections: 1) Reform is not equivalent to integration, 2) Integration can be implemented in both high school and graduate programs, 3) Organ-system based integration is not the only method available for integration, 4) Integration of two phases (basic sciences and physiopathology) can be considered but it is not mandatory, 5) Integration does not fade basic sciences in favor of clinical courses. It seems that medical education literature and prior experience of the leading universities do not support most of the usual concepts about integration. Therefore, it is important to consider informed decision making based on best evidence rather than personal opinions during the curricular reform process.
Tackling overweight and obesity: does the public health message match the science?
Hafekost, Katherine; Lawrence, David; Mitrou, Francis; O'Sullivan, Therese A; Zubrick, Stephen R
2013-02-18
Despite the increasing understanding of the mechanisms relating to weight loss and maintenance, there are currently no validated public health interventions that are able to achieve sustained long-term weight loss or to stem the increasing prevalence of obesity in the population. We aimed to examine the models of energy balance underpinning current research about weight-loss intervention from the field of public health, and to determine whether they are consistent with the model provided by basic science. EMBASE was searched for papers published in 2011 on weight-loss interventions. We extracted details of the population, nature of the intervention, and key findings for 27 articles. Most public health interventions identified were based on a simple model of energy balance, and thus attempted to reduce caloric consumption and/or increase physical activity in order to create a negative energy balance. There appeared to be little consideration of homeostatic feedback mechanisms and their effect on weight-loss success. It seems that there has been a lack of translation between recent advances in understanding of the basic science behind weight loss, and the concepts underpinning the increasingly urgent efforts to reduce excess weight in the population. Public health weight-loss interventions seem to be based on an outdated understanding of the science. Their continued failure to achieve any meaningful, long-term results reflects the need to develop intervention science that is integrated with knowledge from basic science. Instead of asking why people persist in eating too much and exercising too little, the key questions of obesity research should address those factors (environmental, behavioral or otherwise) that lead to dysregulation of the homeostatic mechanism of energy regulation. There is a need for a multidisciplinary approach in the design of future weight-loss interventions in order to improve long-term weight-loss success.
Life is physics and chemistry and communication.
Witzany, Guenther
2015-04-01
Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.
Investigation of virtual reality concept based on system analysis of conceptual series
NASA Astrophysics Data System (ADS)
Romanova, A.; Shuklin, D. A.; Kalinkina, M. E.; Gotskaya, I. B.; Ponomarev, Y. E.
2018-05-01
The paper covers approaches to the definition of virtual reality from the point of view of the humanitarian sciences and technology. Each approach analyzing problems of concept perception of methods interpreted by representatives of philosophy, psychology and sociology is singled out. Terminological analysis of the basic concepts is carried out and their refinement is constructed in the process of comparing the concepts of virtuality and virtual reality. Using the analysis of selected sources, a number of singularity characteristics of the given concept are singled out and its definition is specified. Results consist in combining the interpretation of all approaches to determine the concept of virtual reality. Due to the use of a comprehensive approach to the definition of the investigated concept, which allows us to consider the object of research as a set of elements that are subject to study with the help of a corresponding set of methods, one can conclude that the concept under study is complex and multifaceted. The authors noted that virtual reality technologies have a flexible concept depending on the field of application.
Sport science integration: An evolutionary synthesis.
Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S
2017-02-01
The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.
Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.
Self-awareness: a review and analysis of a basic nursing concept.
Eckroth-Bucher, Margie
2010-01-01
Self-awareness has long been addressed as fundamental for the professional nurse with the accepted view that self-awareness will lead to greater competence. Therefore, it is important to understand the historical evolution of the concept, attributes, antecedents, and consequences. Rodgers' evolutionary method was used for critical analysis of nursing, social sciences, and education literature. Analysis indicates that self-awareness is a dynamic, transformative process of self. Ultimately, self-awareness is the use of self-insights and presence knowingly to guide behavior that is genuine and authentic to create a healing interpersonal environment. Future research areas within practice and education are identified.
New concepts in the assessment and treatment of regional musculoskeletal pain and sports injury.
Borg-Stein, Joanne; Zaremski, Jason L; Hanford, Mary Alice
2009-08-01
During the past decade there have been significant advances in understanding the basic science of musculoskeletal injury and healing. These new concepts alter the approach to injury management and rehabilitation for clinicians managing musculoskeletal conditions. This article examines the most recent advances in the treatment of regional musculoskeletal pain, and muscle and tendon sports injury. Specifically, developments in understanding the pathogenesis of muscle and tendon sports injuries, newer imaging modalities, and updated treatment paradigms and their rationale are reviewed. The purpose of this review is to provide the clinician with new approaches for treating nonsurgical muscle and tendon injuries.
The Cambridge encyclopedia of space (revised edition)
NASA Technical Reports Server (NTRS)
D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.
1990-01-01
A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.
Emotional Response Deficits in Schizophrenia: Insights From Affective Science
Kring, Ann M.; Moran, Erin K.
2008-01-01
Our understanding of the emotional features of schizophrenia has benefited greatly from the adoption of methods and theory from the field of affective science. This article covers basic concepts and methods from affective science on the psychological and neural mechanisms contributing to emotions and reviews the ways in which this research has advanced our understanding of emotional response deficits in schizophrenia. We review naturalistic studies and elicitation studies that evoke emotion responses among participants, including emotion expression, experience, and autonomic physiology. We also consider how these emotion response measures correspond to schizophrenia symptoms, and we focus particular attention on the issue of sex differences in emotional responding and how this may influence our understanding emotional functioning among individuals with schizophrenia. PMID:18579556
Harris, David M; Ryan, Kathleen; Rabuck, Cynthia
2012-09-01
Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.
Teaching the nature of physics through art: a new art of teaching
NASA Astrophysics Data System (ADS)
Colletti, Leonardo
2018-01-01
Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics courses in secondary schools, in order to convey, in a memorable way, some basic features of physics methodology. For an understanding of the overall characteristics of science should be regarded as one of the crucial goals of physics education. As a part of a general education, the forgetting of physics concepts may be acceptable, but failing to grasp the very nature of science is not. Images may help in conveying the nature of science, especially for humanities-oriented students. Moreover, famous paintings, with their familiarity and availability, are a valid tool in facilitating this.
Valentine, Julie L
2014-01-01
An evaluation of the Integrated Practice Model for Forensic Nursing Science () is presented utilizing methods outlined by . A brief review of nursing theory basics and evaluation methods by Meleis is provided to enhance understanding of the ensuing theoretical evaluation and critique. The Integrated Practice Model for Forensic Nursing Science, created by forensic nursing pioneer Virginia Lynch, captures the theories, assumptions, concepts, and propositions inherent in forensic nursing practice and science. The historical background of the theory is explored as Lynch's model launched the role development of forensic nursing practice as both a nursing and forensic science specialty. It is derived from a combination of nursing, sociological, and philosophical theories to reflect the grounding of forensic nursing in the nursing, legal, psychological, and scientific communities. As Lynch's model is the first inception of forensic nursing theory, it is representative of a conceptual framework although the title implies a practice theory. The clarity and consistency displayed in the theory's structural components of assumptions, concepts, and propositions are analyzed. The model is described and evaluated. A summary of the strengths and limitations of the model is compiled followed by application to practice, education, and research with suggestions for ongoing theory development.
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
NASA Astrophysics Data System (ADS)
Valente, Diego; Savkar, Amit; Mokaya, Fridah; Wells, James
The Force Concept Inventory (FCI) has been analyzed and studied in various ways with regards to students' understanding of basic physics concepts. We present normalized learning gains and effect size calculations of FCI scores, taken in the context of large-scale classes in a 4-year public university and course instruction that incorporates elements of Just-In-Time teaching and active learning components. In addition, we will present here a novel way of using FCI pre- and post-test as a predictor of students' performance on midterm and final exams. Utilizing a taxonomy table of physics concepts, we will look at student performance broken down by topic, while also examining possible correlations between FCI post-test scores and other course assessments. College of Liberal Arts and Sciences (CLAS), UConn.
Williams, Charlene; Perlis, Susan; Gaughan, John; Phadtare, Sangita
2018-05-06
Learner-centered pedagogical methods that are based on clinical application of basic science concepts through active learning and problem solving are shown to be effective for improving knowledge retention. As the clinical relevance of biochemistry is not always apparent to health-profession students, effective teaching of medical biochemistry should highlight the implications of biochemical concepts in pathology, minimize memorization, and make the concepts memorable for long-term retention. Here, we report the creation and successful implementation of a flipped jigsaw activity that was developed to stimulate interest in learning biochemistry among medical students. The activity combined the elements of a flipped classroom for learning concepts followed by a jigsaw activity to retrieve these concepts by solving clinical cases, answering case-based questions, and creating concept maps. The students' reception of the activity was very positive. They commented that the activity provided them an opportunity to review and synthesize information, helped to gage their learning by applying this information and work with peers. Students' improved performance especially for answering the comprehension-based questions correctly in the postquiz as well as the depth of information included in the postquiz concept maps suggested that the activity helped them to understand how different clinical scenarios develop owing to deviations in basic biochemical pathways. Although this activity was created for medical students, the format of this activity can also be useful for other health-professional students as well as undergraduate and graduate students. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
The availability and accessibility of basic concept vocabulary in AAC software: a preliminary study.
McCarthy, Jillian H; Schwarz, Ilsa; Ashworth, Morgan
2017-09-01
Core vocabulary lists obtained through the analyses of children's utterances include a variety of basic concept words. Supporting young children who use augmentative and alternative communication (AAC) to develop their understanding and use of basic concepts is an area of practice that has important ramifications for successful communication in a classroom environment. This study examined the availability of basic concept words across eight frequently used, commercially available AAC language systems, iPad© applications, and symbol libraries used to create communication boards. The accessibility of basic concept words was subsequently examined using two AAC language page sets and two iPad applications. Results reveal that the availability of basic concept words represented within the different AAC language programs, iPad applications, and symbol libraries varied but was limited across programs. However, there is no significant difference in the accessibility of basic concept words across the language program page sets or iPad applications, generally because all of them require sophisticated motor and cognitive plans for access. These results suggest that educators who teach or program vocabulary in AAC systems need to be mindful of the importance of basic concept words in classroom settings and, when possible, enhance the availability and accessibility of these words to users of AAC.
Nuclear science and society: social inclusion through scientific education
NASA Astrophysics Data System (ADS)
Levy, Denise S.
2017-11-01
This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.
Wellman, Tristan P.; Rupert, Michael G.
2016-03-03
The results of this investigation offer the foundational information needed for developing best management practices to mitigate nitrate contamination, basic concepts on water quality to aid public education, and information to guide regulatory measures if policy makers determine this is warranted. Science-based decision making will require continued monitoring and analysis of water quality in the future.
Multiflash X ray with Image Detanglement for Single Image Isolation
2017-08-31
known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image
Astronomy in the Initial Formation of Sciences Teachers
NASA Astrophysics Data System (ADS)
Costa, Samuel; Euzébio, Geison João; Damasio, Felipe
2016-12-01
Although astronomy is considered one of the older sciences of mankind, its teaching in basic education is facing problems. It is the school responsibility the dissemination of correct scientific concepts, including those related to Astronomy. This study was conducted at the Federal Institute of Education, Science and Technology of Santa Catarina, Campus Araranguá. In this article, we aimed to present the activities developed to help the formation of teachers, training undergraduate students in Natural Sciences with specialization in Physics to contribute to the dissemination and improvement of the teaching-learning of Astronomy. This paper presents the process and results of the evaluation of that training program. Analyses of the activity from the perspective of the participants are indicated and additional considerations are made regarding its use as a resource for teaching Astronomy and for teacher training.
Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J
2016-03-01
Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.
The use of animals in national high school student science fair projects in the United States.
Miller-Spiegel, Crystal
2004-06-01
Science fair projects can provide a sound opportunity to teach students the value of scientific methodology without relying on the routine and unnecessary use of animals. Unfortunately, students are often encouraged to use animals in an expendable manner that both duplicates previous experiments and neglects the opportunity to "think outside the box" in order to generate new hypotheses/theories about human health, physiological processes or basic biological concepts. Although at least one national science fair sponsor has changed its policy regarding students' utilisation of vertebrate animals, others continue to encourage the more traditional in vivo experimental projects. This paper will review the guidelines of two major national science fairs in the USA; types of projects conducted that involve animals; numbers of animals involved; interview responses by some student finalists who used vertebrates in their projects; successful initiatives by animal advocates in the USA to eliminate the use of animals in science fairs; and potential areas of outreach to science educators, science fair sponsors, high schools and students.
The astronomy education through interactive materials
NASA Astrophysics Data System (ADS)
de Macedo, Josué Antunes; Voelzke, Marcos Rincon
2014-11-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs
77 FR 5246 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...
What's hot, what's new in basic science: report from the American Transplant Congress 2015.
Heeger, P S
2015-11-01
Research reports presented at the American Transplant Congress 2015 provided an array of basic science findings of relevance to the transplant community. Among key themes is the concept that ischemia-reperfusion injury and early posttransplantation inflammation is linked to adaptive alloimmunity and transplant injury. Molecular and cellular mechanisms contributing to these interactions were highlighted. The relevance of understanding how blocking costimulation, including CD40/CD154 interactions, affects various aspects of the alloimmune response was enhanced by the description of preclinical studies demonstrating efficacy of a unique, blocking anti-CD40 monoclonal antibody that could potentially be used in humans. The identification of mechanisms underlying interactions among T cell subsets and B cells, including follicular helper T cells, regulatory T cells, effector B cells, and regulatory B cells, provides multiple previously unrecognized targets for future therapeutic interventions. Additional reports of interest include novel insights into effects of the gut microbiome on graft survival and the ability to differentiate insulin-secreting, islet-like cells from induced pluripotent stem cells. Overall, the reported basic science findings from American Transplant Congress 2015 add to the fundamental understanding of innate and adaptive alloimmunity and provide novel and testable hypotheses that have the potential to be translated into improved clinical care of transplant patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar
2014-01-01
Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical problem sets and static, limited data samples. In addition, we identify existing gaps and possible solutions for addressing the infrastructure and tools as well as a pedagogical framework through which to implement this inductive approach.
Making holograms in middle and high schools
NASA Astrophysics Data System (ADS)
Jeong, Tung H.
2000-06-01
Holography is a worthy topic that should become an integral part of any basic science curriculum. It embodies basic scientific principle that include the direct applications of three Nobel Prize physics concepts; it involves procedures that teaches the scientific method of problem solving; it can be learned by `doing' without previous experience; it is artistically creative; it can be appreciated by students of all ranges of abilities; and it is an open-ended subject so that specially interested students can continue to pursue deeper and more creative projects beyond the scope that fits into the curriculum. Finally, with the availability of high quality and low cost diode lasers, it is an affordable unit for any school.
Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.
Louridas, George E; Lourida, Katerina G
2017-02-21
Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.
NASA Astrophysics Data System (ADS)
Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.
2010-12-01
The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.
76 FR 48147 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...
The Terrestrial Planets - Edutainment and Science for Grades 7-9
NASA Astrophysics Data System (ADS)
Sornig, Manuela; Sonnabend, Guido; Pietsch-Lindt, Ursula; Stupar, Dusan; Morath, Frank; Bischoff, Sonja; Weiler, Sven
2010-05-01
Over the last years, public outreach has become an integral part of scientific work. In order to motivate the next generation of scientist and in cooperation with the JuniorUniversity program of the University of Cologne and the Cologne Science Adventure "Odysseum" we at the I. Physikalisches Institut developed a concept to introduce our up-to-date scientific work to teenagers between 13 and 15 years of age. The main idea was to motivate adolescents, to provide a cheerful contact with science and the local university, and to have fun. The focus of our scientific work are wind measurements in the upper atmospheres of Mars and Venus by high resolution infrared spectroscopy. The main concept of these observations is quite simple, just involving spectroscopic measurements of light and the well-known Doppler effect. This observational concept as well as general information on the planets were transported during one day consisting of various events. The morning was organized by the Odysseum. Two instructional workshops ("Venus, Earth, Mars", "Mission to Mars") with high "fun-factor" were offered providing an appropriate environment for the children and easy access to the subject. Basic information about the planets Mars and Venus was conveyed as well as some aspects on possible space missions to these planets. Based on that information the children visited our institute in the afternoon where two workshops with hands-on experiments provided deeper inside to the technique of spectroscopy ("Information from the Universe") and the problems of conducting astronomical observations ("Hitch-hiking through the universe"). The latter was also used to introduce the basic methods of how to write a scientific proposal for telescope observing time. Finally, to round up the day and to increase our targeted audience, parents and friends where invited to attend a presentation of the results of the day given by the participants as well as a brief introduction into our scientific work on investigations of dynamical properties on Mars and Venus expanding the knowledge gathered during the day.
ERIC Educational Resources Information Center
Gibbs, Marilyn J.
1988-01-01
Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)
Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji
2013-02-01
The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.
NASA Astrophysics Data System (ADS)
Strang, C.; Lemus, J.; Schoedinger, S.
2006-12-01
Ocean sciences were idiosyncratically left out of the National Science Education Standards and most state standards, resulting in a decline in the public's attention to ocean issues. Concepts about the ocean are hardly taught in K-12 schools, and hardly appear in K-12 curriculum materials, textbooks, assessments or standards. NGS, COSEE, NMEA, NOAA, the US Commission on Ocean Policy, the Pew Ocean Commission have all urgently called for inclusion of the ocean in science standards as a means to increase ocean literacy nationwide. There has never been consensus, however, about what ocean literacy is or what concepts should be included in future standards. Scientists interested in education and outreach activities have not had a framework to guide them in prioritizing the content they present or in determining how that content fits into the context of what K-12 students and the public need to know about science in general. In 2004, an on-line workshop on Ocean Literacy Through Science Standards began the process of developing consensus about what that framework should include. Approximately 100 ocean scientists and educators participated in the workshop, followed by a series of meetings and extensive review by leading scientists, resulting in a series of draft documents and statements. The importance of community-wide involvement and consensus was reinforced through circulation of the draft documents for public comment April -May, 2005. The community agreed on an Ocean Literacy definition, tagline, seven ocean principles, 44 concepts and a matrix aligning the concepts to the National Science Education Standards (NSES). The elements are described in more detail in the final Ocean Literacy brochure. Broad ownership of the resulting documents is a tribute to the inclusiveness of the process used to develop them. The emerging consensus on Ocean Literacy has become an instrument for change, and has served as an important tool guiding the ocean sciences education efforts of scientists, educators, and most importantly, has provided a common language for scientists and educators working together. In this past year, a similar community-wide effort has been mounted to develop an "Ocean Literacy Scope and Sequence" to serve as a critical companion to "Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12." The Scope and Sequence shows how the principles and concepts develop and build in logical and developmentally sound learning progressions across grade spans K-12. This document will provide further guidance to teachers, curriculum developers, textbook writers, and ocean scientists, as to what concepts about the ocean are appropriate to introduce at various grade spans. It will show the relationship between the new discoveries of cutting edge science and the basic science concepts on which they are built and which students are accountable to understand. Those concerned about science education and about the future health of the ocean must be poised to influence the development of science standards by local educational agencies, state departments of education and professional societies and associations. In order to be effective, we must have tools, products, documents, web sites that contain agreed upon science content and processes related to the ocean.
Nanotechnology and bone healing.
Harvey, Edward J; Henderson, Janet E; Vengallatore, Srikar T
2010-03-01
Nanotechnology and its attendant techniques have yet to make a significant impact on the science of bone healing. However, the potential benefits are immediately obvious with the result that hundreds of researchers and firms are performing the basic research needed to mature this nascent, yet soon to be fruitful niche. Together with genomics and proteomics, and combined with tissue engineering, this is the new face of orthopaedic technology. The concepts that orthopaedic surgeons recognize are fabrication processes that have resulted in porous implant substrates as bone defect augmentation and medication-carrier devices. However, there are dozens of applications in orthopaedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from 10s of nanometers to a few micrometers. Examples include scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. We review the basic science, clinical implications, and early applications of the nanotechnology revolution and emphasize the rich possibilities that exist at the crossover region between micro- and nanotechnology for developing new treatments for bone healing.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
Reassessing Phase II Heart Failure Clinical Trials: Consensus Recommendations
Butler, Javed; Hamo, Carine E.; Udelson, James E.; O’Connor, Christopher; Sabbah, Hani N.; Metra, Marco; Shah, Sanjiv J.; Kitzman, Dalane W.; Teerlink, John; Bernstein, Harold S.; Brooks, Gabriel; Depre, Christophe; DeSouza, Mary M.; Dinh, Wilfried; Donovan, Mark; Frische-Danielson, Regina; Frost, Robert J.; Garza, Dahlia; Gohring, Udo-Michael; Hellawell, Jennifer; Hsia, Judith; Ishihara, Shiro; Kay-Mugford, Patricia; Koglin, Joerg; Kozinn, Marc; Larson, Christopher J.; Mayo, Martha; Gan, Li-Ming; Mugnier, Pierrre; Mushonga, Sekayi; Roessig, Lothar; Russo, Cesare; Salsali, Afshin; Satler, Carol; Shi, Victor; Ticho, Barry; van der Laan, Michael; Yancy, Clyde; Stockbridge, Norman; Gheorghiade, Mihai
2017-01-01
The increasing burden and the continued suboptimal outcomes for patients with heart failure underlines the importance of continued research to develop novel therapeutics for this disorder. This can only be accomplished with successful translation of basic science discoveries into direct human application through effective clinical trial design and execution that results in a substantially improved clinical course and outcomes. In this respect, phase II clinical trials play a pivotal role in determining which of the multitude of potential basic science discoveries should move to the large and expansive registration trials in humans. A critical examination of the phase II trials in heart failure reveals multiple shortcomings in their concept, design, execution, and interpretation. To further a dialogue regarding the challenges and potential for improvement and the role of phase II trials in patients with heart failure, the Food and Drug Administration facilitated a meeting on October 17th 2016 represented by clinicians, researchers, industry members, and regulators. This document summarizes the discussion from this meeting and provides key recommendations for future directions. PMID:28356300
A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science
Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa
2015-01-01
There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389
Rockets: Physical science teacher's guide with activities
NASA Astrophysics Data System (ADS)
Vogt, Gregory L.; Rosenberg, Carla R.
1993-07-01
This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.
Rockets: Physical science teacher's guide with activities
NASA Technical Reports Server (NTRS)
Vogt, Gregory L.; Rosenberg, Carla R. (Editor)
1993-01-01
This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.
1994-01-01
High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.
Understanding modern-day vaccines: what you need to know.
Vetter, Volker; Denizer, Gülhan; Friedland, Leonard R; Krishnan, Jyothsna; Shapiro, Marla
2018-03-01
Vaccines are considered to be one of the greatest public health achievements of the last century. Depending on the biology of the infection, the disease to be prevented, and the targeted population, a vaccine may require the induction of different adaptive immune mechanisms to be effective. Understanding the basic concepts of different vaccines is therefore crucial to understand their mode of action, benefits, risks, and their potential real-life impact on protection. This review aims to provide healthcare professionals with background information about the main vaccine designs and concepts of protection in a simplified way to improve their knowledge and understanding, and increase their confidence in the science of vaccination ( Supplementary Material ). KEY MESSAGE Different vaccine designs, each with different advantages and limitations, can be applied for protection against a particular disease. Vaccines may contain live-attenuated pathogens, inactivated pathogens, or only parts of pathogens and may also contain adjuvants to stimulate the immune responses. This review explains the mode of action, benefits, risks and real-life impact of vaccines by highlighting key vaccine concepts. An improved knowledge and understanding of the main vaccine designs and concepts of protection will help support the appropriate use and expectations of vaccines, increase confidence in the science of vaccination, and help reduce vaccine hesitancy.
Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.
Thompson, Sean D A
2014-12-01
Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.
Scientific Innovation's Two Valleys of Death: How Blood and Tissue Banks Can Help to Bridge the Gap
Thompson, Sean D.A.
2014-01-01
Abstract Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation’s inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process. PMID:25457967
Teaching Vectors Through an Interactive Game Based Laboratory
NASA Astrophysics Data System (ADS)
O'Brien, James; Sirokman, Gergely
2014-03-01
In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji
2012-09-01
The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.
The oblique perspective: philosophical diagnostics of contemporary life sciences research.
Zwart, Hub
2017-12-01
This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.
ERIC Educational Resources Information Center
Acar, Tulin; Voltan-Acar, Nilufer
2013-01-01
The aim of this study was to evaluate the basic concepts of multigenerational Family Therapy and to evaluate the scenes of the film ''My Father and My Son'' according to these concepts. For these purposes firstly basic concepts of Multigenerational Family Therapy such as differentiation of self, triangles/triangulation, nuclear family emotional…
An international basic science and clinical research summer program for medical students.
Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K
2012-03-01
An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.
Investigating Undergraduate Students’ Conceptions of Radiation
NASA Astrophysics Data System (ADS)
Romine, James M.; Buxner, Sanlyn; Impey, Chris; Nieberding, Megan; Antonellis, Jessie C.
2014-11-01
Radiation is an essential topic to the physical sciences yet is often misunderstood by the general public. The last time most people have formal instruction about radiation is as students in high school and this knowledge will be carried into adulthood. Peoples’ conceptions of radiation influence their attitude towards research regarding radiation, radioactivity, and other work where radiation is prevalent. In order to understand students’ ideas about radiation after having left high school, we collected science surveys from nearly 12,000 undergraduates enrolled in introductory science courses over a span of 25 years. This research investigates the relationship between students’ conceptions of radiation and students’ personal beliefs and academic field of study.Our results show that many students in the sample were unable to adequately describe radiation. Responses were typically vague, brief, and emotionally driven. Students’ field of study was found to significantly correlate with their conceptions. Students pursuing STEM majors were 60% more likely to describe radiation as an emission and/or form of energy and cited atomic or radioactive sources of radiation twice as often as non-STEM students. Additionally, students’ personal beliefs also appear to relate to their conceptions of radiation. The most prominent misconception shown was that radiation is a generically harmful substance, which was found to be consistent throughout the duration of the study. In particular, non-science majors in our sample had higher rates of misconceptions, often generalized the idea of radiation into a broad singular topic, and had difficulty properly identifying sources.Generalized ideas of radiation and the inability to properly recognize sources of radiation may contribute to the prevalent misconception that radiation is an inexplicably dangerous substance. A basic understanding of both electromagnetic and particulate radiation and the existence of radiation at various energy levels may substantially deter fear-based generalizations and increase students’ abilities to make rational decisions when encountering various types of radiation in daily life.
Motivating first-year university students by interdisciplinary study projects
NASA Astrophysics Data System (ADS)
Koch, Franziska D.; Dirsch-Weigand, Andrea; Awolin, Malte; Pinkelman, Rebecca J.; Hampe, Manfred J.
2017-01-01
In order to increase student commitment from the beginning of students' university careers, the Technische Universität Darmstadt has introduced interdisciplinary study projects involving first-year students from the engineering, natural, social and history, economics and/or human sciences departments. The didactic concept includes sophisticated task design, individual responsibility and a differentiated support system. Using a self-determination theory framework, this study examined the effects of the projects based on survey findings from two projects with more than 1000 students. The results showed that the projects were successful in fulfilling students' basic psychological needs and in promoting students' academic engagement. Basic psychological needs were found to be significant predictors of academic engagement. These findings suggest that interdisciplinary study projects can potentially contribute to improving higher education as they fulfil students' basic psychological needs for competence, relatedness and autonomy and enhance students' academic engagement.
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
Basic science conferences in residency training: a national survey.
Cruz, P D; Charley, M R; Bergstresser, P R
1987-02-01
Basic science teaching is an important component of dermatology residency training, and the basic science conference is the major tool utilized by departments of dermatology for its implementation. To characterize the role of basic science conferences in dermatology training, a national survey of chief residents was conducted. Although the survey confirmed that a high value is placed on basic science conferences, a surprising finding was a significant level of dissatisfaction among chief residents, particularly those from university-based programs. Results of the survey have been used to redefine our own objectives in basic science teaching and to propose elements of methodology and curriculum.
Global Climate Change for Kids: Making Difficult Ideas Accessible and Exciting
NASA Astrophysics Data System (ADS)
Fisher, D. K.; Leon, N.; Greene, M. P.
2009-12-01
NASA has recently launched its Global Climate Change web site (http://climate.nasa.gov), and it has been very well received. It has now also launched in preliminary form an associated site for children and educators, with a plan for completion in the near future. The goals of the NASA Global Climate Change Education site are: To increase awareness and understanding of climate change science in upper-elementary and middle-school students, reinforcing and building upon basic concepts introduced in the formal science education curriculum for these grades; To present, insofar as possible, a holistic picture of climate change science and current evidence of climate change, describing Earth as a system of interconnected processes; To be entertaining and motivating; To be clear and easy to understand; To be easy to navigate; To address multiple learning styles; To describe and promote "green" careers; To increase awareness of NASA's contributions to climate change science; To provide valuable resources for educators; To be compliant with Section 508 of the Americans with Disabilities Act. The site incorporates research findings not only on climate change, but also on effective web design for children. It is envisioned that most of the content of the site will ultimately be presented in multimedia forms. These will include illustrated and narrated "slide shows," animated expositions, interactive concept-rich games and demonstrations, videos, animated fictionalized stories, and printable picture galleries. In recognition of the attention span of the audience, content is presented in short, modular form, with a suggested, but not mandatory order of access. Empathetic animal and human cartoon personalities are used to explain concepts and tell stories. Expository, fiction, game, video, text, and image modules are interlinked for reinforcement of similar ideas. NASA's Global Climate Change Education web site addresses the vital need to impart and emphasize Earth system science concepts at or near the beginning of the education pipeline.
On-line and Mobil Learning Activities
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.
2012-12-01
Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html
ERIC Educational Resources Information Center
Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit
2012-01-01
Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…
Jena, G B; Chavan, Sapana
2017-10-01
The principles of Good Laboratory Practices (GLPs) are mainly intended for the laboratories performing studies for regulatory compliances. However, today GLP can be applied to broad disciplines of science to cater to the needs of the experimental objectives, generation of quality data and assay reproducibility. Considering its significance, it can now be applied in academics; industries as well as government set ups throughout the world. GLP is the best way to promote the reliability, reproducibility of the test data and hence facilitates the international acceptability. Now it is high time to translate and implement the concept of GLP beyond regulatory studies. Thus, it can pave the way for better understanding of scientific problems and help to maintain a good human and environmental health. Through this review, we have made an attempt to explore the uses of GLP principles in different fields of science and its acceptability as well as looking for its future perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
Teaching energy using an integrated science approach
NASA Astrophysics Data System (ADS)
Poggi, Valeria; Miceli, Cristina; Testa, Italo
2017-01-01
Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.
Organism support for life sciences spacelab experiments
NASA Technical Reports Server (NTRS)
Drake, G. L.; Heppner, D. B.
1976-01-01
This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.
Wolfe, Charles T
2014-01-01
The distinction between 'mechanical' and 'teleological' has been familiar since Kant; between a fully mechanistic, quantitative science of Nature and a teleological, qualitative approach to living beings, namely 'organisms' understood as purposive or at least functional entities. The beauty of this distinction is that it apparently makes intuitive sense and maps onto historico-conceptual constellations in the life sciences, regarding the status of the body versus that of the machine. I argue that the mechanism-teleology distinction is imprecise and flawed using examples including the 'functional' features present even in Cartesian physiology, the Oxford Physiologists' work on circulation and respiration, the fact that the model of the 'body-machine' is not a mechanistic reduction of organismic properties to basic physical properties but is focused on the uniqueness of organic life; and the concept of 'animal economy' in vitalist medicine, which I present as a 'teleomechanistic' concept of organism (borrowing a term of Lenoir's which he applied to nineteenth-century embryology)--neither mechanical nor teleological.
The astronomy education through interactive materials
NASA Astrophysics Data System (ADS)
Voelzke, Marcos Rincon; Macedo, Josue
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.
Astronomy education through interactive materials
NASA Astrophysics Data System (ADS)
Voelzke, Marcos Rincon; Antunes de Macêdo, Josué
2015-08-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.
Research on the potential use of interactive materials on astronomy education
NASA Astrophysics Data System (ADS)
Voelzke, Marcos Rincon; Macedo, Josue
2016-07-01
This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.
Between Homo Sociologicus and Homo Biologicus: The Reflexive Self in the Age of Social Neuroscience
NASA Astrophysics Data System (ADS)
Pickel, Andreas
2012-10-01
The social sciences rely on assumptions of a unified self for their explanatory logics. Recent work in the new multidisciplinary field of social neuroscience challenges precisely this unproblematic character of the subjective self as basic, well-defined entity. If disciplinary self-insulation is deemed unacceptable, the philosophical challenge arises of systematically bringing together neurological, psychological, sociological, and anthropological dimensions of analysis in one framework such as dynamic systems theory; and of finding bridging concepts such as memory, social cognition, and cultural scripts that can facilitate the cross disciplinary study of the reflexive self. Relying on the systemic philosophy of science developed by Mario Bunge, this paper takes some steps in this direction.
NASA Astrophysics Data System (ADS)
Arnold, T. E.; Henson, W.; Reijo, C. J.; Laing, J.; Weinkam, G.
2015-12-01
A cross-disciplinary hydrology course was developed that combined field and classroom based techniques to educate undergraduate level students on issues related to water resources in Florida, USA. Six instructors from separate departments brought a different perspective, research experience, and view on water quality and quantity issues. The course progressed by examining hydrologic processes at different spatio-temporal scales beginning with the geologic scale (the formation of aquifers) and ending with present-day water management and policy concerns. We were challenged to introduce students from various academic backgrounds and levels to the core concepts of hydrology and water chemistry. Additionally, the instructors faced the task of making our research fit together seamlessly, such that one topic would naturally progress to the next topic. We ensured that students' knowledge progressed enough so they could address complex management issues through critical thinking and application of basic field techniques. It is our objective to share the experiences and challenges in developing an interdisciplinary course that: 1) introduced new research ideas and concepts from six separate fields, 2) enhanced lecture concepts by hands-on, field-based activities, and 3) would keep students from science and non-science backgrounds engaged and challenged but not overwhelmed.
Constellation Architecture Team-Lunar: Lunar Habitat Concepts
NASA Technical Reports Server (NTRS)
Toups, Larry; Kennedy, Kriss J.
2008-01-01
This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port core habitat, and the third investigated leveraging commonality of the lander ascent module and airlock pressure vessel hard shell. The paper will describe an overview of the various habitat concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suit-port airlock function such as redundant airlock(s), suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as closed loop life support systems hardware, consumable stowage, spares stowage, interconnection to the other Hab units, and a common interface mechanism for future growth and mating to a pressurized rover. The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, and medical operations.
Why are sex and gender important to basic physiology and translational and individualized medicine?
Miller, Virginia M
2014-03-01
Sex refers to biological differences between men and women. Although sex is a fundamental aspect of human physiology that splits the population in two approximately equal halves, this essential biological variable is rarely considered in the design of basic physiological studies, in translating findings from basic science to clinical research, or in developing personalized medical strategies. Contrary to sex, gender refers to social and cultural factors related to being a man or a woman in a particular historical and cultural context. Unfortunately, gender is often used incorrectly by scientists and clinical investigators as synonymous with sex. This article clarifies the definition of sex and gender and reviews evidence showing how sex and gender interact with each other to influence etiology, presentation of disease, and treatment outcomes. In addition, strategies to improve the inclusion of female and male human beings in preclinical and clinical studies will be presented, and the importance of embedding concepts of sex and gender into postgraduate and medical curricula will be discussed. Also, provided is a list of resources for educators. In the history of medical concepts, physiologists have provided pivotal contributions to understanding health and disease processes. In the future, physiologists should provide the evidence for advancing personalized medicine and for reducing sex and gender disparities in health care.
Why are sex and gender important to basic physiology and translational and individualized medicine?
2014-01-01
Sex refers to biological differences between men and women. Although sex is a fundamental aspect of human physiology that splits the population in two approximately equal halves, this essential biological variable is rarely considered in the design of basic physiological studies, in translating findings from basic science to clinical research, or in developing personalized medical strategies. Contrary to sex, gender refers to social and cultural factors related to being a man or a woman in a particular historical and cultural context. Unfortunately, gender is often used incorrectly by scientists and clinical investigators as synonymous with sex. This article clarifies the definition of sex and gender and reviews evidence showing how sex and gender interact with each other to influence etiology, presentation of disease, and treatment outcomes. In addition, strategies to improve the inclusion of female and male human beings in preclinical and clinical studies will be presented, and the importance of embedding concepts of sex and gender into postgraduate and medical curricula will be discussed. Also, provided is a list of resources for educators. In the history of medical concepts, physiologists have provided pivotal contributions to understanding health and disease processes. In the future, physiologists should provide the evidence for advancing personalized medicine and for reducing sex and gender disparities in health care. PMID:24414073
Miller, Cynthia Jayne; Metz, Michael James
2015-12-01
Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to apply basic science content to clinically important scenarios.
Fundamentals and applications of electrochemistry
NASA Astrophysics Data System (ADS)
McEvoy, A. J.
2013-06-01
The Voltaic pile, invented here on Lake Como 200 years ago, was a crucial step in the development of electrical engineering. For the first time a controlled and reliable source of electric current was available. The science of electrochemistry developed rapidly and is now a key contributor, not just to energy technology but also, for example, to metallurgy and industrial processes. The basic concepts of electrochemistry are presented, with the practical examples of its application in fuel cells, and with the perspective of the history of the subject.
Is There Such a Thing as Psychological Pain? and Why It Matters
2010-01-01
Medicine regards pain as a signal of physical injury to the body despite evidence contradicting the linkage and despite the exclusion of vast numbers of sufferers who experience psychological pain. By broadening our concept of pain and making it more inclusive, we would not only better accommodate the basic science of pain but also would recognize what is already appreciated by the layperson—that pain from diverse sources, physical and psychological, share an underlying felt structure. PMID:20835887
75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...
NASA Astrophysics Data System (ADS)
Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.
2015-12-01
Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included all three perspectives. The best projects are being compiled so they can be shared with the University of San Diego's planning committee.
‘The physics of life,’ an undergraduate general education biophysics course
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2015-05-01
Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses—i.e. courses for students not majoring in the sciences or engineering. Because it encompasses a variety of important scientific concepts, demonstrates connections between basic science and real-world applications and illustrates the creative ways in which scientific insights develop, biophysics is a useful subject with which to promote scientific literacy. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon (Eugene, OR, USA), noting its design, which spans both macroscopic and microscopic topics, and the specific content of a few of its modules. I also describe evidence-based pedagogical approaches adopted in teaching the course and aspects of course enrollment and evaluation.
Integration of basic sciences and clinical sciences in oral radiology education for dental students.
Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N
2013-06-01
Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.
Training of physicians for the twenty-first century: role of the basic sciences.
Grande, Joseph P
2009-09-01
Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.
Varieties of noise: analogical reasoning in synthetic biology.
Knuuttila, Tarja; Loettgers, Andrea
2014-12-01
The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by drawing analogies between the different fields of inquiry. We will study analogical reasoning in synthetic biology through the emergence of the functional meaning of noise, which marks an important shift in how engineering concepts are employed in this field. The notion of noise serves also to highlight the differences between the two branches of synthetic biology: the basic science-oriented branch and the engineering-oriented branch, which differ from each other in the way they draw analogies to various other fields of study. Moreover, we show that fixing the mapping between a source domain and the target domain seems not to be the goal of analogical reasoning in actual scientific practice.
Smith, Joshua J; Wiley, Emily A; Cassidy-Hanley, Donna M
2012-01-01
Tetrahymena has been a useful model in basic research in part due to the fact it is easy to grow in culture and exhibits a range of complex processes, all within a single cell. For these same reasons Tetrahymena has shown enormous potential as a teaching tool for fundamental principles of biology at multiple science education levels that can be integrated into K-12 classrooms and undergraduate and graduate college laboratory courses. These Tetrahymena-based teaching modules are inquiry-based experiences that are also effective at teaching scientific concepts, retaining students in science, and exciting students about the scientific process. Two learning communities have been developed that utilize Tetrahymena-based teaching modules. Advancing Secondary Science Education with Tetrahymena (ASSET) and the Ciliate Genomics Consortium (CGC) have developed modules for K-12 students and college-level curriculums, respectively. These modules range from addressing topics in ecology, taxonomy, and environmental toxicity to more advanced concepts in biochemistry, proteomics, bioinformatics, cell biology, and molecular biology. An overview of the current modules and their learning outcomes are discussed, as are assessment, dissemination, and sustainability strategies for K-12 and college-level curriculum. Copyright © 2012 Elsevier Inc. All rights reserved.
78 FR 6088 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...
ERIC Educational Resources Information Center
Balat, Gülden Uyanik
2014-01-01
Most basic concepts are acquired during preschool period. There are studies indicating that the basic concept knowledge of children is related to language development, cognitive development, academic achievement and intelligence. The relationship between learning behaviors (sometime called learning or cognitive styles) and a child academic success…
The relevance of basic sciences in undergraduate medical education.
Lynch, C; Grant, T; McLoughlin, P; Last, J
2016-02-01
Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.
Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course
NASA Astrophysics Data System (ADS)
Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel
2018-03-01
Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.
Basic science right, not basic science lite: medical education at a crossroad.
Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott
2009-11-01
This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.
Towards new understanding of the heart structure and function.
Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio F; Komeda, Masashi; Carreras-Costa, Francesc; Flotats, A; Cosin-Aguillar, Juan; Wen, Han
2005-02-01
Structure and function in any organ are inseparable categories, both in health and disease. Whether we are ready to accept, or not, many questions in cardiovascular medicine are still pending, due to our insufficient insight in the basic science. Even so, any new concept encounters difficulties, mainly arising from our inert attitude, which may result either in unjustified acceptance or denial. The ventricular myocardial band concept, developed over the last 50 years, has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium. After more than five centuries long debate on macroscopic structure of the ventricular myocardium, this concept has provided a promising ground for its final understanding. Recent validations of the ventricular myocardial band, reviewed here, as well as future research directions that are pointed out, should initiate much wider scientific interest, which would, in turn, lead to reconciliation of some exceeded concepts about developmental, electrical, mechanical and energetical events in human heart. The benefit of this, of course, would be the most evident in the clinical arena.
NASA Astrophysics Data System (ADS)
Boudreaux, Andrew
2006-05-01
Current national and local standards for the science learning of K-12 students emphasize both basic concepts (such as density) and fundamental reasoning skills (such as proportional reasoning, the interpretation of graphs, and the use of control of variables). At Western Washington University (WWU) and the University of Washington (UW), an effort is underway to examine the ability of university students to apply these same concepts and skills. Populations include students in liberal arts physics courses, introductory calculus-based physics courses, and special courses for the preparation of teachers. One focus of the research has been on the idea of control of variables. This topic is studied by students at all levels, from the primary grades, in which the notion of a ``fair test,'' is sometimes used, to university courses. This talk will discuss research tasks in which students are expected to infer from experimental data whether a particular variable influences (i.e., affects) or by itself determines (i.e., predicts) a given result. Student responses will be presented to identify specific difficulties.
The Immunologic Revolution: Photoimmunology
Ullrich, Stephen E.; Byrne, Scott N.
2011-01-01
UV radiation targets the skin and is a primary cause of skin cancer (both melanoma and non-melanoma skin cancer). Exposure to UV also suppresses the immune response, and UV-induced immune suppression is a major risk factor for skin cancer induction. The efforts of Dermatologists and Cancer Biologists to understand how UV exposure suppresses the immune response and contributes to skin cancer induction led to the development of the sub-discipline we call photoimmunology. Advances in photoimmunology have generally paralleled advances in immunology. However, there are a number of examples where investigations into the mechanisms underlying UV-induced immune suppression reshaped our understanding of basic immunological concepts. Unconventional immune regulatory roles for Langerhans cells, mast cells, and NKT cells as well as the immune suppressive function of lipid mediators of inflammation and alarmins, are just some examples of how advances in immunodermatology have altered our understanding of basic immunology. In this anniversary issue celebrating 75 years of Cutaneous Science, we will provide examples of how concepts that grew out of efforts by Immunologists and Dermatologists to understand immune regulation by UV radiation impacted on immunology in general. PMID:22170491
Spiritual Health: A Concept Analysis.
Jaberi, Azita; Momennasab, Marzieh; Yektatalab, Shahrzad; Ebadi, Abbas; Cheraghi, Mohammad Ali
2017-03-10
Spiritual health has attracted a lot of attention in health-related and nursing sciences and numerous researches. Yet, this concept has remained complex and ambiguous, and there is no consensus in this regard. This ambiguity can be challenging for holistic nursing; therefore, clarification of the concept is required for development of nursing knowledge. The present study aimed to explore the concept of spiritual health in health-related and nursing literature. Walker and Avant (Strategies for theory construction in nursing, Appleton & Lange, Norwalk, 1995) concept analysis method was used in this study. The results were categorized as antecedents, attributes, and outcomes of spiritual health. The critical attributes extracted for spiritual health included transcendence, purposefulness and meaningfulness, faithfulness, harmonious interconnectedness, integrative power, multidimensionality, and holistic being. Besides, the antecedents of spiritual health included capability and potentiality for transcendence, and spiritual awareness. Finally, well-being and moral development were the outcomes of spiritual health. Spiritual health is one of the basic aspects of health and providing a clear theoretical definition can result in a common understanding of this concept for nurses. Clarifying this concept would also be useful for provision of spiritual care interventions and development of nursing theories.
Precision medicine for nurses: 101.
Lemoine, Colleen
2014-05-01
To introduce the key concepts and terms associated with precision medicine and support understanding of future developments in the field by providing an overview and history of precision medicine, related ethical considerations, and nursing implications. Current nursing, medical and basic science literature. Rapid progress in understanding the oncogenic drivers associated with cancer is leading to a shift toward precision medicine, where treatment is based on targeting specific genetic and epigenetic alterations associated with a particular cancer. Nurses will need to embrace the paradigm shift to precision medicine, expend the effort necessary to learn the essential terminology, concepts and principles, and work collaboratively with physician colleagues to best position our patients to maximize the potential that precision medicine can offer. Copyright © 2014 Elsevier Inc. All rights reserved.
Application of Platelet-Rich Plasma to Disorders of the Knee Joint
Mandelbaum, Bert R.; McIlwraith, C. Wayne
2013-01-01
Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674
L'appropriation du domaine scientifique chez l'eleve togolais
NASA Astrophysics Data System (ADS)
Lalancette, Lucie
1998-12-01
Science and technology are essential to sustainable development. They must be endogenous in nature to reduce the dependency and vulnerability of developing countries. Hence we seek to determine how Togolese students appropriate the field of science. Science education should answer fundamental educational needs by aiming for autonomy and individualization, that is, the skills and attitudes necessary to the resolution of, problems (and thus necessary to creativity), the concept of which includes the production of new ideas and adaptation to change. This basic scientific culture allows citizens to understand socioeconomic and environmental imperatives related to science and technology. This study answers the following questions: (1) How is the appropriation of knowledge by Togolese students favored? (2) What are the representations acquired by Togolese students in the science classroom regarding key research concepts, namely education, culture, science, knowledge and development? The objective of this research is to partially describe the context of science learning in the first cycle of the Second Degree in Togo, a French-language developing country of Africa, and particularly to understand the influence of the sociocultural setting on pedagogy and development. We first present our conception of science teaching, followed by the construction of knowledge in context. This research permits clearer propositions in terms of plausible explanations for the observed relationships among the categories of data. Indeed, the framework of the transmission of knowledge considerably influences the appropriation of the field of science by Togolese students. Science is a mythical and mystical field, still perceived as the "white mans's thing", in spite of favorable attitudes developed by students concerning the application of science and technology in their environment. By way of the favored learning methods (which also represent those of the traditional environment) and curricula (which are exogenous in nature), students formally appropriate scientific knowledge without actually transferring that knowledge outside the school setting. For this study, the validity of the propositions is dependent upon the perceptions of the key research concepts by the subjects. That is why the propositions are supported by the analysis of the Togolese student's answers during interviews, as well as by lectures given by African essayists. This is an a priori exploratory research, characterized by a qualitative methodology. The research concentrates on preliminary description and comprehension. Specifically, the method is based on an interpretive approach, while also being reflexive in nature. Observation data were gathered through documentation, field observations, a group discussion and a questionnaire. The pertinence of this study's results lies in a better understanding of the construction of knowledge in context.
Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L
2008-07-01
Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.
Quality knowledge of science through virtual laboratory as an element of visualization
NASA Astrophysics Data System (ADS)
Rizman Herga, Natasa
Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic experiment, carried out over a period of two school years (2012/2013 and 2013/2014) in ten primary schools, the effectiveness of teaching carried out with the support of a virtual laboratory was analyzed. The obtained empirical findings reveal that the use of virtual laboratory has great impact on the pupils' knowledge and interest. At the end of the experiment, pupils in the experimental group had an advantage according to knowledge of chemical contents in science. Also, the use of virtual laboratory had an impact on the sustainability of the acquired knowledge of science contents and pupils' interest at the end of the experiment, because the pupils in the experimental group had a higher interest for learning science contents. The didactic experiment determined, that the use of virtual laboratory enables quality learning and teaching chemical contents of science, because it allows: (1) experimental work as an active learning method, (2) the visualization of abstract concepts and phenomena, (3) dynamic sub micro presentations (4) integration of all three levels of the chemical concept as a whole and (5) positively impacts pupils' interest, knowledge and sustainability of the acquired knowledge.
Finding an information concept suited for a universal theory of information.
Brier, Søren
2015-12-01
The view argued in this article is that if we want to define a universal concept of information covering subjective experiential and meaningful cognition - as well as intersubjective meaningful communication in nature, technology, society and life worlds - then the main problem is to decide, which epistemological, ontological and philosophy of science framework the concept of information should be based on and integrated in. All the ontological attempts to create objective concepts of information result in concepts that cannot encompass meaning and experience of embodied living and social systems. There is no conclusive evidence that the core of reality across nature, culture, life and mind is purely either mathematical, logical or of a computational nature. Therefore the core of the information concept should not only be based only on pure logical or mathematical rationality. We need to include interpretation, signification and meaning construction in our transdisciplinary framework for information as a basic aspect of reality alongside the physical, chemical and molecular biological. Dretske defines information as the content of new, true, meaningful, and understandable knowledge. According to this widely held definition information in a transdisciplinary theory cannot be 'objective', but has to be relativized in relation to the receiver's knowledge, as also proposed by Floridi. It is difficult to produce a quantitative statement independently of a qualitative analysis based on some sort of relation to the human condition as a semiotic animal. I therefore alternatively suggest to build information theories based on semiotics from the basic relations of embodied living systems meaningful cognition and communication. I agree with Peircean biosemiotics that all information must be part of real relational sign-processes manifesting as tokens. Copyright © 2015. Published by Elsevier Ltd.
Tengland, Per-Anders
2011-06-01
The concept of "work ability" is central for many sciences, especially for those related to working life and to rehabilitation. It is one of the important concepts in legislation regulating sickness insurance. How the concept is defined therefore has important normative implications. The concept is, however, often not sufficiently well defined. AIM AND METHOD The objective of this paper is to clarify, through conceptual analysis, what the concept can and should mean, and to propose a useful definition for scientific and practical work. RESULTS Several of the defining characteristics found in the literature are critically scrutinized and discussed, namely health, basic standard competence, occupational competence, occupational virtues, and motivation. These characteristics are related to the work tasks and the work environment. One conclusion is that we need two definitions of work ability, one for specific jobs that require special training or education, and one for jobs that most people can manage given a short period of practice. Having work ability, in the first sense, means having the occupational competence, the health required for the competence, and the occupational virtues that are required for managing the work tasks, assuming that the tasks are reasonable and that the work environment is acceptable. In the second sense, having work ability is having the health, the basic standard competence and the relevant occupational virtues required for managing some kind of job, assuming that the work tasks are reasonable and that the work environment is acceptable. CONCLUSION These definitions give us tools for understanding and discussing the complex, holistic and dynamic aspects of work ability, and they can lay the foundations for the creation of instruments for evaluating work ability, as well as help formulate strategies for rehabilitation.
ERIC Educational Resources Information Center
DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.
2009-01-01
Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…
Williams, Austin D; Mann, Barry D
2017-02-01
As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.
The use of simulation in teaching the basic sciences.
Eason, Martin P
2013-12-01
To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.
Impacting Society through Astronomy Undergraduate Courses
NASA Astrophysics Data System (ADS)
Schleigh, Sharon
2015-04-01
A high percentage of non-science majors enroll in undergraduate, introductory astronomy courses across the country. The perception of the astronomy course as being easier than the ``hard sciences'' and the idea that the course will focus on ``pretty pictures'', influences the interests of the non-science majors. Often the students that enroll in these courses will not take other science courses, resulting in the only opportunity to teach college students about basic scientific concepts that impact their lives. Vast misconceptions about the nature of science, the role of science and scientists in society, and social issues embedded in scientific information, impact the decisions that individuals make about every day events. In turn, these decisions influence the policies that construct our society. This talk will provide an overview of the common misconceptions and discuss how they impact our society as a whole. The research presented provides evidence of the impact that introductory college astronomy courses have on changing these everyday misconceptions and influencing non-science majors' ideas about science in society. The research suggests that introductory courses designed for non-science majors are extremely important in impacting our society, and begs for a stronger understanding and implementation of best practices for teaching and learning in the college classroom environment.
NASA Astrophysics Data System (ADS)
Lee, Hyunju; Feldman, Allan
2014-06-01
The LIGO Science Education Center in Livingston, LA, provides K-12 students with 3.5-hour field trip programs that consist of watching a documentary, touring the LIGO facilities, exploring interactive science exhibits, and hands-on classroom activities with the Center’s staff. In our study we administered a pre/post-survey, which consisted of Likert-type and open-ended questions, to approximately 1,000 secondary students who visited LIGO in Spring 2013. In this paper we report on our current findings from a half-way analysis about 1) the students’ attitudes and interests about science; 2) their understanding about basic scientific concepts relevant to LIGO science, gravity, light, and sound; and 3) their understanding about the LIGO project. In comparison between pre and post-responses using a paired-samples t-test, the results showed that the field trip to LIGO had significant (p<0.05) positive impact on increasing the number of students who think that "science is fun" and that they "would want to be a scientist." In addition, they had significant (p<0.05) knowledge gain in understanding that there are frequencies of light that are not visible, and they were able to correctly name the different kinds of electromagnetic waves after the visit. In pre-test 51.5% responded that they did not even hear about LIGO and 17.8% could not explain what it was although they heard about it (as they were from the local schools). On the other hand, 86.6% students were able to explain about LIGO project in post-test. Among them, more than half of the students (59.3%) correctly described the purpose of the LIGO project. Another 9.3% recognized it as a science research center without further information about what specifying the purpose of LIGO. About 8% held misconceptions, and 7% recognized LIGO as a science learning center. The students’ learning in this field trip happened mainly by: encountering the new concept; recalling their prior knowledge and reinforcing it; and being able to connect the scientific concept to how it is applied in a professional science research.
Khosa, Deep K; Volet, Simone E; Bolton, John R
2014-01-01
The value of collaborative concept mapping in assisting students to develop an understanding of complex concepts across a broad range of basic and applied science subjects is well documented. Less is known about students' learning processes that occur during the construction of a concept map, especially in the context of clinical cases in veterinary medicine. This study investigated the unfolding collaborative learning processes that took place in real-time concept mapping of a clinical case by veterinary medical students and explored students' and their teacher's reflections on the value of this activity. This study had two parts. The first part investigated the cognitive and metacognitive learning processes of two groups of students who displayed divergent learning outcomes in a concept mapping task. Meaningful group differences were found in their level of learning engagement in terms of the extent to which they spent time understanding and co-constructing knowledge along with completing the task at hand. The second part explored students' and their teacher's views on the value of concept mapping as a learning and teaching tool. The students' and their teacher's perceptions revealed congruent and contrasting notions about the usefulness of concept mapping. The relevance of concept mapping to clinical case-based learning in veterinary medicine is discussed, along with directions for future research.
The progress test as a diagnostic tool for a new PBL curriculum.
Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H
2011-12-01
The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.
75 FR 6369 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...
What does semantic tiling of the cortex tell us about semantics?
Barsalou, Lawrence W
2017-10-01
Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) feature and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bell, M; Franceys, R
1995-05-01
This paper explores recent attempts to improve the effectiveness of environmental health programmes and projects by reference to the International Drinking Water Supply and Sanitation Decade (1980-1990) and beyond. Reference is made to how water and sanitation as technical interventions have drawn upon the natural sciences, notably concepts of race and sex, and the social sciences including culture and gender, for their authority and legitimacy. A new and apparently progressive movement, the Water Decade sought to challenge the powerful and enduring high tech image of development on which much western environmental and social transformations have been based. Beginning as a critique of modernism with a commitment to basic needs as human rights, it was driven by a recognition that sophisticated technology could not satisfy human health needs. Alternative technologies would, by contrast, cater for a more extensive and varied market and would promote participatory approaches to service delivery. The paper demonstrates how, during the course of the Decade, sections of the aid community began to redefine basic needs as commodities involving the efficient marketing and delivery of a product with minimal state intervention. Within a shifting international political and economic context, it examines the changing role of the expert and the links being forged between large donors, non-governmental organisations and the private sector. The significance of this reformulated progressivism for the development debate is then considered, notably in relation to concepts of citizenship, consumer choice and the role of the state.
From Big Data to Knowledge in the Social Sciences.
Hesse, Bradford W; Moser, Richard P; Riley, William T
2015-05-01
One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating "big data to knowledge" is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive.
The assumed relation between occupation and inequality in health.
Madsen, Jacob; Kanstrup, Anne Marie; Josephsson, Staffan
2016-01-01
Occupational science and therapy scholars have argued that research on inequality in health is needed. Simultaneously, a knowledge gap between how to understand and take action on health inequalities exists in occupational science and therapy. To identify how inequality in health, high-risk areas of health, and engagement in health for low-income adult citizens have been described and conceptualized in contemporary occupational science and therapy literature. A structured literature review of 37 publications in occupational science and therapy literature, published from 2004 to 2014. The review revealed several descriptions and conceptualizations based on environmental, social, cultural, historical, and personal perspectives on occupation and already existing occupational science concepts. However, these descriptions were mainly based on assumptions regarding the relation between occupation and inequality in health, and statements on the need to explore this relation. Basic theory and reasoning, as well as empirical studies, on inequality in health are missing in occupational science and therapy. Based on the findings and theoretical trends, the authors suggest a transactional perspective on occupation is a possible frame for understanding inequality in health and related issues.
NASA Astrophysics Data System (ADS)
Gurtler, G.
2017-12-01
We discuss the challenges and achievements that a small HSI college had integrating undergraduate research experiences into an existing natural sciences program. Like most introductory college science courses, our natural science courses used textbooks, PowerPoint presentations, and lectures to illustrate basic scientific concepts. Though a collective decision was made by our science faculty to incorporate undergraduate research projects into various STEM courses, our greatest challenge was incorporating mandatory research courses into the degree plans of our Natural Science program. We found that students made considerable progress in understanding natural science by critically evaluating primary research articles and undertaking small research projects. Many of these student projects were conducted in cooperation with the Albuquerque District of the US Army Corps of Engineers, United States Geological Survey in Denver, and the National Ice Core Laboratory. These projects illustrated the effects of climate change on the water quality, sediment buildup, and biodiversity at local reservoirs. Other projects involved the analysis of ice core samples from Greenland and Antarctica. Students presented research posters at various research venues, including Community College Undergraduate Research Initiative colloquiums.
From Big Data to Knowledge in the Social Sciences
Hesse, Bradford W.; Moser, Richard P.; Riley, William T.
2015-01-01
One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating “big data to knowledge” is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive. PMID:26294799
Craft-Art as a Basis for Human Activity
ERIC Educational Resources Information Center
Karppinen, Seija
2008-01-01
This article based on my doctoral thesis examines the Basic Arts Education system in Finland, focusing on Basic Crafts Education and its description through action concepts. The main task of the study was to create a concept model. In the first part of the study a concept map was created from the practice of Basic Crafts Education. The aim of the…
ERIC Educational Resources Information Center
Hansen, W. Lee; And Others
A concise framework of basic concepts and generalizations for teaching economics for K-12 students is presented. The guide summarizes the basic structure and substance of economics and lists and describes economic concepts. Standard guidelines are provided to help school systems integrate economics into their on-going courses of study. Designed to…
Hunting for Habitable Worlds: Engaging Students in an Adaptive Online Setting
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Ben-Naim, D.; Anbar, A. D.; Semken, S. C.
2011-12-01
The field of astrobiology, through its breadth of scope and high level of public interest, offers a unique prospect for introductory science curricula, particularly at the undergraduate level. Traditional university-level science instruction consists of lectures and accompanying lab courses that are highly scripted to emphasize correct replication of results rather than inquiry-driven exploration. These methodologies give students the impression that science is an authoritative list of abstract concepts and experimental results requiring memorization, rather than a methodology for narrowing uncertainties in our knowledge. Additionally, this particular class structure does not take advantage of many new and emerging online multimedia technologies. To address the shortcomings of current pedagogical approaches, we adapted the Arizona State University introductory-level course "Habitable Worlds" for online delivery in the fall semester of 2011. This course is built around the Drake Equation, which allows us to introduce non-science students to the basics of scientific thought and methodology while exploring disciplines as diverse as astronomy, geology, biology, and sustainability in an integrated manner. The online version of this course is structured around a habitable-worlds-hunting quest, where each student is provided with an individualized universe and tasked with finding scientifically realistic computer-generated inhabited planets around realistic stars. In order to successfully complete this mission, students work their way through the course curriculum via interactive exercises that focus on the discovery of basic scientific concepts followed by the mathematics and models that explain them, hence inverting the lecture-lab paradigm. The "Habitable Worlds" course is built on the Adaptive eLearning Platform (AeLP), an innovative educational technology that provides a "tutor over the shoulder" learning experience for students. Our focus is on engaging students with rich interactions (such as data collection using Google Earth, virtual field trips, and interactive simulations) while providing them with intelligent and adaptive feedback and lesson structure. As such, advanced students proceed quickly and are kept engaged, while students with difficulty receive the appropriate remediation and support they need. The AeLP's analytics engine allows instructors to explore large datasets of students' interaction, and assists in identifying problematic concepts or flaws in instructional design. Subsequently, instructors can further adapt and improve the content to their students' specific needs.
78 FR 38696 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...
76 FR 41234 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
77 FR 41395 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
75 FR 41838 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...
76 FR 8358 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...
Structures, Not Strings: Linguistics as Part of the Cognitive Sciences.
Everaert, Martin B H; Huybregts, Marinus A C; Chomsky, Noam; Berwick, Robert C; Bolhuis, Johan J
2015-12-01
There are many questions one can ask about human language: its distinctive properties, neural representation, characteristic uses including use in communicative contexts, variation, growth in the individual, and origin. Every such inquiry is guided by some concept of what 'language' is. Sharpening the core question--what is language?--and paying close attention to the basic property of the language faculty and its biological foundations makes it clear how linguistics is firmly positioned within the cognitive sciences. Here we will show how recent developments in generative grammar, taking language as a computational cognitive mechanism seriously, allow us to address issues left unexplained in the increasingly popular surface-oriented approaches to language. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Minamino, Yoritoshi
Department of Adaptive Machine Systems, Department of Materials and Manufucturing Science and Department of Business engineering have constructed the educational programs of consecutive system from master to doctor courses in graduate school of engineering, “Pioneering Integrated Education and Research Program (PP) ”, to produce volitional and original mind researchers with high abilities of research, internationality, leader, practice, management and economics by cooperation between them for reinforcement of their ordinary curriculums. This program consists of the basic PP for master course students and the international exchange PP, leadership pp and tie-up PP of company and University for Doctor course students. In 2005th the basic PP was given to the master course students and then their effectiveness of the PP was investigated by questionnaire. The results of questionnaire proved that the graduate school students improved their various abilities by the practical lesson in cooperation between companies and our Departments in the basic PP, and that the old boys after basic PP working in companies appreciated the advantages to business planning, original conception, finding solution, patents, discussion, report skills required in companies.
Using Film and Social Media for Successful Earth Science Outreach in Nepal and Indonesia
NASA Astrophysics Data System (ADS)
Kerlow, I.
2016-12-01
We are using social media effectively to bring a documentary film about earthquakes in Nepal to Nepalese audiences that live in tectonically hazardous areas, and a tsunami preparedness movie to the people of Banda Aceh. The one-week online preview of the Nepali-subtitled version of the movie received over 79,000 post Facebook Likes. The movie makes extensive use of animation techniques in addition to live action to explain basic facts about seismic activity in the Himalaya region and also basic preparedness concepts. This presentation reviews the social media campaign designed and implemented to bring preparedness movies to large local audiences, as well as the development, production, and world distribution of natural hazards documentary films with scientific depth but designed for a mainstream audience.
Rasia-Filho, Alberto A; Giovenardi, Márcia; de Almeida, Rosa M M
2008-01-01
Aggression is conceived as a social behavior that, in conjunct with motor and visceral displays, is related with acts for obtaining a specific goal or is directed against threatening stimuli with the intention of causing harm, either for attack or defense. Here it is reviewed basic concepts and aspects for the classification of aggression, the behavioral displays regarded as aggressive in animal models, the basic neural circuits that are involved to them and the pharmacological approaches involving some neurotransmitters (5-HT, dopamine and GABA) and drugs that can be used to identify the neural basis of aggression and to modulate its expression. Drug patents are referred in the text. Data are based on experiments developed mainly with rodents; however, some research hypotheses that may well give some insights for the clinical sciences in men were also included.
Multiple-solution problems in a statistics classroom: an example
NASA Astrophysics Data System (ADS)
Chu, Chi Wing; Chan, Kevin L. T.; Chan, Wai-Sum; Kwong, Koon-Shing
2017-11-01
The mathematics education literature shows that encouraging students to develop multiple solutions for given problems has a positive effect on students' understanding and creativity. In this paper, we present an example of multiple-solution problems in statistics involving a set of non-traditional dice. In particular, we consider the exact probability mass distribution for the sum of face values. Four different ways of solving the problem are discussed. The solutions span various basic concepts in different mathematical disciplines (sample space in probability theory, the probability generating function in statistics, integer partition in basic combinatorics and individual risk model in actuarial science) and thus promotes upper undergraduate students' awareness of knowledge connections between their courses. All solutions of the example are implemented using the R statistical software package.
Yu, Helen W H
2016-02-01
The current drug discovery and development process is stalling the translation of basic science into lifesaving products. Known as the 'Valley of Death', the traditional technology transfer model fails to bridge the gap between early-stage discoveries and preclinical research to advance innovations beyond the discovery phase. In addition, the stigma associated with 'commercialization' detracts from the importance of efficient translation of basic research. Here, I introduce a drug discovery model whereby the respective expertise of academia and industry are brought together to take promising discoveries through to proof of concept as a way to derisk the drug discovery and development process. Known as the 'integrated drug discovery model', I examine here the extent to which existing legal frameworks support this model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fung, Lawrence K; Reiss, Allan L
2016-07-15
The field of psychiatry is approaching a major inflection point. The basic science behind cognition, emotion, behavior, and social processes has been advancing rapidly in the past 20 years. However, clinical research supporting the classification system in psychiatry has not kept up with these scientific advances. To begin organizing the basic science of psychiatry in a comprehensive manner, we begin by selecting fragile X syndrome, a neurogenetic disease with cognitive-behavioral manifestations, to illustrate key concepts in an integrative, multidimensional model. Specifically, we describe key genetic and molecular mechanisms (e.g., gamma-aminobutyric acidergic dysfunction and metabotropic glutamate receptor 5-associated long-term depression) relevant to the pathophysiology of fragile X syndrome as well as neural correlates of cognitive-behavioral symptoms. We then describe what we have learned from fragile X syndrome that may be applicable to other psychiatric disorders. We conclude this review by discussing current and future opportunities in diagnosing and treating psychiatric diseases. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Introducing evidence-based dentistry to dental students using histology.
Lallier, Thomas E
2014-03-01
The expansion of evidence-based dentistry (EBD) is essential to the continued growth and development of the dental profession. Expanding EBD requires increased emphasis on critical thinking skills during dental education, as noted in the American Dental Education Association's Competencies for the New General Dentist. In order to achieve this goal, educational exercises must be introduced to increase the use of critical thinking skills early in the dental curriculum, with continued reinforcement as students progress through subsequent years. Described in this article is one approach to increasing student exposure to critical thinking during the early basic science curriculum-specifically, within the confines of a traditional histology course. A method of utilizing the medical and dental research literature to reinforce and enliven the concepts taught in histology is described, along with an approach for using peer-to-peer presentations to demonstrate the tools needed to critically evaluate research studies and their presentation in published articles. This approach, which could be applied to any basic science course, will result in a stronger foundation on which students can build their EBD and critical thinking skills.
Horizontal integration of the basic sciences in the chiropractic curriculum.
Ward, Kevin P
2010-01-01
Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.
Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum
Ward, Kevin P.
2010-01-01
Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882
78 FR 47677 - Basic Energy Sciences Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...
Boehm Test of Basic Concepts-Revised. Review.
ERIC Educational Resources Information Center
Padula, Janice
1988-01-01
The manual for the Boehm Test of Basic Concepts-Revised (1986) is reviewed. The test measures a child's knowledge of relational concepts. The revised version, eliminating some imperfections of the original, will continue to be a useful test of verbal concept acquisition. Cautions necessary while using the test are discussed. (SLD)