Sample records for basic science disciplines

  1. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  2. ON THE NATURE OF SPEECH SCIENCE.

    ERIC Educational Resources Information Center

    PETERSON, GORDON E.

    IN THIS ARTICLE THE NATURE OF THE DISCIPLINE OF SPEECH SCIENCE IS CONSIDERED AND THE VARIOUS BASIC AND APPLIED AREAS OF THE DISCIPLINE ARE DISCUSSED. THE BASIC AREAS ENCOMPASS THE VARIOUS PROCESSES OF THE PHYSIOLOGY OF SPEECH PRODUCTION, THE ACOUSTICAL CHARACTERISTICS OF SPEECH, INCLUDING THE SPEECH WAVE TYPES AND THE INFORMATION-BEARING ACOUSTIC…

  3. Cooperative Project To Develop a Database of Discipline-Specific Workbook Exercises for Agricultural and Biological Engineering, Entomology, and Biological Sciences Courses.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…

  4. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  5. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    PubMed

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  7. Improving the Teaching of Science through Discipline-Based Education Research: An Example from Physics

    ERIC Educational Resources Information Center

    McDermott, Lillian C.

    2013-01-01

    Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…

  8. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  9. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  10. Integration of Basic Sciences in Health's Courses

    ERIC Educational Resources Information Center

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  11. Cardiopulmonary discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.

  12. Bridging the Gap Between Research and Practice: Implementation Science.

    PubMed

    Olswang, Lesley B; Prelock, Patricia A

    2015-12-01

    This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate evidence-based service delivery. This review identifies challenges in developing and testing interventions in order to achieve widespread adoption in practice settings. A framework for conceptualizing implementation research is provided, including an example to illustrate the application of principles in speech-language pathology. Last, the authors reflect on the status of implementation research in the discipline of communication sciences and disorders. The extant literature highlights the value of implementation science for reducing the gap between research and practice in our discipline. While having unique principles guiding implementation research, many of the challenges and questions are similar to those facing any investigators who are attempting to design valid and reliable studies. This article is intended to invigorate interest in the uniqueness of implementation science among those pursuing both basic and applied research. In this way, it should help ensure the discipline's knowledge base is realized in practice and policy that affects the lives of individuals with communication disorders.

  13. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  14. Pair Comparison Study of the Relevance of Nine Basic Science Courses

    ERIC Educational Resources Information Center

    Spilman, Edra L.; Spilman, Helen W.

    1975-01-01

    Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…

  15. Regulatory physiology discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  16. Math Remediation for the College Bound: How Teachers Can Close the Gap, from the Basics through Algebra

    ERIC Educational Resources Information Center

    Khatri, Daryao

    2011-01-01

    Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences. This…

  17. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  18. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  19. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    ERIC Educational Resources Information Center

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  20. Translating orthopaedic basic science into clinical relevance.

    PubMed

    Madry, Henning

    2014-12-01

    In orthopaedic and trauma surgery, the rapid evolution of biomedical research has fundamentally changed the perception of the musculoskeletal system. Here, the rigor of basic science and the art of musculoskeletal surgery have come together to create a new discipline -experimental orthopaedics- that holds great promise for the causative cure of many orthopaedic conditions. The Journal of Experimental Orthopaedics intends to bridge the gap between orthopaedic basic science and clinical relevance, to allow for a fruitful clinical translation of excellent and important investigations in the field of the entire musculoskeletal system.

  1. Provocative Opinion: Fads in Science Teaching

    ERIC Educational Resources Information Center

    Parry, R. W.

    1975-01-01

    Criticizes the post-Sputnik wave of multi-disciplinary science curricula aimed at teaching the students about social problems and how science can help solve these problems. Suggests that science teaching should concentrate more on the basics of a given discipline and should be taught be specialists rather than generalists. (MLH)

  2. Productivity in physical and chemical science predicts the future economic growth of developing countries better than other popular indices.

    PubMed

    Jaffe, Klaus; Caicedo, Mario; Manzanares, Marcos; Gil, Mario; Rios, Alfredo; Florez, Astrid; Montoreano, Claudia; Davila, Vicente

    2013-01-01

    Scientific productivity of middle income countries correlates stronger with present and future wealth than indices reflecting its financial, social, economic or technological sophistication. We identify the contribution of the relative productivity of different scientific disciplines in predicting the future economic growth of a nation. Results show that rich and poor countries differ in the relative proportion of their scientific output in the different disciplines: countries with higher relative productivity in basic sciences such as physics and chemistry had the highest economic growth in the following five years compared to countries with a higher relative productivity in applied sciences such as medicine and pharmacy. Results suggest that the economies of middle income countries that focus their academic efforts in selected areas of applied knowledge grow slower than countries which invest in general basic sciences.

  3. The progress test as a diagnostic tool for a new PBL curriculum.

    PubMed

    Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H

    2011-12-01

    The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.

  4. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    PubMed

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  5. 7 CFR 3405.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., education, or technology to give expert advice on the merit of grant applications in such fields, who... least one discipline or area of the food and agricultural sciences. The definition includes a research.... (k) Food and agricultural sciences means basic, applied, and developmental research, extension, and...

  6. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  7. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  8. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    PubMed

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  9. How Political Science Became Modern: Racial Thought and the Transformation of the Discipline, 1880-1930

    ERIC Educational Resources Information Center

    Blatt, Jessica

    2009-01-01

    This dissertation argues that changing ideas about race and engagement with race science were at the heart of a major transformation of political science in the 1920s, a transformation that I characterize as "becoming modern." This transformation was at once conceptual--visible in the basic categories and theoretical apparatus of the…

  10. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  11. Retention of knowledge and perceived relevance of basic sciences in an integrated case-based learning (CBL) curriculum

    PubMed Central

    2013-01-01

    Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045

  12. Musculoskeletal discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the musculoskeletal discipline must identify possible consequences of weightlessness on this system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers. The musculoskeletal system is highly plastic in that is possesses the inherent capability to adapt its structural and functional properties in accordance with the type and degree of stimuli imposed on it. Prolonged space travel is essentially a period of significant unloading of the musculoskeletal system. This results in adaptive responses in the structure and function of this system, placing it on the low end of a continuum from one of complete disuse to one of maximal use. There is a high probability that the musculoskeletal system is functionally impaired with increasing duration of weightlessness. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences division research and development activities in the area of musculoskeletal function. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines research opportunities, which encompass critical questions in the subdiscipline areas (e.g., muscle, bone, and other musculoskeletal connective tissues). These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  13. Clinical caring science as a scientific discipline.

    PubMed

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  14. Processes and Pathways: How Do Mathematics and Science Partnerships Measure and Promote Growth in Teacher Content Knowledge?

    ERIC Educational Resources Information Center

    Moyer-Packenham, Patricia S.; Westenskow, Arla

    2012-01-01

    Intense focus on student achievement results in mathematics and science has brought about claims that K-12 teachers should be better prepared to teach basic concepts in these disciplines. The focus on teachers' mathematics and science content knowledge has been met by efforts to increase teacher knowledge through funded national initiatives…

  15. Gender and Belonging in Undergraduate Computer Science: A Comparative Case Study of Student Experiences in Gateway Courses. WCER Working Paper No. 2016-2

    ERIC Educational Resources Information Center

    Benbow, Ross J.; Vivyan, Erika

    2016-01-01

    Building from findings showing that undergraduate computer science continues to have the highest attrition rates proportionally for women within postsecondary science, technology, engineering, and mathematics disciplines--a phenomenon that defies basic social equity goals in a high status field--this paper seeks to better understand how student…

  16. A Big Data Task Force Review of Advances in Data Access and Discovery Within the Science Disciplines of the NASA Science Mission Directorate (SMD)

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Beebe, R. F.

    2017-12-01

    One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.

  17. The concept of landscape education at school level with respect to the directions of the science of landscape

    NASA Astrophysics Data System (ADS)

    Szczęsna, Joanna

    2010-01-01

    School education is both a starting point for the development of various scientific disciplines (school educates future researchers) and the result of science. The landscape research is conducted within many scientific disciplines and has a long tradition. Lanscape education, which is the result of a scientific dimension, is implemented in primary school under the nature subject. Primary school education is the only level at which the geographical contents are carried out on landscape. The landscape is of interest to many disciplines: geography, architecture, social sciences and the arts. In recent years, there were many studies which contained an overview of the main strands of the science of landscape, presented the differences in the meaning of the concept and objectives of individual research disciplines. These studies have become the ground for the characterization of the concept of landscape education implemented in Polish school and its evaluation in terms of scientific achievements. A review of educational purposes, the basic content of education and achievements of students, demonstrate the influence of multiple scientific disciplines in school landscape education. The most significant share of the course content are achievements of geography disciplines, particularly: physical geography, environmental protection and landscape ecology. Other scientific fields: literature, art, psychology, sociology, and architecture do not have any impact on the school landscape education or their impact remains marginal.

  18. Enabling interoperability in planetary sciences and heliophysics: The case for an information model

    NASA Astrophysics Data System (ADS)

    Hughes, J. Steven; Crichton, Daniel J.; Raugh, Anne C.; Cecconi, Baptiste; Guinness, Edward A.; Isbell, Christopher E.; Mafi, Joseph N.; Gordon, Mitchell K.; Hardman, Sean H.; Joyner, Ronald S.

    2018-01-01

    The Planetary Data System has developed the PDS4 Information Model to enable interoperability across diverse science disciplines. The Information Model is based on an integration of International Organization for Standardization (ISO) level standards for trusted digital archives, information model development, and metadata registries. Where controlled vocabularies provides a basic level of interoperability by providing a common set of terms for communication between both machines and humans the Information Model improves interoperability by means of an ontology that provides semantic information or additional related context for the terms. The information model was defined by team of computer scientists and science experts from each of the diverse disciplines in the Planetary Science community, including Atmospheres, Geosciences, Cartography and Imaging Sciences, Navigational and Ancillary Information, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies. The model was designed to be extensible beyond the Planetary Science community, for example there are overlaps between certain PDS disciplines and the Heliophysics and Astrophysics disciplines. "Interoperability" can apply to many aspects of both the developer and the end-user experience, for example agency-to-agency, semantic level, and application level interoperability. We define these types of interoperability and focus on semantic level interoperability, the type of interoperability most directly enabled by an information model.

  19. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the humanities and/or the social and behavioral sciences, for these disciplines complement the study... undertake successfully the study of medicine. (1) Academic requirements. Recognizing that Service medicine... gaining admission to the School, but a strong foundation in the sciences basic to the study of medicine is...

  20. 32 CFR 242.8 - Academic, intellectual, and personal requirements for admission to the first-year class.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the humanities and/or the social and behavioral sciences, for these disciplines complement the study... undertake successfully the study of medicine. (1) Academic requirements. Recognizing that Service medicine... gaining admission to the School, but a strong foundation in the sciences basic to the study of medicine is...

  1. Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Cavanaugh, Vince; Greer, Marlin

    This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  2. The Arts as a Venue for Developmental Science: Realizing a Latent Opportunity

    ERIC Educational Resources Information Center

    Goldstein, Thalia R.; Lerner, Matthew D.; Winner, Ellen

    2017-01-01

    Children in all cultures readily engage in artistic activities, yet the arts (dance, drama, drawing, and music) have traditionally been marginal topics in the discipline of developmental science. We argue that developmental psychologists cannot afford to ignore such naturalistic activities that involve so many basic phenomena--attention,…

  3. Basic Visual Disciplines in Heritage Conservation: Outline of Selected Perspectives in Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Lobovikov-Katz, A.

    2017-08-01

    Acknowledgement of the value of a basic freehand sketch by the information and communication community of researchers and developers brought about the advanced developments for the use of sketches as free input to complicated processes of computerized visualization, so as to make them more widely accessible. However, a sharp reduction and even exclusion of this and other basic visual disciplines from education in sciences, technology, engineering and architecture dramatically reduces the number of future users of such applications. The unique needs of conservation of cultural heritage pose specific challenges as well as encourage the formulation of innovative development tasks in related areas of information and communication technologies (ICT). This paper claims that the introduction of basic visual disciplines to both communities is essential to the effectiveness of integration of heritage conservation needs and the advanced ICT development of conservation value, and beyond. It provides an insight into the challenges and advantages of introducing these subjects in a relevant educational context, presents some examples of their teaching and learning in the modern environment, including e-learning, and sketches perspectives to their application.

  4. Design and Use of a Proton Pump Inhibitor Case to Integrate Physiology, Pharmacology, and Biochemistry

    ERIC Educational Resources Information Center

    Lee, Michael W.

    2014-01-01

    The use of drugs to integrate basic and clinical sciences is frequently used in a lecture format, but the availability of alternative pedagogical approaches that address higher-order learning are not widely available. The use of case studies and case-based projects to reinforce lectures can help link basic and clinical disciplines and promote…

  5. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  6. Positions toward Science Studies in Medicine among University Graduates of Medicine and the Teenaged Participants of the "Medical Systems" Study Program

    ERIC Educational Resources Information Center

    Ben-Zvi-Assaraf, Orit; Even-Israel, Chava

    2011-01-01

    The "Medical Systems" program was designed to introduce high school students to the world of advanced medicine. Its premise was to use an applied scientific discipline like medicine to encourage high-school students' interest in basic science. This study compares the teen-aged graduates of "Medical Systems" with fourth and…

  7. Conceptualizing Nanoscale

    ERIC Educational Resources Information Center

    Tretter, Thomas

    2006-01-01

    Nanotechnology is an emergent technology that holds much promise and excitement. The ability to control and manipulate matter at the most basic level--atoms and molecules--offers possibilities that transcend traditional science discipline boundaries. This interdisciplinary nature of nanotechnology provides many avenues for teachers to connect the…

  8. Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yu-long; Wang, Chong; Zhang, Jing; Liu, Yu-xi

    2018-02-01

    Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921401), the Tsinghua University Initiative Scientific Research Program, and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation.

  9. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung.

    PubMed

    Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar

    2016-04-01

    Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.

  10. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung

    PubMed Central

    Fleming, John S.; Katz, Ira; Martin, Andrew R.; Schroeter, Jeffry; Usmani, Omar S.; Venegas, Jose

    2016-01-01

    Abstract Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy. PMID:26829187

  11. Validating concepts of mental disorder: precedents from the history of science.

    PubMed

    Miller, Robert

    2014-10-01

    A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.

  12. Integration and timing of basic and clinical sciences education.

    PubMed

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational/applied model may yield benefits in training widely competent future physicians.

  13. Pancreatic neuroendocrine tumors: the basics, the gray zone, and the target.

    PubMed

    Kelgiorgi, Dionysia; Dervenis, Christos

    2017-01-01

    Pancreatic neuroendocrine tumors (PanNETs) manifest with a range of symptoms and pose a therapeutic challenge. A team approach, in which many specialists come together, is necessary in the quest for the best patient-tailored treatment. Disciplines such as oncology, surgery, basic science, endocrinology, radiology, and nuclear medicine need to work side by side, equally contributing to patient care and to advancing our better understanding of this fascinating disease.

  14. Toward a Framework for Translational Research in School Psychology

    ERIC Educational Resources Information Center

    Edwards, Oliver W.

    2017-01-01

    This article addresses a translational research framework for school psychology. Translational research uses outcomes of basic and applied science to enhance the overall well-being of persons. This transdisciplinary framework connects disciplines and uses their resources, capacities, systems, and procedures to advance prevention, intervention, and…

  15. Entropy and Information: A Multidisciplinary Overview.

    ERIC Educational Resources Information Center

    Shaw, Debora; Davis, Charles H.

    1983-01-01

    Cites representative extensions of concept of entropy (measure of the amount of energy unavailable for useful work; from the second law of thermodynamics) noting basic relationships between entropy, order, information, and meaning in such disciplines as biology, economics, information science, the arts, and religion. Seventy-eight references are…

  16. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  17. Integrated interdisciplinary training in the radiological sciences.

    PubMed

    Brenner, D J; Vazquez, M; Buonanno, M; Amundson, S A; Bigelow, A W; Garty, G; Harken, A D; Hei, T K; Marino, S A; Ponnaiya, B; Randers-Pehrson, G; Xu, Y

    2014-02-01

    The radiation sciences are increasingly interdisciplinary, both from the research and the clinical perspectives. Beyond clinical and research issues, there are very real issues of communication between scientists from different disciplines. It follows that there is an increasing need for interdisciplinary training courses in the radiological sciences. Training courses are common in biomedical academic and clinical environments, but are typically targeted to scientists in specific technical fields. In the era of multidisciplinary biomedical science, there is a need for highly integrated multidisciplinary training courses that are designed for, and are useful to, scientists who are from a mix of very different academic fields and backgrounds. We briefly describe our experiences running such an integrated training course for researchers in the field of biomedical radiation microbeams, and draw some conclusions about how such interdisciplinary training courses can best function. These conclusions should be applicable to many other areas of the radiological sciences. In summary, we found that it is highly beneficial to keep the scientists from the different disciplines together. In practice, this means not segregating the training course into sections specifically for biologists and sections specifically for physicists and engineers, but rather keeping the students together to attend the same lectures and hands-on studies throughout the course. This structure added value to the learning experience not only in terms of the cross fertilization of information and ideas between scientists from the different disciplines, but also in terms of reinforcing some basic concepts for scientists in their own discipline.

  18. Positions Toward Science Studies in Medicine Among University Graduates of Medicine and the Teenaged Participants of the "Medical Systems" Study Program

    NASA Astrophysics Data System (ADS)

    Ben-Zvi-Assaraf, Orit; Even-Israel, Chava

    2011-08-01

    The "Medical Systems" program was designed to introduce high school students to the world of advanced medicine. Its premise was to use an applied scientific discipline like medicine to encourage high-school students' interest in basic science. This study compares the teen-aged graduates of "Medical Systems" with fourth and fifth-year medical students. It aims to identify the attitudes of these two groups towards medical science and basic sciences in medicine. The population included 94 graduates of "Medical Systems" from schools throughout Israel, who had also completed an advanced-level course in a basic science (biology, chemistry or physics), and 96 medical students from different Israeli universities. The students' attitudes were measured using West et al.'s questionnaire (Med Educ 16(4):188-191, 1982), which assesses both the attitude of the participants towards basic science knowledge, and their attitude towards their learning experience in medical school. Nine participants from each group were also interviewed using a semi-structured interview protocol. The results showed essential differences in the attitudes of the two groups. The high school students consider scientific knowledge far more essential for a physician than do the medical students, who also showed a far lower estimation of the effectiveness of their science studies.

  19. Sport science integration: An evolutionary synthesis.

    PubMed

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  20. General Science, Ninth Grade: Theme III and Theme IV. Experimental.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This document was designed to help teachers provide ninth grade students in New York City with opportunities to learn about scientific processes as well as basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide, "The Environment," contains lessons which…

  1. Anatomy Education Faces Challenges in Pakistan

    ERIC Educational Resources Information Center

    Memon, Ismail K.

    2009-01-01

    Anatomy education in Pakistan is facing many of the same challenges as in other parts of the world. Roughly, a decade ago, all medical and dental colleges in Pakistan emphasized anatomy as a core basic discipline within a traditional medical science curriculum. Now institutions are adopting problem based learning (PBL) teaching philosophies, and…

  2. Anatomists Debate the Value of a Teaching Credential

    ERIC Educational Resources Information Center

    Rizzolo, Lawrence J.; Drake, Richard L.

    2008-01-01

    Fewer and fewer programs are training graduate students and postdoctoral fellows in the classical anatomical disciplines. Nonetheless, there remains a need at all levels of clinical and basic science education for skilled instructors of anatomy, histology, and embryology. Two sessions at the 2006 annual meeting of the American Association of…

  3. The genesis of craniofacial biology as a health science discipline.

    PubMed

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.

  4. Quo vadis, analytical chemistry?

    PubMed

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  5. Nutrition and the science of disease prevention: a systems approach to support metabolic health

    PubMed Central

    Bennett, Brian J.; Hall, Kevin D.; Hu, Frank B.; McCartney, Anne L.; Roberto, Christina

    2017-01-01

    Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene–diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues. PMID:26415028

  6. Facilitative effect of graphene quantum dots in MoS2 growth process by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Wang, Yongsheng; Dong, Yanfang; Zhao, Xuan; Fu, Chen; He, Dawei

    2018-01-01

    Not Available Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61335006, and 61378073), and the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China.

  7. The Impacts of Domain-General vs. Domain-Specific Diagramming Tools on Writing

    ERIC Educational Resources Information Center

    Barstow, Brendan; Fazio, Lisa; Lippman, Jordan; Falakmasir, Mohammad; Schunn, Christian D.; Ashley, Kevin D.

    2017-01-01

    Argument diagramming is the process of spatially representing an argument by its component parts and their relationships. A growing body of evidence supports the use of argument diagramming to aid student learning and writing within disciplines including science education. However, most of these studies have focused on basic contrasts between…

  8. Development of a Structured Undergraduate Research Experience: Framework and Implications

    ERIC Educational Resources Information Center

    Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.

    2016-01-01

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…

  9. General Science, Ninth Grade: Theme I and Theme II. Experimental.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This document was designed to assist teachers who are helping ninth grade students in New York City learn scientific concepts. In addition, the guide emphasizes basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide contains lessons on what a scientist does,…

  10. Interprofessional Education in Gross Anatomy: Experience with First-Year Medical and Physical Therapy Students at Mayo Clinic

    ERIC Educational Resources Information Center

    Hamilton, Steven S.; Yuan, Brandon J.; Lachman, Nirusha; Hellyer, Nathan J.; Krause, David A.; Hollman, John H.; Youdas, James W.; Pawlina, Wojciech

    2008-01-01

    Interprofessional education (IPE) in clinical practice is believed to improve outcomes in health care delivery. Integrating teaching and learning objectives through cross discipline student interaction in basic sciences has the potential to initiate interprofessional collaboration at the early stages of health care education. Student attitudes and…

  11. Linguistics Here and Now.

    ERIC Educational Resources Information Center

    Sebeok, Thomas A.

    1967-01-01

    At a meeting in November 1966, sponsored by the American Council of Learned Societies, members of public and private organizations were briefed on the state of linguistics and what it has to offer other disciplines: (1) its basic unity despite organizational diversity; (2) its breadth, as the science of verbal structure, and how it relates to all…

  12. A Heuristic Model of Criminology and Criminal Justice.

    ERIC Educational Resources Information Center

    Zalman, Marvin

    The differences between criminology and criminal justice are assessed by comparing them to a more abstract typology. This typology is comprised of four basic elements: the focal concerns of the fields; career patterns of professionals; the extent to which the fields are theoretically based and are disciplines, sciences, and professions; and the…

  13. Integration of Gross Anatomy in an Organ System-Based Medical Curriculum: Strategies and Challenges

    ERIC Educational Resources Information Center

    Brooks, William S.; Woodley, Kristina T. C. Panizzi; Jackson, James R.; Hoesley, Craig J.

    2015-01-01

    The University of Alabama School of Medicine (UASOM) instituted a fully integrated, organ system-based preclinical curriculum in 2007. Gross anatomy and embryology were integrated with other basic science disciplines throughout the first two years of undergraduate medical education. Here we describe the methods of instruction and integration of…

  14. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  15. Self-regulated learning and science achievement in a community college

    NASA Astrophysics Data System (ADS)

    Maslin, (Louisa) Lin-Yi L.

    Self-regulated learning involves students' use of strategies and skills to adapt and adjust towards achievement in school. This research investigates the extent to which self-regulated learning is employed by community college students, and also the correlates of self-regulated learning: Is it used more by students in advanced science classes or in some disciplines? Is there a difference in the use of it by students who complete a science course and those who do not? How does it relate to GPA and basic skills assessments and science achievement? Does it predict science achievement along with GPA and assessment scores? Community college students (N = 547) taking a science course responded to the Motivated Strategies for Learning Questionnaire (MSLQ). The scales measured three groups of variables: (1) cognitive strategies (rehearsal, elaboration, organization, and critical thinking); (2) metacognitive self-regulation strategies (planning, monitoring, and self-regulation); and (3) resource management strategies (time and study environment, effort regulation, peer learning, and help-seeking). Students' course scores, college GPA, and basic skills assessment scores were obtained from faculty and college records. Students who completed a science course were found to have higher measures on cumulative college GPAs and assessment scores, but not on self-regulated learning. Self-regulated learning was found not to be used differently between students in the advanced and beginning science groups, or between students in different disciplines. The exceptions were that the advanced group scored higher in critical thinking but lower in effort regulation than the beginning group. Course achievement was found to be mostly unrelated to self-regulated learning, except for several significant but very weak and negative relationships in elaboration, self-regulation, help-seeking, and effort regulation. Cumulative GPA emerged as the only significant predictor of science achievement, accounting for roughly one-third of the variance. The basic skills assessments and self-regulated learning were not significant predictors. English and reading assessments were more highly significant predictors in the biology than in the physical science groups, while math assessment was not related to science achievement.

  16. Beyond disciplinary borders. H. A. Lorentz and S. Ramón y Cajal.

    PubMed

    Fernández Santarén, J; Kox, A J; Sánchez-Ron, J M

    2014-01-01

    Science is a multidisciplinary enterprise. Mathematics, physics, chemistry, biology, geology, and many other, perhaps not so " basic ", but not less interesting disciplines form what we call " science ". The task of history of science is to recover and put order in the past of such disciplines. Although, on most the occasions, those histories are limited by the territories of the different sciences, we know that their frontiers are not impermeable, that there are relationships between them. However, it is not frequent to find studies dealing with those relationships, especially dealing with relations among scientists belonging to different fields. In the present paper, we study a case in which two outstanding scientists, a physicist and a histologist (or neuroscientist, as we would say today), the Dutchman Hendrik A. Lorentz and the Spanish Santiago Ramón y Cajal, maintained a, albeit brief, relation. Both being such prominent scientific figures, of worldwide stature, the relation they maintained deserves to be known.

  17. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  18. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    NASA Astrophysics Data System (ADS)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  19. Conflict Management in Collaborative Engineering Design: Basic Research in Fundamental Theory, Modeling Framework, and Computer Support for Collaborative Engineering Activities

    DTIC Science & Technology

    2002-01-01

    behaviors are influenced by social interactions, and to how modern IT sys- tems should be designed to support these group technical activities. The...engineering disciplines to behavior, decision, psychology, organization, and the social sciences. “Conflict manage- ment activity in collaborative...Researchers instead began to search for an entirely new paradigm, starting from a theory in social science, to construct a conceptual framework to describe

  20. Electronic Materials Science

    NASA Astrophysics Data System (ADS)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  1. 2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.

    PubMed

    Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William

    2013-01-01

    Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.

  2. Bioelementology as an interdisciplinary integrative approach in life sciences: terminology, classification, perspectives.

    PubMed

    Skalny, Anatoly V

    2011-01-01

    The article presents the proposed concept of bioelements and the basic postulates of bioelementology for assessing and discussing them in the scientific community. It is known that chemical elements exist in the organism not by themselves, but in certain species having close interaction with other components. Such units are proposed to be called bioelements: the elementary functioning units of living matter, which are biologically active complexes of chemical elements as atoms, ions or nanoparticles with organic compounds of exogenous or biogenous origin. The scientific discipline that studies bioelements, is proposed to be called bioelementology. This discipline could lay the foundation for the integration of bioorganic chemistry, bioinorganic chemistry, biophysics, molecular biology and other parts of life sciences. Copyright © 2010 Elsevier GmbH. All rights reserved.

  3. Development and Assessment of a Horizontally Integrated Biological Sciences Course Sequence for Pharmacy Education

    PubMed Central

    Wright, Nicholas J.D.; Alston, Gregory L.

    2015-01-01

    Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276

  4. The psychological science of addiction.

    PubMed

    Gifford, Elizabeth; Humphreys, Keith

    2007-03-01

    To discuss the contributions and future course of the psychological science of addiction. The psychology of addiction includes a tremendous range of scientific activity, from the basic experimental laboratory through increasingly broad relational contexts, including patient-practitioner interactions, families, social networks, institutional settings, economics and culture. Some of the contributions discussed here include applications of behavioral principles, cognitive and behavioral neuroscience and the development and evaluation of addiction treatment. Psychology has at times been guilty of proliferating theories with relatively little pruning, and of overemphasizing intrapersonal explanations for human behavior. However, at its best, defined as the science of the individual in context, psychology is an integrated discipline using diverse methods well-suited to capture the multi-dimensional nature of addictive behavior. Psychology has a unique ability to integrate basic experimental and applied clinical science and to apply the knowledge gained from multiple levels of analysis to the pragmatic goal of reducing the prevalence of addiction.

  5. Assessment of Translational and Interdisciplinary Clinical Research at an Oklahoma Health Sciences Center

    PubMed Central

    Dao, Hanh Dung; Kota, Pravina; James, Judith A.; Stoner, Julie A.; Akins, Darrin R.

    2015-01-01

    Purpose In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma. Methods An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions. Results Responses were received from 126 faculty members (24%). Two-thirds spent ≥20% time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research. Conclusion While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure. PMID:26242016

  6. Gender Differences in Self-Efficacy and Sense of Class and School Belonging for Majors in Science, Technology, Engineering, and Mathematics (STEM) Disciplines

    NASA Astrophysics Data System (ADS)

    Hogue, Barbara A.

    Research into women's underrepresentation in science, technology, engineering, and mathematics (STEM) disciplines has become a topic of interest due to the increasing need for employees with technical expertise and a shortage of individuals to fill STEM jobs. The discrepancy in women's representation between STEM and other fields cannot adequately be explained by factors such as women's need to balance work and family (medicine and law are both extremely demanding careers), women's fear of competition (admissions into medical and law schools are highly competitive), or women's inability to excel in science (e.g., entry into medicine requires excellent achievement in the basic sciences). The purpose of this study is to gain a deeper understanding of the role and/or impact a sense of belonging has inside and outside of STEM classrooms. Research questions focused on the role and/or impact of belonging contributes to students' self-efficacy beliefs as a STEM major. Bandura's self-efficacy theory serves as the theoretical framework. Data sources include close-ended surveys of 200 sophomore- and junior-level college students majoring in a STEM discipline. A quantitative exploratory approach allowed participants' responses to be analyzed using both correlation and multiple regression analyses to understand whether a student's sense of belonging is associated with his or her self-efficacy beliefs. Findings suggested that positive support systems impact students' self-efficacy and play a role in fostering students' motivation and decision to major in STEM disciplines. This study contributes to positive social change by providing empirical evidence faculty and administrators may use to promote university-based STEM support programs reflecting the impact belonging has on students' self-efficacy and potentially increasing the number of students majoring in STEM disciplines.

  7. McGraw Hill encyclopedia of science and technology. An international reference work in fifteen volumes including an index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    This extensively revised and updated 5th Edition features contributions by 3000 distinguished experts - including 16 Nobel Prize winners - working with an international advisory board and 60 consulting editors. Thorough coverage is devoted to 75 separate disciplines in science and technology, from acoustics and biochemistry through fluid mechanics and geophysics to thermodynamics and vertebrate zoology. Detailed entries examine not only the physical and natural sciences, but also all engineering disciplines, discussing both the basic and the most recent theories, concepts, terminology, discoveries, materials, methods, and techniques. All of the new developments and technical advances that have occurred during themore » last five years - in each of the 75 disciplines - have been added to the encyclopedia and are explored in depth. Completely new material deals with such timely and newsworthy subjects as genetic engineering, artificial intelligence, nuclear medicine, desertification, psycholinguistics, industrial robots, and immunoassay. Also covered in extensive entries are such current topics as video disk recording, metallic glasses, acoustic levitation, magnetic bubble memory, gluons, and computerized tomography. The encyclopedia includes more than 15,000 photographs, drawings, maps, charts, and diagrams, shown in full-color, two-color, or black-and-white reproductions.« less

  8. A Method of Developing and Introducing Case-Based Learning to a Preclinical Veterinary Curriculum

    ERIC Educational Resources Information Center

    Crowther, Emma; Baillie, Sarah

    2016-01-01

    Case-based learning (CBL) has been introduced as part of a major review of the veterinary curriculum at the University of Bristol. The initial aim was to improve integration between all first year subjects, i.e., basic science disciplines (anatomy, physiology, and biochemistry), animal management, and professional studies, while highlighting the…

  9. Orthopedic Resident Anatomy Review Course: A Collaboration between Anatomists and Orthopedic Surgeons

    ERIC Educational Resources Information Center

    DeFriez, Curtis B.; Morton, David A.; Horwitz, Daniel S.; Eckel, Christine M.; Foreman, K. Bo; Albertine, Kurt H.

    2011-01-01

    A challenge for new residents and senior residents preparing for board examinations is refreshing their knowledge of basic science disciplines, such as human gross anatomy. The Department of Orthopaedics at the University of Utah School of Medicine has for many years held an annual Orthopedic Resident Anatomy Review Course during the summer months…

  10. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  11. Comparing Emerging XML Based Formats from a Multi-discipline Perspective

    NASA Astrophysics Data System (ADS)

    Sawyer, D. M.; Reich, L. I.; Nikhinson, S.

    2002-12-01

    This paper analyzes the similarity and differences among several examples of an emerging generation of Scientific Data Formats that are based on XML technologies. Some of the factors evaluated include the goals of these efforts, the data models, and XML technologies used, and the maturity of currently available software. This paper then investigates the practicality of developing a single set of structural data objects and basic scientific concepts, such as units, that could be used across discipline boundaries and extended by disciplines and missions to create Scientific Data Formats for their communities. This analysis is partly based on an effort sponsored by the ESDIS office at GSFC to compare the Earth Science Markup Language (ESML) and the eXtensible Data Format( XDF), two members of this new generation of XML based Data Description Languages that have been developed by NASA funded efforts in recent years. This paper adds FITSML and potentially CDFML to the list of XML based Scientific Data Formats discussed. This paper draws heavily a Formats Evolution Process Committee (http://ssdoo.gsfc.nasa.gov/nost/fep/) draft white paper primarily developed by Lou Reich, Mike Folk and Don Sawyer to assist the Space Science community in understanding Scientific Data Formats. One of primary conclusions of that paper is that a scientific data format object model should be examined along two basic axes. The first is the complexity of the computer/mathematical data types supported and the second is the level of scientific domain specialization incorporated. This paper also discusses several of the issues that affect the decision on whether to implement a discipline or project specific Scientific Data Format as a formal extension of a general purpose Scientific Data Format or to implement the APIs independently.

  12. [Precision medicine: new opportunities and challenges for molecular epidemiology].

    PubMed

    Song, Jing; Hu, Yonghua

    2016-04-01

    Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future.

  13. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    NASA Astrophysics Data System (ADS)

    Caton, Dan

    2013-11-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more courses than needed to graduate. Given this environment, it is essential that we cover more than just the basics of one particular discipline, like astronomy in my case. We should teach something about the overall philosophy of science, the scientific method, and the importance of science in our lives.

  14. TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge.

    PubMed

    Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea

    2016-01-01

    A collaborative consortium, named "TRANSAUTOPHAGY," has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications.

  15. TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge

    PubMed Central

    Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea

    2016-01-01

    abstract A collaborative consortium, named “TRANSAUTOPHAGY,” has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications. PMID:27046256

  16. Clinical rotation in pathology: description of a case based approach.

    PubMed

    Bezuidenhout, J; Wasserman, E; Mansvelt, E; Meyer, C; van Zyl, G; Orth, H; Els, A

    2006-04-01

    The implementation of a system based, integrated curriculum at the Faculty of Health Sciences of Stellenbosch University, Western Cape, South Africa, resulted in less contact time for the pathology disciplines during theoretical modules, while a weekly rotation in pathology was introduced during clinical training in the fourth and fifth years. To describe a problem based approach for this rotation. Students are presented with a clinical "paper" case daily, integrating as many of the pathology disciplines as possible to demonstrate the interdependence of the various disciplines. They receive chemical pathology tutorials, visit the various laboratories, and receive practical training in fine needle aspiration biopsy. On the final day, the case studies are assessed and discussed. Most students appreciated all activities. This rotation enhanced student interactivity and autonomy and guaranteed immediate feedback. On evaluation of the rotation it was found that the students enjoyed the rotation, learnt something new, and realised the value of group work. This innovation integrates pathology with clinical practice and illustrates the use of laboratory medicine in the management of common diseases seen in this country. Students appreciate learning practical skills and having to request special investigations under a pathologist's supervision changes their approach to pathology requests. Familiarity with the pathology environment empowers the student to use pathology with greater ease. A bank of case studies that can be expanded to include all medical disciplines will facilitate the application of a problem based approach and enhance communication between the basic science disciplines and the clinical and pathology disciplines.

  17. The Evolution of Vocational Psychology: Questions for a Postmodern Applied Discipline

    ERIC Educational Resources Information Center

    Krieshok, Thomas S.; Motl, Thomas C.; Rutt, Benjamin T.

    2011-01-01

    Vocational psychology has a long history of acting as a lens that focuses research in basic sciences on the particular experience of work in people's lives. This article presents several areas on the ascendancy in the broader scientific literature and ask how vocational psychology might apply them to issues of work in people's lives. The authors'…

  18. The Scientific Study of Politics: An Approach to Foreign Policy Analysis. University Program -- Modular Studies in Political Science.

    ERIC Educational Resources Information Center

    Singer, J. David

    Offering a new approach to college publishing, the sample module presented here serves as an example of a basic unit from University Programs. Typical modules (each 16 to 64 pages), directed toward graduate and undergraduate students, provide original statements on central concepts, principles, theories, or problems in a particular discipline and…

  19. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included all three perspectives. The best projects are being compiled so they can be shared with the University of San Diego's planning committee.

  20. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  1. Teaching professionalism in science courses: anatomy to zoology.

    PubMed

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  2. Bioinformatics by Example: From Sequence to Target

    NASA Astrophysics Data System (ADS)

    Kossida, Sophia; Tahri, Nadia; Daizadeh, Iraj

    2002-12-01

    With the completion of the human genome, and the imminent completion of other large-scale sequencing and structure-determination projects, computer-assisted bioscience is aimed to become the new paradigm for conducting basic and applied research. The presence of these additional bioinformatics tools stirs great anxiety for experimental researchers (as well as for pedagogues), since they are now faced with a wider and deeper knowledge of differing disciplines (biology, chemistry, physics, mathematics, and computer science). This review targets those individuals who are interested in using computational methods in their teaching or research. By analyzing a real-life, pharmaceutical, multicomponent, target-based example the reader will experience this fascinating new discipline.

  3. Global Summit on Regulatory Science 2013.

    PubMed

    Howard, Paul C; Tong, Weida; Weichold, Frank; Healy, Marion; Slikker, William

    2014-12-01

    Regulatory science has been defined as the science that is used to develop regulatory decisions by government bodies. Regulatory science encompasses many scientific disciplines that oversee many studies producing a wide array of data. These may include fundamental research into the cellular interaction or response to a particular chemical or substance, hazard-assessment and dose-response studies in animal species, neurophysiological or neurobehavioral studies, best practices for the generation and analysis of genomics data, bioinformatics approaches, and mathematical modeling of risk. The Global Summit on Regulatory Science is an international conference with a mission to explore emerging and innovative technologies, and provide a platform to enhance translation of basic science into regulatory applications. The Third Global Summit on Regulatory Science which focused on nanotechnology is discussed. Published by Elsevier Inc.

  4. Supramolecular inorganic species: An expedition into a fascinating, rather unknown land mesoscopia with interdisciplinary expectations and discoveries

    NASA Astrophysics Data System (ADS)

    Müller, A.

    1994-09-01

    One of the basic problems in science is the understanding of the potentialities of material systems, a topic which is of relevance for disciplines ranging from natural philosophy over topology and/or structural chemistry, and biology ( morphogenesis) to materials science. Information on this problem can be obtained by studying the different types of linking of basic fragments in self-assembly processes, a type of reaction which has proved to be one of the most important in the biological and material world. The outlined problem can be nicely studied in the case of polyoxometalates with reference to basic organizing principles of material systems like conservative self-organization ( self-assembly), host—guest interactions, complementarity, molecular recognition, emergence vs. reduction ( as a dialectic unit), template-direction, exchange-interactions and, in general, the mesoscopic material world with its unusual properties as well as its topological and/or structural diversity. Science will lose in significance as an interdisciplinary unit — as outlined or maybe predicted here — should not more importance be attached to general aspects in the future.

  5. Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions

    NASA Astrophysics Data System (ADS)

    Li, Xue; He, Da-Wei; Wang, Yong-Sheng; Hu, Yin; Zhao, Xuan; Fu, Chen; Wu, Jing-Yan

    2018-05-01

    Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61335006, 61527817, and 61378073), the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China, and the National Basic Research Program of China (Grant No. KSJB17030536).

  6. Facilitating the transition from physiology to hospital wards through an interdisciplinary case study of septic shock.

    PubMed

    Li, Albert S; Berger, Kenneth I; Schwartz, David R; Slater, William R; Goldfarb, David S

    2014-04-12

    In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists-a cardiologist, a pulmonologist, and a nephrologist-jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient's presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students' minds.

  7. Facilitating the transition from physiology to hospital wards through an interdisciplinary case study of septic shock

    PubMed Central

    2014-01-01

    Background In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. Methods An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists—a cardiologist, a pulmonologist, and a nephrologist—jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient’s presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Results Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Conclusions Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students’ minds. PMID:24725336

  8. The science of medical librarianship: investing in the future.

    PubMed Central

    Love, E

    1987-01-01

    Information science is changing from an applied service-oriented activity to a basic research discipline. The library profession must earn a central place in this endeavor, and must address a number of important issues. These include ownership and intellectual property rights, a stronger research component for the profession, development of quality assurance systems for health information services, and a conceptual framework for training and career development of health sciences library technicians. The future of medical librarianship as a profession depends on a lasting commitment to research, a clear vision of the profession's fundamental mission and of the library's place in society. PMID:3450341

  9. ISS Microgravity Research Payload Training Methodology

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned will be addressed.

  10. DPS Planetary Science Graduate Programs Listing: A Resource for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie

    2015-11-01

    We began a web page on the DPS Education site in 2013 listing all the graduate programs we could find that can lead to a PhD with a planetary science focus. Since then the static page has evolved into a database-driven, filtered-search site. It is intended to be a useful resource for both undergraduate students and undergraduate advisers, allowing them to find and compare programs across a basic set of search criteria. From the filtered list users can click on links to get a "quick look" at the database information and follow links to the program main site.The reason for such a list is because planetary science is a heading that covers an extremely diverse set of disciplines. The usual case is that planetary scientists are housed in a discipline-placed department so that finding them is typically not easy—undergraduates cannot look for a Planetary Science department, but must (somehow) know to search for them in all their possible places. This can overwhelm even determined undergraduate student, and even many advisers!We present here the updated site and a walk-through of the basic features. In addition we ask for community feedback on additional features to make the system more usable for them. Finally, we call upon those mentoring and advising undergraduates to use this resource, and program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  11. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    PubMed Central

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2016-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP)1. The TSTP is an intensive 2–3 day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. PMID:27231204

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focusmore » research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.« less

  13. Computational Unification: a Vision for Connecting Researchers

    NASA Astrophysics Data System (ADS)

    Troy, R. M.; Kingrey, O. J.

    2002-12-01

    Computational Unification of science, once only a vision, is becoming a reality. This technology is based upon a scientifically defensible, general solution for Earth Science data management and processing. The computational unification of science offers a real opportunity to foster inter and intra-discipline cooperation, and the end of 're-inventing the wheel'. As we move forward using computers as tools, it is past time to move from computationally isolating, "one-off" or discipline-specific solutions into a unified framework where research can be more easily shared, especially with researchers in other disciplines. The author will discuss how distributed meta-data, distributed processing and distributed data objects are structured to constitute a working interdisciplinary system, including how these resources lead to scientific defensibility through known lineage of all data products. Illustration of how scientific processes are encapsulated and executed illuminates how previously written processes and functions are integrated into the system efficiently and with minimal effort. Meta-data basics will illustrate how intricate relationships may easily be represented and used to good advantage. Retrieval techniques will be discussed including trade-offs of using meta-data versus embedded data, how the two may be integrated, and how simplifying assumptions may or may not help. This system is based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, whose goals were to find an alternative to the Hughes EOS-DIS system and is presently offered by Science Tools corporation, of which the author is a principal.

  14. [Patents and scientific research: an ethical-legal approach].

    PubMed

    Darío Bergel, Salvador

    2014-01-01

    This article aims to review the relationship between patents and scientific research from an ethical point of view. The recent developments in the law of industrial property led in many cases to patent discoveries, contributions of basic science, and laws of nature. This trend, which denies the central principles of the discipline, creates disturbances in scientific activity, which requires the free movement of knowledge in order to develop their potentialities.

  15. An assessment system for rating scientific journals in the field of ergonomics and human factors.

    PubMed

    Dul, Jan; Karwowski, Waldemar

    2004-05-01

    A method for selecting and rating scientific and professional journals representing the discipline of ergonomics and human factors is proposed. The method is based upon the journal list, impact factors and citations provided by the Institute of Scientific Information (ISI), and the journal list published in the Ergonomics Abstracts. Three groups of journals were distinguished. The 'ergonomics journals' focus exclusively on ergonomics and human factors. The 'related journals' focus on other disciplines than ergonomics and human factors, but regularly publish ergonomics/human factors papers. The 'basic journals' focus on other technical, medical or social sciences than ergonomics, but are important for the development of ergonomics/human factors. Journal quality was rated using a maximum of four categories: top quality (A-level), high quality (B-level), good quality (C-level)) and professional (P-level). The above methods were applied to develop the Ergonomics Journal List 2004. A total of 25 'ergonomics journals', 58 'related journals' and 142 'basic journals' were classified.

  16. A Discipline-Specific Approach to the History of U.S. Science Education

    ERIC Educational Resources Information Center

    Otero, Valerie K.; Meltzer, David E.

    2017-01-01

    Although much has been said and written about the value of using the history of science in teaching science, relatively little is available to guide educators in the various science disciplines through the educational history of their own discipline. Through a discipline-specific approach to a course on the history of science education in the…

  17. NDE measurements for understanding of performance: A few case studies on engineering components, human health and cultural heritage

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Venkatraman, B.

    2013-01-01

    Life cycle management involves a seamless integration of materials, design, analysis, production, manufacturing, and degradation plus, a wide variety of disciplines relating to surveillance and characterisation with adequate feedback and control. Science and technology of non-destructive evaluation (NDE) links all these domains and disciplines together in a seamless and robust manner. A number of research programs on NDE science and technology have evolved during the last four decades world over including the one at Indira Gandhi Centre for Atomic Research, Kalpakkam, initiated and nurtured by the first author. Many engineering and technology challenges pertaining to fast spectrum reactors have been successfully solved by this Centre through development of innovative sensors, procedures and coupled with strong basic science and modeling approaches. These technologies have also been selectively applied in gaining insights of human health and cultural heritage. This paper highlights some of the innovative NDE sensors and techniques developed in the field of electromagnetic NDE and their successful applications. A few interesting case studies pertaining to NDE in heritage and healthcare using acoustic and thermal methods are also presented.

  18. Psychiatry outside the framework of empiricism.

    PubMed

    Mume, Celestine Okorome

    2017-01-01

    Science is interested in whatever that is empirical and objective. Any claim that cannot be objectively demonstrated has no place in science, because the subject does not deviate from the role, which it has set out to play in the life of mankind. Psychiatry, as a scientific discipline, plays along these basic principles. In the etiology, symptomatology, and management of psychiatric disorders, the biopsychosocial model recognizes the role of biological, psychological, and social factors. This essay views psychiatry from the biopsychosocial perspective and asserts that certain elements, which may not be readily and empirically verifiable, are important in the practice of psychiatry.

  19. Geological applications and training in remote sensing

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1981-01-01

    Some of the experiences, methods, and opinions developed during 15 years of teaching an introductory course in remote sensing at several universities in the Southern California area are related. Although the course is offered in Geology departments, every class includes significant numbers of students from other disciplines including geography, computer science, biology, and environmental science. The instructor or teaching assistant provides a few hours of tutorial lectures (outside of regular class time) on basic geology for these nongeologists. This approach is successful because the grade distribution for nongeologists is similar to that for geologists. The schedule for a typical one-semester course is given.

  20. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  1. Application of Database Approaches to the Study of Earth's Aeolian Environments: Community Needs and Goals

    NASA Astrophysics Data System (ADS)

    Scuderi, Louis A.; Weissmann, Gary S.; Hartley, Adrian J.; Yang, Xiaoping; Lancaster, Nicholas

    2017-08-01

    Aeolian science is faced with significant challenges that impact its ability to benefit from recent advances in information technology. The discipline deals with high-end systems in the form of ground and satellite based sensors, computer modeling and simulation, and wind tunnel experiments. Aeolian scientists also collect field data manually with observational methods that may differ significantly between studies with little agreement on even basic morphometric parameters and terminology. Data produced from these studies, while forming the core of research papers and reports, is rarely available to the community at large. Recent advances are also superimposed on an underlying semantic structure that dates to the 1800's or earlier that is confusing, with ambiguously defined, and at times even contradictory, meanings. The aeolian "world-view" does not always fit within neat increments nor is defined by crisp objects. Instead change is continuous and features are fuzzy. Development of an ontological framework to guide spatiotemporal research is the fundamental starting point for organizing data in aeolian science. This requires a "rethinking" of how we define, collect, process, store and share data along with the development of a community-wide collaborative approach designed to bring the discipline into a data rich future. There is also a pressing need to develop efficient methods to integrate, analyze and manage spatial and temporal data and to promote data produced by aeolian scientists so it is available for preparing diagnostic studies, as input into a range of environmental models, and for advising national and international bodies that drive research agendas. This requires the establishment of working groups within the discipline to deal with content, format, processing pipelines, knowledge discovery tools and database access issues unique to aeolian science. Achieving this goal requires the development of comprehensive and highly-organized databases, tools that allow aeolian scientists as well as those in related disciplines to access and analyze the wealth of data available, and a supporting infrastructure and community-wide effort that allows aeolian scientists to communicate their results in replicable ways to scientists and decision and policy makers. Fortunately, much of the groundwork required to move aeolian science into a data rich future has been developed in other data rich physical science fields, and within the computer science and information technology disciplines.

  2. Basic Research Plan

    DTIC Science & Technology

    1999-02-01

    0.0 6.9 4.8 Total OSD 212.5 223.0 259.1 Defense Advanced Research Projects Agency 0601101 E Defense Research Sciences 89.4 66.7 64.4 Chemical and...each draws on a different set of performers from DoD, academia, and industry. Other research projects , notably those sponsored by DARPA, may also be...multidisci- plinary in nature. "S Strategic Research Areas (SRAs) combine projects from different disciplines under vari- ous DoD project leaders

  3. Challenges of integrating evidence into health policy and planning: linking multiple disciplinary approaches.

    PubMed

    Huckel Schneider, Carmen; Blyth, Fiona

    2017-04-27

    To explore the challenges that arise through the multidisciplinary nature of evidence informed policy making (EIPM). Type of program or service: Education and practice for EIPM. This article summarises and compares four disciplinary approaches to EIPM with highly contrasting starting points: behavioural science, policy science, critical theory and intervention research. Key insights and theories are highlighted to provide a gateway into each, and to complement what is already known about the evidence needs of policy makers in terms of high-quality, timely and well-communicated research evidence. The extension of the evidence based medicine approach to EIPM has created interest in the processes of use of evidence in health policy and planning. Research in this field has spanned multiple disciplines; however, the disciplines use very different research methods and begin with different basic assumptions. Thus, despite the multidisciplinary nature of EIPM, true interdisciplinary research and action remain a challenge. We conclude with a set of key questions that can be used as a gateway to interdisciplinary EIPM in the future.

  4. [Disciplinar thematic integration in medicine: a proposal from histology and embryology].

    PubMed

    Bassan, N D; D'Ottavio, A E

    2013-01-01

    This paper intends to clarify a concept with multiple meanings and a complex reality. It starts providing varied histological and embryological examples apt to contribute the stimulation of teacher and student imaginations in favor of a crucial skill, as thematic integration is, into the present and changing curricula in Medicine in particular and Health Sciences in general. In this sense, it offers linear and branched sequences as well as consolidation graphics which focusing in both disciplines may also include other basic ones, key for clinic diagnosis, among the competences to be developed. After registering some preliminary results revealing the need of its continuous and progressive training along the complete medical career, its own integrative value and the integrative one for their teachers due to its natural link with other basic ones is outlined, its relevance for undergraduate is reaffirmed and possible future variations for them are previewed, considering the present exponential growth of science and technology.

  5. Identifying economics' place amongst academic disciplines: a science or a social science?

    PubMed

    Hudson, John

    2017-01-01

    Different academic disciplines exhibit different styles, including styles in journal titles. Using data from the 2014 Research Excellence Framework (REF) in the UK we are able to identify the stylistic trends of different disciplines using 155,552 journal titles across all disciplines. Cluster analysis is then used to group the different disciplines together. The resulting identification fits the social sciences, the sciences and the arts and humanities reasonably well. Economics overall, fits best with philosophy, but the linkage is weak. When we divided economics into papers published in theory, econometrics and the remaining journals, the first two link with mathematics and computer science, particularly econometrics, and thence the sciences. The rest of economics then links with business and thence the social sciences.

  6. Communication and perception of uncertainty via graphics in disciplinary and interdisciplinary climate change research

    NASA Astrophysics Data System (ADS)

    Lackner, Bettina C.; Kirchengast, Gottfried

    2015-04-01

    Besides written and spoken language, graphical displays play an important role in communicating scientific findings or explaining scientific methods, both within one and between various disciplines. Uncertainties and probabilities are generally difficult to communicate, especially via graphics. Graphics including uncertainty sometimes need detailed written or oral descriptions to be understood. "Good" graphics should ease scientific communication, especially amongst different disciplines. One key objective of the Doctoral Programme "Climate Change: Uncertainties, Thresholds and Coping Strategies" (http://dk-climate-change.uni-graz.at/en/), located at the University of Graz, is to reach a better understanding of climate change uncertainties by bridging research in multiple disciplines, including physical climate sciences, geosciences, systems and sustainability sciences, environmental economics, and climate ethics. This asks for efforts into the formulation of a "common language", not only as to words, but also as to graphics. The focus of this work is on two topics: (1) What different kinds of uncertainties (e.g., data uncertainty, model uncertainty) are included in the graphics of the recent IPCC reports of all three working groups (WGs) and in what ways do uncertainties get illustrated? (2) How are these graphically displayed uncertainties perceived by researchers of a similar research discipline and from researchers of different disciplines than the authors of the graphics? To answer the first question, the IPCC graphics including uncertainties are grouped and analyzed with respect to different kinds of uncertainties to filter out most of the commonly used types of displays. The graphics will also be analyzed with respect to their WG origin, as we assume that graphics from researchers rooted in, e.g., physical climate sciences and geosciences (mainly IPCC WG 1) differ from those of researchers rooted in, e.g., economics or system sciences (mainly WG 3). In a subsequent analysis, some basic types of graphics displaying uncertainty are selected to serve as input for the construction of "makeshift graphics" (displaying only the main features but including no detailed title or caption). These makeshift graphics are then used to assess how the displayed features are perceived and understood by researchers of various disciplines. In this initial study, this analysis will be based on results of a workshop including the wide diversity of researchers within the FWF-DK Climate Change. We will present first results of this work.

  7. Should psychoanalysis become a science?

    PubMed

    Appelbaum, Jerome

    2011-03-01

    I wish to formulate in broad outline an approach to the conceptualization of psychoanalysis that is divested from theory. This view sees the core of psychoanalysis as a humanistic practice, first and foremost guided by the individuality of the dyadic encounter, rather than as a science. I will not argue for any particular view of psychoanalysis. Instead I marshal a series of considerations from the humanities, to frame a conceptualization of psychoanalysis as a clinically based interpretive discipline having a unique mission. Finally, I will present a futuristic hypothetical scenario whose aim is to show why psychoanalysis will remain a viable enterprise basically as conceived by Freud.

  8. A Global Registry for Scientific Collections: Striking a Balance Between Disciplinary Detail and Interdisciplinary Discoverability

    NASA Astrophysics Data System (ADS)

    Graham, E.; Schindel, D. E.

    2014-12-01

    The Global Registry of Scientific Collections (GRSciColl) is an online information resource developed to gather and disseminate basic information on scientific collections. Building on initiatives started for biological collections, GRSciColl expands this framework to encompass all scientific disciplines including earth and space sciences, anthropology, archaeology, biomedicine, and applied fields such as agriculture and technology. The goals of this registry are to (1) provide a single source of synoptic information about the repositories, their component collections, access and use policies, and staff contact information; and (2) facilitate the assignment of identifiers for repositories and their collections that are globally unique across all disciplines. As digitization efforts continue, the importance of globally unique identifiers is paramount to ensuring interoperability across datasets. Search capabilities and web services will significantly increase the web visibility and accessibility of these collections. Institutional records include categorization by governance (e.g., national, state or local governmental, private non-profit) and by scientific discipline (e.g., earth science, biomedical, agricultural). Collection-level metadata categorize the types of contained specimens/samples and modes of preservation. In selecting the level of granularity for these categories, designers sought a compromise that would capture enough information to be useful in searches and inquiries and would complement the detailed archives in specimen-level databases such (which are increasingly digital) hosted by discipline-specific groups (e.g. SESAR) or the repositories themselves (e.g. KE EMu).

  9. Matrix scientist in a matrix organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shults, W.D.; Roseberry, L.M.

    We believe that the current training in analytical chemistry is quite good considering the multitude of objectives and limitations involved. Eventually we will have to come to grips with the question, Do we want a liberal sciences degree that extends over four years and encompasses essentially diverse training in the sciences at the expense of nonscience courses, or do we want to move to a five year program wherein the undergraduate student gets both liberal arts and liberal sciences training. Our experience suggests that PhD-level students benefit markedly from formal training. We would suggest that seminars at all levels bemore » used to acquaint students with the basics and language of other scientific disciplines so that they, as professionals, will be better prepared to communicate with people in the other disciplines. We suggest that curricula retain the laboratory experience and emphasize chemistry by objective. Students mature when they are part of a project with an objective that he or she can relate to. They learn to see the whole problem and to choose the optimum way to approach it. This fosters professionalism. That's the bottom line. We all want curricula that produces well-rounded, competent professionals in analytical chemistry.« less

  10. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2012-01-01

    The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the…

  11. Teaching the nature of physics through art: a new art of teaching

    NASA Astrophysics Data System (ADS)

    Colletti, Leonardo

    2018-01-01

    Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics courses in secondary schools, in order to convey, in a memorable way, some basic features of physics methodology. For an understanding of the overall characteristics of science should be regarded as one of the crucial goals of physics education. As a part of a general education, the forgetting of physics concepts may be acceptable, but failing to grasp the very nature of science is not. Images may help in conveying the nature of science, especially for humanities-oriented students. Moreover, famous paintings, with their familiarity and availability, are a valid tool in facilitating this.

  12. APA Handbook of Industrial and Organizational Psychology. Three-Volume Set--Volume 1: Building and Developing the Organization. Volume 2: Selecting and Developing Members for the Organization. Volume 3: Maintaining, Expanding, and Contracting the Organization. APA Handbooks in Psychology Series. APA Reference Books Collection

    ERIC Educational Resources Information Center

    Zedeck, Sheldon, Ed.

    2011-01-01

    APA Books® announces the "APA Handbook of Industrial and Organizational Psychology"--the first offering in an new reference series covering core and emerging subdisciplines, the "APA Handbooks in Psychology." I/O Psychology is both a science/practice and an applied/basic research discipline. Appropriately, the "APA…

  13. Proceedings of the Seventh International Workshop on Advances in Electrocorticography

    PubMed Central

    Ritaccio, Anthony; Matsumoto, Riki; Morrell, Martha; Kamada, Kyousuke; Koubeissi, Mohamad; Poeppel, David; Lachaux, Jean-Philippe; Yanagisawa, Yakufumi; Hirata, Masayuki; Guger, Christoph; Schalk, Gerwin

    2015-01-01

    The Seventh International Workshop on Advances in Electrocorticography (ECoG) convened in Washington, DC, on November 13–14, 2014. Electrocorticography-based research continues to proliferate widely across basic science and clinical disciplines. The 2014 workshop highlighted advances in neurolinguistics, brain-computer interface, functional mapping, and seizure termination facilitated by advances in the recording and analysis of the ECoG signal. The following proceedings document is an attempt at summarizing the content of this past year’s successful multidisciplinary gathering. PMID:26322594

  14. Habitability design elements for a space station

    NASA Technical Reports Server (NTRS)

    Dalton, M. C.

    1983-01-01

    Habitability in space refers to the components, characteristics, conditions, and design parameters that go beyond but include the basic life sustaining requirements. Elements of habitability covered include internal environment, architecture, mobility and restraint, food, clothing, personal hygiene, housekeeping, communications, and crew activities. All elements are interrelated and need to be treated as an overall discipline. Designing for a space station is similar to designing on earth but with 'space rules' instead of ground rules. It is concluded that some habitability problems require behavioral science solutions.

  15. [ANTONIO SCARPA IN HIS FIRST YEARS AT MODENA UNIVERSITY (1772-1776)].

    PubMed

    Cavarra, Berenice

    2015-01-01

    Antonio Scarpa undertakes his teacher's role at Modena University (1772) in favourable conditions for disciplines renewals in medicine and carrying out of political and administrative reforms, also affecting health professions. Besides the establishment of basic educational teachings for doctors, surgeons and midwives, the construction of the anatomical theater, the involvement of high education and intellectuals in sciences and humanities in an extensive program of renewal of higher education, the promulgation of ducal provisions aims to rule the practice of medicine, at any level.

  16. Subject preferences of first- and second-year medical students for their future specialization at Chitwan Medical College and Teaching Hospital, Chitwan, Nepal - a questionnaire-based study.

    PubMed

    Jha, Rajesh K; Paudel, Keshab R; Shah, Dev K; Sah, Ajit K; Basnet, Sangharshila; Sah, Phoolgen; Adhikari, Sandeep

    2015-01-01

    The selection of a discipline for future specialization may be an important factor for the medical students' future career, and it is influenced by multiple factors. The interest of students in the early stages can be improved in subjects related to public health or of academic importance, as per need. A questionnaire-based study was conducted among 265 first- and second-year medical students of Chitwan Medical College, Nepal to find out their subject of preference for postgraduation and the factors affecting their selection along with their interesting basic science subject. Only the responses from 232 completely filled questionnaires were analyzed. The preference of the students for clinical surgical (50.9%), clinical medical (45.3%), and basic medical (3.9%) sciences for postgraduation were in descending order. The most preferred specialty among male students was clinical surgical sciences (56.3%), and among female students, it was clinical medical sciences (53.6%). Although all the students responded to their preferred specialty, only 178 students specified the subject of their interest. General surgery (23.4%), pediatrics (23.4%), and anatomy (2.4%) were the most favored subjects for postgraduation among clinical surgical, clinical medical, and basic medical sciences specialties, respectively. More common reasons for selection of specific subject for future career were found to be: personal interests, good income, intellectual challenge, and others. Many students preferred clinical surgical sciences for their future specialization. Among the reasons for the selection of the specialty for postgraduation, no significant reason could be elicited from the present study.

  17. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    PubMed

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Comparative Medicine: An Inclusive Crossover Discipline.

    PubMed

    Macy, James; Horvath, Tamas L

    2017-09-01

    Comparative Medicine is typically defined as a discipline which relates and leverages the biological similarities and differences among animal species to better understand the mechanism of human and animal disease. It has also been defined as a field of study concentrating on similarities and differences between human and veterinary medicine and is increasingly associated with animal models of human disease, including the critical role veterinarians, animal resource centers, and Institutional Animal Care and Use Committees play in facilitating and ensuring humane and reproducible laboratory animal care and use. To this end, comparative medicine plays a pivotal role in reduction, refinement, and replacement in animals in biomedical research. On many levels, comparative medicine facilitates the translation of basic science knowledge into clinical applications; applying comparative medicine concepts throughout the translation process is critical for success. In addition to the supportive role of comparative medicine in the research enterprise, its role as a distinct and independent scientific discipline should not be lost. Although comparative medicine's research "niche" is not one particular discipline or disease process, rather, it is the investigative mindset that seeks to reveal common threads that weave different pathophysiologic processes into translatable approaches and outcomes using various models.

  19. Social dynamics of science.

    PubMed

    Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo

    2013-01-01

    The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several "science of science" theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.

  20. Social Dynamics of Science

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo

    2013-01-01

    The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several ``science of science'' theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.

  1. Overview of Aro Program on Network Science for Human Decision Making

    NASA Astrophysics Data System (ADS)

    West, Bruce J.

    This program brings together researchers from disparate disciplines to work on a complex research problem that defies confinement within any single discipline. Consequently, not only are new and rewarding solutions sought and obtained for a problem of importance to society and the Army, that is, the human dimension of complex networks, but, in addition, collaborations are established that would not otherwise have formed given the traditional disciplinary compartmentalization of research. This program develops the basic research foundation of a science of networks supporting the linkage between the physical and human (cognitive and social) domains as they relate to human decision making. The strategy is to extend the recent methods of non-equilibrium statistical physics to non-stationary, renewal stochastic processes that appear to be characteristic of the interactions among nodes in complex networks. We also pursue understanding of the phenomenon of synchronization, whose mathematical formulation has recently provided insight into how complex networks reach accommodation and cooperation. The theoretical analyses of complex networks, although mathematically rigorous, often elude analytic solutions and require computer simulation and computation to analyze the underlying dynamic process.

  2. Integrated Curriculum Design Reform of Civil Engineering Management Discipline Based on Inter-disciplinary Professional Training

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Ping, Wu; Jian, Chen; Jiansheng, Shen

    2018-05-01

    In view of the shortcomings of the current civil engineering management discipline, this paper investigates the necessity of the course design reform. Based on the analysis of basic occupation requirements of civil engineering management discipline, the basic ideas and implementation strategies of the integrated reform of curriculum design system are proposed, which can not only improve the students’ overall understanding of knowledge and skills, but also enhance the system of student learning.

  3. Africa's present and future needs in toxicology education: Southern African perspective.

    PubMed

    Gulumian, Mary; Ginsburg, Carren; Stewart, Michael J

    2005-09-01

    Degrees and diplomas as well as certificates that are granted by universities and technikons in South Africa in scientific disciplines, such as forensic medicine, pharmacology, marine and veterinary sciences, environmental health, and occupational hygiene, include toxicology as one of the subjects in their overall syllabus. However, aspects of toxicology included in each of these courses are biased towards that particular subdiscipline and basic level of toxicology may be taught. Educational needs in toxicology in South Africa can be summarized as follows: (a) recognition of toxicology as a discipline in its own right at these tertiary education institutions and (b) creation of opportunities to study and obtain higher degrees in one or more of the many subdisciplines of toxicology. The results from a survey conducted on the toxicology syllabi offered at these tertiary education institutions are used to substantiate these needs.

  4. The new chemistry of mind: a hypothesis.

    PubMed

    Szára, Stephen

    2008-06-01

    Psychopharmacology was born some 50 years ago as a relatively narrow clinical discipline with LSD-25 and chlorpromazine, among a few others, being the early prototypes. In the course of its development, psychopharmacology grew into a wider scientific discipline as psychoactive drugs were assumed to interact with biochemical processes at the synapses to influence transmission of activities among neurons in producing their effects. Thus biochemistry and neuropharmacology have been adopted as collaborative disciplines and this larger field was named neuropsychopharmacology. More recently it has been recognized that, at the clinical level, neuropsychopharmacology has also extensive contact with social issues so that there is an increasing emphasis on translational research in recent announcements from the National Institute of Mental Health in the USA to facilitate and encourage collaboration among clinicians, basic science and social science researchers. To help the process of translational research in mental health, a new organizing principle is proposed based on a novel concept of Psychonucleotides (PNs). There are two types of PNs: Simple PNs (SPN) and Complex ones (CPN) and they are seen as temporary modules mediating meaning between the linguistic and neuronal levels in the brain. As the proposed mediating takes the integrative processes of the whole brain into consideration the development of large scale neuronal theories for translational research should became easier and more comprehensive by going beyond the focus on the cognitive cortex and taking also emotional and social processes into consideration.

  5. Reconfiguring the Basic Course: Focusing on First-Year Learners.

    ERIC Educational Resources Information Center

    Worley, David W.; Worley, Debra A.

    The basic communication course remains an important introduction to the discipline in that it introduces students to the discipline, acts as a service course to the institution, and provides a basis for developing speaking across the curriculum initiatives. The target population also remains primarily first- and second-semester freshmen. This…

  6. Anatomical sciences: A foundation for a solid learning experience in dental technology and dental prosthetics.

    PubMed

    Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena

    2017-07-01

    Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  7. An Annotated List of Disciplines and Sub-Disciplines in the Biological Sciences

    ERIC Educational Resources Information Center

    McDonald, Brandon

    2008-01-01

    Biology has become a large and diversified science. Current biological research areas transgress academic and professional boundaries to such a degree that the biological sciences could arguably be referred to as "all encompassing." In this article, the author describes how he compiled information on currently recognised disciplines and…

  8. Assessing Understanding of the Energy Concept in Different Science Disciplines

    ERIC Educational Resources Information Center

    Park, Mihwa; Liu, Xiufeng

    2016-01-01

    Energy is one of the most central and richly connected ideas across all science disciplines. The purpose of this study was to develop a measurement instrument for assessing students' understanding of the energy concept within and across different science disciplines. To achieve this goal, the Inter-Disciplinary Energy concept Assessment (IDEA) was…

  9. Dual use research: investigation across multiple science disciplines.

    PubMed

    Oltmann, Shannon

    2015-04-01

    Most recent studies of dual use research have focused on the life sciences, although some researchers have suggested that dual use research occurs across many disciplines. This research is an initial investigation into the prevalence of dual use research in other scientific disciplines by surveying senior editors of scientific journals, drawn from Journal Citation Reports. The survey was emailed to 7,500 journal editors with a response rate of 10.1 %. Approximately 4.8 % of life science editors reported they had to consider whether to publish dual use research and 38.9 % said they decided to not publish the research in question. In disciplines other than the life sciences, 7.2 % of editors from other science disciplines reported that they had to consider whether to publish dual use research, and 48.4 % declined to publish it. The survey investigated relationships between dual use and the journal's source of funding and place of publication, but no relationships were found. Further research is needed to better understand the occurrence of dual use research in other science disciplines.

  10. Photogrammetry - Remote Sensing and Geoinformation

    NASA Astrophysics Data System (ADS)

    Lazaridou, M. A.; Patmio, E. N.

    2012-07-01

    Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.

  11. Contemporary Test Validity in Theory and Practice: A Primer for Discipline-Based Education Researchers

    ERIC Educational Resources Information Center

    Reeves, Todd D.; Marbach-Ad, Gili

    2016-01-01

    Most discipline-based education researchers (DBERs) were formally trained in the methods of scientific disciplines such as biology, chemistry, and physics, rather than social science disciplines such as psychology and education. As a result, DBERs may have never taken specific courses in the social science research methodology--either quantitative…

  12. Subject preferences of first- and second-year medical students for their future specialization at Chitwan Medical College and Teaching Hospital, Chitwan, Nepal – a questionnaire-based study

    PubMed Central

    Jha, Rajesh K; Paudel, Keshab R; Shah, Dev K; Sah, Ajit K; Basnet, Sangharshila; Sah, Phoolgen; Adhikari, Sandeep

    2015-01-01

    Introduction The selection of a discipline for future specialization may be an important factor for the medical students’ future career, and it is influenced by multiple factors. The interest of students in the early stages can be improved in subjects related to public health or of academic importance, as per need. Methods A questionnaire-based study was conducted among 265 first- and second-year medical students of Chitwan Medical College, Nepal to find out their subject of preference for postgraduation and the factors affecting their selection along with their interesting basic science subject. Only the responses from 232 completely filled questionnaires were analyzed. Results The preference of the students for clinical surgical (50.9%), clinical medical (45.3%), and basic medical (3.9%) sciences for postgraduation were in descending order. The most preferred specialty among male students was clinical surgical sciences (56.3%), and among female students, it was clinical medical sciences (53.6%). Although all the students responded to their preferred specialty, only 178 students specified the subject of their interest. General surgery (23.4%), pediatrics (23.4%), and anatomy (2.4%) were the most favored subjects for postgraduation among clinical surgical, clinical medical, and basic medical sciences specialties, respectively. More common reasons for selection of specific subject for future career were found to be: personal interests, good income, intellectual challenge, and others. Conclusion Many students preferred clinical surgical sciences for their future specialization. Among the reasons for the selection of the specialty for postgraduation, no significant reason could be elicited from the present study. PMID:26635491

  13. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    PubMed Central

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations. PMID:27486351

  14. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    PubMed

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  15. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    PubMed

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  16. Psychoimmuno-neuroendocrinology: An integrative approach to modern philosophy in medicine and psychology.

    PubMed

    Fedor-Freybergh, Peter G.

    1999-01-01

    The immune system is now seen to be closely integrated with other physiological circuits, such as the central nervous system (CNS) and the neuroendocrine system. There is also an increasing amount of evidence that this integrated circuit is bidirectional and both systems exert a reciprocal effect on each other. We have always stressed the interdisciplinary nature of the science where disciplines and sciences such as medicine, biochemistry, genetics, psychology, human ethology, etc. meet and undergo a process of "cross-fertilization." We also have stressed the indivisibility of the somatic and psychological processes in the indivisible continuum of human life from its very beginning and the inseparability of the development and functions of the central nervous system and the immunological and neuroendocrine processes. This transdisciplinary and integrative aspect of sciences and their entree in the twenty-first century is the true vision for our common efforts. Integration means also amalgamation, assimilation, blending, combining, incorporation, unification and harmony. This last mentioned, harmony, should be stressed and underlined specifically: a harmony between different views and approaches, between different methods and methodologies, different theories and practices. In order to undertake such a challenge, a new scientific theory and a common language is required, a language that would be understood across disciplines and would be able to assist in getting beyond semantic problems. The bridge between the immune system, neuroendocrinology and the rest of the central nervous system opens the gateway to more common understanding and acceptance across the disciplines. It is an umbrella for the endeavor that unites various scientific fields in their attempt to elucidate the processes of experience involved from the earliest stages of human life. This integration does cross over the different disciplines and diagnostic systems. It attaches theoretical and applied fields, basic research and clinical experience throughout the whole continuity of human life from conception and onwards. Integrated Psychoimmuno-Neuroendocrinology represents a unique opportunity for the primary prevention of psychological, emotional and physical disorders.

  17. The Basic Regularities of Education and Their Application in Higher Education Research and Practice: Brief Description of the Basic Regularities ("Guilu") of Education

    ERIC Educational Resources Information Center

    Maoyuan, Pan

    2007-01-01

    Research on the issues of higher education has been going on for a long time. However, higher education pedagogy as independent discipline has been present in China for only about ten years. The structure of a discipline cannot consist merely of a compilation of the issues under research but must also include its basic theories and a system of…

  18. Social Dynamics of Science

    PubMed Central

    Sun, Xiaoling; Kaur, Jasleen; Milojević, Staša; Flammini, Alessandro; Menczer, Filippo

    2013-01-01

    The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several “science of science” theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data. PMID:23323212

  19. Materials sciences programs: Fiscal year 1994

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  20. Materials sciences programs, fiscal year 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less

  1. Relationship between Citation Frequency and Journal Cost: A Comparison between Pure and Applied Science Disciplines.

    ERIC Educational Resources Information Center

    Schoch, Natalie

    1994-01-01

    Compares citation data collected from publications of faculty in a pure science discipline and applied science disciplines to factors such as journal costs and publisher type. Based on a serials cancellation project at the University of Maryland, College Park, the relationship between citation frequency and cost is also discussed. (Author/LRW)

  2. Reconsidering nutrition science: critical reflection with a cultural lens

    PubMed Central

    2014-01-01

    Background European culture gave birth to modern science as a means to investigate and explain the natural world. The biomedical disciplines that have since emerged, including nutrition, presuppose a web of basic presuppositions, background assumptions and implicit cultural values that are often overlooked and escape peer review. These "hidden subjectivities" are widely taken-for-granted while exerting a powerful hold on the scope, direction and patterns of disciplinary thought. Nutrition science currently has no accepted means of collectively attending to hidden subjectivities embedded within its methods and practice. Here I propose that directing inquiry into these dimensions holds potential to advance our discipline. Methods This critically reflective approach emerged from critical theory and the practice of cross-cultural engagement (CCE). CCE deliberately seeks out and critically engages food and health understandings of non-European cultures. Its protocol includes cognitive frameshifting, a practice of temporarily stepping outside of habitual thought patterns and into a non-biomedical framework of background assumptions. A cultural lens metaphor derives from CCE practice and is forwarded here as a viable means for restoring critically reflective attention to hidden subjectivities while also inviting further CCE practice within the discipline. Results Critical reflection with a cultural lens allows cognitive attachments to materialism, reductionism, mechanistic thought, naïve realism, control over nature and pervasive subject-object dichotomies between mind and matter, scientist and nature, experience and reality, among many others to become more available for critical consideration. Culturally diverse food and health understandings otherwise dismissed as "unscientific" or held in abeyance gain value as alternative assumptive frameworks and cognitive models that can be temporarily inhabited for further intercultural reflection and insight. Conclusion Critical reflection with a cultural lens allows reconsideration of nutrition science in light of its culturally specific origin and foundation. This perspective can advance the discipline in two ways. First, it extends skeptical inquiry into hidden subjectivities that are otherwise implicit and seldom given over to critical consideration. Second, it can broaden scholarly inquiry through deliberate attempts to cross cognitive boundaries and empathically inhabit different cognitive worlds. This developmental practice holds potential to both deepen and broaden disciplinary inquiry. PMID:24886077

  3. Reconsidering nutrition science: critical reflection with a cultural lens.

    PubMed

    Hassel, Craig A

    2014-05-02

    European culture gave birth to modern science as a means to investigate and explain the natural world. The biomedical disciplines that have since emerged, including nutrition, presuppose a web of basic presuppositions, background assumptions and implicit cultural values that are often overlooked and escape peer review. These "hidden subjectivities" are widely taken-for-granted while exerting a powerful hold on the scope, direction and patterns of disciplinary thought. Nutrition science currently has no accepted means of collectively attending to hidden subjectivities embedded within its methods and practice. Here I propose that directing inquiry into these dimensions holds potential to advance our discipline. This critically reflective approach emerged from critical theory and the practice of cross-cultural engagement (CCE). CCE deliberately seeks out and critically engages food and health understandings of non-European cultures. Its protocol includes cognitive frameshifting, a practice of temporarily stepping outside of habitual thought patterns and into a non-biomedical framework of background assumptions. A cultural lens metaphor derives from CCE practice and is forwarded here as a viable means for restoring critically reflective attention to hidden subjectivities while also inviting further CCE practice within the discipline. Critical reflection with a cultural lens allows cognitive attachments to materialism, reductionism, mechanistic thought, naïve realism, control over nature and pervasive subject-object dichotomies between mind and matter, scientist and nature, experience and reality, among many others to become more available for critical consideration. Culturally diverse food and health understandings otherwise dismissed as "unscientific" or held in abeyance gain value as alternative assumptive frameworks and cognitive models that can be temporarily inhabited for further intercultural reflection and insight. Critical reflection with a cultural lens allows reconsideration of nutrition science in light of its culturally specific origin and foundation. This perspective can advance the discipline in two ways. First, it extends skeptical inquiry into hidden subjectivities that are otherwise implicit and seldom given over to critical consideration. Second, it can broaden scholarly inquiry through deliberate attempts to cross cognitive boundaries and empathically inhabit different cognitive worlds. This developmental practice holds potential to both deepen and broaden disciplinary inquiry.

  4. On the gender-science stereotypes held by scientists: explicit accord with gender-ratios, implicit accord with scientific identity.

    PubMed

    Smyth, Frederick L; Nosek, Brian A

    2015-01-01

    Women's representation in science has changed substantially, but unevenly, over the past 40 years. In health and biological sciences, for example, women's representation among U.S. scientists is now on par with or greater than men's, while in physical sciences and engineering they remain a clear minority. We investigated whether variation in proportions of women in scientific disciplines is related to differing levels of male-favoring explicit or implicit stereotypes held by students and scientists in each discipline. We hypothesized that science-is-male stereotypes would be weaker in disciplines where women are better represented. This prediction was tested with a sample of 176,935 college-educated participants (70% female), including thousands of engineers, physicians, and scientists. The prediction was supported for the explicit stereotype, but not for the implicit stereotype. Implicit stereotype strength did not correspond with disciplines' gender ratios, but, rather, correlated with two indicators of disciplines' scientific intensity, positively for men and negatively for women. From age 18 on, women who majored or worked in disciplines perceived as more scientific had substantially weaker science-is-male stereotypes than did men in the same disciplines, with gender differences larger than 0.8 standard deviations in the most scientifically-perceived disciplines. Further, particularly for women, differences in the strength of implicit stereotypes across scientific disciplines corresponded with the strength of scientific values held by women in the disciplines. These results are discussed in the context of dual process theory of mental operation and balanced identity theory. The findings point to the need for longitudinal study of the factors' affecting development of adults' and, especially, children's implicit gender stereotypes and scientific identity.

  5. On the gender–science stereotypes held by scientists: explicit accord with gender-ratios, implicit accord with scientific identity

    PubMed Central

    Smyth, Frederick L.; Nosek, Brian A.

    2015-01-01

    Women's representation in science has changed substantially, but unevenly, over the past 40 years. In health and biological sciences, for example, women's representation among U.S. scientists is now on par with or greater than men's, while in physical sciences and engineering they remain a clear minority. We investigated whether variation in proportions of women in scientific disciplines is related to differing levels of male-favoring explicit or implicit stereotypes held by students and scientists in each discipline. We hypothesized that science-is-male stereotypes would be weaker in disciplines where women are better represented. This prediction was tested with a sample of 176,935 college-educated participants (70% female), including thousands of engineers, physicians, and scientists. The prediction was supported for the explicit stereotype, but not for the implicit stereotype. Implicit stereotype strength did not correspond with disciplines' gender ratios, but, rather, correlated with two indicators of disciplines' scientific intensity, positively for men and negatively for women. From age 18 on, women who majored or worked in disciplines perceived as more scientific had substantially weaker science-is-male stereotypes than did men in the same disciplines, with gender differences larger than 0.8 standard deviations in the most scientifically-perceived disciplines. Further, particularly for women, differences in the strength of implicit stereotypes across scientific disciplines corresponded with the strength of scientific values held by women in the disciplines. These results are discussed in the context of dual process theory of mental operation and balanced identity theory. The findings point to the need for longitudinal study of the factors' affecting development of adults' and, especially, children's implicit gender stereotypes and scientific identity. PMID:25964765

  6. Teaching Physics at a Business College: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Finberg, Sharon

    2003-10-01

    Most physicists are familiar with the challenge of teaching physics to non-science students. At Bentley College, a premier business university, we have unique challenges and opportunities. Newsweek magazine (Sept. 1, 2003) named Bentley College among the 12 "Hot Schools" for 2004 and the most "career-focused." Undergraduates intent on business majors often perceive physics as unbearable and opt for courses in other science disciplines to fulfill requirements. Within a relatively short period of time, I have successfully applied various strategies to attract these business-minded students to our one-semester "Basic Physics" course, such changing to a highly experiential course and including examples from many consumer products. Innovative one-semester elective courses aimed at specific interests such as energy, sports, music and the visual arts meet the challenge of enticing students to physics courses to complete their math/science elective requirement.

  7. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    PubMed

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  8. Honors

    NASA Astrophysics Data System (ADS)

    2014-01-01

    Peter Molnar, professor of geological sciences at the University of Colorado at Boulder, is the recipient of the 2014 Crafoord Prize in Geosciences, the Royal Swedish Academy of Sciences (RAS) announced on 16 January. RAS noted that the award is being presented to Molnar "for his ground-breaking contribution to the understanding of global tectonics, in particular the deformation of continents and the structure and evolution of mountain ranges, as well as the impact of tectonic processes on ocean-atmosphere circulation and climate." The award, which comes with a prize of 4 million Swedish kronor (about US$600,000), was established in 1980 to promote international basic research in astronomy, mathematics, geosciences, biosciences, and rheumatoid arthritis. According to RAS, those disciplines were chosen to complement those for which the Nobel Prizes are awarded.

  9. Developing an Instrument for Assessing Students' Understanding of the Energy Concept across Science Disciplines

    ERIC Educational Resources Information Center

    Park, Mihwa

    2013-01-01

    Energy is a core and unifying concept in all science disciplines and across all grade levels. Although energy is one of the most central and richly connected ideas in all of science disciplines, students often have a great deal of difficulty understanding it. Numerous studies have been conducted on this topic finding that many students held…

  10. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    NASA Astrophysics Data System (ADS)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual and culturally based nature of teachers' conceptions of inquiry. For the education community, disciplinary differences should be considered in the development of curriculum and professional development. An understanding of disciplinary trends can allow for more targeted and relevant representations of inquiry.

  11. Differentiating between Women in Hard and Soft Science and Engineering Disciplines

    ERIC Educational Resources Information Center

    Camp, Amanda G.; Gilleland, Diane S.; Pearson, Carolyn; Vander Putten, James

    2010-01-01

    The intent of this study was to investigate characteristics that differentiate between women in soft (social, psychological, and life sciences) and hard (engineering, mathematics, computer science, physical science) science and engineering disciplines. Using the Beginning Postsecondary Students Longitudinal Study: 1996-2001 (2002), a descriptive…

  12. In search of the proper scientific approach: Hayek's views on biology, methodology, and the nature of economics.

    PubMed

    Beck, Naomi

    2009-12-01

    Friedrich August von Hayek (1899-1992) is mainly known for his defense of free-market economics and liberalism. His views on science--more specifically on the methodological differences between the physical sciences on the one hand, and evolutionary biology and the social sciences on the other--are less well known. Yet in order to understand, and properly evaluate Hayek's political position, we must look at the theory of scientific method that underpins it. Hayek believed that a basic misunderstanding of the discipline of economics and the complex phenomena with which it deals produced misconceptions concerning its method and goals, which led in turn to the adoption of dangerous policies. The objective of this article is to trace the development of Hayek's views on the nature of economics as a scientific discipline and to examine his conclusions concerning the scope of economic prediction. In doing so, I will first show that Hayek's interest in the natural sciences (especially biology), as well as his interest in epistemology, were central to his thought, dating back to his formative years. I will then emphasize the important place of historical analysis in Hayek's reflections on methodology and examine the reasons for his strong criticism of positivism and socialism. Finally, in the third and fourth sections that constitute the bulk of this article, I will show how Hayek's understanding of the data and goal of the social sciences (which he distinguished from those of the physical sciences), culminated in an analogy that sought to establish economics and evolutionary biology as exemplary complex sciences. I will challenge Hayek's interpretation of this analogy through a comparison with Darwin's views in The Origin of Species, and thus open a door to re-evaluating the theoretical foundations of Hayek's political claims.

  13. Multiple-solution problems in a statistics classroom: an example

    NASA Astrophysics Data System (ADS)

    Chu, Chi Wing; Chan, Kevin L. T.; Chan, Wai-Sum; Kwong, Koon-Shing

    2017-11-01

    The mathematics education literature shows that encouraging students to develop multiple solutions for given problems has a positive effect on students' understanding and creativity. In this paper, we present an example of multiple-solution problems in statistics involving a set of non-traditional dice. In particular, we consider the exact probability mass distribution for the sum of face values. Four different ways of solving the problem are discussed. The solutions span various basic concepts in different mathematical disciplines (sample space in probability theory, the probability generating function in statistics, integer partition in basic combinatorics and individual risk model in actuarial science) and thus promotes upper undergraduate students' awareness of knowledge connections between their courses. All solutions of the example are implemented using the R statistical software package.

  14. Africa's present and future needs in toxicology education: Southern African perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulumian, Mary; Ginsburg, Carren; Stewart, Michael J.

    2005-09-01

    Degrees and diplomas as well as certificates that are granted by universities and technikons in South Africa in scientific disciplines, such as forensic medicine, pharmacology, marine and veterinary sciences, environmental health, and occupational hygiene, include toxicology as one of the subjects in their overall syllabus. However, aspects of toxicology included in each of these courses are biased towards that particular subdiscipline and basic level of toxicology may be taught. Educational needs in toxicology in South Africa can be summarized as follows: (a) recognition of toxicology as a discipline in its own right at these tertiary education institutions and (b) creationmore » of opportunities to study and obtain higher degrees in one or more of the many subdisciplines of toxicology. The results from a survey conducted on the toxicology syllabi offered at these tertiary education institutions are used to substantiate these needs.« less

  15. Ethics and Reverence for the Discipline of Nursing.

    PubMed

    Milton, Constance L

    2017-01-01

    Healthcare disciplines, including nursing, are emerging sciences that contain discipline-specific theories that guide the activities of research, practice, and education. The term nursing science calls forth meaning that has long been accepted and referred to as the extant nursing theories undergirded with philosophy of science. Recent writings dispute the purposes and future usage of nursing theoretical frameworks in the science of nursing. The author of this article proposes new thinking about the importance of reverence and ethical implications for the future of formal inquiry in nursing science.

  16. A method of developing and introducing case-based learning to a preclinical veterinary curriculum.

    PubMed

    Crowther, Emma; Baillie, Sarah

    2016-01-01

    Case-based learning (CBL) has been introduced as part of a major review of the veterinary curriculum at the University of Bristol. The initial aim was to improve integration between all first year subjects, i.e., basic science disciplines (anatomy, physiology, and biochemistry), animal management, and professional studies, while highlighting the relevance by providing clinical context. The CBL was delivered as whole class sessions in a lecture theatre, as small group teaching facilities were not readily available, co-facilitated by two to four basic scientists and clinicians. Active learning tasks were included by using an audience response system and encouraging discussion. A case template was developed in PowerPoint and then populated by basic science and clinical staff in an iterative design process. Comments from a student focus group informed the design of the case sessions. Feedback collected from students via a survey after the first three cases suggested that CBL was well received and assisted students in integrating material taught in the first year units and was used to further improve the ongoing case design. The project team developed eight cases for Year 1 and is implementing CBL in various formats throughout the curriculum. There was a considerable time commitment in developing each case; however, the use of readily available software and the large group format overcame limitations, including resourcing small group sessions. This article reports a model that could be successfully adapted by other institutions wishing to use CBL to provide clinical context and promote integration of the basic sciences. © 2015 American Association of Anatomists.

  17. Early-Career Professional Development Training for Stakeholder-Relevant, Interdisciplinary Research

    NASA Astrophysics Data System (ADS)

    Rosendahl, D. H.; Bamzai, A.; Mcpherson, R. A.

    2015-12-01

    There are many challenges to conducting inter- or multi-disciplinary research because basic research, applied research, management processes, disciplines, and even sub-disciplines have been "siloed" for so long that many research and management professionals find it difficult to communicate common interests and research needs. It is clear that the next generation of researchers must overcome these disciplinary biases and engage in more open dialogue with other disciplines and the management community in order to be better positioned to collaborate, speak a common language, and understand each other's needs. The U.S. Department of the Interior's South Central Climate Science Center recently conducted a professional development workshop for 28 early-career researchers involved in climate-related research across the South-Central U.S. The participants consisted of graduate students, postdocs, and junior faculty representing 17 different natural and social science disciplines and seven Universities/Institutions. The workshop provided the participants with guidance and instruction on how to overcome the identified challenges in conducting "actionable" research and how to better navigate multi-institutional and multi- or inter-disciplinary research. The workshop was comprised of: (1) a series of instructional presentations organized into themed sessions; (2) two keynote addresses to provide a broader perspective; (3) a real-world case study activity; (4) individual and group projects/presentations; and (5) field trips. In addition, we purposely created informal opportunities for participants to network, which met the goal of facilitating interdisciplinary interactions. An overview of the workshop experience will be provided, including a focus on those aspects leading to its ultimate success and recommendations for how to develop and implement a similar early-career workshop for your own purposes.

  18. Associations and Committees of or for Women in Science, Engineering, Mathematics and Medicine.

    ERIC Educational Resources Information Center

    Aldrich, Michele, Comp.; Leach, Alicia, Comp.

    Provided is a list of associations and committees of or for women in science, engineering, mathematics, and medicine. The list is organized by discipline, with cross-referencing to cognate specialties. The disciplines include: anthropology; astronomy; atmospheric sciences; biology; chemistry; computer sciences; earth sciences; energy; engineering;…

  19. Engagement as a Threshold Concept for Science Education and Science Communication

    ERIC Educational Resources Information Center

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  20. Beyond the Professional Development Academy: Teachers' Retention of Discipline-Specific Science Content Knowledge throughout a 3-Year Mathematics and Science Partnership

    ERIC Educational Resources Information Center

    Clary, Renee M.; Elder, Anastasia; Dunne, James; Saebo, Svein; Beard, Debbie; Wax, Charles; Tucker, Deborah L.

    2018-01-01

    The Teacher Academy in the Natural Sciences (TANS) provided middle school (U.S. Grades 6-8) teachers (N = 81) with intensive professional development (PD) in chemistry, geosciences, and physics, with teachers enrolled in one scientific discipline per year. Because some teachers were retained and rotated into different disciplines, the TANS program…

  1. Relevance of human anatomy in daily clinical practice.

    PubMed

    Arráez-Aybar, Luis-Alfonso; Sánchez-Montesinos, Indalecio; Mirapeix, Rosa-M; Mompeo-Corredera, Blanca; Sañudo-Tejero, Jose-Ramón

    2010-12-20

    the aim of this study has been to evaluate the relevance of gross human anatomy in daily clinical practice and to compare it to that of other basic sciences (biochemistry, bioethics, cytohistology, microbiology, pharmacology, physiology, psychology). a total of 1250 questionnaires were distributed among 38 different medical speciality professionals. Answers were analyzed taking into account speciality (medical, surgery and others), professional status (training physician or staff member) and professional experience. the response rate was 42.9% (n=536). Gross human anatomy was considered the most relevant basic discipline for surgical specialists, while pharmacology and physiology were most relevant for medical specialists. Knowledge of anatomy was also considered fundamental for understanding neurological or musculoskeletal disorders. In undergraduate programmes, the most important focuses in teaching anatomy were radiological, topographical and functional anatomy followed by systematic anatomy. In daily medical practice anatomy was considered basic for physical examination, symptom interpretation and interpretation of radiological images. When professional status or professional experience was considered, small variations were shown and there were no significant differences related to gender or community. our results underline the relevance of basic sciences (gross anatomy, physiology, and pharmacology) in daily professional activity. Evidence-based studies such as ours, lend greater credibility and objectivity to the role of gross anatomy in the undergraduate training of health professionals and should help to establish a more appropriate curriculum for future professionals. 2010 Elsevier GmbH. All rights reserved.

  2. Microgravity research opportunities for the 1990s

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Committee on Microgravity Research (CMGR) was made a standing committee of the Space Studies Board (SSB) and charged with developing a long-range research strategy. The scientific disciplines contained within the microgravity program, and covered in this report, include fluid mechanics and transport phenomena, combustion, biological sciences and biotechnology, materials science, and microgravity physics. The purpose of this report is to recommend means to accomplish the goal of advancing science and technology in each of the component disciplines. Microgravity research should be aimed at making significant impacts in each discipline emphasized. The conclusions and recommendations presented in this report fall into five categories: (1) overall goals for the microgravity research program; (2) general priorities among the major scientific disciplines affected by gravity; (3) identification of the more promising experimental challenges and opportunities within each discipline; (4) general scientific recommendations that apply to all microgravity-related disciplines; and (5) recommendations concerning administrative policies and procedures that are essential to the conduct of excellent laboratory science.

  3. Can science be a business? Lessons from biotech.

    PubMed

    Pisano, Gary P

    2006-10-01

    In 1976, Genentech, the first biotechnology company, was founded by a young venture capitalist and a university professor to exploit recombinant DNA technology. Thirty years and more than 300 billion dollars in investments later, only a handful of biotech firms have matched Genentech's success or even shown a profit. No avalanche of new drugs has hit the market, and the long-awaited breakthrough in R&D productivity has yet to materialize. This disappointing performance raises a question: Can organizations motivated by the need to make profits and please shareholders successfully conduct basic scientific research as a core activity? The question has largely been ignored, despite intense debate over whether business's invasion of basic science-long the domain of universities and nonprofit research institutions- is limiting access to discoveries, thereby slowing advances in science. Biotech has not lived up to its promise, says the author, because its anatomy, which has worked well in other high-tech sectors, can't handle the fundamental challenges facing drug R&D: profound, persistent uncertainty and high risks rooted in the limited knowledge of human biology; the need for the diverse disciplines involved in drug discovery to work together in an integrated fashion; and barriers to learning, including tacit knowledge and murky intellectual property rights, which can slow the pace of scientific advance. A more suitable anatomy would include increased vertical integration; a smaller number of closer, longer collaborations; an emphasis by universities on sharing rather than patenting scientific discoveries; more cross-disciplinary academic research; and more federal and private funding for translational research, which bridges basic and applied science. With such modifications, science can be a business.

  4. A Guide to Discipline in the Public Sector.

    ERIC Educational Resources Information Center

    Seidman, Joel

    This monograph was prepared as an initial effort in development of a body of material for training public sector managers. It sets forth the basic principles of grievance arbitration covering discipline in the public sector. Major sections are devoted to the topics of just or proper cause for discipline, due process, the nature of discipline, and…

  5. A current perspective on medical informatics and health sciences librarianship.

    PubMed

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  6. Building dialogues between clinical and biomedical research through cross-species collaborations.

    PubMed

    Chao, Hsiao-Tuan; Liu, Lucy; Bellen, Hugo J

    2017-10-01

    Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Disciplinarity and sport science in Europe: A statistical and sociological study of ECSS conference abstracts.

    PubMed

    Champely, Stéphane; Fargier, Patrick; Camy, Jean

    2017-02-01

    Abstracts of European College of Sports Science conferences (1995-2014) are studied. The number of abstracts has been increasing regularly (+90 per year). This rise is in recent years largely due to extra-European countries. The magnitude and accumulation of the different topics of discussion are examined. An operational criterion determines four stages of evolution of a topic: social network, cluster, specialty, and discipline. The scientific production can, therefore, be classified as disciplinary or non-disciplinary. The disciplinary part is more important but has been less dynamic recently. The cognitive content of sport science is then explored through a multidimensional scaling of the topics based on the keywords used in the abstracts. Three areas are visible: social sciences and humanities, sports medicine and physiology, and biomechanics and neurophysiology. According to the field theory of Bourdieu ( 1975 ), three scientific habitus are distinguished. The logic of academic disciplinary excellence is the consequence of the autonomy of this scientific field, its closure, peer-review process, and barriers to entry. The distribution of scientific capital and professional capital is unequal across the three areas. Basically, conservation strategies of academic disciplinary excellence are predicted in biomechanics and neurophysiology, subversion strategies of interdisciplinarity based on professional concerns can appear in the sports medicine and physiology area, and critical strategies of interdisciplinarity based on social utility in social sciences and humanities. Moreover, additional tensions within these areas are depicted. Lastly methods based on co-citations of disciplines and boundary objects are proposed to find tangible patterns of multidisciplinarity confirming these strategies.

  8. The Improvement of the Learning Process of Basic Disciplines at the Engineering Design.

    ERIC Educational Resources Information Center

    de Oliveira, Vanderli Fava; Borges, Marcos Martins; Naveiro, Ricardo Manfredi

    The goal of this paper is to reflect upon Engineering Education, starting from experiments that have been carried out at the Federal University of Juiz de Fora (UFJF), aiming to improve the learning process of the content of basic drawing disciplines concerned with graphic representation, which are subjects of the initial terms of the courses of…

  9. Biotargeted nanomedicines for cancer: six tenets before you begin

    PubMed Central

    Goldberg, Michael S.; Hook, Sara S.; Wang, Andrew Z.; Bulte, Jeff WM.; Patri, Anil K.; Uckun, Fatih M.; Cryns, Vincent L.; Hanes, Justin; Akin, Demir; Hall, Jennifer B.; Gharkholo, Nastaran; Mumper, Russell J.

    2013-01-01

    Biotargeted nanomedicines have captured the attention of academic and industrial scientists who have been motivated by the theoretical possibilities of the ‘magic bullet’ that was first conceptualized by Paul Ehrlich at the beginning of the 20th century. The Biotargeting Working Group, consisting of more than 50 pharmaceutical scientists, engineers, biologists and clinicians, has been formed as part of the National Cancer Institute’s Alliance for Nanotechnology in Cancer to harness collective wisdom in order to tackle conceptual and practical challenges in developing biotargeted nanomedicines for cancer. In modern science and medicine, it is impossible for any individual to be an expert in every aspect of biology, chemistry, materials science, pharmaceutics, toxicology, chemical engineering, imaging, physiology, oncology and regulatory affairs. Drawing on the expertise of leaders from each of these disciplines, this commentary highlights six tenets of biotargeted cancer nanomedicines in order to enable the translation of basic science into clinical practice. PMID:23394158

  10. School Science and the Language Arts

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2014-01-01

    An integrated science curriculum assists pupils to retain learnings better than to separate academic disciplines. Too frequently, science teachers teach each academic discipline as separate entities. However, there is much correlating of science with language, for example which might well be implemented in teaching and learning situations. Thus,…

  11. ICYESS 2013: Understanding and Interpreting Uncertainty

    NASA Astrophysics Data System (ADS)

    Rauser, F.; Niederdrenk, L.; Schemann, V.; Schmidt, A.; Suesser, D.; Sonntag, S.

    2013-12-01

    We will report the outcomes and highlights of the Interdisciplinary Conference of Young Earth System Scientists (ICYESS) on Understanding and Interpreting Uncertainty in September 2013, Hamburg, Germany. This conference is aimed at early career scientists (Masters to Postdocs) from a large variety of scientific disciplines and backgrounds (natural, social and political sciences) and will enable 3 days of discussions on a variety of uncertainty-related aspects: 1) How do we deal with implicit and explicit uncertainty in our daily scientific work? What is uncertain for us, and for which reasons? 2) How can we communicate these uncertainties to other disciplines? E.g., is uncertainty in cloud parameterization and respectively equilibrium climate sensitivity a concept that is understood equally well in natural and social sciences that deal with Earth System questions? Or vice versa, is, e.g., normative uncertainty as in choosing a discount rate relevant for natural scientists? How can those uncertainties be reconciled? 3) How can science communicate this uncertainty to the public? Is it useful at all? How are the different possible measures of uncertainty understood in different realms of public discourse? Basically, we want to learn from all disciplines that work together in the broad Earth System Science community how to understand and interpret uncertainty - and then transfer this understanding to the problem of how to communicate with the public, or its different layers / agents. ICYESS is structured in a way that participation is only possible via presentation, so every participant will give their own professional input into how the respective disciplines deal with uncertainty. Additionally, a large focus is put onto communication techniques; there are no 'standard presentations' in ICYESS. Keynote lectures by renowned scientists and discussions will lead to a deeper interdisciplinary understanding of what we do not really know, and how to deal with it. Many participants have a fresh view on the scientific questions because they have been scientifically raised in interdisciplinary graduate schools and institutions and bring a mix of professional expertise into the Earth System sciences. The extraordinary conference structure and the focus on young Earth System scientists lead to a unique perspective for ICYESS, and hopefully to insights that are relevant to the broader scientific community. At the AGU fall meeting we would like to present results and questions that will come out of ICYESS and put them into the ongoing broad discussion of communicating climate science uncertainties. More information on ICYESS can be found at icyess.eu

  12. Controversy as a Blind Spot in Teaching Nature of Science: Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    ERIC Educational Resources Information Center

    Kötter, Mario; Hammann, Marcus

    2017-01-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines…

  13. From Big Data to Knowledge in the Social Sciences.

    PubMed

    Hesse, Bradford W; Moser, Richard P; Riley, William T

    2015-05-01

    One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating "big data to knowledge" is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive.

  14. From Big Data to Knowledge in the Social Sciences

    PubMed Central

    Hesse, Bradford W.; Moser, Richard P.; Riley, William T.

    2015-01-01

    One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating “big data to knowledge” is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive. PMID:26294799

  15. From agricultural geology to hydropedology: Forging links within the twenty-first-century geoscience community

    USGS Publications Warehouse

    Landa, E.R.; ,

    2006-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late-twentieth century. The shift in recent decades within both disciplines, towards greater emphasis on environmental-quality issues and a systems approach, has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere and lithosphere, introductory and advanced soil-science classes are now taught in a number of Earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface to groundwater 'critical zone' requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable Earth-science specialty area for graduate study. ?? The Geological Society of London 2006.

  16. Current status of medical and veterinary entomology in France: endangered discipline or promising science?

    PubMed

    Cuisance, Dominique; Antoine Rioux, Jean

    2004-09-01

    Following alarming statements (French Senate, Académie des Sciences) on the present situation concerning entomology and systematics in France, the Conseil Général Vétérinaire designated one of us (D.C.) to carry out a survey on the status of medical and veterinary entomology (MVE) with respect to research orientations and university curricula. Around 100 participants, including scientists, teachers and several directors of research and educational bodies, were interviewed and filled in questionnaires for this survey. On the basis of the results, it was concluded that the deterioration of MVE in France is associated with: (1) the hasty reorganisation of training and research in the life sciences, leading to the disappearance of several disciplines. Hence, the postgraduate DEA degree in entomology was eliminated, and even the name 'entomology' no longer appears in teaching programmes or on research contracts; (2) France's withdrawal from action research programmes in developing countries. Although these programmes were efficient in controlling outbreaks of major endemic diseases, integrated pest and vector management programmes have been replaced by basic health care ('Health for everyone in 2000') and vaccination programmes; (3) the general shift from field to laboratory research, focused mainly on molecular mechanisms. The survey results confirmed generally acknowledged trends concerning many points and highlighted several specific problems, such as the disappearance of systematics experts. Several potential solutions are proposed.

  17. Computers in Science: Thinking Outside the Discipline.

    ERIC Educational Resources Information Center

    Hamilton, Todd M.

    2003-01-01

    Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…

  18. The Flinders experiment in medical education revisited.

    PubMed

    Geffen, L B; Birkett, D J; Alpers, J H

    The undergraduate medical curriculum of the Flinders University of South Australia is reviewed and evaluated against American recommendations for the basic education of doctors practising in the 21st century. Two previous articles in The Medical Journal of Australia describing earlier versions of the Flinders curriculum and the report on General Professional Education for the Physician of the Association of American Medical Colleges. The Flinders curriculum attempts to fully integrate the teaching of medical science and clinical disciplines. The earliest version of the curriculum emphasised horizontal integration of normal structure and function of body systems, followed by abnormalities of these systems, and finally clinical practice. The second version introduced vertical integration of basic science and clinical medicine within a body system. The present version attempts to balance the demands of horizontal and vertical integration. An important feature of all versions is the large proportion of time allowed for elective studies in most years of the course. The Flinders curriculum has been able to adapt to the changing needs of medical education because its organisation is relatively free from the constraints of departmental rivalry over resources.

  19. Philosophy, history and sociology of science: interdisciplinary relations and complex social identities.

    PubMed

    Riesch, Hauke

    2014-12-01

    Sociology and philosophy of science have an uneasy relationship, while the marriage of history and philosophy of science has--on the surface at least--been more successful I will take a sociological look at the history of the relationships between philosophy and history as well as philosophy and sociology of science. Interdisciplinary relations between these disciplines will be analysed through social identity complexity theory in oider to draw out some conclusions on how the disciplines interact and how they might develop. I will use the relationships between the disciplines as a pointer for a more general social theory of interdisciplinarity which will then be used to sound a caution on how interdisciplinary relations between the three disciplines might be managed.

  20. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  1. Life in the Universe: A Multidisciplinary Science Curriculum for Undergraduate Honors Students

    NASA Astrophysics Data System (ADS)

    Danly, L.

    2004-05-01

    Astrobiology provides an excellent framework for an interdisciplinary study of the sciences, especially for non-majors. To be conversant in astrobiology, one must have a basic understanding of astronomy, planetary science, geology, chemistry, biology, and environmental science. To explore the possible futures for life on Earth one must also consider political, economic, and other societal issues. And, as the questions addressed in astrobiology are also profoundly philosophical topics that have been considered by artists and writers of all cultures, the humanities also play an important role. The study of the past, present, and future possibilities for life in the universe, therefore, can offer curricular opportunities for students of all disciplines to have something to share with and something to learn from their peers. This paper describes a three-term curriculum for Honors Program students at the University of Denver that includes, among other innovations, peer learning, student goal/syllabus setting, integration of University of Denver faculty research programs, and community service.

  2. A Continuous Quality Improvement Approach to Discipline.

    ERIC Educational Resources Information Center

    Norian, Nicole A.; Michaud, Paul J.

    This monograph offers information on basic procedures concerning disciplinary action in a continuous quality improvement setting at an institution of higher education. In particular it describes progressive discipline, the application of positive discipline in a series of steps that gradually increase in severity as an employee progresses through…

  3. Public health policy for preventing violence.

    PubMed

    Mercy, J A; Rosenberg, M L; Powell, K E; Broome, C V; Roper, W L

    1993-01-01

    The current epidemic of violence in America threatens not only our physical health but also the integrity of basic social institutions such as the family, the communities in which we live, and our health care system. Public health brings a new vision of how Americans can work together to prevent violence. This new vision places emphasis on preventing violence before it occurs, making science integral to identifying effective policies and programs, and integrating the efforts of diverse scientific disciplines, organizations, and communities. A sustained effort at all levels of society will be required to successfully address this complex and deeply rooted problem.

  4. Basic Emotions, Natural Kinds, Emotion Schemas, and a New Paradigm.

    PubMed

    Izard, Carroll E

    2007-09-01

    Research on emotion flourishes in many disciplines and specialties, yet experts cannot agree on its definition. Theorists and researchers use the term emotion in ways that imply different processes and meanings. Debate continues about the nature of emotions, their functions, their relations to broad affective dimensions, the processes that activate them, and their role in our daily activities and pursuits. I will address these issues here, specifically in terms of basic emotions as natural kinds, the nature of emotion schemas, the development of emotion-cognition relations that lead to emotion schemas, and discrete emotions in relation to affective dimensions. Finally, I propose a new paradigm that assumes continual emotion as a factor in organizing consciousness and as an influence on mind and behavior. The evidence reviewed suggests that a theory that builds on concepts of both basic emotions and emotion schemas provides a viable research tool and is compatible with more holistic or dimensional approaches. © 2007 Association for Psychological Science.

  5. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  6. Pakistan Journal of Medical Sciences: A bibliometric assessment 2001-2010.

    PubMed

    Baladi, Zameer Hussain; Umedani, Loung V

    2017-01-01

    The aim of this study was to measure the growth of scientific research, authors' productivity, affiliation with the institute and geographic locations published in the Pakistan Journal of Medical Sciences during the period of 2001 - 2010. This numerical analysis was conducted during mid-August 2016 to mid-October, 2016. The data for the study was downloaded from websites of e-journal of Pakistan Journal of Medical Sciences (PJMS) and Pak Medi-Net Com. A total number of 1199 articled were covered by PJMS in 10 volumes and 40 issues with contribution of 3798 (3%) authors during 2001 - 2010. The average number of papers per issue is 30%. A gender wise contribution of males was higher 3050 (80%) than the females 748 (20%). A majority of articles were multi-authored 1052 (87%) as opposed to single author contribution 147 (13%). All 1199 articles were covered under four major disciplines i.e Basic medical sciences, medicine & allied, surgery & allied and radiological sciences and 39 sub-specialties according to medical subject headings (MeSH). It observed that 467 (39%) articles were published in Pakistan and 732 (61%) articles produced by other 32 countries. The Karachi city of Pakistan has produced 199 (16%) articles as highest as its national level and followed by Tehran (Iran) 77 (6%) as followed internationally. This study reveals that the participation of 32 countries in the PJMS publications proves it to be an internationally circulated journal to support research with the constant approach of publishing articles to each volume in basic medical sciences, biomedical, clinical and public health sciences. Abbreviations: DOAJ: Directory of Open Access Journals IMEMR: Index Medicus Eastern Mediterranean Region HEC: Higher Education Commission (Pakistan) PJMS: Pakistan Journal of Medical Sciences MeSH: Medical Subject Headings PMDC: Pakistan Medical & Dental Council SCIE: Science Citation Index Expanded.

  7. Disciplinary Views of Corresponding Elementary School Subjects. Elementary Subjects Center Series No. 27.

    ERIC Educational Resources Information Center

    Brophy, Jere

    For this study, professors representing eight disciplines--science, mathematics, political science, music, literature, history, geography, and the visual arts--were asked first to review historical trends and current thinking in their disciplines and then to prepare papers about the ways in which the disciplines should be represented in the…

  8. Strategies for Leading Academics to Rethink Humanities and Social Sciences Curricula in the Context of Discipline Standards

    ERIC Educational Resources Information Center

    Thomas, Theda; Wallace, Joy; Allen, Pamela; Clark, Jennifer; Jones, Adrian; Lawrence, Jill; Cole, Bronwyn; Sheridan Burns, Lynette

    2017-01-01

    The introduction of discipline standards in Australia has required a comprehensive rethinking of humanities and social science curricula from first year through to graduation. This paper proposes a model to facilitate academics' engagement with discipline standards and their implication for first-year curricula. The model supports…

  9. Tales from the Jazz ASH: highlights from the 2013 American Society of Haematology meeting.

    PubMed

    Mazzarella, Luca

    2014-01-01

    The 55th annual ASH meeting was held in pleasant New Orleans and was the largest in its history, with 22,495 participants coming from 113 nations. A 'bench-to-bedside and back' attitude characterises haematology probably more than any other discipline in medicine and, as usual, this was reflected in the extremely wide breadth of the topics covered, including the last results from clinical trials and cutting-edge advancements in basic science. This year, the balance was arguably skewed: few truly clinical practice-changing results were presented. On the other hand, a great number of basic and translational studies significantly increased our understanding of the biology of numerous malignancies and heralded the coming of age of disruptive technologies. Namely, above all, next generation sequencing and T cell engineering-based cell therapy.

  10. Annual symposium on Frontiers in Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, N.; Fulton, K.R.

    This final report summarizes activities conducted for the National Academy of Sciences' Annual Symposium on Frontiers of Science with support from the US Department of Energy for the period July 1, 1993 through May 31, 1998. During the report period, five Frontiers of Science symposia were held at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering. For each Symposium, an organizing committee appointed by the NAS President selected and planned the eight sessions for the Symposium and identified general participants for invitation by the NAS President. These Symposia accomplished their goal of bringing togethermore » outstanding younger (age 45 or less) scientists to hear presentations in disciplines outside their own and to discuss exciting advances and opportunities in their fields in a format that encourages, and allows adequate time for, informal one-on-one discussions among participants. Of the 458 younger scientists who participated, over a quarter (124) were women. Participant lists for all symposia (1993--1997) are attached. The scientific participants were leaders in basic research from academic, industrial, and federal laboratories in such disciplines as astronomy, astrophysics, atmospheric science, biochemistry, cell biology, chemistry, computer science, earth sciences, engineering, genetics, material sciences, mathematics, microbiology, neuroscience, physics, and physiology. For each symposia, the 24 speakers and discussants on the program were urged to focus their presentations on current cutting-edge research in their field for a scientifically sophisticated but non-specialist audience, and to provide a sense of the experimental data--what is actually measured and seen in the various fields. They were also asked to address questions such as: What are the major research problems and unique tools in their field? What are the current limitations on advances as well as the frontiers? Speakers were asked to provide a 2500- to 3000-word synopsis of their speech in advance, so that participants, particularly those in other fields, could familiarize themselves with the topic.« less

  11. Disciplined by the discipline: a social-epistemic fingerprint of the history of science.

    PubMed

    Vanderstraeten, Raf; Vandermoere, Frederic

    2015-06-01

    The scientific system is primarily differentiated into disciplines. While disciplines may be wide in scope and diverse in their research practices, they serve scientific communities that evaluate research and also grant recognition to what is published. The analysis of communication and publication practices within such a community hence allows us to shed light on the dynamics of this discipline. On the basis of an empirical analysis of Isis, we show how the process of discipline-building in history of science has led its practitioners to be socialized and sensitized in relatively strong intra-disciplinary terms--with minimal interdisciplinary openness.

  12. Trends in the Use of Supplementary Materials in Environmental Science Journals

    ERIC Educational Resources Information Center

    Kenyon, Jeremy; Sprague, Nancy R.

    2014-01-01

    Our research examined the use of supplementary materials in six environmental science disciplines: atmospheric sciences, biology, fisheries, forestry, geology, and plant sciences. Ten key journals were selected from each of these disciplines and the number of supplementary materials, such as data files or videos, in each issue was noted over a…

  13. A current perspective on medical informatics and health sciences librarianship

    PubMed Central

    Perry, Gerald J.; Roderer, Nancy K.; Assar, Soraya

    2005-01-01

    Objective: The article offers a current perspective on medical informatics and health sciences librarianship. Narrative: The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Summary: Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as “boundary spanners,” incorporating human factors that unite technology with health care delivery. PMID:15858622

  14. Controversy as a Blind Spot in Teaching Nature of Science. Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    NASA Astrophysics Data System (ADS)

    Kötter, Mario; Hammann, Marcus

    2017-07-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines is characterized by controversy rather than unified textbook knowledge. There is common agreement among educators of the arts and humanities that controversies in the reference disciplines should be represented in education. To teach NOS means to adopt a reflexive perspective on science. Therefore, we suggest that controversies within and between the reference disciplines are relevant for NOS teaching and not only the NOS but about NOS should be taught, too. We address the objections that teaching about NOS is irrelevant for real life and too demanding for students. First, we argue that science-reflexive meta-discourses are relevant for students as future citizens because the discourses occur publicly in the context of sociopolitical disputes. Second, we argue that it is in fact necessary to reduce the complexity of the above-mentioned discourses and that this is indeed possible, as it has been done with other reflexive elements in science education. In analogy to the German construct Bewertungskompetenz (which means the competency to make informed ethical decisions in scientific contexts), we suggest epistemic competency as a goal for NOS teaching. In order to do so, science-reflexive controversies must be simplified and attitudes toward science must be considered. Discourse on the scientific status of potential pseudoscience may serve as an authentic and relevant context for teaching the controversial nature of reflexion on science.

  15. Comparative Medicine: An Inclusive Crossover Discipline




    PubMed Central

    Macy, James; Horvath, Tamas L.

    2017-01-01

    Comparative Medicine is typically defined as a discipline which relates and leverages the biological similarities and differences among animal species to better understand the mechanism of human and animal disease. It has also been defined as a field of study concentrating on similarities and differences between human and veterinary medicine and is increasingly associated with animal models of human disease, including the critical role veterinarians, animal resource centers, and Institutional Animal Care and Use Committees play in facilitating and ensuring humane and reproducible laboratory animal care and use. To this end, comparative medicine plays a pivotal role in reduction, refinement, and replacement in animals in biomedical research. On many levels, comparative medicine facilitates the translation of basic science knowledge into clinical applications; applying comparative medicine concepts throughout the translation process is critical for success. In addition to the supportive role of comparative medicine in the research enterprise, its role as a distinct and independent scientific discipline should not be lost. Although comparative medicine’s research “niche” is not one particular discipline or disease process, rather, it is the investigative mindset that seeks to reveal common threads that weave different pathophysiologic processes into translatable approaches and outcomes using various models. PMID:28955187

  16. Computational Exposure Science: An Emerging Discipline to Support 21st-Century Risk Assessment

    EPA Science Inventory

    Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elem...

  17. The Symbiotic Relationship between Liberal Studies and Science

    ERIC Educational Resources Information Center

    Unah, Jim I.

    2008-01-01

    The Artistic and Humanistic studies (liberal studies) and the science and technology disciplines (science) constitute the two dominant cultures in a modern university. Subsumed in these cultures are the professional disciplines of law, architecture, engineering, medicine, accounting, administration and a few others. Essentially, the university…

  18. The distinction between key ideas in teaching school physics and key ideas in the discipline of physics

    NASA Astrophysics Data System (ADS)

    Deng, Zongyi

    2001-05-01

    The distinction between key ideas in teaching a high school science and key ideas in the corresponding discipline of science has been largely ignored in scholarly discourse about what science teachers should teach and about what they should know. This article clarifies this distinction through exploring how and why key ideas in teaching high school physics differ from key ideas in the discipline of physics. Its theoretical underpinnings include Dewey's (1902/1990) distinction between the psychological and the logical and Harré's (1986) epistemology of science. It analyzes how and why the key ideas in teaching color, the speed of light, and light interference at the high school level differ from the key ideas at the disciplinary level. The thesis is that key ideas in teaching high school physics can differ from key ideas in the discipline in some significant ways, and that the differences manifest Dewey's distinction. As a result, the article challenges the assumption of equating key ideas in teaching a high school science with key ideas in the corresponding discipline of science, and the assumption that having a college degree in science is sufficient to teach high school science. Furthermore, the article expands the concept of pedagogical content knowledge by arguing that key ideas in teaching high school physics constitute an essential component.

  19. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review.

    PubMed

    Wu, Helen W; Davis, Paul K; Bell, Douglas S

    2012-08-17

    Greater use of computerized decision support (DS) systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS). Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1) provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2) involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective); allowing for contingent adaptations; and facilitating collaboration. The article provides examples of each feature. The DS literature also emphasizes the importance of organizational culture and training in implementation success. The literature contrasts "rational-analytic" vs. "naturalistic-intuitive" decision-making styles, but the best approach is often a balanced approach that combines both styles. It is also important for DS systems to enable exploration of multiple assumptions, and incorporation of new information in response to changing circumstances. Complex, high-level decision-making has common features across disciplines as seemingly disparate as defense, business, and healthcare. National efforts to advance the health information technology agenda through broader CDS adoption could benefit by applying the DS principles identified in this review.

  20. [Funding for Division of Microbiology in 2014 by National Natural Science Foundation of China].

    PubMed

    Qiao, Jianjun; Huang, Chenyang; Liu, Lin; Wen, Mingzhang

    2015-02-04

    In this paper, we provided an overview of proposals submitted and projects funded in 2014 at the Division of Microbiology, Department of Life Sciences, National Natural Science Foundation of China. The traits and problems in different sub-disciplines were analyzed, the background, results and analysis of internet voting before panel meetings in Microbiology discipline were also introduced. The information will provide references for Chinese researchers to apply funding in microbiology discipline in the future.

  1. Seeking evidence of multidisciplinarity in environmental geochemistry and health: an analysis of arsenic in drinking water research.

    PubMed

    Aderibigbe, Abiodun D; Stewart, Alex G; Hursthouse, Andrew S

    2018-02-01

    A multidisciplinary approach to research affords the opportunity of objectivity, creation of new knowledge and potentially a more generally acceptable solution to problems that informed the research in the first place. It increasingly features in national programmes supporting basic and applied research, but for over 40 years, has been the arena for many research teams in environmental geochemistry and health. This study explores the nature of multidisciplinary research in the earth and health sciences using a sample selected from co-authored articles reporting research on arsenic (As) in drinking water from 1979 to 2013. A total of 889 relevant articles were sourced using the online version of the science citation index-expanded (SCI-expanded). The articles were classified according to author affiliation and later by author discipline/research interests using the Revised Field of Science and Technology Frascati manual DSTI/EAS/STP/NESTI (2006) 19/FINAL and a decision algorithm. Few articles were published on the topic until 2000. More articles were published across all affiliations in the last 10 years of the review period (2004-2013) than in the first 10 years (1979-1988). Only 84 (~9%) articles fell within the "earth and health" only and "earth, health and other" categories when classification was undertaken by author affiliation alone. This suggests that level of collaboration between earth and health scientists in arsenic in drinking water research may be very low. By refining the classification further using author discipline/research interests, only 28 of the 84 articles appear to be co-authored by earth and health scientists alongside professionals in other fields. More than half of these 28 articles involved descriptive non-experimental, observational study designs, limited in direct causal hypotheses and mechanistic investigation. If collaborative research is to lead to the increased multidisciplinary research, early interaction should be encouraged between students from different disciplines. In order to achieve multidisciplinarity in practise, it is imperative that scientific communities and research agencies do more to encourage interaction and integration between researchers from different disciplines. This must develop from educational institutions seeing opportunities to improve graduate skills in an increasingly diverse research landscape.

  2. Multiple Discipline science assessment. [considering astronomy, astrophysics, cosmology, gravitation and geophysics when planning planetary missions

    NASA Technical Reports Server (NTRS)

    Wells, W. C.

    1978-01-01

    Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.

  3. Comparing Scientists' Views of Nature of Science within and across Disciplines, and Levels of Expertise

    ERIC Educational Resources Information Center

    Tira, Praweena

    2009-01-01

    The purpose of this study was to understand how Thai scientists from four disciplines viewed nature of science (NOS). The sixteen participating scientists were chosen from the areas of chemistry, physics, biology/life sciences, and geology/earth sciences and were separated into novice and expert groups. The scientists' understandings about NOS…

  4. Nanobiotechnology: synthetic biology meets materials science.

    PubMed

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Civic Learning through Public Scholarship: Coherence among Diverse Disciplines

    ERIC Educational Resources Information Center

    Dostilio, Lina D.; Conti, Norman; Kronk, Rebecca; Weideman, Yvonne L.; Woodley, Sarah K.; Trun, Nancy

    2013-01-01

    This article presents three cases of community-engaged, or "public," scholarship across diverse disciplines (social science, natural science, and health science) in which the rigid boundaries of what has been conceived as traditional service-learning have been blurred. The innovations represented within these cases explicitly address…

  6. Bromothymol Blue: The Demo We All Do!

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2005-01-01

    Often science teachers perform demonstrations only to discover that students have already seen the experiment in a previous course. Teachers should take advantage of these opportunities to showcase the interconnectedness of different science disciplines. One example of a demonstration used across most science disciplines and grade levels involves…

  7. Sociology of education, comparative education and social problems: A Polish comment

    NASA Astrophysics Data System (ADS)

    Zelazkiewicz, Marek

    1981-12-01

    The interaction and co-operation between the sociology of education and comparative education may lead to the realisation of the three basic functions of science: descriptive, explanatory and operative. A presentation of these issues is difficult because of the blurring of lines of division between related scientific disciplines. In the past two decades, Polish sociology has developed without experiencing any serious inner conflicts. Two basic orientations — empirical and humanistic — have co-existed, and the Marxist approach has gradually become more firmly established. The sociological approach applied to the sciences can be viewed as first, the adoption of sociological concepts and theories; and secondly, the application of the methods and techniques used in sociological research. The history of the relationship between the sociology of education and comparative education goes back to the works of J. Chałasiński in the 'thirties: he approached the school as a social institution functioning in a system of social relations and social groups, such as classes, vocational groups, nations and states. The application and impact of the sociological approach is evident in the methodological foundations of pedagogy — as e.g., in the work of Muszyński in 1975 — and also in many specific fields of comparative education. The so-called humanistic orientation and the descriptive function have predominated over empirical studies and the explanatory function in these areas. The 1973 Report of the Committee of Experts, on the state of education in Poland, was the result of co-operation between sociologists end educationists. This enterprise brought about the actualisation of the operative function of both scientific disciplines. However, the situation in Poland today raises new questions needing to be answered.

  8. Evolution and convergence of the patterns of international scientific collaboration.

    PubMed

    Coccia, Mario; Wang, Lili

    2016-02-23

    International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.

  9. Discipline-Based Art Education: A Curriculum Sampler.

    ERIC Educational Resources Information Center

    Alexander, Kay, Ed.; Day, Michael, Ed.

    This sampler was designed for art specialists and art museum educators with a basic understanding of teaching discipline-based art education content. The introduction offers a brief history of the Sampler and explains its intended purpose and use. Then 8 unit models with differing methodologies for relating art objectives to the four disciplines:…

  10. DPS Planetary Science Graduate Programs Database for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2017-10-01

    Planetary science is a topic that covers an extremely diverse set of disciplines; planetary scientists are typically housed in a departments spanning a wide range of disciplines. As such it is difficult for undergraduate students to find programs that will give them a degree and research experience in our field as Department of Planetary Science is a rare sighting, indeed. Not only can this overwhelm even the most determined student, it can even be difficult for many undergraduate advisers.Because of this, the DPS Education committee decided several years ago that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. We present here a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  11. DPS Planetary Science Graduate Programs Database for Students and Advisors

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2016-10-01

    Several years ago the DPS Education committee decided that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. The reason for such a list is that "planetary science" is a heading that covers an extremely diverse set of disciplines. The usual case is that planetary scientists are housed in a discipline-placed department so that finding them is typically not easy—undergraduates cannot look for a Planetary Science department, but must (somehow) know to search for them in all their possible places. This can overwhelm even determined undergraduate student, and even many advisers!We present here the updated site and a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  12. Data-Intensive Science meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar

    2014-01-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical problem sets and static, limited data samples. In addition, we identify existing gaps and possible solutions for addressing the infrastructure and tools as well as a pedagogical framework through which to implement this inductive approach.

  13. University Gynaecology and Obstetrics, quo vadis? A Department of Women's Health-University Women's Hospital of the future?

    PubMed

    Simoes, Elisabeth; Brucker, Sara Y; Krämer, Bernhard; Wallwiener, Diethelm

    2015-02-01

    Numerous changes in society, science and health care challenge gynaecology and obstetrics. These challenges include the maintenance of excellence in research, commercial potential and clinical innovation, as well as the maintenance of adequate human resources, new standards for patient orientation and individualised medicine. Based on a SWOT analysis of the status quo, of local and national quality data, a search regarding national conceptions and of international best practice for women's health centres, the model of a Department of Women's Health was developed. The Department, consisting of a University Hospital and a Research Institute, should interlink clinical care and science. With the establishment of the department, a pool of expertise is achieved which encompasses gynaecology and obstetrics from basic care to the high-technology segments, as well as all the scientific areas relevant to the medical discipline and women's health, including health services research. Preservation and attraction of personnel resources are based on the department's excellence, on reliable perspectives and the flexibility of job profiles, which also result from the close connection between care and research and the expansion of perspectives on women's health. Methodological diversity and inter-professionalism build the appropriate base for the further development of research fields. At the same time, the Department creates space for the consolidation of the core areas and the integration of sub-disciplines (clinical and scientific) to maintain the unity of this discipline. Via the scientific monitoring of the implementation, suitable elements can be highlighted for transfer to other facilities.

  14. Theoretical and methodological elements for integrating ethics as a foundation into the education of professional and design disciplines.

    PubMed

    d'Anjou, Philippe

    2004-04-01

    The paper addresses the integration of ethics into professional education related to the disciplines responsible for the conception and creation of the artificial (artefactual or technology). The ontological-epistemological paradigm of those disciplines is understood within the frame of the sciences of the artificial as established by Herbert Simon (1969). According to that paradigm, those sciences include disciplines not only related to the production of artefacts (technology), such as engineering, architecture, industrial design, etc, but also disciplines related to devised courses of action aimed at changing existing situations into preferred ones, like medicine, law, education, etc. They are centered on intentional action and at their core is the activity of design, which is their common foundation and attitude, or their common culture. The science of design becomes the broader foundational discipline for any professions engaged in the intentional transformation of the world. The main distinction between design disciplines and scientific ones rests on the object-project dichotomy. Indeed, contrary to Science that sees the world as an object to be observed, Design sees the world as a project and acts upon the world through projects, which are grounded in intentions, ends, and values. Design disciplines are meant to transform the world, or part of it, and are teleological. Being so, they are embodied in an act that is ethical and their ontology-epistemology must be addressed also through practical reason to resituate all professional disciplines according to their involved nature. The paper introduces theoretical, methodological, and ethical elements to establish a model that integrates ethics into the education of the professional disciplines, design-based disciplines, responsible for the creation of the artificial, artefactual or technological, world. The model is articulated around the notions of ethical engagement and responsibility through the act of design understood as action with intention situated in a project, common in all professional disciplines.

  15. Report on active and planned spacecraft and experiments

    NASA Technical Reports Server (NTRS)

    Horowitz, R. (Editor); Nostreys, R. W. (Editor)

    1980-01-01

    Information on current and planned spacecraft activity for a broad range of scientific disciplines is presented. The information covers a wide range of disciplines: astronomy, Earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represent the efforts and funding of individual countries as well as cooperative arrangements among different countries.

  16. Middle School Science and Mathematics Teachers' Conceptions of the Nature of Science: A One-Year Study on the Effects of Explicit and Reflective Online Instruction

    ERIC Educational Resources Information Center

    Wong, Sissy S.; Firestone, Jonah B.; Ronduen, Lionnel G.; Bang, EunJin

    2016-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education has become one of the main priorities in the United States. Science education communities and researchers advocate for integration of STEM disciplines throughout the teaching curriculum. This requires teacher knowledge in STEM disciplines, as well as competence in scientific…

  17. The Global Sweep of Pollution: How You Think About a Problem Determines How You Will Respond

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.

    2008-01-01

    NASA is the preeminent source of data with synoptic coverage of the globe. NASA's budget for measuring attributes of the Earth is far larger than any other single organization. Satellites provide geophysical measurements such as radiance or emittance. These measurements can be used directly or can be used as input to numeric models, which in turn produce estimates of other parameters. In general the emphasis in NASA has been to use this capability to address basic science questions. The Agency is also required to apply these data and models to help improve lives and the economy. NASA's Applied Science Program has the mandate for directing and funding such applied work. The managers of the program have recognized the disciplines of air quality, pollution, atmospheric composition and public health are aspects of a single topic with local, regional, national and global implications. Significant effort is being made to bridge the disparate disciplines and deal with the multiple scales at NASA's Marshall Space Flight Center. A central portion of our strategic approach is to integrate our personnel with short-term (proposal) colleagues and with long-term, essentially permanent, partners. We consider such broad and inclusive viewpoints as important to making real, substantive differences in people's lives.

  18. MARGINS: Toward a novel science plan

    NASA Astrophysics Data System (ADS)

    Mutter, John C.

    A science plan to study continental margins has been in the works for the past 3 years, with almost 200 Earth scientists from a wide variety of disciplines gathering at meetings and workshops. Most geological hazards and resources are found at continental margins, yet our understanding of the processes that shape the margins is meager.In formulating this MARGINS research initiative, fundamental issues concerning our understanding of basic Earth-forming processes have arisen. It is clear that a business-as-usual approach will not solve the class of problems defined by the MARGINS program; the solutions demand approaches different from those used in the past. In many cases, a different class of experiment will be required, one that is well beyond the capability of individual principle investigators to undertake on their own. In most cases, broadly based interdisciplinary studies will be needed.

  19. The role of government in supporting technological advance

    NASA Astrophysics Data System (ADS)

    Tucker, Christopher K.

    A broad and poorly focused debate has, for quite some time, raged across the range of social science disciplines and policy related professions. This debate has dealt, in different ways, with the question of the proper role of the government in a mixed economy. Current debates over the appropriate role of government in a mixed economy are largely constrained by a basic set of 'market failure' concepts developed in economics. This dissertation interrogates the histories of the automobile, electrical and aircraft industries in the six decades spanning the turn of the 20th century with a theoretical framework that draws on recent theorizing on the co-evolution of technologies, industrial structure, and supporting institutions. In highlighting institutional and technological aspects of industrial development, this dissertation informs a basis for science and technology policy making that moves beyond 'market failure' analysis.

  20. PERSPECTIVE: Consideration of user priorities when developing neural prosthetics

    NASA Astrophysics Data System (ADS)

    Anderson, Kim D.

    2009-10-01

    For too long there has been separation of basic science, biomedical engineering, clinical science and the people these disciplines are serving. A key ingredient to understanding the real-life consequences of many neurologic disorders that produce physical disabilities, such as spinal cord injury, is to obtain valuable information from the individuals that are actually living with the disorders everyday. This information can be obtained in an objective and usable format, which can then be used to direct biomedical research in a manner that is meaningful to the intended beneficiaries. In particular, the field of neural prosthetics for spinal cord injury can make great strides if user input is obtained throughout the stages of development. Presented here is the perspective of a scientist who also has 20 years of experience living with a cervical spinal cord injury.

  1. Expectations of Students about Astronomy in High School

    NASA Astrophysics Data System (ADS)

    Peixoto, Denis Eduardo; Kleinke, Maurício Urban

    2016-12-01

    Current literature reports that the astronomy education is motivating and interesting for basic education, but the content suggested by the national curriculum guidelines do not seem to attract students and teachers in order to transcend the discipline of Science in the elementary School or Physics in High School. By applying a questionnaire to 80 students of High School and participants of Brazilian Olympiad of Astronomy and Astronautics of two schools of São Paulo state, we obtained results that indicate that astronomy topics that really motivate students are topics linked to science fiction and current research, which are the subject of extensive media release and have a strong interdisciplinary character. At the end of the work we suggest a new context for astronomy education, by inserting topics combined with other areas of knowledge to what we call “interdisciplinary astrophysics teaching”.

  2. A Case Study Investigating Secondary Science Teachers' Perceptions of Science Literacy Instruction

    NASA Astrophysics Data System (ADS)

    Blackmon, Phyllis Ann

    This project study addressed the lack of inclusion of discipline literacy pedagogy in secondary classrooms in a rural school district in eastern North Carolina. Discipline literacy practices are recommended in the Common Core Standards for History/Social Studies, Science, and Technical Subjects. The district had implemented content area reading strategies across content areas, yet no significant progress in secondary students' reading abilities had been demonstrated in statewide or national assessments. The conceptual framework that drove this study was disciplinary literacy, founded by the literacy research of Shanahan, Shanahan, and Zygouris-Coe. Within a qualitative case study method, this investigation of 8 secondary science teachers' experiences teaching literacy during content instruction focused on practices of embedding science-specific reading strategies into lessons and factors that influence teachers' decisions to participate in professional development to advance their learning of discipline-specific literacy methods. Data were collected and triangulated using a focus group and 8 individual interviews. Data from both methods were analyzed into codes and categories that developed into emergent themes. Findings from the focus group and individual interviews revealed that the science teachers possessed limited knowledge of science-specific reading strategies; used random, general literacy practices; and had completed inadequate professional development on science-related topics. Positive change may occur if district leaders support teachers in expanding their knowledge and application of discipline literacy strategies through participation in discipline literacy-focused professional development. The study may provide educators and researchers a deeper understanding of disciplinary literacy and increase research on the topic.

  3. The pursuit of understanding: A study of exemplary high school students' conceptions of knowledge validation in science and history

    NASA Astrophysics Data System (ADS)

    Boix Mansilla, Veronica Maria

    The study presented examined 16 award-winning high school students' beliefs about the criteria by which scientific theories and historical narratives are deemed trustworthy. It sought to (a) describe such beliefs as students reasoned within each discipline; (b) examine the degree to which such beliefs were organized as coherent systems of thought; and (c) explore the relationship between students' beliefs and their prior disciplinary research experience. Students were multiple-year award-winners at the Massachusetts Science Fair and the National History Day---two pre-collegiate State-level competitions. Two consecutive semi-structured interviews invited students to assess and enhance the trustworthiness of competing accounts of genetic inheritance and the Holocaust in science and history respectively. A combined qualitative and quantitative data analysis yielded the following results: (a) Students valued three standards of acceptability that were common across disciplines: e.g. empirical strength, explanatory power and formal and presentational strength. However, when reasoning within each discipline they tended to define each standard in disciplinary-specific ways. Students also valued standards of acceptability that were not shared across disciplines: i.e., external validity in science and human understanding in history. (b) In science, three distinct epistemological orientations were identified---i.e., "faith in method," "trusting the scientific community" and "working against error." In history students held two distinct epistemologies---i.e., "reproducing the past" and "organizing the past". Students' epistemological orientations tended to operate as collections of mutually supporting ideas about what renders a theory or a narrative acceptable. (c) Contrary to the standard position to date in the literature on epistemological beliefs, results revealed that students' research training in a particular discipline (e.g., science or history) was strongly related to the ways in which they interpreted problems, methods, and satisfactory solutions in each domain. Students trained in science favored a sophisticated "working against error" epistemology of science and a naive "reproducing the past" epistemology of history. Students trained in history revealed a sophisticated "organizing the past" epistemology in that discipline and a naive "faith in methods" in one in science. Students trained in both domains revealed sophisticated epistemologies in both disciplines.

  4. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  5. Discipline and the Section 504 Student: Your Quick-Reference Guide to Best Practices.

    ERIC Educational Resources Information Center

    Caruso, Brian, Ed.

    This document is intended to provide guidance to schools in the discipline of students with disabilities in compliance with regulations under Section 504 of the Rehabilitation Act of 1973. Chapters address the following topics (sample sub-topics in parentheses): (1) basics of discipline under Section 504 (common mistakes districts make when…

  6. A meeting of minds: interdisciplinary research in the health sciences in Canada

    PubMed Central

    Hall, Judith G.; Bainbridge, Lesley; Buchan, Alison; Cribb, Alastair; Drummond, Jane; Gyles, Carlton; Hicks, T. Philip; McWilliam, Carol; Paterson, Barbara; Ratner, Pamela A.; Skarakis-Doyle, Elizabeth; Solomon, Patty

    2006-01-01

    Brought together by the newly formed Canadian Academy of Health Sciences (CAHS), recognized national leaders in the 6 health sciences disciplines consider the environment for conducting interdisciplinary health research (IDHR) in Canada. Based on first-hand knowledge and thoughtful reflection, the authors argue that although much progress has been made in support of IDHR in Canada, the practical experience of researchers does not always bear this out. This article examines government, industry and academia to identify the cultural and structural characteristics that demand, promote or prevent IDHR in each sector. At its heart is the question, How can universities best support and enhance IDHR, not only for the benefit of science, but also to meet the growing needs of industry and government for intellectual capital? Focusing on the predominant health sciences disciplines, the authors define IDHR as a team of researchers, solidly grounded in their respective disciplines, who come together around an important and challenging health issue, the research question for which is determined by a shared understanding in an interactive and iterative process. In addition, they suggest that IDHR is directly linked to translational research, which is the application of basic science to clinical practice and the generation of scientific questions through clinical observation. This analysis of academic, industry and government sectors is not intended to offer rigorous data on the current state of IDHR in Canada. Rather, the goal is to stimulate research-policy dialogue by suggesting a number of immediate measures that can help promote IDHR in Canada. Recommended measures to support IDHR are aimed at better resourcing and recognition (by universities and granting agencies), along with novel approaches to training, such as government- and industry-based studentships. In addition, we recommend that professional organizations reconsider their policies on publication and governance. Although intended to maintain professional scopes of practice, these policies also serve to entrench disciplinary boundaries in research. We conclude by suggesting a number of research questions for a more rigorous assessment of the climate for IDHR in Canada. We call for an inventory and comparative analysis of academic centres, institutes and consortiums in Canada that strive to facilitate IDHR; an examination of the impact of professional organizations on health research, and on IDHR in particular; and a systematic review of research training opportunities that promote IDHR, with a view to identifying and replicating proven models. PMID:17001059

  7. Telescience testbed pilot program, volume 2: Program results

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.

  8. A striking profile: Soil ecological knowledge in restoration management and science

    Treesearch

    Mac A. Callaham; Charles C. Rhoades; Liam Heneghan

    2008-01-01

    Available evidence suggests that research in terrestrial restoration ecology has been dominated by the engineering and botanical sciences. Because restoration science is a relatively young discipline in ecology, the theoretical framework for this discipline is under development and new theoretical offerings appear regularly in the literature. In reviewing this...

  9. 78 FR 59654 - Possible Models for the Administration and Support of Discipline-Specific Guidance Groups for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... science by improving coordination across a broad range of forensic science disciplines. The new initiative... intended to provide structured forums for the exchange of ideas among operational, technical, research, and... needs of forensic science research and measurement standards, and verifying the scientific basis exists...

  10. Degrees Awarded by Canadian Universities by Level and Discipline, During the Sixties and Early Seventies. Part I.

    ERIC Educational Resources Information Center

    von Zur-Muehlen, Max

    Data are provided on degrees awarded by Canadian universities by level (bachelor's and first professional, master's, and doctoral) and discipline (education, fine and applied arts, humanities and related, social science and related, agricultural and biological sciences, engineering and applied sciences, health professions and occupations, and…

  11. Content Structure in Science Instructional Materials and Knowledge Structure in Students' Memories.

    ERIC Educational Resources Information Center

    Champagne, Audrey B.; And Others

    The research reported in this paper concerns the design of instructional materials that represent the content structure of a science discipline and the development of methods of probing and representing the knowledge structure in a student's memory. The science discipline selected for the study was geology. Specifically, the conceptual structures…

  12. Climate state: Science-state struggles and the formation of climate science in the US from the 1930s to 1960s.

    PubMed

    Baker, Zeke

    2017-12-01

    This article has two aims: first, to understand the co-production of climate science and the state, and second, to provide a test case for Pierre Bourdieu's field theory. To these ends, the article reconstructs the historical formation of a US climate science field, with an analytic focus on inter-field dynamics and heterogeneous networking practices. Drawing from primary- and secondary-source materials, the historical analysis focuses on relations between scientists and state actors from the 1930s to the 1960s. The account shows how actors with positions linking scientific and bureaucratic fields constructed critical nodes and 'hinges' that co-produced war-making and state expansion on the one hand, and a relatively autonomous climate science field on the other. The analysis explains the emergence of climate science by focusing on the WWII-era transformation of meteorology and oceanography into distinct disciplines, the emergence of 'basic' research as a central principle of post-war government, and the formation of a climate science field by the 1960s centered on computerized modeling and populated by an interdisciplinary scientific elite. The article concludes by indicating how these processes led to the subsequent development of climate change as a science-state conundrum that has reorganized the climate science field in recent decades.

  13. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    USGS Publications Warehouse

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  14. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    PubMed

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  15. [Translational medicine].

    PubMed

    Antal, János; Timár, Attila

    2011-11-20

    Translational medicine is the emerging scientific discipline of the last decade which will set the benchmark for the pharmaceutical industry research and development, integrates inputs from the basic sciences of computer modeling and laboratory research through the pre-clinical and clinical phases of human research to the assimilation of new therapies and treatments into everyday practice of patient care and prevention. With this brief insight authors tried in their humble way to summarize the underlying basis, the present and the potential future of this emerging view, to draw attention to some of the challenges and tasks it faces and to highlight some of the promising approaches, trends and model developments and applications.

  16. Advancing a Vision for Regulatory Science Training

    PubMed Central

    Adamo, Joan E.; Wilhelm, Erin E.

    2015-01-01

    Abstract Regulatory science, a complex field which draws on science, law, and policy, is a growing discipline in medical‐related applications. Competencies help define both a discipline and the criteria to measure high‐quality learning experiences. This paper identifies competencies for regulatory science, how they were developed, and broader recommendations to enhance education and training in this burgeoning field, including a multifaceted training approach. PMID:26083660

  17. Contemporary Test Validity in Theory and Practice: A Primer for Discipline-Based Education Researchers

    PubMed Central

    Reeves, Todd D.; Marbach-Ad, Gili

    2016-01-01

    Most discipline-based education researchers (DBERs) were formally trained in the methods of scientific disciplines such as biology, chemistry, and physics, rather than social science disciplines such as psychology and education. As a result, DBERs may have never taken specific courses in the social science research methodology—either quantitative or qualitative—on which their scholarship often relies so heavily. One particular aspect of (quantitative) social science research that differs markedly from disciplines such as biology and chemistry is the instrumentation used to quantify phenomena. In response, this Research Methods essay offers a contemporary social science perspective on test validity and the validation process. The instructional piece explores the concepts of test validity, the validation process, validity evidence, and key threats to validity. The essay also includes an in-depth example of a validity argument and validation approach for a test of student argument analysis. In addition to DBERs, this essay should benefit practitioners (e.g., lab directors, faculty members) in the development, evaluation, and/or selection of instruments for their work assessing students or evaluating pedagogical innovations. PMID:26903498

  18. Distinguishing science from pseudoscience in school psychology: science and scientific thinking as safeguards against human error.

    PubMed

    Lilienfeld, Scott O; Ammirati, Rachel; David, Michal

    2012-02-01

    Like many domains of professional psychology, school psychology continues to struggle with the problem of distinguishing scientific from pseudoscientific and otherwise questionable clinical practices. We review evidence for the scientist-practitioner gap in school psychology and provide a user-friendly primer on science and scientific thinking for school psychologists. Specifically, we (a) outline basic principles of scientific thinking, (b) delineate widespread cognitive errors that can contribute to belief in pseudoscientific practices within school psychology and allied professions, (c) provide a list of 10 key warning signs of pseudoscience, illustrated by contemporary examples from school psychology and allied disciplines, and (d) offer 10 user-friendly prescriptions designed to encourage scientific thinking among school psychology practitioners and researchers. We argue that scientific thinking, although fallible, is ultimately school psychologists' best safeguard against a host of errors in thinking. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  19. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    USGS Publications Warehouse

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  20. Science and Criminal Investigation.

    ERIC Educational Resources Information Center

    Johnson, Ronald

    1997-01-01

    Presents a science activity that integrates the disciplines of anatomy, physiology, genetics, and forensics in which students act as detectives unraveling evidence at a murder crime scene. This project is designed to enhance student interest by providing immediate application of these disciplines. (DKM)

  1. An outsider's perspective on a provocative proposal: what would Flexner think?

    PubMed

    Anderson, M Brownell

    2010-01-01

    This viewpoint commentary focuses on a proposal for integrated anatomy education in undergraduate college from Dr. Darda published in the Anatomical Sciences Education. Although the proposal is for college level education, the proposal echoes some ideas proposed a century ago by Abraham Flexner when he wrote his report titled "Medical Education in the United States and Canada." It begins with an acknowledgement of the author's status as an outsider. There have been numerous calls for change in basic science education, particularly in medical education. Interestingly, however, the monumental reforms of the "Flexner Report" were impelled largely from outside the specific discipline of medical education. The commentary discussion then moves to observations about the proposal for Integrative Anatomy and support for the proposal from both the Flexner Report and the 2009 report from the Association of American Medical Colleges and the Howard Hughes Medical Institute, "Scientific Foundations for Future Physicians." The essay considers the benefits of the research on the learning sciences that now inform our work in education; the influence of competency-based education that frees education from a lock-step approach of course completion to a student-focused integrative approach to learning; and the availability of online resources for anatomy education through repositories, such as MedEdPORTAL. The final observation is that the changes underway in education and in the sciences basic to medicine, in particular, are substantial and will require the dialogue that Dr. Darda is promoting with his provocative proposal. Copyright 2010 American Association of Anatomists.

  2. Linking neuroimaging signals to behavioral responses in single cases: Challenges and opportunities.

    PubMed

    Sander, Tilmann H; Zhou, Bin

    2016-09-01

    Despite rapid progress both in psychology and neuroimaging, there is still a convergence gap between the results of these two scientific disciplines. This is particularly unsatisfactory, as the variability between single subjects needs to be understood both for basic science and for patient diagnostics in, for example, the field of age-related cognitive changes. Active and passive behaviors are the observables in psychology and can be studied alone or in combination with the neuroimaging approach. Various physical signatures of brain activity are the observables in neuroimaging and can be measured concurrent with behaviors. Despite the intrinsic relationship between behaviors and the corresponding neuroimaging patterns and the obvious advantages in integrating behavioral and neuroimaging measurements, the results of combined studies can be difficult to interpret. Experiments are often optimized to yield either a novel behavioral or a novel physiological result, but rarely designed for a better match between the two. Since integrating the results is probably a key to future progress in clinical psychology and basic research, an attempt is made here to identify some difficulties and to provide some ideas for future research. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. Approaches to Biology Teaching and Learning: Learning Styles and the Problem of Instructional Selection--Engaging All Students in Science Courses

    ERIC Educational Resources Information Center

    Tanner, Kimberly; Allen, Deborah

    2004-01-01

    Teachers aspire to have all of their students learn. This aspiration of reaching all students spans disciplines, age levels, and all varieties of institutions. Most teachers do so out of a genuine love for their discipline and a desire to share the wonder of their chosen field with others. Science teaching is no different than other disciplines in…

  4. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure.

    PubMed

    Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R; Vodovotz, Yoram; Banerjee, Anirban; Moldawer, Lyle L

    2017-09-01

    The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.

  5. Sketching for Developing Critical Thinking Skills

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Wang, P.; Sim, T. B.; Goh, E.; Ng, H. K.

    2013-12-01

    Sketching is a valuable field technique to support a person's observation, recording, interpretation and communication of important features in both natural and human-made landscapes. The Singapore geography syllabus employs an inquiry approach and encourages sketching as a fundamental geographical skill. Sketching allows the learner to connect with the world through a personal and kinesthetic experience. The Earth Observatory of Singapore collaborates with the Singapore Geography Teachers' Association, Urban Sketchers, and National Institute of Education professional development to give teachers both basic sketching skills and the opportunity to develop those skills in a scaffolded environment. In Singapore, geography and geology skills overlap in content area of coastal processes, climate change, and plate tectonics with its associated natural hazards such as volcanoes, earthquakes, and tsunami. Both disciplines are interested in how people live on the Earth. Likewise, basic skills such as observing, classifying, measuring, and communicating cut across disciplines of social and natural sciences in order to analyze, synthesize, and evaluate information about the world. Hence, sketching, commonly considered an art skill, is used to further scientific thinking. This somewhat unique collaboration to develop sketching in teachers is based on the long tradition of sketches in geological field work, the newly popular urban sketching community, and professional development by a professional organization and the Singapore National Institute of Education. Workshops provide technique as well as opportunities for sketching with experts in different areas relevant to the geography curriculum.

  6. The internal challenges of medical informatics.

    PubMed

    Gell, G

    1997-03-01

    Haux's [7] basic assumption that the object of medical informatics is: "... to assure and to improve the quality of healthcare as well as the quality of research and education in medicine and in the health sciences ..." is taken as a starting point to discuss the three main topics: What is the meaning of medical informatics (i.e. what should be the main activities of medical informatics to bring maximum benefit to medicine)? What are the achievements and failures of medical informatics today (again considering the impact on the quality of healthcare)? What are the main challenges? Concerning the definition of medical informatics it is argued that one should not hide the link to basic informatics and, for that matter to computers, completely behind abstract definitions. After an analysis of the purposes of the definition of a discipline, a differentiated definition of the scope of medical informatics, rather general when concerning the field of scientific interest, more focused when concerning the practical (constructive) applications, is proposed. Contrasting Haux's chapter on achievements of medical informatics we concentrate on and analyse non fulfilled promises of medical informatics to derive lessons for the future and to propose 'generic' (or core) tasks of medical informatics to meet the challenges of the future. A set of 'internal challenges' of medical informatics to change priorities and attitudes within the discipline is put forward to enable medical informatics to meet the 'external challenges' listed by Haux.

  7. Easy To Love, Difficult To Discipline: The Seven Basic Skills for Turning Conflict into Cooperation.

    ERIC Educational Resources Information Center

    Bailey, Becky A.

    Based on the view that parents discipline their children in the same way they discipline themselves, this book helps parents become aware of how they treat themselves and presents a framework called loving guidance. Chapter 1 introduces the framework built on the premise that parents' perceptions dictate their actions such that to change behavior,…

  8. Discipline-Based Art Education and Cultural Diversity. Seminar Proceedings of a National Invitational Seminar (3rd, Austin Texas, August 6-9, 1992).

    ERIC Educational Resources Information Center

    Getty Center for Education in the Arts, Los Angeles, CA.

    This publication contains proceedings of a seminar structured around five basic themes: (1) cultural diversity in education; (2) discipline based art education (DBAE) and cultural diversity; (3) how cultural diversity has affected practices in art history, aesthetics, criticism, and art making; (4) experiences in other disciplines which effect…

  9. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  10. Political Science in America. Oral Histories of a Discipline.

    ERIC Educational Resources Information Center

    Baer, Michael A., Ed.; And Others

    This book contains interviews with 15 major figures in the academic discipline of political science. Contributors discuss the intellectual and institutional roots of political science and trace its evolution and development. Those interviewed describe what it was like to be a part of the earliest Ph.D programs, and what it was like to work with…

  11. Feasibility Study: Library Instruction in Specific Science Disciplines Using the Self-Paced Workbook Adapted to Departmental Needs, Mitchell Memorial Library, Fall 1981.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    Student library assistants and undergraduate and graduate students from agricultural and biological engineering, biological sciences, and entomology participated in a study to determine the effectiveness of instructional materials adapted to specific science disciplines for developing practical skills in the use of library resources. All students…

  12. English for Scientific Purposes (EScP): Technology, Trends, and Future Challenges for Science Education

    ERIC Educational Resources Information Center

    Liu, Gi-Zen; Chiu, Wan-Yu; Lin, Chih-Chung; Barrett, Neil E.

    2014-01-01

    To date, the concept of English for Specific Purposes has brought about a great impact on English language learning across various disciplines, including those in science education. Hence, this review paper aimed to address current English language learning in the science disciplines through the practice of computer-assisted language learning to…

  13. Assessing the Discipline: Aligning Curricular Structures and Student Learning with Disciplinary Goals in Political Science

    ERIC Educational Resources Information Center

    Desmond, Katie

    2010-01-01

    Four identifiable disciplinary goals can be discerned from the development of political science as a discipline. These goals indicate that political science students will (1) attain knowledge about political systems (national and international); (2) gain an understanding of how politics works; (3) develop critical thinking skills; and, (4) learn…

  14. A Science of Social Work, and Social Work as an Integrative Scientific Discipline: Have We Gone Too Far, or Not Far Enough?

    ERIC Educational Resources Information Center

    Brekke, John S.

    2014-01-01

    There are two purposes to this article. The first is to update the science of social work framework. The second is to use recent discussions on the nature of realist science and on social work science to propose a definition of social work as an integrative scientific discipline that complements its definition as a profession.

  15. Evolution of the scientific basis for dentistry and its impact on dental education: past, present, and future.

    PubMed

    Slavkin, Harold C

    2012-01-01

    Science is the fuel for technology and the foundation for understanding the human condition. In dental education, as in all health professions, science informs a basic understanding of development, is essential to understand the structure and function of biological systems, and is prerequisite to understand and perform diagnostics, therapeutics, and clinical outcomes in the treatment of diseases and disorders. During the last seventy-five years, biomedical science has transformed from discipline-based scientists working on a problem to multidisciplinary research teams working to solve complex problems of significance to the larger society. Over these years, we witnessed the convergence of the biological and digital revolutions with clinical health care in medical, dental, pharmacy, nursing, and allied health care professional education. Biomedical science informs our understanding, from human genes and their functions to populations, health disparities, and the biosphere. Science is a "way of knowing," an international enterprise, a prerequisite for the health professions, and a calling and adventure to the curious mind. Science, the activity of doing science, is in the national self-interest, in the defense of a nation, and critical to the improvement of the human condition. In the words of Vannevar Bush, "science is the endless frontier."

  16. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  17. Foundations in Science and Mathematics Program for Middle School and High School Students

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Yang, Jing; Hemann, Jason

    2016-01-01

    The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .

  18. How Collecting and Freely Sharing Geophysical Data Broadly Benefits Society

    NASA Astrophysics Data System (ADS)

    Frassetto, A.; Woodward, R.; Detrick, R. S.

    2017-12-01

    Valuable but often unintended observations of environmental and human-related processes have resulted from open sharing of multidisciplinary geophysical observations collected over the past 33 years. These data, intended to fuel fundamental academic research, are part of the Incorporated Research Institutions for Seismology (IRIS), which is sponsored by the National Science Foundation and has provided a community science facility supporting earthquake science and related disciplines since 1984. These community facilities have included arrays of geophysical instruments operated for EarthScope, an NSF-sponsored science initiative designed to understand the architecture and evolution of the North American continent, as well as the Global Seismographic Network, Greenland Ice Sheet Monitoring Network, a repository of data collected around the world, and other community assets. All data resulting from this facility have been made openly available to support researchers across any field of study and this has expanded the impact of these data beyond disciplinary boundaries. This presentation highlights vivid examples of how basic research activities using open data, collected as part of a community facility, can inform our understanding of manmade earthquakes, geomagnetic hazards, climate change, and illicit testing of nuclear weapons.

  19. University education in the Geosciences reflections on the past, the present, and the future

    NASA Astrophysics Data System (ADS)

    Snow, J. T.

    2003-04-01

    The geosciences are a broad area of sciences with a long and rich history. The founders of the geosciences were the "natural philosophers" of the late Renaissance. These pioneering scientists -- Ben Franklin being a good example -- took a holistic view of the Earth and did not distinguish formal disciplinary boundaries. The disciplines that we know today - geology, meteorology, and oceanography, each with myriad specialty areas - developed through the course of the 19th and early 20th centuries. This separation of disciplines was probably to be expected, given the need for concentrated focus on aspects of the Earth and its processes to develop basic knowledge, useful tools, and information for industrial applications. Each discipline developed its own characteristics and tradition that colored and shaped its further growth - geology, for example, has long been associated with the extractive industries, while meteorology has a strong emphasis on prediction of hazardous weather. However, in the closing decades of the 20th century, this situation began to change. Motivated in part by development of capabilities to observe Earth and other planets from space vehicles and in part by a growing interest in problems (such as Earth's climate) that did not fit in any one of the traditional areas, it became apparent that the geoscience disciplines needed to become more closely linked, both among themselves and with the life sciences. This has given rise to new efforts such as "Earth System Science" and "biogeosciences" that are working to integrate and extend knowledge from the traditional disciplines to improve humankind's understanding of Planet Earth. This talk will explore how the history sketched above is reflected in our educational structures and processes, and in our expectations of what students are expected to come to know, understand, and be able to do through a course of university study. I will argue that all the geosciences disciplines are in the midst of a major transition, evolving from a largely descriptive, qualitative past into a quantitative future that is as yet very unclear. Constraints on the amount of time a student can spend in the university (nominally four years for a first degree in the U.S.), the explosion in knowledge about the Earth, and the rise of a broad range of companion technologies - computers of all forms, GIS, GPS, telecommunications, "smart" analytical instruments -- are significant challenges in themselves to today's academic programs. However, expectations of government, students and their parents, and prospective employers (including academia itself) are also proving to be major challenges to those attempting to develop programs for students. I will close by speculating a bit on what the future may hold for students, academicians, and universities.

  20. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  1. Panel on Graduate Education in Science

    NASA Astrophysics Data System (ADS)

    Strom, S.; Edwards, S.; Gallagher, J. S.; Levy, E.; York, D.; van Horn, H.; Wyckoff, S.

    1995-12-01

    As a result of the shifting emphasis for public investment in basic research and higher education, opportunities for new PhDs to follow traditional academic research careers are expected to decrease. Given these realities, it is both essential and timely to re-examine the role of graduate schools in serving our discipline, our students, and the society which supports us. Central to the discussion are the questions: (1) What should be the goals and content of an astronomy graduate education in view of (a) the discipline's need to continue a tradition of carrying out world class research, and (b) our nation's need for imaginative, scientifically capable and adaptable young people, both in the technical workforce and as teachers in the nation's schools? (2) Should we consider changing our admissions policies, graduate curricula, funding patterns or academic culture to meet the needs of (a) our discipline, and (b) our nation? The panelists will share their current perspectives on these very challenging questions. A follow-up open discussion on these issues will be held on Tuesday evening. A detailed outline of the questions regarding the goals of graduate education in astronomy formulated by the AAS Education Policy Board may be found through the Education link on the AAS World Wide Web homepage.

  2. The Increasing Urgency for Standards in Basic Biological Research

    PubMed Central

    Freedman, Leonard P.; Inglese, James

    2016-01-01

    Research advances build upon the validity and reproducibility of previously published data and findings. Yet irreproducibility in basic biological and preclinical research is pervasive in both academic and commercial settings. Lack of reproducibility has led to invalidated research breakthroughs, retracted papers, and aborted clinical trials. Concerns and requirements for transparent, reproducible, and translatable research are accelerated by the rapid growth of “post-publication peer review,” open access publishing, and data sharing that facilitate the identification of irreproducible data/studies; they are magnified by the explosion of high-throughput technologies, genomics, and other data-intensive disciplines. Collectively, these changes and challenges are decreasing the effectiveness of traditional research quality mechanisms and are contributing to unacceptable—and unsustainable—levels of irreproducibility. The global oncology and basic biological research communities can no longer tolerate or afford widespread irreproducible research. This article discusses (1) how irreproducibility in preclinical research can ultimately be traced to an absence of a unifying life science standards framework, and (2) makes an urgent case for the expanded development and use of consensus-based standards to both enhance reproducibility and drive innovations in cancer research. PMID:25035389

  3. How can history of science matter to scientists?

    PubMed

    Maienschein, Jane; Laubichler, Manfred; Loettgers, Andrea

    2008-06-01

    History of science has developed into a methodologically diverse discipline, adding greatly to our understanding of the interplay between science, society, and culture. Along the way, one original impetus for the then newly emerging discipline--what George Sarton called the perspective "from the point of view of the scientist"--dropped out of fashion. This essay shows, by means of several examples, that reclaiming this interaction between science and history of science yields interesting perspectives and new insights for both science and history of science. The authors consequently suggest that historians of science also adopt this perspective as part of their methodological repertoire.

  4. Training the Translational Research Teams of the Future: UC Davis—HHMI Integrating Medicine into Basic Science Program

    PubMed Central

    Rainwater, Julie A.; Chiamvimonvat, Nipavan; Bonham, Ann C.; Robbins, John A.; Henderson, Stuart; Meyers, Frederick J.

    2013-01-01

    Abstract There is a need for successful models of how to recruit, train, and retain bench scientists at the earliest stages of their careers into translational research. One recent, promising model is the University of California Davis Howard Hughes Medical Institute Integrating Medicine into Basic Science (HHMI‐IMBS) program, part of the HHMI Med into Grad initiative. This paper outlines the HHMI‐IMBS program's logic, design, and curriculum that guide the goal of research that moves from bedside to bench. That is, a curriculum that provides graduate students with guided translational training, clinical exposure, team science competencies, and mentors from diverse disciplines that will advance the students careers in clinical translational research and re‐focusing of research to answer clinical dilemmas. The authors have collected data on 55 HHMI‐IMBS students to date. Many of these students are still completing their graduate work. In the current study the authors compare the initial two cohorts (15 students) with a group of 29 control students to examine the program success and outcomes. The data indicate that this training program provides an effective, adaptable model for training future translational researchers. HHMI‐IMBS students showed improved confidence in conducting translational research, greater interest in a future translational career, and higher levels of research productivity and collaborations than a comparable group of predoctoral students. PMID:24127920

  5. Understanding the soil underfoot: building a national postgraduate soils cohort through participative learning

    NASA Astrophysics Data System (ADS)

    Quinton, John; Haygarth, Phil; Black, Helaina; Allton, Kathryn

    2015-04-01

    Many of the PhD students starting Soil Science PhDs have only a limited understanding of the wider importance of soils, the state -of-art in other sub disciplines, and have often never seen a soil profile in the field. As the number of students nationally in the UK is also small compared to some other disciplines there is also a need to build a cohort of early career researchers. To address these issues, Lancaster University and the James Hutton Institute together with support from the British Society of Soil Science and the Natural Environment Research Council (NERC), ran a 5 day residential foundation soil science 'Summer School' in March 2015. The training school was an intense programme for ambitious and energetic post-graduate students. The course was specifically designed for students who were keen to develop skills in the development of inter-disciplinary research ideas and proposals. Specifically the course addressed: • the different functions in land uses and across landscapes • novel approaches for investigating how soils function • the basics of making a soil description and soil sampling in the field; • the current key challenges in soil science research • the requirements of, and approaches to, soil science research that requires multi-disciplinary and interdisciplinary approaches • the essentials of developing and planning a research project Our approach was to provide a space for the students to both learn from, but also work with some of the leading UK Soil Science experts. We used workshop style lectures, including some delivered via the internet, combined with student research teams working alongside research mentors to produce research proposals to be 'pitched' to a panel at the end of the course. These proposals formed the focus for engagement with the 'experts' making the time the students spent with them concentrated and productive. Feedback from the students was excellent and a variant of the course will be repeated by Cranfield University in 2015.

  6. Old is Still New: Changing Global Concerns and Enduring Educational Values

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.

    2012-12-01

    In 1982 the primary technology of disseminating educational information was the printed book and the typewriter with the mimeograph machine. In 2012, the world wide web, interactive books, and social media are major players in educational technology. Students have moved from passive reading and listening to constructing their own knowledge. In 1982, the paradigm in science education included exploring the common interests of science and education, the role of formal and informal education, and the importance of providing scientists for the workforce. In 2012, conversations have broadened to include topics of citizen science, stakeholder involvement, and risk communication to policy makers and communities. As the population of Earth has grown from over 4.5 billion people to over 7 billion people in the same time period, the role of science education has expanded to global concerns. The Asia Pacific region bears a significant proportion of the world's population and high risks associated with natural hazards and with climate change. Educational conversations include how science impacts and informs public policy, community empowerment, and collaborations among the various types of groups which can affect change. These organizations include scientific research and educational institutions,; non-governmental organizations (NGOs); educators in schools, museums and science centers; and government officials from local to national levels. There is considerable interest in bridging disciplines that impact the populations at risk, i.e. education, development, disaster risk management, public communication, and others. Despite the broadening of concerns, changes in technology, and the ways people get information, education still focuses on some basic issues that have not changed. Some of these include interesting young people in STEM study and careers, providing messages that are clearly understood, trying to understand nature of working across disciplines, and involving the right stakeholders. Education continues to struggle with communication between scientists and the people who might benefit from scientific advances.

  7. British Journal of Biomedical Science in 2015: what have we learned?

    PubMed

    Blann, Andrew; Nation, Brian

    2016-01-01

    In 2015, the British Journal of Biomedical Science published 47 reports on topics relating to the various disciplines within biomedical science. Of these, the majority were in infection science (15 in microbiology and two in virology) and blood science (seven in biochemistry, four in haematology, three in immunology and one in transplantation), with a smaller number in cellular sciences (four reports) and with one review across disciplines. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.

  8. The Attitudes of First Year Senior Secondary School Students toward Their Science Classes in the Sudan

    ERIC Educational Resources Information Center

    Lado, Longun Moses

    2011-01-01

    This study examined the influence of a set of relevant independent variables on students' decision to major in math or science disciplines, on the one hand, or arts or humanities disciplines, on the other. The independent variables of interest in the study were students' attitudes toward science, their gender, their socioeconomic status, their…

  9. Technical Writing for Software Engineers

    DTIC Science & Technology

    1990-05-01

    Writing models 3. Analogies: Software Development and Composing 3.1 Art / Science /Design 3.2 General Correspondence Between the Disciplines 3.3...The first subsection describes a dialogue common to both fields, one that considers these disciplines as art , science , and design. The second notes...find additional similarities between software development and composing in these and other sources. 3.1 Art / Science /Design Ongoing discussions about

  10. Technical Writing for Software Engineers

    DTIC Science & Technology

    1991-11-01

    3 Analogies: Software Development and Composing 3.1 Art / Science /Design 3.2 General Correspondences Between the Disciplines 3.3 Specific Analogies...domains. The first subsection describes a dialogue common to both fields, one that considers these disciplines as art , science , and design. The second...will find additional similarities between software development and composing in these and other sources. 3.1 Art / Science /Design Ongoing discussions

  11. Reported Ideal Traits of a Mentor as Viewed by African American Students in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Smith, Mary L.

    2017-01-01

    The purpose of this study was to examine undergraduate students majoring in science, technology, engineering, and math disciplines perception of traits an ideal mentor should possess, and to determine if these traits had positive results on their identification with science. With a large number of workers in STEM disciplines retiring, there is a…

  12. Evolutionary biology: a basic science for medicine in the 21st century.

    PubMed

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  13. Théodule Ribot's ambiguous positivism: philosophical and epistemological strategies in the founding of French scientific psychology.

    PubMed

    Guillin, Vincent

    2004-01-01

    Théodule Ribot (1839-1916) is regarded by many historians of psychology as the "father" of the discipline in France. Ribot contributed to the development of a "new psychology" independent from philosophy, relying on the methods of the natural sciences. However, such an epistemological transition encountered fierce opposition from both the champions of the old-fashioned metaphysical psychology and the representatives of the "scientific spirit." This article focuses on the objections raised by the latter, and especially philosophers of science, against the possibility of a scientific psychology. For instance, according to Auguste Comte, psychology does not satisfy certain basic methodological requirements. To overcome these objections, Ribot, in his La Psychologie Anglaise Contemporaine (1870/1914), devised an epistemological strategy that amounted to invoking criticisms of Comte's views made by other representatives of the positivist school, such as John Stuart Mill and Herbert Spencer. Copyright 2004 Wiley Periodicals, Inc.

  14. Translational plant proteomics: a perspective.

    PubMed

    Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep

    2012-08-03

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  16. Leveraging the national cyberinfrastructure for biomedical research.

    PubMed

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  17. Leveraging the national cyberinfrastructure for biomedical research

    PubMed Central

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the ‘Big Data’ challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community. PMID:23964072

  18. Introduction to the Space Physics Analysis Network (SPAN)

    NASA Technical Reports Server (NTRS)

    Green, J. L. (Editor); Peters, D. J. (Editor)

    1985-01-01

    The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.

  19. Wine biotechnology in South Africa: towards a systems approach to wine science.

    PubMed

    Moore, John P; Divol, Benoit; Young, Philip R; Nieuwoudt, Hélène H; Ramburan, Viresh; du Toit, Maret; Bauer, Florian F; Vivier, Melané A

    2008-11-01

    The wine industry in South Africa is over three centuries old and over the last decade has reemerged as a significant competitor in world wine markets. The Institute for Wine Biotechnology (IWBT) was established in partnership with the Department of Viticulture and Oenology at Stellenbosch University to foster basic fundamental research in the wine sciences leading to applications in the broader wine and grapevine industries. This review focuses on the different research programmes of the Institute (grapevine, yeast and bacteria biotechnology programmes, and chemical-analytical research), commercialisation activities (SunBio) and new initiatives to integrate the various research disciplines. An important focus of future research is the Wine Science Research Niche Area programme, which connects the different research thrusts of the IWBT and of several research partners in viticulture, oenology, food science and chemistry. This 'Functional Wine-omics' programme uses a systems biology approach to wine-related organisms. The data generated within the programme will be integrated with other data sets from viticulture, oenology, analytical chemistry and the sensory sciences through chemometrics and other statistical tools. The aim of the programme is to model aspects of the wine making process, from the vineyard to the finished product.

  20. Pakistan Journal of Medical Sciences: A bibliometric assessment 2001-2010

    PubMed Central

    Baladi, Zameer Hussain; Umedani, Loung V.

    2017-01-01

    Objective: The aim of this study was to measure the growth of scientific research, authors’ productivity, affiliation with the institute and geographic locations published in the Pakistan Journal of Medical Sciences during the period of 2001 – 2010. Methods: This numerical analysis was conducted during mid-August 2016 to mid-October, 2016. The data for the study was downloaded from websites of e-journal of Pakistan Journal of Medical Sciences (PJMS) and Pak Medi-Net Com. Results: A total number of 1199 articled were covered by PJMS in 10 volumes and 40 issues with contribution of 3798 (3%) authors during 2001 – 2010. The average number of papers per issue is 30%. A gender wise contribution of males was higher 3050 (80%) than the females 748 (20%). A majority of articles were multi-authored 1052 (87%) as opposed to single author contribution 147 (13%). All 1199 articles were covered under four major disciplines i.e Basic medical sciences, medicine & allied, surgery & allied and radiological sciences and 39 sub-specialties according to medical subject headings (MeSH). It observed that 467 (39%) articles were published in Pakistan and 732 (61%) articles produced by other 32 countries. The Karachi city of Pakistan has produced 199 (16%) articles as highest as its national level and followed by Tehran (Iran) 77 (6%) as followed internationally. Conclusion: This study reveals that the participation of 32 countries in the PJMS publications proves it to be an internationally circulated journal to support research with the constant approach of publishing articles to each volume in basic medical sciences, biomedical, clinical and public health sciences. Abbreviations: DOAJ: Directory of Open Access Journals IMEMR: Index Medicus Eastern Mediterranean Region HEC: Higher Education Commission (Pakistan) PJMS: Pakistan Journal of Medical Sciences MeSH: Medical Subject Headings PMDC: Pakistan Medical & Dental Council SCIE: Science Citation Index Expanded PMID:28811801

  1. The Cassini Solstice Mission: Streamlining Operations by Sequencing with PIEs

    NASA Technical Reports Server (NTRS)

    Vandermey, Nancy; Alonge, Eleanor K.; Magee, Kari; Heventhal, William

    2014-01-01

    The Cassini Solstice Mission (CSM) is the second extended mission phase of the highly successful Cassini/Huygens mission to Saturn. Conducted at a much-reduced funding level, operations for the CSM have been streamlined and simplified significantly. Integration of the science timeline, which involves allocating observation time in a balanced manner to each of the five different science disciplines (with representatives from the twelve different science instruments), has long been a labor-intensive endeavor. Lessons learned from the prime mission (2004-2008) and first extended mission (Equinox mission, 2008-2010) were utilized to design a new process involving PIEs (Pre-Integrated Events) to ensure the highest priority observations for each discipline could be accomplished despite reduced work force and overall simplification of processes. Discipline-level PIE lists were managed by the Science Planning team and graphically mapped to aid timeline deconfliction meetings prior to assigning discrete segments of time to the various disciplines. Periapse segments are generally discipline-focused, with the exception of a handful of PIEs. In addition to all PIEs being documented in a spreadsheet, allocated out-of-discipline PIEs were entered into the Cassini Information Management System (CIMS) well in advance of timeline integration. The disciplines were then free to work the rest of the timeline internally, without the need for frequent interaction, debate, and negotiation with representatives from other disciplines. As a result, the number of integration meetings has been cut back extensively, freeing up workforce. The sequence implementation process was streamlined as well, combining two previous processes (and teams) into one. The new Sequence Implementation Process (SIP) schedules 22 weeks to build each 10-week-long sequence, and only 3 sequence processes overlap. This differs significantly from prime mission during which 5-week-long sequences were built in 24 weeks, with 6 overlapping processes.

  2. STEM Comes to Preschool

    ERIC Educational Resources Information Center

    Moomaw, Sally; Davis, Jaumall A.

    2010-01-01

    Math and science and the related technology and engineering are natural pairings. These four disciplines form the acronym STEM (Science, Technology, Engineering, and Math) and can be readily combined into an integrated curriculum for early childhood classrooms. Many educators believe that children learn best when disciplines are interconnected. An…

  3. Advancing clinical decision support using lessons from outside of healthcare: an interdisciplinary systematic review

    PubMed Central

    2012-01-01

    Background Greater use of computerized decision support (DS) systems could address continuing safety and quality problems in healthcare, but the healthcare field has struggled to implement DS technology. This study surveys DS experience across multiple non-healthcare disciplines for new insights that are generalizable to healthcare provider decisions. In particular, it sought design principles and lessons learned from the other disciplines that could inform efforts to accelerate the adoption of clinical decision support (CDS). Methods Our systematic review drew broadly from non-healthcare databases in the basic sciences, social sciences, humanities, engineering, business, and defense: PsychINFO, BusinessSource Premier, Social Sciences Abstracts, Web of Science, and Defense Technical Information Center. Because our interest was in DS that could apply to clinical decisions, we selected articles that (1) provided a review, overview, discussion of lessons learned, or an evaluation of design or implementation aspects of DS within a non-healthcare discipline and (2) involved an element of human judgment at the individual level, as opposed to decisions that can be fully automated or that are made at the organizational level. Results Clinical decisions share some similarities with decisions made by military commanders, business managers, and other leaders: they involve assessing new situations and choosing courses of action with major consequences, under time pressure, and with incomplete information. We identified seven high-level DS system design features from the non-healthcare literature that could be applied to CDS: providing broad, system-level perspectives; customizing interfaces to specific users and roles; making the DS reasoning transparent; presenting data effectively; generating multiple scenarios covering disparate outcomes (e.g., effective; effective with side effects; ineffective); allowing for contingent adaptations; and facilitating collaboration. The article provides examples of each feature. The DS literature also emphasizes the importance of organizational culture and training in implementation success. The literature contrasts “rational-analytic” vs. “naturalistic-intuitive” decision-making styles, but the best approach is often a balanced approach that combines both styles. It is also important for DS systems to enable exploration of multiple assumptions, and incorporation of new information in response to changing circumstances. Conclusions Complex, high-level decision-making has common features across disciplines as seemingly disparate as defense, business, and healthcare. National efforts to advance the health information technology agenda through broader CDS adoption could benefit by applying the DS principles identified in this review. PMID:22900537

  4. A plea for judgment.

    PubMed

    Davis, Michael

    2012-12-01

    Judgment is central to engineering, medicine, the sciences and many other practical activities. For example, one who otherwise knows what engineers know but lacks "engineering judgment" may be an expert of sorts, a handy resource much like a reference book or database, but cannot be a competent engineer. Though often overlooked or at least passed over in silence, the central place of judgment in engineering, the sciences, and the like should be obvious once pointed out. It is important here because it helps to explain where ethics fits into these disciplines. There is no good engineering, no good science, and so on without good judgment and no good judgment in these disciplines without ethics. Doing even a minimally decent job of teaching one of these disciplines necessarily includes teaching its ethics; teaching the ethics is teaching the discipline (or at least a large part of it).

  5. The Next Great Science

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.

    2007-12-01

    Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".

  6. Facilitating Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields in Program Development

    ERIC Educational Resources Information Center

    Ejiwale, James A.

    2014-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  7. Physical and Life Scientists. Bulletin 2205-5.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This document provides information about careers in the agricultural sciences, the biological sciences, chemistry, forestry and conservation, geology and geophysics, meteorology, and physics. The information, presented in separate sections for each of these disciplines, includes: (1) nature of the work performed by scientists in the discipline(s);…

  8. Trends in Gender Bias Across Earth and Space Science Scholarly Publishing

    NASA Astrophysics Data System (ADS)

    Lerback, J. C.; Hanson, B.

    2016-12-01

    It has been challenging to assess gender bias across scholarly publishing in part because data on both gender and age are needed, as the proportion of women varies with age across most disciplines. To address this, we matched the member database of the American Geophysical Union (AGU), where age and gender are self-reported, with the AGU editorial database. The proportion of women members increased since 2013 across all disciplines from 24.6 to 26.9%. The proportion of women publishing as first authors increased across most disciplines and overall from 24.8 to 25.9%; however, it decreased in atmospheric science, global change, and planetary science. Overall, women had a higher acceptance rate than men across all in aggregate, 60.4 vs. 56.4% and equal or higher in all disciplines. Co-author behavior did not vary greatly across disciplines; most female first authors had 20% female co-authors, whereas male first authors have 15% female co-authors. Women were used less often as reviewers (17.9% of the time) than expected based on their membership in the society and their rate as accepted first authors (26.7% female) and all accepted authors (23.3%). Furthermore, the proportion of reviews done by women did not increase in several disciplines from 2012-2015, including atmospheric science, geology and geophysics, mathematical geophysics, and planetary science. The bias is a result of fewer suggestions of women reviewers by male authors and editors, and also a higher decline rate by women within each age cohort when asked to review. Invitations to women to review increased from 16.7% in 2012 to 18.5% in 2015 overall, but not in geology and geophysics, planetary sciences, and space sciences. Participating as a reviewer can have important career benefits; thus, addressing this bias is important for addressing pipeline issues and improving retention of women in the field.

  9. Redesigning Introductory Science Courses to Teach Sustainability: Introducing the L(SC)2 Paradigm

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Campbell-Stone, E.; Massey, G.

    2008-12-01

    Modern societies consume vast quantities of Earth resources at unsustainable levels; at the same time, resource extraction, processing, production, use and disposal have resulted in environmental damage severe enough to threaten the life-support systems of our planet. These threats are produced by multiple, integrative and cumulative environmental stresses, i.e. syndromes, which result from human physical, ecological and social interactions with the environment in specific geographic places. In recent decades, recognition of this growing threat has lead to the concept of sustainability. The science needed to provide the knowledge and know-how for a successful sustainability transition differs markedly from the science that built our modern world. Sustainability science must balanced basic and applied research, promote integrative research focused on specific problems and devise a means of merging fundamental, general scientific principles with understanding of specific places. At the same time, it must use a variety of knowledge areas, i.e. biological systems, Earth systems, technological systems and social systems, to devise solutions to the many complex and difficult problems humankind faces. Clearly, sustainability science is far removed from the discipline-based science taught in most U.S. colleges. Many introductory science courses focus on content, lack context and do not integrate scientific disciplines. To prepare the citizens who will confront future sustainability issues as well as the scientists needed to devise future sustainability strategies, educators and scientists must redesign the typical college science course. A new course paradigm, Literacies and Scientific Content in Social Context (L(SC)2), is ideally suited to teach sustainability science. It offers an alternative approach to liberal science education by redefining and expanding the concept of the interdisciplinary course and merging it with the integrated science course. In addition to promoting scientific literacy, L(SC)2 courses explicitly promote mastery of fundamental quantitative and qualitative skills critical to science and commonly a barrier to student success in science. Scientific content addresses the principles and disciplines necessary to tackle the multifaceted problems that must be solved in any sustainability transition and illustrates the limitations on what can be accomplished. Finally, social context adds the place-based component that is critical to sustainability science while revealing how science impacts students' everyday lives. Experience in addressing realistic, real-life problems fosters the habits of mind necessary to address these problems and instills a sense of social and political efficacy and responsibility. The L(SC)2 course paradigm employs a variety of educational tools (active problem-based learning, collaborative work, peer instruction, interdisciplinarity, and global context-based instruction) that improve lasting comprehension by creating a more effective learning environment. In this paradigm, STEM students learn that although there may be a technically or scientifically optimal solution to a problem, it must be responsive to a society's social, legal, cultural and religious parameters. Conversely, students in non-STEM fields learn that solutions to societal problems must be scientifically valid and technologically feasible. The interaction of STEM and non-STEM students in L(SC)2 courses builds bridges between the natural and social sciences that are critical for a successful sustainability transition and lacking in most traditional science courses.

  10. Curricular Design for Intelligent Systems in Geosciences Using Urban Groundwater Studies.

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Pierce, S. A.; Fuentes-Pineda, G.; Arora, R.

    2016-12-01

    Geosciences research frequently focuses on process-centered phenomena, studying combinations of physical, geological, chemical, biological, ecological, and anthropogenic factors. These interconnected Earth systems can be best understood through the use of digital tools that should be documented as workflows. To develop intelligent systems, it is important that geoscientists and computing and information sciences experts collaborate to: (1) develop a basic understanding of the geosciences and computing and information sciences disciplines so that the problem and solution approach are clear to all stakeholders, and (2) implement the desired intelligent system with a short turnaround time. However, these interactions and techniques are seldom covered in traditional Earth Sciences curricula. We have developed an exchange course on Intelligent Systems for Geosciences to support workforce development and build capacity to facilitate skill-development at the undergraduate student-level. The first version of this course was offered jointly by the University of Texas at Austin and the Universidad Nacional Autónoma de México as an intensive, study-abroad summer course. Content included: basic Linux introduction, shell scripting and high performance computing, data management, experts systems, field data collection exercises and basics of machine learning. Additionally, student teams were tasked to develop a term projects that centered on applications of Intelligent Systems applied to urban and karst groundwater systems. Projects included expert system and reusable workflow development for subsidence hazard analysis in Celaya, Mexico, a classification model to analyze land use change over a 30 Year Period in Austin, Texas, big data processing and decision support for central Texas groundwater case studies and 3D mapping with point cloud processing at three Texas field sites. We will share experiences and pedagogical insights to improve future versions of this course.

  11. Energy Connections and Misconnections across Chemistry and Biology.

    PubMed

    Kohn, Kathryn P; Underwood, Sonia M; Cooper, Melanie M

    2018-01-01

    Despite the number of university students who take courses in multiple science disciplines, little is known about how they connect concepts between disciplines. Energy is a concept that underlies all scientific phenomena and, as such, provides an appropriate context in which to investigate student connections and misconnections across disciplines. In this study, university students concurrently enrolled in introductory chemistry and biology were interviewed to explore their perceptions of the integration of energy both within and across the disciplines, and how they attempted to accommodate and reconcile different disciplinary approaches to energy, to inform future, interdisciplinary course reform. Findings suggest that, while students believed energy to be important to the scientific world and to the disciplines of biology and chemistry, the extent to which it was seen as central to success in their courses varied. Differences were also apparent in students' descriptions of the molecular-level mechanisms by which energy transfer occurs. These findings reveal a disconnect between how energy is understood and used in introductory science course work and uncovers opportunities to make stronger connections across the disciplines. We recommend that instructors engage in interdisciplinary conversations and consider the perspectives and goals of other disciplines when teaching introductory science courses. © 2018 K. P. Kohn et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Chapter 18: the origins of functional brain imaging in humans.

    PubMed

    Raichle, Marcus E

    2010-01-01

    Functional brain imaging in humans as we presently know it began when the experimental strategies of cognitive psychology were combined with modern brain imaging techniques, first positron emission tomography (PET) and then functional magnetic resonance imaging (fMRI), to examine how brain function supports mental activities. This marriage of disciplines and techniques galvanized the field of cognitive neuroscience, which has rapidly expanded to include a broad range of the social sciences as well as basic scientists interested in the neurophysiology, cell biology and genetics of the imaging signals. While much of this work has transpired over the past couple of decades, its roots can be traced back more than a century.

  13. Applications of artificial intelligence to scientific research

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  14. Transdisciplinary translational behavioral (TDTB) research: opportunities, barriers, and innovations.

    PubMed

    Czajkowski, Susan M; Lynch, Minda R; Hall, Kara L; Stipelman, Brooke A; Haverkos, Lynne; Perl, Harold; Scott, Marcia S; Shirley, Mariela C

    2016-03-01

    The translation of basic behavioral science discoveries into practical strategies represents a promising approach to developing more effective preventive interventions to improve health. Since translational research inevitably involves making use of diverse perspectives from multiple disciplines, it is best conducted as a transdisciplinary enterprise. In this paper, we discuss current strategies used by NIH to support transdisciplinary translational behavioral (TDTB) research, summarize successful efforts, and highlight challenges encountered in conducting such work (ranging from conceptual to organizational to methodological). Using examples from NIH-funded projects we illustrate the potential benefits of, and barriers to, pursuing this type of research and discuss next steps and potential future directions for NIH-supported TDTB research.

  15. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. Conceptualising population health: from mechanistic thinking to complexity science.

    PubMed

    Jayasinghe, Saroj

    2011-01-20

    The mechanistic interpretation of reality can be traced to the influential work by René Descartes and Sir Isaac Newton. Their theories were able to accurately predict most physical phenomena relating to motion, optics and gravity. This paradigm had at least three principles and approaches: reductionism, linearity and hierarchy. These ideas appear to have influenced social scientists and the discourse on population health. In contrast, Complexity Science takes a more holistic view of systems. It views natural systems as being 'open', with fuzzy borders, constantly adapting to cope with pressures from the environment. These are called Complex Adaptive Systems (CAS). The sub-systems within it lack stable hierarchies, and the roles of agency keep changing. The interactions with the environment and among sub-systems are non-linear interactions and lead to self-organisation and emergent properties. Theoretical frameworks such as epi+demos+cracy and the ecosocial approach to health have implicitly used some of these concepts of interacting dynamic sub-systems. Using Complexity Science we can view population health outcomes as an emergent property of CAS, which has numerous dynamic non-linear interactions among its interconnected sub-systems or agents. In order to appreciate these sub-systems and determinants, one should acquire a basic knowledge of diverse disciplines and interact with experts from different disciplines. Strategies to improve health should be multi-pronged, and take into account the diversity of actors, determinants and contexts. The dynamic nature of the system requires that the interventions are constantly monitored to provide early feedback to a flexible system that takes quick corrections.

  17. What is the role of theories in the study of schizophrenia?

    PubMed

    Cannon, Tyrone D

    2009-05-01

    As an epilogue to the themed papers on "Theories of Schizophrenia" in this issue of Schizophrenia Bulletin, this article reviews some basic philosophy of science principles in regard to the role of theories in the evolving state of a natural science discipline. While in early phases inductive and abductive logic are the primary vehicles for organizing observations and developing models, when a critical set of "facts" have been elucidated which can be explained by competing theoretical perspectives, hypothetico-deductive logic provides a more robust and efficient approach to scientific progress. The key principle is to determine where two or more theories predict different observations and then to devise studies that collect critical observations-correlations or experimental outcomes that are predicted differentially by the competing theories. To a large extent, current theories of schizophrenia (eg, focusing on aberrant dopaminergic signaling, neural dysconnectivity, and disrupted neural development) are not (and are not intended by their authors to be) mutually exclusive of each other. Rather, they provide explanations that differ in relative emphases, eg, on distal vs proximal causes and on broad vs narrow behavioral end points. It is therefore possible for all of them to be "right" at least in a general sense. This non-exclusivity is problematic when considered in light of the strong inferences principles characteristic of a mature natural science discipline. The contrast points are likely to be found in constructions that integrate influences across different levels of analysis, as in additive vs interactive models, direct effects vs mediation models, and developmental vs deteriorative models.

  18. Grand challenges for integrated USGS science—A workshop report

    USGS Publications Warehouse

    Jenni, Karen E.; Goldhaber, Martin B.; Betancourt, Julio L.; Baron, Jill S.; Bristol, R. Sky; Cantrill, Mary; Exter, Paul E.; Focazio, Michael J.; Haines, John W.; Hay, Lauren E.; Hsu, Leslie; Labson, Victor F.; Lafferty, Kevin D.; Ludwig, Kristin A.; Milly, Paul C. D.; Morelli, Toni L.; Morman, Suzette A.; Nassar, Nedal T.; Newman, Timothy R.; Ostroff, Andrea C.; Read, Jordan S.; Reed, Sasha C.; Shapiro, Carl D.; Smith, Richard A.; Sanford, Ward E.; Sohl, Terry L.; Stets, Edward G.; Terando, Adam J.; Tillitt, Donald E.; Tischler, Michael A.; Toccalino, Patricia L.; Wald, David J.; Waldrop, Mark P.; Wein, Anne; Weltzin, Jake F.; Zimmerman, Christian E.

    2017-06-30

    Executive SummaryThe U.S. Geological Survey (USGS) has a long history of advancing the traditional Earth science disciplines and identifying opportunities to integrate USGS science across disciplines to address complex societal problems. The USGS science strategy for 2007–2017 laid out key challenges in disciplinary and interdisciplinary arenas, culminating in a call for increased focus on a number of crosscutting science directions. Ten years on, to further the goal of integrated science and at the request of the Executive Leadership Team (ELT), a workshop with three dozen invited scientists spanning different disciplines and career stages in the Bureau convened on February 7–10, 2017, at the USGS John Wesley Powell Center for Analysis and Synthesis in Fort Collins, Colorado.The workshop focused on identifying “grand challenges” for integrated USGS science. Individual participants identified nearly 70 potential grand challenges before the workshop and through workshop discussions. After discussion, four overarching grand challenges emerged:Natural resource security,Societal risk from existing and emerging threats,Smart infrastructure development, andAnticipatory science for changing landscapes.Participants also identified a “comprehensive science challenge” that highlights the development of integrative science, data, models, and tools—all interacting in a modular framework—that can be used to address these and other future grand challenges:Earth Monitoring, Analyses, and Projections (EarthMAP)EarthMAP is our long-term vision for an integrated scientific framework that spans traditional scientific boundaries and disciplines, and integrates the full portfolio of USGS science: research, monitoring, assessment, analysis, and information delivery.The Department of Interior, and the Nation in general, have a vast array of information needs. The USGS meets these needs by having a broadly trained and agile scientific workforce. Encouraging and supporting cross-discipline engagement would position the USGS to tackle complex and multifaceted scientific and societal challenges in the 21st Century.

  19. [Science cultures in the global perspective. Thoughts on content design and operation of the Leopoldina Study Center].

    PubMed

    Labisch, Alfons

    2014-01-01

    The Leopoldina Center for the Study of the History of Science and Science Academies is a place to openly discuss the cooperation between science and society across all of the disciplines represented at the Leopoldina and beyond. This dialogue shall, by all means, also include researchers who are not members of the Leopoldina and people from outside of the academia who are interested in the topic. Like the Leopoldina, its Study Center builds bridges: between various academic disciplines, across generations and in local, national, and international communities. All interested members of the Leopoldina--not just members from the humanities, the social sciences or the behavioral sciences, but also scientists from the areas of the natural sciences, technology, the life sciences and physicians--are kindly invited to incorporate their research interests, with regard to the history and theory of their respective academic disciplines, in the research portfolio of the Leopoldina Study Center. In so doing, the Leopoldina Center for the Study of the History of Science and Science Academies should and will become a source of energy for permanent reflection and innovation when contemplating the issues of science and society.

  20. Students' Attitude towards STEM Education

    ERIC Educational Resources Information Center

    Popa, Roxana-Alexandra; Ciascai, Liliana

    2017-01-01

    STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…

  1. Discipline-Based Philosophy of Education and Classroom Teaching

    ERIC Educational Resources Information Center

    Matthews, Michael R.

    2014-01-01

    This article concentrates on the necessity for teachers in just one discipline area, namely, science, having philosophical competence and using it to inform their professional life--in their classroom teaching, assessing and institutional engagements--in other words, having a philosophy of science teaching. This group of questions and issues might…

  2. Visual Links: Discovery in Art and Science.

    ERIC Educational Resources Information Center

    Dake, Dennis M.

    Some specific aspects of the process of discovery are explored as they are experienced in the visual arts and the physical sciences. Both fields use the same visual/brain processing system, and both disciplines share an imaginative and productive interest in the disciplined use of imagistic thinking. Many productive interactions between visual…

  3. [The development of a nursing sciences discipline].

    PubMed

    Warnet, Sylvie

    2013-03-01

    Intellectual curiosity has guided the career of Michel Poisson, for the benefit of the gaze and clinical special approach of nurses and quality of care. He is also a historian. He questions the profession with regard to its identity and its desire to construct a discipline in nursing sciences.

  4. The Hybridization of Social Science Knowledge.

    ERIC Educational Resources Information Center

    Dogan, Mattei

    1996-01-01

    Describes the growth of science as a twofold process: (1) the fragmentation of formal disciplines; and (2) a recombination of the specialties resulting from this fragmentation. Discusses the division of disciplines into specialized subfields that has led to the development of hybrid specialties, and maintains that the concept of hybridization is…

  5. Application of nanotechnology in biomedical sciences.

    PubMed

    Zhao, Wei; Cao, Hong; Wan, Cheng-Song; Zhang, Wen-Bing

    2002-05-01

    Nanotechnology, a new research field that holds enormous prospects in the 21th century, has by now gained wide application in biomedical sciences, and consequently gives rise to two new cross-disciplines, nanobiology and nanobiomedicine. The authors provide a brief summarization of the progress so far achieved in these two new disciplines.

  6. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Overview

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The opportunities for space science in the period from 1995 to 2015 are discussed. A perspective on progress in the six disciplines (the planet Earth; planetary and lunar exploration; solar system space physics; astronomy and astrophysics; fundamental physics and chemistry; and life sciences) of space science are reviewed. The prospectives for major achievements by 1995 from missions already underway or awaiting new starts are included. A set of long range goals for these disciplines are presented for the first two decades of the twenty-first century. Broad themes for future scientific pursuits are presented and some examples of high-priority missions for the turn of the century are highlighted. A few recommendations are cited for each discipline to suggest how these themes might be developed.

  7. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  8. Continued Viability of Universities as Centers for Basic Research.

    ERIC Educational Resources Information Center

    Carter, Lisle C., Jr.; And Others

    The findings and 13 recommendations of a NSF Advisory Council task force that evaluated universities as centers of basic research are presented. Listed are the major strengths of universities as centers for basic research (including continuity and tradition, freedom of research, interactions among disciplines) and such threats to their viability…

  9. Braving the Thaw Wind: A Challenge for Academics in Basic Arts Education.

    ERIC Educational Resources Information Center

    Rush, Jean C.

    1990-01-01

    Discusses the National Endowment for the Arts' recommendations for Basic Arts Education in "Toward Civilization." Considers how basic arts education is different from Discipline-based Art Education and the resulting implications for art teachers. Suggests that academics be funded to research program implementation and that an applied…

  10. Built environment assessment: Multidisciplinary perspectives.

    PubMed

    Glanz, Karen; Handy, Susan L; Henderson, Kathryn E; Slater, Sandy J; Davis, Erica L; Powell, Lisa M

    2016-12-01

    As obesity has become increasingly widespread, scientists seek better ways to assess and modify built and social environments to positively impact health. The applicable methods and concepts draw on multiple disciplines and require collaboration and cross-learning. This paper describes the results of an expert team׳s analysis of how key disciplinary perspectives contribute to environmental context-based assessment related to obesity, identifies gaps, and suggests opportunities to encourage effective advances in this arena. A team of experts representing diverse disciplines convened in 2013 to discuss the contributions of their respective disciplines to assessing built environments relevant to obesity prevention. The disciplines include urban planning, public health nutrition, exercise science, physical activity research, public health and epidemiology, behavioral and social sciences, and economics. Each expert identified key concepts and measures from their discipline, and applications to built environment assessment and action. A selective review of published literature and internet-based information was conducted in 2013 and 2014. The key points that are highlighted in this article were identified in 2014-2015 through discussion, debate and consensus-building among the team of experts. Results focus on the various disciplines׳ perspectives and tools, recommendations, progress and gaps. There has been significant progress in collaboration across key disciplines that contribute to studies of built environments and obesity, but important gaps remain. Using lessons from interprofessional education and team science, along with appreciation of and attention to other disciplines׳ contributions, can promote more effective cross-disciplinary collaboration in obesity prevention.

  11. National Geospatial-Intelligence Agency Academic Research Program

    NASA Astrophysics Data System (ADS)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  12. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  13. Using network science in the language sciences and clinic.

    PubMed

    Vitevitch, Michael S; Castro, Nichol

    2015-02-01

    A number of variables—word frequency, word length—have long been known to influence language processing. This study briefly reviews the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighbourhood density. It then describes a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics and other disciplines. In this approach, nodes represent individual entities in a system (i.e. phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e. phonological neighbours) and various measures enable researchers to assess the micro-level (i.e. the individual word), the macro-level (i.e. characteristics about the whole system) and the meso-level (i.e. how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased understanding of language processing, these measures only assess the "micro-level". Using network science, researchers can examine words at various levels in the system and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice.

  14. Using network science in the language sciences and clinic

    PubMed Central

    Vitevitch, Michael S.; Castro, Nichol

    2017-01-01

    A number of variables—word frequency, word length—have long been known to influence language processing. We briefly review the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighborhood density. We then describe a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics, and other disciplines. In this approach, nodes represent individual entities in a system (i.e., phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e., phonological neighbors), and various measures enable researchers to assess the micro-level (i.e., the individual word), the macro-level (i.e., characteristics about the whole system), and the meso-level (i.e., how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased our understanding of language processing, these measures only assess the “micro-level.” Using network science, researchers can examine words at various levels in the system, and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice. PMID:25539473

  15. Preparing for a Global Scientific Workforce: Lessons Learned by the Chemistry Community

    NASA Astrophysics Data System (ADS)

    Baranovic, M.; Nameroff, T.

    2005-12-01

    Globalization has significant implications for science, science education, and the workforce. Flows of capital and knowledge are altering patterns of economic and technological development. Technology is allowing science to be conducted in real time on a global scale. International connections and mobility are increasing worldwide. At the same time science is becoming a truly global endeavor, the convergence of disciplines suggests that scientists from different backgrounds can learn from each other's experiences in addressing these challenges and opportunities. This presentation reviews some of the impacts of globalization on the chemically related sciences, students, and profession. As a result of globalization, today's practitioners of chemistry need an ever-expanding skill set to succeed. In addition to a strong command of the basic principles of chemistry, students and practitioners need to know how to work on multicultural teams, have knowledge of other languages, and be able to communicate effectively. The American Chemical Society (ACS) is coming to terms with and responding to changes in the nature of chemistry and its practice. This presentation will explore some of the innovative efforts of ACS to meet the challenges for chemistry in an era of globalization. The Earth and space sciences community may benefit from the chemistry community's "lessons learned."

  16. Open Science as a Knowledge Transfer strategy

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Dalmeier-Thiessen, Suenje

    2015-04-01

    Beyond providing basic understanding of how our Blue Planet functions, flows and breathes, the collection of Earth & Marine Research disciplines are of major service to most of today's Societal Challenges: from Food Security and Sustainable Resource Management, to Renewable Energies, Climate Mitigation & Ecosystem Services and Hazards. Natural Resources are a key commodity in the long-term strategy of the EU Innovation Union(1), and better understanding of the natural process governing them, as well as science-based management are seen as a key area for stimulating future economic growth. Such potential places responsibility on research project managers to devise innovative methods to ensure effective transfer of new research to public and private sector users, and society at large. Open Science is about removing all barriers to full sphere basic research knowledge and outputs, not just the publishable part of research but also the data, the software code, and failed experiments. The concept is central to EU's Responsible Research and Innovation philosophy(2), and removing barriers to basic research measurably contributes to the EU's Blue Growth Agenda(3). Despite the potential of the internet age to deliver on that promise, only 50% of today's basic research is freely available(4). The talk will demonstrate how and why Open Science can be a first, passive but effective strategy for any research project to transfer knowledge to society by allowing access and dicoverability to the full sphere of new knowledge, not just the published outputs. Apart from contributing to economic growth, Open Science can also optimize collaboration, within academia, assist with better engagement of citizen scientists into the research process and co-creation of solutions to societal challenges, as well as providing a solid ground for more sophisticated communication strategies and Ocean/Earth Literacy initiatives targeting policy makers and the public at large. (1)EC Digital Agenda & Access to Knowledge http://ec.europa.eu/digital-agenda/en/open-access-scientific-knowledge-0 (2)Responsible Research and Innovation for Societal Challenges http://ec.europa.eu/research/science-society/document_library/pdf_06/responsible-research-and-innovation-leaflet_en.pdf (3)Houghton, J., Swan, A., Brown, S., 2011. Access to research and technical information in Denmark [WWW Document]. URL http://www.deff.dk/uploads/media/Access_to_Research_and_Technical_Information_in_Denmark.pdf (4)Proportion of OA Peer-Reviewed Papers at the European & World Levels 2004-2011, EC Report http://www.science-metrix.com/pdf/SM_EC_OA_Availability_2004-2011.pdf

  17. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    NASA Astrophysics Data System (ADS)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the main aims of the textbook. The book consists of 15 chapters. According to their detailed contents they can be divided into three groups. In five chapters forming the first group (Introduction, Structure, Length Scales, Types of Nanostructures, Absorption and Emission Basics) the author presents the notions, definitions and concepts related to nanosystems, as well as the length scales of all their physical parameters. The contents of these chapters have been written for all readers studying any undergraduate academic programme in natural sciences and engineering. The subsequent seven chapters forming the second group (A Quantum Mechanics Review, Model Quantum Mechanics Problems, Additional Model Problems, Density of States, Bands, Time-Dependent Perturbation Theory, Interband Transitions) contain a comprehensive and easily understandable presentation of the theoretical basics of nanoscience. The last three chapters (Synthesis, Characterization, Applications) contain presentations on the fundamental methods in the experimental studies and applications of nanosystems. This book is very useful not only for training beginners in research and engineering in nanoscience and nanotechnology, but also for attracting the interest of specialists in other scientific disciplines to the application of the achievements of this new emerging multidisciplinary scientific field.

  18. Department of Energy - Office of Science Early Career Research Program

    NASA Astrophysics Data System (ADS)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  19. 78 FR 76597 - Agency Information Collection Activities; Submission to the Office of Management and Budget for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... Survey System (FRSS) 106: School Safety and Discipline: 2013-14 AGENCY: Institute of Education Sciences...: School Safety and Discipline: 2013-14. OMB Control Number: 1850-0733. Type of Review: New collection... school safety and discipline. The FRSS 106: School Safety and Discipline: 2013-14 survey is modeled after...

  20. DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease

    PubMed Central

    Abu-Salah, Khalid M.; Zourob, Mohammed M.; Mouffouk, Fouzi; Alrokayan, Salman A.; Alaamery, Manal A.; Ansari, Anees A.

    2015-01-01

    Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory. PMID:26102488

  1. The Need for an Effective Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields for a Meaningful Technological Development in Nigeria

    ERIC Educational Resources Information Center

    Haruna, Umar Ibrahim

    2015-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  2. Cross-Disciplinary Collaboration between Two Science Disciplines at a Community College

    ERIC Educational Resources Information Center

    Steele, Bronwen

    2011-01-01

    Health science students like students in many disciplines exhibit difficulty with transferring content from one course to another. For example, the problem explored in this study occurred when overlapping concepts were presented in introductory biology and chemistry courses, but students could not transfer the concepts to the other disciplinary…

  3. Challenging Disciplinary Boundaries in the First Year: A New Introductory Integrated Science Course for STEM Majors

    ERIC Educational Resources Information Center

    Gentile, Lisa; Caudill, Lester; Fetea, Mirela; Hill, April; Hoke, Kathy; Lawson, Barry; Lipan, Ovidiu; Kerckhove, Michael; Parish, Carol; Stenger, Krista; Szajda, Doug

    2012-01-01

    To help undergraduates make connections among disciplines so they are able to approach, evaluate, and contribute to the solutions of important global problems, our campus has been focused on interdisciplinary research and education opportunities across the science, technology, engineering, and mathematics (STEM) disciplines. This paper describes…

  4. Addressing the Dynamics of Science in Curricular Reform for Scientific Literacy: The Case of Genomics

    ERIC Educational Resources Information Center

    van Eijck, Michiel

    2010-01-01

    Science education reform must anticipate the scientific literacy required by the next generation of citizens. Particularly, this counts for rapidly emerging and evolving scientific disciplines such as genomics. Taking this discipline as a case, such anticipation is becoming increasingly problematic in today's knowledge societies in which the…

  5. The Dynamic between Knowledge Production and Faculty Evaluation: Perceptions of the Promotion and Tenure Process across Disciplines

    ERIC Educational Resources Information Center

    Jackson, J. Kasi; Latimer, Melissa; Stoiko, Rachel

    2017-01-01

    This study sought to understand predictors of faculty satisfaction with promotion and tenure processes and reasonableness of expectations in the context of a striving institution. The factors we investigated included discipline (high-consensus [science and math] vs. low-consensus [humanities and social sciences]); demographic variables; and…

  6. Who Decides Higher Education Policy? MPS, VCS, STEM and HASS

    ERIC Educational Resources Information Center

    Tight, Malcolm

    2012-01-01

    In the UK, and in many other countries, policy makers and funding bodies emphasise the importance of the STEM disciplines (science, technology, engineering and mathematics), as opposed to the HASS disciplines (humanities, arts and social sciences), in higher education. Yet an examination of the biographies of UK members of parliament (MPs)…

  7. Three Differing Systems of Discipline and Their Impact on Conscience and Culture.

    ERIC Educational Resources Information Center

    Snyder, Ross

    Three basic approaches to discipline and child care are the obedience-oriented/punitive, the indulgent/permissive, and the person-enabling/justice approaches. The obedience-oriented/punitive approach, primarily concerned with obedience, sometimes uses praise and rewards manipulatively. When they fail, coercive punishment is used. The…

  8. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research findings. In comparison to older and more traditional scientific disciplines, the wetland sciences may be better equipped to tackle today’s complex problems. Since its emergence as a scientific discipline, the study of wetlands has frequently required interdisciplinary and integrated approaches. This interdisciplinary/integrated approach is largely the result of the fact that wetlands cannot be studied in isolation of upland areas that contribute surface and subsurface water, solutes, sediments, and nutrients into wetland basins. However, challenges still remain in thoroughly integrating the wetland sciences with scientific disciplines involved in upland studies, especially those involved with agriculture, development, and other land-conversion activities that influence wetland hydrology, chemistry, and sedimentation. One way to facilitate this integration is to develop an understanding of how human activities affect wetland ecosystem services, especially the trade-offs and synergisms that occur when land-use changes are made. Used in this context, an understanding of the real costs of managing for a particular ecosystem service or groups of services can be determined and quantified in terms of reduced delivery of other services and in overall sustainability of the wetland and the landscapes that support them. In this chapter, we discuss some of the more salient aspects of a few common wetland types to give the reader some background on the diversity of functions that wetlands perform and the specific ecosystem services they provide to society. Wetlands are among the most complex ecosystems on the planet, and it is often difficult to communicate to a diverse public all of the positive services wetlands provide to mankind. Our goal is to help the reader develop an understanding that management options can be approached as societal choices where decisions can be made within a spatial and temporal context to identify trade-offs, synergies, and effects on long-term sustainability of wetland ecosystems. This will be especially relevant as we move into alternate climate futures where our portfolio of management options for mitigating damage to ecosystem function or detrimental cascading effects must be diverse and effective.

  9. Contemporary Test Validity in Theory and Practice: A Primer for Discipline-Based Education Researchers.

    PubMed

    Reeves, Todd D; Marbach-Ad, Gili

    2016-01-01

    Most discipline-based education researchers (DBERs) were formally trained in the methods of scientific disciplines such as biology, chemistry, and physics, rather than social science disciplines such as psychology and education. As a result, DBERs may have never taken specific courses in the social science research methodology--either quantitative or qualitative--on which their scholarship often relies so heavily. One particular aspect of (quantitative) social science research that differs markedly from disciplines such as biology and chemistry is the instrumentation used to quantify phenomena. In response, this Research Methods essay offers a contemporary social science perspective on test validity and the validation process. The instructional piece explores the concepts of test validity, the validation process, validity evidence, and key threats to validity. The essay also includes an in-depth example of a validity argument and validation approach for a test of student argument analysis. In addition to DBERs, this essay should benefit practitioners (e.g., lab directors, faculty members) in the development, evaluation, and/or selection of instruments for their work assessing students or evaluating pedagogical innovations. © 2016 T. D. Reeves and G. Marbach-Ad. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Forensic Science Curriculum for High School Students

    NASA Astrophysics Data System (ADS)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  11. Group Portrait: Internationalizing the Disciplines.

    ERIC Educational Resources Information Center

    Groennings, Sven, Ed.; Wiley, David S., Ed.

    This book presents a collection of essays in seven academic disciplines on the topic of international perspectives in those academic fields. The disciplines represented are geography, history, political science, sociology, psychology, journalism and mass communication, and philosophy. The book includes the following essays: "Higher Education,…

  12. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  13. Collection-based analysis of selected medical libraries in the Philippines using Doody's Core Titles.

    PubMed

    Torres, Efren

    2017-01-01

    This study assessed the book collection of five selected medical libraries in the Philippines, based on Doodys' Essential Purchase List for basic sciences and clinical medicine, to compare the match and non-match titles among libraries, to determine the strong and weak disciplines of each library, and to explore the factors that contributed to the percentage of match and non-match titles. List checking was employed as the method of research. Among the medical libraries, De La Salle Health Sciences Institute and University of Santo Tomas had the highest percentage of match titles, whereas Ateneo School of Medicine and Public Health had the lowest percentage of match titles. University of the Philippines Manila had the highest percentage of near-match titles. De La Salle Health Sciences Institute and University of Santo Tomas had sound medical collections based on Doody's Core Titles. Collectively, the medical libraries shared common collection development priorities, as evidenced by similarities in strong areas. Library budget and the role of the library director in book selection were among the factors that could contribute to a high percentage of match titles.

  14. Earth System Grid II, Turning Climate Datasets into Community Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less

  15. “Positive” Results Increase Down the Hierarchy of the Sciences

    PubMed Central

    Fanelli, Daniele

    2010-01-01

    The hypothesis of a Hierarchy of the Sciences with physical sciences at the top, social sciences at the bottom, and biological sciences in-between is nearly 200 years old. This order is intuitive and reflected in many features of academic life, but whether it reflects the “hardness” of scientific research—i.e., the extent to which research questions and results are determined by data and theories as opposed to non-cognitive factors—is controversial. This study analysed 2434 papers published in all disciplines and that declared to have tested a hypothesis. It was determined how many papers reported a “positive” (full or partial) or “negative” support for the tested hypothesis. If the hierarchy hypothesis is correct, then researchers in “softer” sciences should have fewer constraints to their conscious and unconscious biases, and therefore report more positive outcomes. Results confirmed the predictions at all levels considered: discipline, domain and methodology broadly defined. Controlling for observed differences between pure and applied disciplines, and between papers testing one or several hypotheses, the odds of reporting a positive result were around 5 times higher among papers in the disciplines of Psychology and Psychiatry and Economics and Business compared to Space Science, 2.3 times higher in the domain of social sciences compared to the physical sciences, and 3.4 times higher in studies applying behavioural and social methodologies on people compared to physical and chemical studies on non-biological material. In all comparisons, biological studies had intermediate values. These results suggest that the nature of hypotheses tested and the logical and methodological rigour employed to test them vary systematically across disciplines and fields, depending on the complexity of the subject matter and possibly other factors (e.g., a field's level of historical and/or intellectual development). On the other hand, these results support the scientific status of the social sciences against claims that they are completely subjective, by showing that, when they adopt a scientific approach to discovery, they differ from the natural sciences only by a matter of degree. PMID:20383332

  16. "Positive" results increase down the Hierarchy of the Sciences.

    PubMed

    Fanelli, Daniele

    2010-04-07

    The hypothesis of a Hierarchy of the Sciences with physical sciences at the top, social sciences at the bottom, and biological sciences in-between is nearly 200 years old. This order is intuitive and reflected in many features of academic life, but whether it reflects the "hardness" of scientific research--i.e., the extent to which research questions and results are determined by data and theories as opposed to non-cognitive factors--is controversial. This study analysed 2434 papers published in all disciplines and that declared to have tested a hypothesis. It was determined how many papers reported a "positive" (full or partial) or "negative" support for the tested hypothesis. If the hierarchy hypothesis is correct, then researchers in "softer" sciences should have fewer constraints to their conscious and unconscious biases, and therefore report more positive outcomes. Results confirmed the predictions at all levels considered: discipline, domain and methodology broadly defined. Controlling for observed differences between pure and applied disciplines, and between papers testing one or several hypotheses, the odds of reporting a positive result were around 5 times higher among papers in the disciplines of Psychology and Psychiatry and Economics and Business compared to Space Science, 2.3 times higher in the domain of social sciences compared to the physical sciences, and 3.4 times higher in studies applying behavioural and social methodologies on people compared to physical and chemical studies on non-biological material. In all comparisons, biological studies had intermediate values. These results suggest that the nature of hypotheses tested and the logical and methodological rigour employed to test them vary systematically across disciplines and fields, depending on the complexity of the subject matter and possibly other factors (e.g., a field's level of historical and/or intellectual development). On the other hand, these results support the scientific status of the social sciences against claims that they are completely subjective, by showing that, when they adopt a scientific approach to discovery, they differ from the natural sciences only by a matter of degree.

  17. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  18. Parsesciencing: A Basic Science Mode of Inquiry.

    PubMed

    Parse, Rosemarie Rizzo

    2016-10-01

    The purpose of this article is to introduce the language for the mode of inquiry, now known as Parsesciencing. The language for the Humanbecoming Hermeneutic Sciencing was introduced in an earlier volume of Nursing Science Quarterly. Language both reflects and cocreates meaning. The language of sciencing is everchanging; it is an evolutionary emergent, shifting as new ideas cocreate horizons beyond. The language set forth here is to articulate more explicitly meanings of the modes of inquiry consistent with the humanbecoming paradigm and distinct from modes of inquiry in other disciplines. In dwelling with the findings of published and unpublished studies that were guided by humanbecoming, new insights arose, and with creative conceptualizing these new insights gave birth to new meanings, thus different language. The language introduced here includes the following: Parsesciencing as coming to know the meanings of universal humanuniverse living experiences, horizon of inquiry, foreknowings, inquiry stance, mode of inquiry, historians, dialoging-engaging, scholar, distilling-fusing, discerning extant moment, transmogrifying, transsubstantiating, and newknowings. Note: an example of the new language with a Parsesciencing inquiry on the universal humanuniverse living experience of feeling unsure by Sandra Bunkers appears later in this issue. © The Author(s) 2016.

  19. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas; Schuman, Catherine; Patton, Robert

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less

  20. Improving Medical Decision Making and Health Promotion through Culture-Sensitive Health Communication: An Agenda for Science and Practice.

    PubMed

    Betsch, Cornelia; Böhm, Robert; Airhihenbuwa, Collins O; Butler, Robb; Chapman, Gretchen B; Haase, Niels; Herrmann, Benedikt; Igarashi, Tasuku; Kitayama, Shinobu; Korn, Lars; Nurm, Ülla-Karin; Rohrmann, Bernd; Rothman, Alexander J; Shavitt, Sharon; Updegraff, John A; Uskul, Ayse K

    2016-10-01

    This review introduces the concept of culture-sensitive health communication. The basic premise is that congruency between the recipient's cultural characteristics and the respective message will increase the communication's effectiveness. Culture-sensitive health communication is therefore defined as the deliberate and evidence-informed adaptation of health communication to the recipients' cultural background in order to increase knowledge and improve preparation for medical decision making and to enhance the persuasiveness of messages in health promotion. To achieve effective health communication in varying cultural contexts, an empirically and theoretically based understanding of culture will be indispensable. We therefore define culture, discuss which evolutionary and structural factors contribute to the development of cultural diversity, and examine how differences are conceptualized as scientific constructs in current models of cultural differences. In addition, we will explicate the implications of cultural differences for psychological theorizing, because common constructs of health behavior theories and decision making, such as attitudes or risk perception, are subject to cultural variation. In terms of communication, we will review both communication strategies and channels that are used to disseminate health messages, and we will discuss the implications of cultural differences for their effectiveness. Finally, we propose an agenda both for science and for practice to advance and apply the evidence base for culture-sensitive health communication. This calls for more interdisciplinary research between science and practice but also between scientific disciplines and between basic and applied research. © The Author(s) 2015.

  1. Lesbians, Gays, Bisexuals, and the Transgendered in Political Science: Report on a Discipline-Wide Survey

    ERIC Educational Resources Information Center

    Novkov, Julie; Barclay, Scott

    2010-01-01

    This article reviews the results of a discipline-wide survey concerning lesbians, gays, bisexuals, and the transgendered in the discipline. We find that both research and teaching on LGBT topics have made some headway into the discipline, and that political scientists largely accept that LGBT issues can be fundamentally political and are worth…

  2. Extraterrestrial research in the Federal Republic of Germany

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This German program for basic extraterrestrial research is an essential, successful, and worldwide recognized part of the space program and has the same attributes for basic research in the Federal Republic of Germany. It covers all major scientific disciplines.

  3. Interdisciplinary Professional Development: Astrolabes for Medievalists

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2014-06-01

    Astronomers and astronomy educators have significantly broadened the intended audience for their outreach activities, from the traditional venues of public schools, libraries and planetariums to national parks, coffee houses, and concert halls. At the same time, significant attention has been paid to improving the quality and relevance of professional development directed toward preservice and inservice science teachers. Many of our outreach and professional development programs have also become increasingly creative in their use of interdisciplinary connections to astronomy, such as cultural astronomy and the history of astronomy. This poster describes a specific example of interdisciplinary professional development directed at a different audience, humanities faculty and researchers, through hands-on workshops on the basic astronomical background and usage of an astrolabe conducted at the International Congress on Medieval Studies at Western Michigan University in 2013 and 2014. The goal was to explain the basic astronomy behind astrolabes (as well as their cultural relevance) to medieval scholars in history, literature, and other disciplines. The intention was to increase their comfort with manipulating and explaining astrolabes to a basic level where they could share their knowledge with their own college classes. In this way the relevance of astronomy to myriad human endeavors could be reinforced by humanities faculty within their own courses.

  4. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  5. The Real Guide to Grad School. What You Better Know Before You Choose Humanities & Social Sciences.

    ERIC Educational Resources Information Center

    Clark, Robert E., Ed.; Palattella, John, Ed.

    This guide to selecting a graduate school in the humanities and social science fields focuses on the individual disciplines; identifies "standard-bearing" institutions, as well as good but lesser known ones; and reviews specific intellectual issues within various disciplines as they relate to graduate school choice. After an introductory chapter,…

  6. Critical Discourse Analysis in Comparative Education: A Discursive Study of "Partnership" in Tanzania's Poverty Reduction Policies

    ERIC Educational Resources Information Center

    Vavrus, Frances; Seghers, Maud

    2010-01-01

    The study of policy in comparative education has been approached using methods associated with the principal social science disciplines that have informed the field since its inception. In particular, the disciplines of history, political science, sociology, and anthropology have had a significant influence on determining the acceptable methods…

  7. Gender Differences in Attitudes toward Science and Technology among Majors

    ERIC Educational Resources Information Center

    Gokhale, Anu A.; Rabe-Hemp, Cara; Woeste, Lori; Machina, Kenton

    2015-01-01

    In the USA, women have consistently been proportionally underrepresented in science and technology (S&T). In these disciplines, as students move from high schools to colleges to graduate programs, qualified women drop out at higher rates than do men, resulting in a striking loss of talented students. Attitude toward a discipline is one of the…

  8. Write Now! Using Reflective Writing beyond the Humanities and Social Sciences

    ERIC Educational Resources Information Center

    Cannady, Rachel E.; Gallo, Kasia Z.

    2016-01-01

    Writing is an important teaching and learning tool that fosters active and critical thinking. There are multiple pressures for disciplines outside the humanities and social sciences to integrate writing in their courses. The shift from teaching solely discipline-specific skills to including writing in a meaningful way can be a daunting process. An…

  9. Thinking and Behaving Scientifically in Computer Science: When Failure is an Option!

    ERIC Educational Resources Information Center

    Venables, Anne; Tan, Grace

    2006-01-01

    In a Finnish study of four different academic disciplines, Ylijoki (2000) found that in Computer Science there was a disparity between the conceptions held by undergraduate students and staff about their discipline; students viewed it as being far more pragmatic and results focused than did their instructors. Not surprisingly, here at our…

  10. Faculty Conceptualizations and Approaches to Assessing Critical Thinking in the Humanities and Natural Sciences--A Grounded Theory Study

    ERIC Educational Resources Information Center

    Nicholas, Mark C.

    2011-01-01

    Empirical research on how faculty across disciplines conceptualize or assess CT is scarce. This investigation focused on a group of 14 faculty drawn from multiple disciplines in the humanities and natural sciences. Using in-depth interviews, focus group discussions, assessment artifacts and qualitative coding strategies, this study examined how…

  11. Can You Read Me Now? Disciplinary Literacy Reading Strategies in the 7th Grade Science Classroom

    ERIC Educational Resources Information Center

    McQuaid, Kelly Kathleen

    2017-01-01

    Adolescent readers require a broad range of reading skills to deal with the challenges of reading complex text. Some researchers argue for a discipline-specific focus to address the low reading proficiency rates among secondary students. Disciplinary literacy attends to the different ways disciplines, such as science, generate and communicate…

  12. A Continuation of the Paradigm Wars? Prevalence Rates of Methodological Approaches across the Social/Behavioral Sciences

    ERIC Educational Resources Information Center

    Alise, Mark A.; Teddlie, Charles

    2010-01-01

    A new line of research has emerged that examines the prevalence rates of mixed methods within disciplines in the social/behavioral sciences. Research presented in this article is unique in that it examines prevalence rates across multiple disciplines using an established cross-disciplinary classification scheme. Results indicate that there are…

  13. Approaches to Biology Teaching and Learning: Understanding the Wrong Answers--Teaching toward Conceptual Change

    ERIC Educational Resources Information Center

    Tanner, Kimberly; Allen, Deborah

    2005-01-01

    Underpinning science education reform movements in the last 20 years--at all levels and within all disciplines--is an explicit shift in the goals of science teaching from students simply creating a knowledge base of scientific facts to students developing deeper understandings of major concepts within a scientific discipline. For example, what use…

  14. STEM Education: A Review of the Contribution of the Disciplines of Science, Technology, Engineering and Mathematics

    ERIC Educational Resources Information Center

    McDonald, Christine V.

    2016-01-01

    Recent global educational initiatives and reforms have focused on increasing the number of students pursuing STEM subjects, and ensuring students are well-prepared, and suitably qualified to engage in STEM careers. This paper examines the contributions of the four disciplines--Science, Technology, Engineering and Mathematics--to the field of STEM…

  15. Information Science and the Martial Arts: Perspectives on Online Searching.

    ERIC Educational Resources Information Center

    Raitt, David I.

    The relatively new discipline of information science has its origins in the West, while the ancient martial arts have their origins in the East. Despite these differences in age and hemisphere, the two disciplines can be shown to possess many conceptual as well as technical similarities which have evolved quite independently of each other. This…

  16. Mathematics and Science Teachers' Use of and Confidence in Empirical Reasoning: Implications for STEM Teacher Preparation

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.; Rossi, Dara

    2015-01-01

    The recent trend to unite mathematically related disciplines (science, technology, engineering, and mathematics) under the broader umbrella of STEM education has advantages. In this new educational context of integration, however, STEM teachers need to be able to distinguish between sufficient proof and reasoning across different disciplines,…

  17. Thoughts About Advancement of the Discipline: Dark Clouds and Bright Lights.

    PubMed

    Turkel, Marian; Fawcett, Jacqueline; Chinn, Peggy L; Eustace, Rosemary; Hansell, Phyllis Shanley; Smith, Marlaine C; Watson, Jean; Zahourek, Rothlyn

    2018-01-01

    In this essay, several nurse scholars who are particularly concerned about the contemporary state of nursing science present their specific concerns (dark clouds) about the advancement of our discipline and the ways in which the concerns have been addressed (bright lights). This essay is the first of two essays that were catalyzed by Barrett's paper, "Again, What Is Nursing Science?" The second essay will be published in the next issue Nursing Science Quarterly.

  18. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  19. Towards Semantic e-Science for Traditional Chinese Medicine

    PubMed Central

    Chen, Huajun; Mao, Yuxin; Zheng, Xiaoqing; Cui, Meng; Feng, Yi; Deng, Shuiguang; Yin, Aining; Zhou, Chunying; Tang, Jinming; Jiang, Xiaohong; Wu, Zhaohui

    2007-01-01

    Background Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science. Results We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research. Conclusion Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline. PMID:17493289

  20. Constructing professional and organisational fields.

    PubMed

    Gurney, Robert

    2016-01-01

    Purpose - The purpose of this paper is to fill an apparent gap in the literature addressing issues of leadership and change - the development and activities of constructing and leading sports sciences and medicine professions, and similarly, the construction and leadership of multidisciplinary/inter-disciplinary organisations that practice sports sciences and medicine. Design/methodology/approach - This study incorporated explorations through conducting both interviews and survey questionnaires with members of Sports Medicine Australia (SMA). The interviews (qualitative) were semi-structured and asked questions addressing what changed, why change and how change was implemented. Findings - The health sciences and medicine professions moving to specialised sports sciences and medicine disciplines and SMA, evolved through forces driving the need for change (legitimacy, resource dependency, positioning and core competencies). Practical implications - The knowledge developed from understanding activities of change that traditional professions conducted to become specialised Disciplines and parallel changes in a single Discipline organisation evolving to an umbrella organisation (SMA), comprised a membership of specialised Disciplines, can act as a catalyst for inquiry by other professional and organisational groups. Originality/value - The findings of this study contributes to the literature investigating change in professional and organisations fields. More specifically, this study promotes inquiry into leadership practices of sports sciences and medicine, as contributors to the field of health services.

  1. Tobacco regulatory science: research to inform regulatory action at the Food and Drug Administration's Center for Tobacco Products.

    PubMed

    Ashley, David L; Backinger, Cathy L; van Bemmel, Dana M; Neveleff, Deborah J

    2014-08-01

    The U.S. Food and Drug Administration (FDA) promotes the development of regulatory science to ensure that a strong evidence base informs all of its regulatory activities related to the manufacture, marketing, and distribution of tobacco products as well as public education about tobacco product constituents and effects. Toward that end, the FDA's Center for Tobacco Products (CTP) provides funding for research studies with scientific aims that fall within its defined regulatory authority. However, given their traditional biomedical focus on basic and applied research, some researchers may not understand the principles of regulatory science or the types of studies CTP funds. The purpose of this paper is (1) to clarify the definition of regulatory science as a distinct scientific discipline, (2) to explore the role of tobacco regulatory science in order to help researchers understand the parameters and types of research that can be funded by CTP, and (3) to describe the types of research efforts that will inform the FDA's public health framework for tobacco product regulation. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Evaluating Discipline-Based Education Research for Promotion and Tenure

    ERIC Educational Resources Information Center

    Dolan, Erin L.; Elliott, Samantha L.; Henderson, Charles; Curran-Everett, Douglas; St. John, Kristen; Ortiz, Phillip A.

    2018-01-01

    Discipline-based education research (DBER) is an emergent, interdisciplinary field of scholarship aimed at understanding and improving discipline-specific teaching and learning. The number of DBER faculty members in science, technology, engineering, and mathematics (STEM) departments has grown rapidly in recent years. Because the interdisciplinary…

  3. Forming of science teacher thinking through integrated laboratory exercises

    NASA Astrophysics Data System (ADS)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Within the three-semester optional course Science we have also included into curricula the subject entitled Science Practicum consisting of laboratory exercises of complementary natural scientific disciplines whose content exceeds the boundaries of relevant a scientific discipline (physics, biology, …). The paper presents the structure and selected samples of laboratory exercises of physical part of Science Practicum in which we have processed in an integrated way the knowledge of physics and biology at secondary grammar school. When planning the exercises we have proceeded from those areas of mentioned disciplines in which we can appropriately apply integration of knowledge and where the measurement methods are used. We have focused on the integration of knowledge in the field of human sensory organs (eye, ear), dolphins, bats (spatial orientation) and bees (ommatidium of faceted eye) and their modelling. Laboratory exercises are designed in such a way that they would motivate future teachers of natural scientific subjects to work independently with specialized literature of the mentioned natural sciences and ICT.

  4. Engineering Education at a New Public University in Brazil: First Students' Contact with Engineering Methods

    ERIC Educational Resources Information Center

    Romero, Jesus Franklin A.; Leite, Patricia; Mantovani, Gerson L.; Lanfredi, Alexandre J. C.; Martins-Filho, Luiz S.

    2011-01-01

    This paper describes the experience of an introductory discipline to the engineering curricula at the Brazilian Federal University of ABC (UFABC). The university offers a common basic curriculum that must be accomplished by every student and can be followed by professionalising courses. The discipline "Introduction to Engineering"…

  5. Principles for Designing Pragmatic Knowledge Management Systems

    ERIC Educational Resources Information Center

    Cavaleri, Steven A.

    2004-01-01

    Knowledge management continues to evolve as a discipline, yet even basic features that define a discipline have to be established. Developing a shared understanding of core concepts, such as the meaning of "knowledge", has been elusive in this field. In the absence of reaching a universal definition, surrogates for knowledge are adopted because of…

  6. Discipline and Grievance Procedures: Juvenile Detention and Correctional Facilities.

    ERIC Educational Resources Information Center

    Illinois Univ., Champaign. Community Research Center.

    The purpose of sound disciplinary practices and grievance procedures in juvenile detention and correctional facilities is outlined and a philosophy on discipline and grievance procedures is discussed. The use of secure confinement or restriction as a means of treatment, and the effects of restriction are considered. The basics of good discipline…

  7. The Effectiveness of Learning Model of Basic Education with Character-Based at Universitas Muslim Indonesia

    ERIC Educational Resources Information Center

    Rosmiati, Rosmiati; Mahmud, Alimuddin; Talib, Syamsul B.

    2016-01-01

    The purpose of this study was to determine the effectiveness of the basic education learning model with character-based through learning in the Universitas Muslim Indonesia. In addition, the research specifically examines the character of discipline, curiosity and responsibility. The specific target is to produce a basic education learning model…

  8. A comparative overview of modal testing and system identification for control of structures

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Pappa, R. S.

    1988-01-01

    A comparative overview is presented of the disciplines of modal testing used in structural engineering and system identification used in control theory. A list of representative references from both areas is given, and the basic methods are described briefly. Recent progress on the interaction of modal testing and control disciplines is discussed. It is concluded that combined efforts of researchers in both disciplines are required for unification of modal testing and system identification methods for control of flexible structures.

  9. Defining core elements and outstanding practice in Nutritional Science through collaborative benchmarking.

    PubMed

    Samman, Samir; McCarthur, Jennifer O; Peat, Mary

    2006-01-01

    Benchmarking has been adopted by educational institutions as a potentially sensitive tool for improving learning and teaching. To date there has been limited application of benchmarking methodology in the Discipline of Nutritional Science. The aim of this survey was to define core elements and outstanding practice in Nutritional Science through collaborative benchmarking. Questionnaires that aimed to establish proposed core elements for Nutritional Science, and inquired about definitions of " good" and " outstanding" practice were posted to named representatives at eight Australian universities. Seven respondents identified core elements that included knowledge of nutrient metabolism and requirement, food production and processing, modern biomedical techniques that could be applied to understanding nutrition, and social and environmental issues as related to Nutritional Science. Four of the eight institutions who agreed to participate in the present survey identified the integration of teaching with research as an indicator of outstanding practice. Nutritional Science is a rapidly evolving discipline. Further and more comprehensive surveys are required to consolidate and update the definition of the discipline, and to identify the optimal way of teaching it. Global ideas and specific regional requirements also need to be considered.

  10. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  11. The use of Museum Based Science Centres to Expose Primary School Students in Developing Countries to Abstract and Complex Concepts of Nanoscience and Nanotechnology

    NASA Astrophysics Data System (ADS)

    Saidi, Trust; Sigauke, Esther

    2017-10-01

    Nanotechnology is an emerging technology, and it is regarded as the basis for the next industrial revolution. In developing countries, nanotechnology promises to solve everyday challenges, such as the provision of potable water, reliable energy sources and effective medication. However, there are several challenges in the exploitation of nanotechnology. One of the notable challenges is the lack of adequate knowledge about how materials behave at the nanoscale. As nanotechnology is relatively new, the current generation of scientists have not had the opportunity to learn the fundamentals of the technology at an early stage. Young students who are at the primary school level may follow the same trajectory if they are not exposed to the technology. There is a need to lay a strong foundation by introducing nanoscience and nanotechnology to students at the primary school level. It is during the early stages of child development that students master basic concepts for life long learning. Nevertheless, many primary school children, particularly those in developing countries are missing the chance of learning about nanoscience and nanotechnology because it is regarded as being abstract and complex. In this paper, we argue that despite the complexity of nanoscience and nanotechnology, science centres can be used as one of the platforms for exposing young students to the discipline. We use a case study of a museum-based science centre as an example to illustrate that young students can be exposed to nanoscience and nanotechnology using tactile and hands-on experience. The early engagement of primary school children with nanoscience and nanotechnology is important in raising the next generation of scientists who are firmly grounded in the discipline.

  12. Handbook on Peace Education

    ERIC Educational Resources Information Center

    Salomon, Gavriel, Ed.; Cairns, Ed, Ed.

    2009-01-01

    This handbook encompasses a range of disciplines that underlie the field of peace education and provides the rationales for the ways it is actually carried out. The discipline is a composite of contributions from a variety of disciplines ranging from social psychology to philosophy and from communication to political science. That is, peace…

  13. Why Should I Use University Library Website Resources? Discipline Differences

    ERIC Educational Resources Information Center

    Kim, Yong-Mi

    2011-01-01

    Users across academic disciplines utilize different information sources based on the resource's usefulness and relevance. This study's findings show that users from arts and sciences disciplines are much more likely to utilize university library website resources and printed materials than business users who heavily rely on commercial websites.…

  14. Can Theoretical Constructs in Science Be Generalised across Disciplines?

    ERIC Educational Resources Information Center

    Lewis, Jenny

    2009-01-01

    For many years there has been a growing concern, particularly among researchers in biology education, about the extent to which research findings from one discipline (most usually physics education) can be applied directly to other disciplines (particularly biology education). This paper explores the issue through the use of one particular…

  15. Energy Connections and Misconnections across Chemistry and Biology

    ERIC Educational Resources Information Center

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    Despite the number of university students who take courses in multiple science disciplines, little is known about how they connect concepts between disciplines. Energy is a concept that underlies all scientific phenomena and, as such, provides an appropriate context in which to investigate student connections and misconnections across disciplines.…

  16. The Effects of Discipline on the Application of Learning Object Metadata in UK Higher Education: The Case of the Jorum Repository

    ERIC Educational Resources Information Center

    Balatsoukas, Panos; O'Brien, Ann; Morris, Anne

    2011-01-01

    Introduction: This paper reports on the findings of a study investigating the potential effects of discipline (sciences and engineering versus humanities and social sciences) on the application of the Institute of Electrical and Electronic Engineers learning object metadata elements for the description of learning objects in the Jorum learning…

  17. Beneath the Numbers: A Review of Gender Disparities in Undergraduate Education across Science, Technology, Engineering, and Math Disciplines

    ERIC Educational Resources Information Center

    Eddy, Sarah L.; Brownell, Sara E.

    2016-01-01

    This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…

  18. Living in interesting times: Selected implications of landscape ecology for conservation science

    Treesearch

    John Shultis

    2007-01-01

    The phrase ‘May you live in interesting times’ links well with the sub-discipline of landscape ecology. Recent research in landscape ecology and associated disciplines (for example, conservation biology) provides significant challenges to the traditional conceptions of wilderness and conservation science, and may in part reflect upon our view of contemporary society as...

  19. Salary-Trend Studies of Faculty for the Year 1989-90 and 1992-93 in the Following Academic Disciplines/Major Fields: Accounting...Geology.

    ERIC Educational Resources Information Center

    Howe, Richard D.; And Others

    This volume provides comparative data for faculty salaries in public and private colleges and universities, based on two surveys of 738 and 485 institutions conducted in 1988-89 and 1992-93 respectively. Data are provided for the following disciplines: Accounting; Anthropology; Biological Sciences/Life Sciences; Business Administration and…

  20. An Examination of Variables Which Influence High School Students to Enroll in an Undergraduate Engineering or Physical Science Major

    ERIC Educational Resources Information Center

    Porter, Christopher H.

    2011-01-01

    The purpose of this study was to examine the variables which influence a high school student to enroll in an engineering discipline versus a physical science discipline. Data was collected utilizing the High School Activities, Characteristics, and Influences Survey, which was administered to students who were freshmen in an engineering or physical…

  1. Review of Education in Mathematics, Data Science and Quantitative Disciplines: Report to the Group of Eight Universities

    ERIC Educational Resources Information Center

    Brown, Gavin

    2009-01-01

    The Reference Committee firmly shares the view that the state of the mathematical sciences and related quantitative disciplines in Australia has deteriorated to a dangerous level, and continues to deteriorate. Accordingly the author decided to structure this Report around a small number of recommendations, some long term and others to address…

  2. Educational Mixology: A Pedagogical Approach to Promoting Adoption of Technology to Support New Learning Models in Health Science Disciplines

    ERIC Educational Resources Information Center

    McDonald, Paige L.; Lyons, Laurie B.; Straker, Howard O.; Barnett, Jacqueline S.; Schlumpf, Karen S.; Cotton, Linda; Corcoran, Mary A.

    2014-01-01

    For disciplines heavily reliant upon traditional classroom teaching, such as medicine and health sciences, incorporating new learning models may pose challenges for students and faculty. In an effort to innovate curricula, better align courses to required student learning outcomes, and address the call to redesign health professions education,…

  3. The Historical Process of Development of Engineering Sciences as a School Discipline in France

    ERIC Educational Resources Information Center

    Christian, Hamon; Joël, Lebeaume

    2016-01-01

    This paper describes the historical process of development of engineering sciences as a school discipline and as an academic subject. It aims to understand the evolution of contents and their structuration, mainly, of the industrial technology for men and of the home economics for women, from the Liberation to today. It contributes to analyze the…

  4. On the Origin and Meaning of Bibliometric Indicators: Journals in the Social Sciences, 1886-1985.

    ERIC Educational Resources Information Center

    Pierce, Sydney J.

    1992-01-01

    This study examined the use of footnotes and visuals in 8,634 research articles published in core journals in sociology, political science, and economics between 1886 and 1985. It was found that use of footnotes and visuals within a discipline vary over time and that agreement on presentational standards increases as the discipline matures. (61…

  5. One-Credit Writing-Intensive Courses in the Disciplines: Results from a Study of Four Departments

    ERIC Educational Resources Information Center

    Deans, Thomas

    2017-01-01

    This study reports on learning outcomes of one-credit writing-intensive (W) courses in the disciplines at a large public university where three-credit W courses are the norm. An evaluation of 210 final papers from four departments--Allied Health, Animal Science, Economics, and Nutritional Sciences--revealed that writing outcomes, as defined and…

  6. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    NASA Astrophysics Data System (ADS)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  7. Systemic Hydration: Relating Science to Clinical Practice in Vocal Health

    PubMed Central

    Hartley, Naomi A.; Thibeault, Susan L.

    2014-01-01

    Objectives To examine the current state of the science regarding the role of systemic hydration in vocal function and health. Study Design Literature Review Methods Literature search spanning multiple disciplines, including speech-language pathology, nutrition and dietetics, medicine, sports and exercise science, physiology and biomechanics. Results The relationship between hydration and physical function is an area of common interest amongst multiple professions. Each discipline provides valuable insight into the connection between performance and water balance, as well as complimentary methods of investigation. Existing voice literature suggests a relationship between hydration and voice production, however the underlying mechanisms are not yet defined and a treatment effect for systemic hydration remains to be demonstrated. Literature from other disciplines sheds light on methodological shortcomings and in some cases offers an alternative explanation for observed phenomena. Conclusions A growing body of literature in the field of voice science is documenting a relationship between hydration and vocal function, however greater understanding is required to guide best practice in the maintenance of vocal health and management of voice disorders. Integration of knowledge and technical expertise from multiple disciplines facilitates analysis of existing literature and provides guidance as to future research. PMID:24880674

  8. SPAN: Ocean science

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Koblinsky, Chester J.; Webster, Ferris; Zlotnicki, Victor; Green, James L.

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links space and Earth science research and data analysis computers. It provides a common working environment for sharing computer resources, sharing computer peripherals, solving proprietary problems, and providing the potential for significant time and cost savings for correlative data analysis. This is one of a series of discipline-specific SPAN documents which are intended to complement the SPAN primer and SPAN Management documents. Their purpose is to provide the discipline scientists with a comprehensive set of documents to assist in the use of SPAN for discipline specific scientific research.

  9. All STEM fields are not created equal: People and things interests explain gender disparities across STEM fields

    PubMed Central

    Su, Rong; Rounds, James

    2015-01-01

    The degree of women's underrepresentation varies by STEM fields. Women are now overrepresented in social sciences, yet only constitute a fraction of the engineering workforce. In the current study, we investigated the gender differences in interests as an explanation for the differential distribution of women across sub-disciplines of STEM as well as the overall underrepresentation of women in STEM fields. Specifically, we meta-analytically reviewed norm data on basic interests from 52 samples in 33 interest inventories published between 1964 and 2007, with a total of 209,810 male and 223,268 female respondents. We found gender differences in interests to vary largely by STEM field, with the largest gender differences in interests favoring men observed in engineering disciplines (d = 0.83–1.21), and in contrast, gender differences in interests favoring women in social sciences and medical services (d = −0.33 and −0.40, respectively). Importantly, the gender composition (percentages of women) in STEM fields reflects these gender differences in interests. The patterns of gender differences in interests and the actual gender composition in STEM fields were explained by the people-orientation and things-orientation of work environments, and were not associated with the level of quantitative ability required. These findings suggest potential interventions targeting interests in STEM education to facilitate individuals' ability and career development and strategies to reform work environments to better attract and retain women in STEM occupations. PMID:25762964

  10. All STEM fields are not created equal: People and things interests explain gender disparities across STEM fields.

    PubMed

    Su, Rong; Rounds, James

    2015-01-01

    The degree of women's underrepresentation varies by STEM fields. Women are now overrepresented in social sciences, yet only constitute a fraction of the engineering workforce. In the current study, we investigated the gender differences in interests as an explanation for the differential distribution of women across sub-disciplines of STEM as well as the overall underrepresentation of women in STEM fields. Specifically, we meta-analytically reviewed norm data on basic interests from 52 samples in 33 interest inventories published between 1964 and 2007, with a total of 209,810 male and 223,268 female respondents. We found gender differences in interests to vary largely by STEM field, with the largest gender differences in interests favoring men observed in engineering disciplines (d = 0.83-1.21), and in contrast, gender differences in interests favoring women in social sciences and medical services (d = -0.33 and -0.40, respectively). Importantly, the gender composition (percentages of women) in STEM fields reflects these gender differences in interests. The patterns of gender differences in interests and the actual gender composition in STEM fields were explained by the people-orientation and things-orientation of work environments, and were not associated with the level of quantitative ability required. These findings suggest potential interventions targeting interests in STEM education to facilitate individuals' ability and career development and strategies to reform work environments to better attract and retain women in STEM occupations.

  11. Implementation of Good Laboratory Practices (GLP) in basic scientific research: Translating the concept beyond regulatory compliance.

    PubMed

    Jena, G B; Chavan, Sapana

    2017-10-01

    The principles of Good Laboratory Practices (GLPs) are mainly intended for the laboratories performing studies for regulatory compliances. However, today GLP can be applied to broad disciplines of science to cater to the needs of the experimental objectives, generation of quality data and assay reproducibility. Considering its significance, it can now be applied in academics; industries as well as government set ups throughout the world. GLP is the best way to promote the reliability, reproducibility of the test data and hence facilitates the international acceptability. Now it is high time to translate and implement the concept of GLP beyond regulatory studies. Thus, it can pave the way for better understanding of scientific problems and help to maintain a good human and environmental health. Through this review, we have made an attempt to explore the uses of GLP principles in different fields of science and its acceptability as well as looking for its future perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  13. From quantum transitions to electronic motions

    NASA Astrophysics Data System (ADS)

    Krausz, Ferenc

    2017-01-01

    Laser spectroscopy and chromoscopy permit precision measurement of quantum transitions and captures atomic-scale dynamics, respectively. Frequency- and time-domain metrology ranks among the supreme laser disciplines in fundamental science. For decades, these fields evolved independently, without interaction and synergy between them. This has changed profoundly with controlling the position of the equidistant frequency spikes of a mode-locked laser oscillator. By the self-referencing technique invented by Theodor Hänsch, the comb can be coherently linked to microwaves and used for precision measurements of energy differences between quantum states. The resultant optical frequency synthesis has revolutionized precision spectroscopy. Locking the comb lines to the resonator round-trip frequency by the same approach has given rise to laser pulses with controlled field oscillations. This article reviews, from a personal perspective, how the bridge between frequency- and time-resolved metrology emerged on the turn of the millennium and how synthesized several-cycle laser fields have been instrumental in establishing the basic tools and techniques for attosecond science.

  14. The NSF and the geosciences community: Rotating program officers

    NASA Astrophysics Data System (ADS)

    Batiza, Rodey; Rea, David K.; Rumble, Douglas, III

    The National Science Foundation (NSF) is a federal agency charged with the care and feeding of basic scientific research in U.S. colleges and universities. NSF is a major contributor toward the support of research in Earth, ocean, and atmospheric sciences, disciplines of great importance to AGU members.NSF makes a regular practice of employing scientists from universities, nonprofit research organizations, industry, and state or local governments as temporary program officers (“rotators”) with terms of service from 1 to 2 years. There are several reasons for the use of rotators: It brings to NSF people who have firsthand, recent knowledge of "what it is really like" beyond the Washington, D.C. beltway. Knowledge of new ideas, recent graduates, and a fresh look at the system are worth considerably more than the problems that arise owing to inexperienced program officers.It sheds some sunshine on internal NSF procedures when the rotator returns with his tales to his home institution.It provides NSF management with considerable flexibility in coping with changing staff requirements.

  15. Real-space imaging of interfacial water with submolecular resolution

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Peking University Team

    2014-03-01

    Water/solid interfaces are vital to our daily lives and also a central theme across an incredibly wide range of scientific disciplines. Resolving the internal structure, i.e. the O-H directionality, of water molecules adsorbed on solid surfaces has been one of the key issues of water science yet remains challenging. Using a low-temperature scanning tunneling microscope (STM), we report the submolecular-resolution imaging of individual water monomers and tetramers on NaCl(001) films supported by a Au(111) substrate at 5 K. The frontier molecular orbitals of adsorbed water were directly visualized, which allowed discriminating the orientation of the monomers and the H-bond directionality of the tetramers in real space. Comparison with ab initio density functional theory calculations reveals that the ability to access the orbital structures of water stems from the electronic decoupling effect provided by the NaCl films and the precisely tunable tip-water coupling. Supported by National Basic Research Programs of China and National Science Foundation of China.

  16. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  17. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  18. Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States.

    PubMed

    Bush, Seth D; Pelaez, Nancy J; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2013-04-30

    College and university science departments are increasingly taking an active role in improving science education. Perhaps as a result, a new type of specialized science faculty position within science departments is emerging--referred to here as science faculty with education specialties (SFES)--where individual scientists focus their professional efforts on strengthening undergraduate science education, improving kindergarten-through-12th grade science education, and conducting discipline-based education research. Numerous assertions, assumptions, and questions about SFES exist, yet no national studies have been published. Here, we present findings from a large-scale study of US SFES, who are widespread and increasing in numbers. Contrary to many assumptions, SFES were indeed found across the nation, across science disciplines, and, most notably, across primarily undergraduate, master of science-granting, and PhD-granting institutions. Data also reveal unexpected variations among SFES by institution type. Among respondents, SFES at master of science-granting institutions were almost twice as likely to have formal training in science education compared with other SFES. In addition, SFES at PhD-granting institutions were much more likely to have obtained science education funding. Surprisingly, formal training in science education provided no advantage in obtaining science education funding. Our findings show that the SFES phenomenon is likely more complex and diverse than anticipated, with differences being more evident across institution types than across science disciplines. These findings raise questions about the origins of differences among SFES and are useful to science departments interested in hiring SFES, scientific trainees preparing for SFES careers, and agencies awarding science education funding.

  19. Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States

    PubMed Central

    Bush, Seth D.; Pelaez, Nancy J.; Rudd, James A.; Stevens, Michael T.; Tanner, Kimberly D.; Williams, Kathy S.

    2013-01-01

    College and university science departments are increasingly taking an active role in improving science education. Perhaps as a result, a new type of specialized science faculty position within science departments is emerging—referred to here as science faculty with education specialties (SFES)—where individual scientists focus their professional efforts on strengthening undergraduate science education, improving kindergarten-through-12th grade science education, and conducting discipline-based education research. Numerous assertions, assumptions, and questions about SFES exist, yet no national studies have been published. Here, we present findings from a large-scale study of US SFES, who are widespread and increasing in numbers. Contrary to many assumptions, SFES were indeed found across the nation, across science disciplines, and, most notably, across primarily undergraduate, master of science-granting, and PhD-granting institutions. Data also reveal unexpected variations among SFES by institution type. Among respondents, SFES at master of science-granting institutions were almost twice as likely to have formal training in science education compared with other SFES. In addition, SFES at PhD-granting institutions were much more likely to have obtained science education funding. Surprisingly, formal training in science education provided no advantage in obtaining science education funding. Our findings show that the SFES phenomenon is likely more complex and diverse than anticipated, with differences being more evident across institution types than across science disciplines. These findings raise questions about the origins of differences among SFES and are useful to science departments interested in hiring SFES, scientific trainees preparing for SFES careers, and agencies awarding science education funding. PMID:23589844

  20. Ontology of Public Health in University Curriculum: Exploring Basic Elements of an Interdisciplinary Field of Knowledge

    ERIC Educational Resources Information Center

    Islam, Zahirul

    2017-01-01

    Public health has constituted itself as a distinct academic discipline. The present paper attempts to understand ontology of this discipline. A study has recently been carried out which concerns, first, conceptualization of ontology of public health, secondly, nature of public health, and thirdly, curriculum development. Ontology is a…

  1. Positive Discipline A to Z: 1001 Solutions to Everyday Parenting Problems.

    ERIC Educational Resources Information Center

    Nelsen, Jane; And Others

    This book is a parenting reference work that offers background on common disciplinary problems and parenting issues, advice on how to handle problems and issues as they arise, and insight into how to avoid disciplinary problems in the future. The book is divided into three sections: Basic Positive Discipline Parenting Tools, Positive Discipline…

  2. Appropriate Limits for Young Children: A Guide for Discipline. Part One [and] Part Two.

    ERIC Educational Resources Information Center

    DeBord, Karen

    This two-part pamphlet assists parents and teachers in setting appropriate limits on children's behavior. Part 1 begins by illustrating the differences between punishment and discipline. It points to four basic reasons for misbehavior: (1) attention; (2) power; (3) revenge; or (4) inadequacy. Each of these reasons are fully defined, and advice for…

  3. Bibliometric Evidence for a Hierarchy of the Sciences.

    PubMed

    Fanelli, Daniele; Glänzel, Wolfgang

    2013-01-01

    The hypothesis of a Hierarchy of the Sciences, first formulated in the 19(th) century, predicts that, moving from simple and general phenomena (e.g. particle dynamics) to complex and particular (e.g. human behaviour), researchers lose ability to reach theoretical and methodological consensus. This hypothesis places each field of research along a continuum of complexity and "softness", with profound implications for our understanding of scientific knowledge. Today, however, the idea is still unproven and philosophically overlooked, too often confused with simplistic dichotomies that contrast natural and social sciences, or science and the humanities. Empirical tests of the hypothesis have usually compared few fields and this, combined with other limitations, makes their results contradictory and inconclusive. We verified whether discipline characteristics reflect a hierarchy, a dichotomy or neither, by sampling nearly 29,000 papers published contemporaneously in 12 disciplines and measuring a set of parameters hypothesised to reflect theoretical and methodological consensus. The biological sciences had in most cases intermediate values between the physical and the social, with bio-molecular disciplines appearing harder than zoology, botany or ecology. In multivariable analyses, most of these parameters were independent predictors of the hierarchy, even when mathematics and the humanities were included. These results support a "gradualist" view of scientific knowledge, suggesting that the Hierarchy of the Sciences provides the best rational framework to understand disciplines' diversity. A deeper grasp of the relationship between subject matter's complexity and consensus could have profound implications for how we interpret, publish, popularize and administer scientific research.

  4. Basic Visual Processes and Learning Disability.

    ERIC Educational Resources Information Center

    Leisman, Gerald

    Representatives of a variety of disciplines concerned with either clinical or research problems in vision and learning disabilities present reviews and reports of relevant research and clinical approaches. Contributions are organized into four broad sections: basic processes, specific disorders, diagnosis of visually based problems in learning,…

  5. "I think I use them, but I'm not sure what each one is called": Integration of multiple literacies in secondary social studies and science classes

    NASA Astrophysics Data System (ADS)

    Lickteig, Amanda D.

    In the past, literacy was viewed solely as the basic, functional skills of reading and writing. However, with the New London Group's (1996) proposal of multiliteracies and the more recent push for a plurality of literacies (NCTE, 2011), teachers have been urged to expand their definitions of literacy. This qualitative study explores how secondary-level social studies and science teachers perceive literacies and identifies their instructional literacies practices. Data were collected through a pre- and post-questionnaire, three focus group sessions, classroom observations, field notes, and artifacts. This study solicited nearly one hundred secondary social studies and science teachers from three Midwestern school districts. Eight educators (four social studies and four science) participated in the study that took place in the spring of 2015. Furthermore, a generous grant from a local chapter of Phi Delta Kappa partially funded this research. After applying initial and holistic codes to the data, nine themes emerged: conventional, progressive, hesitant/emerging, collaborate, calibrate, perform, practice, interdisciplinary, and intradisciplinary. The nine themes were further classified by how they appeared in the data: dispositional themes, behavioral themes, and bridge themes. Throughout the data analysis, contemporary genre theory guided the study (Devitt, 2004). Descriptive codes, derived from contemporary genre theory, further revealed that the situational, social, historical, and individual aspects of genre influence teachers' pedagogical practices related to multiple literacies across disciplines. Therefore, the ways in which teachers perceived multiple literacies and implemented them into classroom instruction are multifaceted and vary depending on grade level, content area, and teaching location. However, teachers' dispositions regarding literacy move beyond a traditional mindset of functional reading and writing as they engage in professional learning opportunities and collaborate within and across disciplines and grade levels. This study provides secondary educators insight into the prominence of multiple literacies present across content areas while also revealing the teaching methods and instructional strategies that foster multiple literacies.

  6. Publishing in Discipline-Specific Open Access Journals: Opportunities and Outreach for Librarians

    ERIC Educational Resources Information Center

    Tomaszewski, Robert; Poulin, Sonia; MacDonald, Karen I.

    2013-01-01

    Open access (OA) journals promote the opportunity for peer-reviewed journal articles to be freely accessible. In recent years, the number of OA journals has exploded in all disciplines. Previous studies have identified print-based pedagogical discipline-specific journals outside the field of Library and Information Science (LIS) for librarians to…

  7. Disciplinary Literacy in the Middle School: Exploring Pedagogical Tensions

    ERIC Educational Resources Information Center

    Graham, Abbey C. K.; Kerkhoff, Shea N.; Spires, Hiller A.

    2017-01-01

    The present study examined middle school teachers' perceptions of literacy demands in their disciplines and specific literacy strategies they used to teach their disciplines. The eight participants in this multiple case study included 2 middle school teachers from each of 4 disciplines (i.e., English/language arts, science, social studies, and…

  8. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    ERIC Educational Resources Information Center

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  9. A GRE Test for the STEM Disciplines: Developing an Assessment "of" and "for" Learning

    ERIC Educational Resources Information Center

    Payne, David G.; Briel, Jacqueline B.; Hawthorn, John; Riedeburg, Karen

    2006-01-01

    Plans are described for creating a Graduate Record Examination (GRE) test for the STEM (science, technology, engineering, and mathematics) disciplines. Previous work showed that a quantitative measure for the STEM disciplines exacerbated group differences beyond those reflected in the current GRE General Test. A test development approach is…

  10. Physics Teaching in the Search for Its Self: From Physics as a Discipline to Physics as a Discipline-Culture

    NASA Astrophysics Data System (ADS)

    Tseitlin, Michael; Galili, Igal

    The crisis in physics education necessitates searching for new relevant meanings of physics knowledge. This paper advocates regarding physics as the dialogue among discipline-cultures, rather than as a cluster of disciplines to be an appropriate subject of science education. In a discipline-culture one can distinguish elements of knowledge as belonging to either (1) central principles and paradigms - nucleus, (2) normal disciplinary area - body of knowledge or (3) rival knowledge of the subject - periphery. It appears that Physics cannot be represented as a simple dynamic wholeness, that is, cannot be arranged in a single tripartite (triadic) structure (this result presents a deconstruction), but incorporates several discipline-cultures. Bound together by family similarity, they maintain a conceptual discourse. Teaching physics as a culture is performed in polyphonic space of different worldviews; in other words, it is performed in a Kontrapunkt. Implications of the tripartite code are suggested with regard to representation of scientific revolutions, individual conceptual change, physics curricula and the typology of students learning science.

  11. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the CAPER Center for Astronomy & Physics Education Research. More information about the journal and its policies are available online at http://www.JAESE.org

  12. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    NASA Astrophysics Data System (ADS)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  13. [Feasibility analysis on the discipline of acupuncture-moxibustion and Tuina to be the top-grade discipline].

    PubMed

    Wang, Fu-Chun

    2012-10-01

    By reviewing the historical evolution of the major catalogue adjustment of the discipline of acupuncture-moxibustion and Tuina for the graduate students, the current situation of the development of the discipline of acupuncture-moxibustion and Tuina is analyzed deeply in this paper. Based on the basic requirements of the setup and the adjustment of the top-grade discipline in the Discipline Catalogue Setup and Administrative Measures for the Academic Degree Award and Personnel Training (Academic Degree [2009] No. 10 Document) issued by the Academic Degree Committee of the State Council and the Ministry of Education, with the strictly analysis, the author proposed that the discipline of acupuncture-moxibustion and Tuina should be set up to be the top-grade discipline. The author stated that the discipline of acupuncture-moxibustion and Tuina possessed the explicit study object and had many assignable second-grade disciplines. It could be acknowledged extensively in the academic field in terms of the setup of the top-grade discipline. The author expounded adequately the necessity of the stable and urgent requirements for the talents of the discipline of acupuncture-moxibustion and Tuina in the society, which provided the reference evidences for the adjustments of the discipline and major catalogue in the future.

  14. Histochemistry in biology and medicine: a message from the citing journals.

    PubMed

    Pellicciari, Carlo

    2015-12-23

    Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology,  general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials,  as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.

  15. Histochemistry in Biology and Medicine: A Message From the Citing Journals

    PubMed Central

    2015-01-01

    Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories. As expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide range of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals. It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects. PMID:26708189

  16. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    PubMed

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  17. Programmatic Efforts Affect Retention of Women in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Hathaway, Russel S.; Sharp, Sally; Davis, Cinda-Sue

    This article presents findings from a study that investigated the impact of a women in science and engineering residence program (WISE-RP) on the retention of women in science and engineering disciplines. From a matched sample of 1,852 science and engineering students, the authors compared WISE-RP participants with male and female control students for science and engineering retention. The findings suggest a strong connection between WISE-KP participation and science retention, but not engineering retention. The results also indicate that a WISE-RP is more effective in retaining White and Asian students than underrepresented students of color. The authors highlight the importance of combining academic and personal support in a residential learning program and draw implications for retaining women т science, mathematics, and engineering disciplines.

  18. The role of maternal emotion regulation in overreactive and lax discipline.

    PubMed

    Lorber, Michael F

    2012-08-01

    The roles of cognitive reappraisal and expressive suppression as intentional methods mothers use to regulate their own emotion were investigated in relation to mothers' experience and expression of negative emotion and their overreactive and lax discipline practices. Eighty-two mothers of toddlers completed questionnaires that measured these constructs. Emotion regulation strategies were more consistently associated with overreactive than with lax discipline. More suppression in discipline encounters was associated with less overreactivity, an association partially mediated by expressed negative emotion. Reappraisal, both globally and in the context of discipline encounters, was inversely associated with overreactive discipline. The association of global reappraisal and overreactivity was mediated in parallel by experienced and expressed negative emotion. Surprisingly, global reappraisal, relative to reappraisal in discipline encounters, appears to have more consistent implications for mothers' emotion and parenting practices in discipline encounters. A reconceptualization of the nature of reappraisal in discipline encounters is suggested. The study is the first to systematically apply methods and concepts from the better-developed basic research literature on adults' emotion regulation to the domain of parenting. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  19. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    NASA Astrophysics Data System (ADS)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  20. Explanations - Styles of explanation in science

    NASA Astrophysics Data System (ADS)

    Cornwell, John

    2004-06-01

    Our lives, states of health, relationships, behavior, experiences of the natural world, and the technologies that shape our contemporary existence are subject to a superfluity of competing, multi-faceted and sometimes incompatible explanations. Widespread confusion about the nature of "explanation" and its scope and limits pervades popular exposition of the natural sciences, popular history and philosophy of science. This fascinating book explores the way explanations work, why they vary between disciplines, periods, and cultures, and whether they have any necessary boundaries. In other words, Explanations aims to achieve a better understanding of explanation, both within the sciences and the humanities. It features contributions from expert writers from a wide range of disciplines, including science, philosophy, mathematics, and social anthropology.

  1. Human exposure assessment: a graduate level course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioy, P.J.

    1991-07-01

    The course has been offered three times. The content and the approach to each lecture has evolved after each time it was given. This is not unexpected since the field has been undergoing major transformations, and new approaches to measurement and modeling are being applied to current problems. The most recent student evaluation, 1990, indicates a difficulty rating of just right' (70%) to difficult' (30%). Most felt the course stimulated their interest in the topic (72%) and the examinations were learning experiences as well as a grading exercise. The major need for the discipline is an adequate text book. Themore » GRAPE program has excellent potential as an educational tool, but it needs to make more interactions and allow introduction of activities and data. The major strengths of the course are the problems provided to the students for homework. These give the student quantitative perspective on the concepts, range in values, variables, and uncertainties necessary to complete an assessment. In addition, the development of the mathematical and conceptional continuum for placing exposure assessment in the context of toxicology, environmental science, epidemiology, and clinical intervention provides a basic framework for the discipline.« less

  2. [The impact of technology in Pathological Anatomy and the contribution of this speciality to technological development].

    PubMed

    Puras-Gil, A M; López-Cousillas, A

    1999-01-01

    It is obvious that technology has contributed throughout history to the development of the different sciences. In this article, we define the concept of Pathology as a medical speciality, and we explain its influence in a hospital, considering very different fields such as education, research, quality control, hospital information, and patient care. This speciality has undergone a considerable evolution, to which technological innovation has undoubtedly contributed. As a basic discipline, it is of great importance in pre and post-graduate training, in the medical education at the hospital or outside it, and in the fields previously mentioned. Its relation with other disciplines such us Chemistry, (fixation and dyeing), Physics (mechanical devices), Mathematics (algorithms, morphometry, statistics...) and Telecommunications (telepathology, image analysis...) is examined and their contribution to Pathology is evaluated. We are also aware of contributions made by Pathology to technological innovation in the evaluation of different diagnostic methods or in the recent therapeutic technologies based on Radiotherapy, Hyperthermia, laser, prothesis, etc.; where histological examination provides accurate information about the therapeutic capacity or side-effects, or the rejection reactions caused, aiding the research to obtain adequate results.

  3. Using concept maps in a modified team-based learning exercise.

    PubMed

    Knollmann-Ritschel, Barbara E C; Durning, Steven J

    2015-04-01

    Medical school education has traditionally been driven by single discipline teaching and assessment. Newer medical school curricula often implement an organ-based approach that fosters integration of basic science and clinical disciplines. Concept maps are widely used in education. Through diagrammatic depiction of a variety of concepts and their specific connections with other ideas, concept maps provide a unique perspective into learning and performance that can complement other assessment methods commonly used in medical schools. In this innovation, we describe using concepts maps as a vehicle for a modified a classic Team-Based Learning (TBL) exercise. Modifications to traditional TBL in our innovation included replacing an individual assessment using multiple-choice questions with concept maps as well as combining the group assessment and application exercise whereby teams created concept maps. These modifications were made to further assess understanding of content across the Fundamentals module (the introductory module of the preclerkship curriculum). While preliminary, student performance and feedback from faculty and students support the use of concept maps in TBL. Our findings suggest concept maps can provide a unique means of determining assessment of learning and generating feedback to students. Concept maps can also demonstrate knowledge acquisition, organization of prior and new knowledge, and synthesis of that knowledge across disciplines in a unique way providing an additional means of assessment in addition to traditional multiple-choice questions. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  4. Developmental biology, the stem cell of biological disciplines.

    PubMed

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  5. Back to the Future - Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences.

    PubMed

    Ferrara, Santo Davide; Cecchetto, Giovanni; Cecchi, Rossana; Favretto, Donata; Grabherr, Silke; Ishikawa, Takaki; Kondo, Toshikazu; Montisci, Massimo; Pfeiffer, Heidi; Bonati, Maurizio Rippa; Shokry, Dina; Vennemann, Marielle; Bajanowski, Thomas

    2017-07-01

    Part 2 of the review "Back to the Future" is dedicated to the evolutionary role of the bio-medicolegal sciences, reporting the historical profiles, the state of the art, and prospects for future development of the main related techniques and methods of the ancillary disciplines that have risen to the role of "autonomous" sciences, namely, Genetics and Genomics, Toxicology, Radiology, and Imaging, involved in historic synergy in the "post-mortem assessment," together with the mother discipline Legal Medicine, by way of its primary fundament, universally denominated as Forensic Pathology. The evolution of the scientific research and the increased accuracy of the various disciplines will be oriented towards the elaboration of an "algorithm," able to weigh the value of "evidence" placed at the disposal of the "justice system" as real truth and proof.

  6. Psychology as science and as discipline: the case of Germany.

    PubMed

    Gundlach, Horst

    2006-01-01

    This paper examines the history of psychology in Germany. It directs attention to the salient role played by examination regulations in the development of psychology. To highlight this, the term "discipline" is employed not as a synonym of "science" but according to its original meaning, as denoting a social entity consisting of teachers, disciples, more or less canonised subject matters, examinations, and resulting changes of the social status of the examinee. In the early nineteenth century a succession of state rescripts and regulations introduced to university curricula an examination subject named psychology, thereby making psychology an obligatory subject of university lectures, and creating a discipline of psychology next to the science of psychology. The two were far from being identical. This situation, thus far neglected in historiography, profoundly influenced the further development of psychology in Germany.

  7. A Faculty Development Program can result in an improvement of the quality and output in medical education, basic sciences and clinical research and patient care.

    PubMed

    Dieter, Peter Erich

    2009-07-01

    The Carl Gustav Carus Faculty of Medicine, University of Technology Dresden, Germany, was founded in 1993 after the reunification of Germany. In 1999, a reform process of medical education was started together with Harvard Medical International.The traditional teacher- and discipline-centred curriculum was displaced by a student-centred, interdisciplinary and integrative curriculum, which has been named Dresden Integrative Patient/Problem-Oriented Learning (DIPOL). The reform process was accompanied and supported by a parallel-ongoing Faculty Development Program. In 2004, a Quality Management Program in medical education was implemented, and in 2005 medical education received DIN EN ISO 9001:2000 certification. Quality Management Program and DIN EN ISO 9001:2000 certification were/are unique for the 34 medical schools in Germany.The students play a very important strategic role in all processes. They are members in all committees like the Faculty Board, the Board of Study Affairs (with equal representation) and the ongoing audits in the Quality Management Program. The Faculty Development program, including a reform in medical education, the establishment of the Quality Management program and the certification, resulted in an improvement of the quality and output of medical education and was accompanied in an improvement of the quality and output of basic sciences and clinical research and interdisciplinary patient care.

  8. Girls Entering Technology, Science, Math and Research Training (get Smart): a Model for Preparing Girls in Science and Engineering Disciplines

    NASA Astrophysics Data System (ADS)

    Mawasha, P. Ruby; Lam, Paul C.; Vesalo, John; Leitch, Ronda; Rice, Stacey

    In this article, it is postulated that the development of a successful training program for women in science, math, engineering, and technology (SMET) disciplines is dependent upon a combination of several factors, including (a) career orientation: commitment to SMET as a career, reasons for pursuing SMET as a career, and opportunity to pursue a SMET career; (b) knowledge of SMET: SMET courses completed, SMET achievement, and hands-on SMET activities; (c) academic and social support: diversity initiatives, role models, cooperative learning, and peer counseling; and (d) self-concept: program emphasis on competence and peer competition. The proposed model is based on the GET SMART (Girls Entering Technology, Science, Math and Research Training) workshop program to prepare and develop female high school students as competitive future SMET professionals. The proposed model is not intended to serve as an elaborate theory, but as a general guide in training females entering SMET disciplines.

  9. Spacelab Science Results Study. Volume 1; External Observations

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Compiler)

    1999-01-01

    Some of the 36 Spacelab missions were more or less dedicated to specific scientific disciplines, while other carried a eclectic mixture of experiments ranging from astrophysics to life sciences. However, the experiments can be logically classified into two general categories; those that make use of the Shuttle as an observing platform for external phenomena (including those which use the Shuttle in an interactive mode) and those which use the Shuttle as a microgravity laboratory. This first volume of this Spacelab Science Results study will be devoted to experiments of the first category. The disciplines included are Astrophysics, Solar Physics, Space Plasma Physics, Atmospheric Sciences, and Earth Sciences. Because of the large number of microgravity investigations, Volume 2 will be devoted to Microgravity Sciences, which includes Fluid Physics, Combustion Science, Materials Science, and Biotechnology, and Volume 3 will be devoted to Space Life Sciences, which studies the response and adaptability of living organisms to the microgravity environment.

  10. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the CAPER Center for Astronomy & Physics Education Research. More information about the journal and its policies are available online at http://www.JAESE.org

  11. Investigating Students' Perceived Discipline Relevance Subsequent to Playing Educational Computer Games: A Personal Interest and Self-Determination Theory Approach

    ERIC Educational Resources Information Center

    Sorebo, Oystein; Haehre, Reidar

    2012-01-01

    The purpose of this study is to explain students' perceived relevance of playing an educational game as a means for development of discipline competence. Based on self-determination theory and the concept of personal interest, we propose that: Satisfying students' basic needs for competence, autonomy, and relatedness when playing educational games…

  12. Effectiveness of a Science Agricultural Summer Experience (SASE) in Recruiting Students to Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Martinez, Edward; Lindline, Jennifer; Petronis, Michael S.; Pilotti, Maura

    2012-12-01

    The Bureau of Labor Statistics projects an increase in Natural Resource Management (NRM) jobs within the next 10 years due to baby-boomer retirements and a 12% increase in demand for these occupations. Despite this trend, college enrollment in NRM disciplines has declined. Even more critical is the fact that the soon-to-be-majority Hispanic population is underrepresented in NRM disciplines. The goal of the present study was to determine if an in-residence, two-week, summer science program for underrepresented minorities would not only increase interest in science, actual science knowledge, and perceived science knowledge, but also have an overall impact on underrepresented minority students' decisions to attend college, major in a scientific discipline and pursue a career in science. During a four-year period, 76 high school students participated in a Science Agricultural Summer Experience (SASE) in Northern New Mexico. A pre/post science-knowledge exam and satisfaction survey were administered to participants. We demonstrate that participants improved significantly ( p < .05) in all areas measured. In particular, comfort with science field and lab activities, science knowledge and perceived science knowledge were enhanced after exposure to the program. Students not only found science exciting and approachable after participation, but also exhibited increased interest in pursuing a degree and career in science. Of the 76 SASE participants within graduation age ( n = 44), all graduated from high school; and 86% enrolled in college. These findings suggest that the implemented SASE initiative was effective in recruiting and increasing the confidence and abilities of underrepresented minority students in science.

  13. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    PubMed

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  14. Experiencing Citizenship: Concepts and Models for Service-Learning in Political Science. AAHE's Series on Service-Learning in the Disciplines.

    ERIC Educational Resources Information Center

    Battistoni, Richard M., Ed.; Hudson, William E., Ed.

    This volume is part of a series of 18 monographs service learning and the academic disciplines. This collection of essays focuses on the use of service learning as an approach to teaching and learning in political science. Following an Introduction by Richard M. Battistoni and William E. Hudson, the four essays in Part 1, "Service-Learning as…

  15. On-line and Mobil Learning Activities

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.

    2012-12-01

    Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html

  16. A complexity theory model in science education problem solving: random walks for working memory and mental capacity.

    PubMed

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2003-07-01

    The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.

  17. Is 1H NMR metabolomics becoming the promising early biomarker for neonatal sepsis and for monitoring the antibiotic toxicity?

    PubMed

    Noto, Antonio; Mussap, Michele; Fanos, Vassilios

    2014-06-01

    Metabolomics, the latest of omics disciplines, has been successfully used in various fields of basic research such as pharmacology and toxicology. Recently, this new science has gained an important role in the translational research of diagnostics. In this regard, the challenge for neonatologists and medical laboratories is to diagnose neonatal sepsis, a disease with high mortality and morbidity due to the difficulty in diagnosing it. Metabolomics, through its ability to identify perturbations caused by this condition, aims at recognizing metabolites that characterize neonatal sepsis with high specificity and sensitivity. The purpose of this review is to highlight the ability of metabolomics to find early biomarkers for this condition, as well as to predict the toxic effects caused by antibiotics.

  18. Tissue engineering and peripheral nerve reconstruction: an overview.

    PubMed

    Geuna, Stefano; Gnavi, Sara; Perroteau, Isabelle; Tos, Pierluigi; Battiston, Bruno

    2013-01-01

    Nerve repair is no more regarded as merely a matter of microsurgical reconstruction. To define this evolving reconstructive/regenerative approach, the term tissue engineering is being increasingly used since it reflects the search for interdisciplinary and integrated treatment strategies. However, the drawback of this new approach is its intrinsic complexity, which is the result of the variety of scientific disciplines involved. This chapter presents a synthetic overview of the state of the art in peripheral nerve tissue engineering with a look forward at the most promising innovations emerging from basic science investigation. This review is intended to set the stage for the collection of papers in the thematic issue of the International Review of Neurobiology that is focused on the various interdisciplinary approaches in peripheral nerve tissue engineering. © 2013 Elsevier Inc. All rights reserved.

  19. Causal diagrams for empirical legal research: a methodology for identifying causation, avoiding bias and interpreting results

    PubMed Central

    VanderWeele, Tyler J.; Staudt, Nancy

    2014-01-01

    In this paper we introduce methodology—causal directed acyclic graphs—that empirical researchers can use to identify causation, avoid bias, and interpret empirical results. This methodology has become popular in a number of disciplines, including statistics, biostatistics, epidemiology and computer science, but has yet to appear in the empirical legal literature. Accordingly we outline the rules and principles underlying this new methodology and then show how it can assist empirical researchers through both hypothetical and real-world examples found in the extant literature. While causal directed acyclic graphs are certainly not a panacea for all empirical problems, we show they have potential to make the most basic and fundamental tasks, such as selecting covariate controls, relatively easy and straightforward. PMID:25685055

  20. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Paul G.

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less

  1. Potter's notion of bioethics.

    PubMed

    ten Have, Henk A M J

    2012-03-01

    In 1970 Van Rensselaer Potter was the first to use the term "bioethics" in a publication to advocate the development of a new discipline to address the basic problems of human flourishing. This article analyzes Potter's notion of bioethics in order to understand its origins, sources, and substance. In early publications, Potter conceptualized bioethics as a bridge: between present and future, nature and culture, science and values, and finally between humankind and nature. In later publications, disappointed by a predominant focus on individual and medical issues, and with a wish to underscore the need for a broader perspective, Potter introduced the new term "global bioethics," meant to transcend ethics specialties and integrate them into a new interdisciplinary endeavor to address global problems. A growing interest in global bioethics today means that Potter's original insights are more timely than ever.

  2. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms

    PubMed Central

    Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu

    2012-01-01

    Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742

  3. Towards an operational ERTS - requirements for implementing cartographic applications of an operational ERTS type satellite

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P.

    1974-01-01

    After nearly 18 months of successful operation of the first Earth Resources Technology Satellite (ERTS-1), a careful look at the future in order. Judging from the results of ERTS-1 experiments, public sales of ERTS-1 products and overall worldwide response it is believed that ERTS-1 has demonstrated an earth sensing mode that should become operational. It is recognized that several studies leading to the definition of an operational ERTS have been made. However cartographic requirements are generally more basic and demanding than those of the earth science disciplines and are therefore treated separately in this report. One assumption made is that the configuration of ERTS, particularly with respect to the multispectral scanner and data transmission rates cannot be materially altered.

  4. Times have changed! Forensic radiology--a new challenge for radiology and forensic pathology.

    PubMed

    Flach, Patricia M; Thali, Michael J; Germerott, Tanja

    2014-04-01

    The ongoing development of imaging and the recent integration of cross-sectional imaging methods into the medicolegal workflow have resulted in an increasing number of forensic institutes acquiring dedicated CT and MRI scanners. The purpose of this article is to evaluate the different aspects of postmortem imaging and to detail the necessary cooperation between radiologists and forensic pathologists for mutual learning and accurate science to form a new subspecialty: forensic radiology. CONCLUSION; Forensic radiology must integrate the expertise of forensic pathologists and radiologists. The challenge is to unite these two disciplines first by direct and intense communications and second by a basic understanding of forensic pathology by radiologists as well as a foundational knowledge of postmortem imaging by forensic pathologists, in combination with the establishment of educational and reporting guidelines.

  5. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  6. The Immunologic Revolution: Photoimmunology

    PubMed Central

    Ullrich, Stephen E.; Byrne, Scott N.

    2011-01-01

    UV radiation targets the skin and is a primary cause of skin cancer (both melanoma and non-melanoma skin cancer). Exposure to UV also suppresses the immune response, and UV-induced immune suppression is a major risk factor for skin cancer induction. The efforts of Dermatologists and Cancer Biologists to understand how UV exposure suppresses the immune response and contributes to skin cancer induction led to the development of the sub-discipline we call photoimmunology. Advances in photoimmunology have generally paralleled advances in immunology. However, there are a number of examples where investigations into the mechanisms underlying UV-induced immune suppression reshaped our understanding of basic immunological concepts. Unconventional immune regulatory roles for Langerhans cells, mast cells, and NKT cells as well as the immune suppressive function of lipid mediators of inflammation and alarmins, are just some examples of how advances in immunodermatology have altered our understanding of basic immunology. In this anniversary issue celebrating 75 years of Cutaneous Science, we will provide examples of how concepts that grew out of efforts by Immunologists and Dermatologists to understand immune regulation by UV radiation impacted on immunology in general. PMID:22170491

  7. Dismantling boundaries in science and technology studies.

    PubMed

    Dear, Peter; Jasanoff, Sheila

    2010-12-01

    The boundaries between the history of science and science and technology studies (STS) can be misleadingly drawn, to the detriment of both fields. This essay stresses their commonalities and potential for valuable synergy. The evolution of the two fields has been characterized by lively interchange and boundary crossing, with leading scholars functioning easily on both sides of the past/present divide. Disciplines, it is argued, are best regarded as training grounds for asking particular kinds of questions, using particular clusters of methods. Viewed in this way, history of science and STS are notable for their shared approaches to disciplining. The essay concludes with a concrete example--regulatory science--showing how a topic such as this can be productively studied with methods that contradict any alleged disciplinary divide between historical and contemporary studies of science.

  8. Collection-based analysis of selected medical libraries in the Philippines using Doody’s Core Titles

    PubMed Central

    Torres, Efren

    2017-01-01

    Objectives This study assessed the book collection of five selected medical libraries in the Philippines, based on Doodys’ Essential Purchase List for basic sciences and clinical medicine, to compare the match and non-match titles among libraries, to determine the strong and weak disciplines of each library, and to explore the factors that contributed to the percentage of match and non-match titles. Method List checking was employed as the method of research. Results Among the medical libraries, De La Salle Health Sciences Institute and University of Santo Tomas had the highest percentage of match titles, whereas Ateneo School of Medicine and Public Health had the lowest percentage of match titles. University of the Philippines Manila had the highest percentage of near-match titles. Conclusion De La Salle Health Sciences Institute and University of Santo Tomas had sound medical collections based on Doody’s Core Titles. Collectively, the medical libraries shared common collection development priorities, as evidenced by similarities in strong areas. Library budget and the role of the library director in book selection were among the factors that could contribute to a high percentage of match titles. PMID:28096742

  9. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  10. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  11. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  12. Free-Fall Sex and Golden Eggs

    ERIC Educational Resources Information Center

    Burke, Michael C.

    1978-01-01

    Provides an annotated bibliography of science fiction literature suitable for use with secondary school students. Connections between science fiction and the science disciplines are viewed by the author as an excellent method by which to enrich science classes. (CP)

  13. Predictors of Science Subject Discipline Identities: A Statistical Analysis

    ERIC Educational Resources Information Center

    Nieswandt, Martina; Barrett, Sarah E.; McEneaney, Elizabeth H.

    2013-01-01

    This quantitative study (n = 247) explores whether preservice science teachers express science-specific identities that reflect multiple areas of their beliefs (e.g., purpose for science teaching, inclusion of science-technology-society-environment issues into science teaching, and nature of science) as well as other individual characteristics…

  14. The Notion of Scientific Knowledge in Biology

    NASA Astrophysics Data System (ADS)

    Morante, Silvia; Rossi, Giancarlo

    2016-03-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of biology and its compliance with the fundamental laws of physics.

  15. How to handle multidisciplinary, multi-national and multi-sectoral projects

    NASA Astrophysics Data System (ADS)

    Reitz, Anja; Wallmann, Klaus; Visbeck, Martin

    2016-04-01

    Collaborative research projects funded by the European Commission are by nature multi-national. Often they bring together different scientific communities as the questions raised in EU project calls can typically only be addressed through the convergence of these previously separated disciplines in one research consortium. Some work programmes even necessitate to team up as different disciplines as natural sciences, social science, legal science and economic science. Examples for such multi- national, -disciplinary and - sectoral projects are the EU projects ECO2 (FP7, concluded) and AtlantOS (H2020). Project managers of such projects need to develop skills beyond the common technical and management skills namely go into the domain of partners and stakeholders psychology and be able to maintain different perspectives on communication and interaction needs regarding cultural-, discipline- and sectoral background. Accordingly, the project manager has besides his technical role as manager at least three further roles: that of a communicator, that of a mediator and that of a person convincing partners of the necessary and selling the project products to the stakeholders. As the typical project manager has not too much power and authority by his position he has to use the power of smart communication and persuasion to overcome potential dissension between disciplines, national reservation or potential conflicts regarding different sectoral views. Accordingly, the project manager of such a complex project would try to arrange the ideal working environment by considering cultural feel, the cooperation of disciplines, information and the control of resources. The way he develops such ideal working environment is by reflection of past, present and future experiences/needs.

  16. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  17. The Invisible Substrate of Information Science.

    ERIC Educational Resources Information Center

    Bates, Marcia J.

    1999-01-01

    Articulates key elements in the "invisible substrate" of information science. Emphasizes information science's role as a meta-science--conducting research and developing theory around documentary products of other disciplines and activities. Suggests that mental activities of information science center around "representation" and "organization" of…

  18. Learning Science in High School: What is actually going on?

    NASA Astrophysics Data System (ADS)

    Tan, Aik Ling; Hong, Huaqing

    2014-03-01

    This paper examines learning of science in 15 grade nine classrooms by analyzing the type of talk that teachers engaged in. Using transcripts from audio recordings that are part of the Singapore Corpus of Research in Education database, annotations were carried out on the phrases of teacher talk using Mortimer and Scott's framework for meaning making in science classrooms. Interpreted from a sociocultural view of science learning and based on text coverage per 1,000 words spoken by teachers and students, we analyzed the content of instruction and found that (1) teachers in all three sub-disciplines of science used the least number of words to make statements of generalizations, with chemistry teachers privileging description more than physics and biology teachers, while physics teachers use more words for explanation when compared with biology and chemistry teachers and (2) teachers from all three sub-disciplines depended more on empirical justification than theoretical justifications. These findings suggest that most scientific stories in Singaporean grade nine classrooms are dependent on specific contexts and that the nature and organization of knowledge in each sub-discipline defines the features that teachers use in the classrooms to talk knowledge into being. We discuss our findings on whether science curriculum should be framed as 'separate subjects' or if they should be developed as 'integrated science' and draw implications to science teacher education and the conduct of high stakes public placement examinations.

  19. Disciplinary Perspectives on Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    McCluskey, Stephen C.

    This chapter examines the contributions of major academic disciplines to archaeoastronomy, beginning with a consideration of several indicators of the participation of scholars from various fields. We then consider examples of research from astronomy and the physical sciences; anthropology, archaeology, and the social sciences; and the historical disciplines to see how they reflect their disciplinary perspectives. The questions drawn from these varied disciplinary perspectives stimulate different strands of research, enriching the study of astronomies in cultures.

  20. Epidemiology, the humanities, and public health.

    PubMed Central

    Weed, D L

    1995-01-01

    Epidemiologists may benefit from the disciplines of history, philosophy of science, ethics, literature, and art. Within these disciplines lie answers to the questions of who we are, what is right, how to think, and when to act. Studying and participating in the humanities may also help epidemiologists focus their professional concerns on the humanity their methods serve. A parallel phenomenon in the clinical sciences--medical humanities--provides support for the approach (and some lessons). PMID:7604912

  1. [Talking about the discipline construction and development of burn from five ideas].

    PubMed

    Guo, G H

    2018-03-20

    Discipline construction is an important aspect of hospital modernization management and construction. The level of medical treatment, education, and scientific research could be assured and improved through discipline construction, which could speed up the talent training, promote science and technology innovation, and realize the sustainable development of hospital. At present, most of the hospital management models adopt the two ranks of the hospital and department. The manager of a department must grasp medical treatment, education, scientific research, and discipline construction steadily. The author talks about the discipline construction and development of burn from " five ideas" for the readers.

  2. Carlo Borromeo, Archbishop of Milan, in the Midst of Religious Disciplining, Pastoral Renewal and Christian Education (1564-1584)

    ERIC Educational Resources Information Center

    Patrizi, Elisabetta

    2008-01-01

    The twenty year period of pastoral action of the Milan Archbishop Carlo Borromeo, are examined in the light of the "social disciplining," that was a basic component of the Reform, and a sign of the evolution of the modern State and society after the Tridentine turning point. The Borromaic pastoral aimed at putting into effects the…

  3. Using text analysis to quantify the similarity and evolution of scientific disciplines

    PubMed Central

    Dias, Laércio; Scharloth, Joachim

    2018-01-01

    We use an information-theoretic measure of linguistic similarity to investigate the organization and evolution of scientific fields. An analysis of almost 20 M papers from the past three decades reveals that the linguistic similarity is related but different from experts and citation-based classifications, leading to an improved view on the organization of science. A temporal analysis of the similarity of fields shows that some fields (e.g. computer science) are becoming increasingly central, but that on average the similarity between pairs of disciplines has not changed in the last decades. This suggests that tendencies of convergence (e.g. multi-disciplinarity) and divergence (e.g. specialization) of disciplines are in balance. PMID:29410857

  4. Using text analysis to quantify the similarity and evolution of scientific disciplines.

    PubMed

    Dias, Laércio; Gerlach, Martin; Scharloth, Joachim; Altmann, Eduardo G

    2018-01-01

    We use an information-theoretic measure of linguistic similarity to investigate the organization and evolution of scientific fields. An analysis of almost 20 M papers from the past three decades reveals that the linguistic similarity is related but different from experts and citation-based classifications, leading to an improved view on the organization of science. A temporal analysis of the similarity of fields shows that some fields (e.g. computer science) are becoming increasingly central, but that on average the similarity between pairs of disciplines has not changed in the last decades. This suggests that tendencies of convergence (e.g. multi-disciplinarity) and divergence (e.g. specialization) of disciplines are in balance.

  5. Designing Interdisciplinary Assessments in Sciences for College Students: An example on osmosis

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Liu, Ou Lydia; Sung, Shannon

    2014-07-01

    College science education needs to foster students' habit of mind beyond disciplinary constraints. However, little research has been devoted to assessing students' interdisciplinary understanding. To address this problem, we formed a team of experts from different disciplines to develop interdisciplinary assessments that target introductory college-level science. We started our project by focusing on osmosis, a topic that involves knowledge from multiple science disciplines. We developed an instrument focusing on this topic and administered it to 3 classes of college students. A Rasch partial credit analysis showed that the items demonstrated satisfactory psychometric properties. The findings also revealed the differences between student's disciplinary and interdisciplinary understanding. The educational implications of the study were discussed.

  6. Office of Interdisciplinary Health Studies Education, East Carolina university.

    PubMed

    Greer, Annette G; Clay, Maria C

    2010-01-01

    The Office of Interdisciplinary Health Sciences Education resides organizationally within East Carolina University (ECU), Division of Health Sciences; ECU established this office in 1999. The mission of the office is fivefold: 1. promote the expansion of interdisciplinary training within and between Health Sciences and other health-related programs on campus; 2. promote innovative research opportunities across disciplines, in particular, projects regarding interdisciplinary health sciences education; 3. serve as a clearinghouse for information relative to existing and planned interdisciplinary activities and projects within the Division; 4. collaborate with units, and communities in establishing community partnerships for interdisciplinary rural health training; and 5. identify core curricular content across health-related disciplines, minimizing curricular redundancy while promoting interdisciplinary collaboration.

  7. Collaboration across disciplines for sustainability: green chemistry as an emerging multistakeholder community.

    PubMed

    Iles, Alastair; Mulvihill, Martin J

    2012-06-05

    Sustainable solutions to our nation's material and energy needs must consider environmental, health, and social impacts while developing new technologies. Building a framework to support interdisciplinary interactions and incorporate sustainability goals into the research and development process will benefit green chemistry and other sciences. This paper explores the contributions that diverse disciplines can provide to the design of greener technologies. These interactions have the potential to create technologies that simultaneously minimize environmental and health impacts by drawing on the combined expertise of students and faculty in chemical sciences, engineering, environmental health, social sciences, public policy, and business.

  8. [Analysis of proposals received and funded in discipline of microbiology of the National Natural Science Foundation of China from 2011 to 2015].

    PubMed

    Zhang, Xin; Li, Weimin; He, Jianwei; Wen, Mingzhang; Du, Quansheng

    2016-02-04

    Based on a wrap-up of the research proposals received and awards made during 2011 through 2015 in the discipline of microbiology of the Department of Life Sciences, National Natural Science Foundation of China, this article presents a statistic analysis of award recipient institutions and main research trends, and attempts a prospective prioritization of the funding areas from the points of encouraging interdisciplinary research, optimizing funding instruments and strengthening talent training, with a view to providing reference for scientists and researchers in the field of microbiology.

  9. Clinical medicine between science, ethics and economy: a complex activity.

    PubMed

    Federspil, Giovanni

    2004-01-01

    Until recently the common opinion was that medicine was substantially a natural science. In recent years, this has completely changed because two non-naturalistic disciplines have become part of the physician's activity; ethics and economy. These new disciplines have evidenced many problems to which doctors did not pay much attention before; however, they had an impact on the clinician's sensibility. At present, clinical medicine represents a complex knowledge as well as an activity: it is both a "historical" and a "technological" science characterized by a specific goal, the recovery or maintenance of health, and by a series of values.

  10. Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)

    NASA Astrophysics Data System (ADS)

    Loomer, Scott A.

    2006-05-01

    The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through training programs and recruitment are discussed.

  11. Towards improved behavioural testing in aquatic toxicology: Acclimation and observation times are important factors when designing behavioural tests with fish.

    PubMed

    Melvin, Steven D; Petit, Marie A; Duvignacq, Marion C; Sumpter, John P

    2017-08-01

    The quality and reproducibility of science has recently come under scrutiny, with criticisms spanning disciplines. In aquatic toxicology, behavioural tests are currently an area of controversy since inconsistent findings have been highlighted and attributed to poor quality science. The problem likely relates to limitations to our understanding of basic behavioural patterns, which can influence our ability to design statistically robust experiments yielding ecologically relevant data. The present study takes a first step towards understanding baseline behaviours in fish, including how basic choices in experimental design might influence behavioural outcomes and interpretations in aquatic toxicology. Specifically, we explored how fish acclimate to behavioural arenas and how different lengths of observation time impact estimates of basic swimming parameters (i.e., average, maximum and angular velocity). We performed a semi-quantitative literature review to place our findings in the context of the published literature describing behavioural tests with fish. Our results demonstrate that fish fundamentally change their swimming behaviour over time, and that acclimation and observational timeframes may therefore have implications for influencing both the ecological relevance and statistical robustness of behavioural toxicity tests. Our review identified 165 studies describing behavioural responses in fish exposed to various stressors, and revealed that the majority of publications documenting fish behavioural responses report extremely brief acclimation times and observational durations, which helps explain inconsistencies identified across studies. We recommend that researchers applying behavioural tests with fish, and other species, apply a similar framework to better understand baseline behaviours and the implications of design choices for influencing study outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Science News of the Year.

    ERIC Educational Resources Information Center

    Science News, 1981

    1981-01-01

    Reviews important science news stories of 1981 as reported in "Science News." Gives a one-sentence summary and volume and page references for each story. Groups items by topic including space and astronomy, archaeology and anthropology, technology, behavior, science and society, energy, environment, and specific science disciplines. (DC)

  13. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-02-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.

  14. The Presentation of Science in Everyday Life: The Science Show

    ERIC Educational Resources Information Center

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  15. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  16. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  17. Consistency and Change: The (R)Evolution of the Basic Communication Course

    ERIC Educational Resources Information Center

    Valenzano, Joseph M., III; Wallace, Samuel P.; Morreale, Sherwyn P.

    2014-01-01

    The basic communication course, with its roots in classical Greece and Rome, is frequently a required course in general education. The course often serves as our "front porch," welcoming new students to the Communication discipline. This essay first outlines early traditions in oral communication instruction and their influence on future…

  18. Is psychiatry an art or a science? The views of psychiatrists and trainees.

    PubMed

    Chur-Hansen, Anna; Parker, Damon

    2005-12-01

    It is generally considered by many practitioners that psychiatry is an art, that is, one of the humanities, as well as being a science. We systematically collected the views of practitioners and trainee psychiatrists regarding the question 'Is psychiatry an art or a science?' Eleven supervisors and nine trainees were interviewed and their responses analysed, using a qualitative method, the modified framework approach. Several themes emerged from the data: that 'art' and 'science' are different; psychiatry as a discipline is difficult to define; psychiatry demands a broader range of skills than other medical specialties; the relationship of psychology to psychiatry; supervisor cynicism to the 'science' of psychiatry; and the 'art' and 'science' of the assessment process. The tension that exists within the profession's identity as a discipline has important implications for teaching, learning, and clinical and research practices.

  19. A guide to understanding social science research for natural scientists.

    PubMed

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  20. Know Your Discipline: Teaching the Philosophy of Computer Science

    ERIC Educational Resources Information Center

    Tedre, Matti

    2007-01-01

    The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…

Top