Sample records for basic science education

  1. Basic science right, not basic science lite: medical education at a crossroad.

    PubMed

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  2. Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.

    ERIC Educational Resources Information Center

    Lall, Bernard M.

    The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…

  3. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  4. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    PubMed

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  5. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Driving forces of biomedical science education and research in state-of-the arts academic medical centres: the United States as example.

    PubMed

    John, T A

    2011-06-01

    Basic science departments in academic medical centres are influenced by changes that are commonly directed at medical education and financial gain. Some of such changes may have been detrimental to or may have enhanced basic science education. They may have determined basic science research focus or basic science research methods. However, there is lack of research on the educational process in the basic sciences including training of PhD's while there is ample research on medical education pertaining to training of medical doctors. The author here identifies, from university websites and available literature, some forces that have driven teaching and research focus and methods in state-of-the-arts academic medical centres in recent times with a view of seeing through their possible influences on basic science education and research, using the United States of America as an example. The "forces" are: Changes in medical schools; Medical educational philosophies: problem based learning, evidence based medicine, cyberlearning and self-directed learning; Shifting impressions of the value of basic sciences in medical schools; Research trends in Basic Sciences: role of antivivisectionists, alternative experimentations, explosion of molecular and cell biology; Technological advancements; Commercialization of research; and Funding agencies. The author encourages African leaders in academia to pay attention to such forces as the leadership seeks to raise African Universities as centres of knowledge that have a major role in acquiring, preserving, imparting, and utilizing knowledge.

  7. The use of simulation in teaching the basic sciences.

    PubMed

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  8. Physician perceptions of the role and value of basic science knowledge in daily clinical practice.

    PubMed

    Fischer, Jennifer A; Muller-Weeks, Susan

    2012-01-01

    The role of basic science education in a clinical setting remains unclear. Research to understand how academic clinicians perceive and use this part of their education can aid curricular development. To assess physician's attitudes toward the value of science knowledge in their clinical practice. Academic physicians from three medical schools completed a questionnaire about the utility of basic science education in core clinical tasks and in practice-based learning and improvement. A total of 109 clinical faculty returned the survey. Overall, 89% of the respondents indicated that basic science education is valuable to their clinical practice. When asked about the utility of basic science information in relation to direct patient care, greater than 50% of the doctors felt they use this when diagnosing and communicating with patients. This rose to greater than 60% when asked about choosing treatment options for their patients. Individuals also responded that basic science knowledge is valuable when developing evidence-based best practices. Specifically, 89% felt that they draw upon this information when training students/residents and 84% use this information when reading journal articles. This study shows that basic science education is perceived by responding academic physicians to be important to their clinical work.

  9. Training of physicians for the twenty-first century: role of the basic sciences.

    PubMed

    Grande, Joseph P

    2009-09-01

    Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.

  10. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  11. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    PubMed

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about the respondents' definition of "integration," this study provides a baseline assessment of perceptions at a dental school that is placing a priority on integration.

  12. Integration and timing of basic and clinical sciences education.

    PubMed

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational/applied model may yield benefits in training widely competent future physicians.

  13. A critical narrative review of transfer of basic science knowledge in health professions education.

    PubMed

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-06-01

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  14. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  15. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  17. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  18. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    PubMed

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  19. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  20. Human Salivary Alpha-Amylase (EC.3.2.1.1) Activity and Periodic Acid and Schiff Reactive (PAS) Staining: A Useful Tool to Study Polysaccharides at an Undergraduate Level

    ERIC Educational Resources Information Center

    Fernandes, Ruben; Correia, Rossana; Fonte, Rosalia; Prudencio, Cristina

    2006-01-01

    Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically…

  1. Academic Pre-Orientation Program for Dental Students: Beginning and End of Program Evaluations, 1998-2016.

    PubMed

    D'Silva, Evan R; Woolfolk, Marilyn W; Duff, Renee E; Inglehart, Marita R

    2018-04-01

    Admitting students from non-traditional or disadvantaged backgrounds can increase the diversity of dental school classes. The aims of this study were to analyze how interested non-traditional incoming dental students were at the beginning of an academic pre-orientation program in learning about basic science, dentistry-related topics, and academic skills; how confident they were in doing well in basic science and dentistry-related courses; and how they evaluated the program at the end. The relationships between personal (interest/confidence) and structural factors (program year, number of participants) and program evaluations were also explored. All 360 students in this program at the University of Michigan from 1998 to 2016 were invited to participate in surveys at the beginning and end of the educational intervention. A total of 353 students responded at the beginning (response rate 98%), and 338 responded at the end (response rate 94%). At the beginning, students were more interested in learning about basic science and dentistry-related topics than about academic skills, and they were more confident in their dentistry- related than basic science-related abilities. At the end, students valued basic science and dentistry-related education more positively than academic skills training. Confidence in doing well and interest in basic science and dentistry-related topics were correlated. The more recent the program was, the less confident the students were in their basic science abilities and the more worthwhile they considered the program to be. The more participants the program had, the more confident the students were, and the better they evaluated their basic science and dentistry-related education. Overall, this academic pre-orientation program was positively evaluated by the participants.

  2. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    ERIC Educational Resources Information Center

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  3. Clinical Correlations as a Tool in Basic Science Medical Education

    PubMed Central

    Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.

    2016-01-01

    Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328

  4. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    ERIC Educational Resources Information Center

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  5. Rocket Science 101 Interactive Educational Program

    NASA Technical Reports Server (NTRS)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  6. First-year Pre-service Teachers in Taiwan—Do they enter the teacher program with satisfactory scientific literacy and attitudes toward science?

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Chin

    2005-10-01

    Scientific literacy and attitudes toward science play an important role in human daily lives. The purpose of this study was to investigate whether first-year pre-service teachers in colleges in Taiwan have a satisfactory level of scientific literacy. The domains of scientific literacy selected in this study include: (1) science content; (2) the interaction between science, technology and society (STS); (3) the nature of science; and (4) attitudes toward science. In this study, the instruments used were Chinese translations of the Test of Basic Scientific Literacy (TBSL) and the Test of Science-related Attitudes. Elementary education majors (n = 141) and science education majors (n = 138) from four teachers’ colleges responded to these instruments. The statistical results from the tests revealed that, in general, the basic scientific literacy of first-year pre-service teachers was at a satisfactory level. Of the six scales covered in this study, the pre-service teachers displayed the highest literacy in health science, STS, and life science. Literacy in the areas of the nature of science and earth science was rated lowest. The results also showed that science education majors scored significantly higher in physical science, life science, nature of science, science content, and the TBSL than elementary science majors. Males performed better than females in earth science, life science, science content, and the TBSL. Next, elementary education majors responded with more “don’t know” responses than science education majors. In general, the pre-service teachers were moderately positive in terms of attitudes toward science while science education majors had more positive attitudes toward science. There was no significant difference in attitudes between genders. Previous experience in science indicated more positive attitudes toward science. The results from stepwise regression revealed that STS, the nature of science, and attitudes toward science could explain 50.6% and 60.2% variance in science content in elementary education and science education majors, respectively. For science education majors, the first three scales—the nature of science, health science and physical science—determined basic scientific literacy. However, for elementary education majors, the top three factors were physical science, life science and the nature of science. Based on these results, several strategies for developing the professional abilities of science teachers have been recommended for inclusion in pre-service programs.

  7. Knowledge first, critique later: why it is a mistake for science education to encourage junior students to discuss, challenge and debate scientific knowledge.

    PubMed

    Charlton, Bruce G

    2010-02-01

    In UK educational circles it has long been regarded as a platitude that a good scientific education at school and undergraduate level should aim to teach critical thinking and encourage students to challenge mainstream science, debate scientific issues and express their personal opinions. However, I believe that this strategy is usually mistaken, and that such educational strategies probably do more harm than good. For most students, at most levels, for most of the time; science education should be focused on the inculcation of established knowledge. This is for the simple reason that critique is educationally-counterproductive and scientifically-worthless unless or until underpinned by adequate knowledge and competence. Instead, for the early years of science teaching, the basic assumption ought to be that the student is there to learn science; not to confront science. The basic attitude being taught should be one of humility before the science being studied.

  8. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    ERIC Educational Resources Information Center

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  9. Cognition before curriculum: rethinking the integration of basic science and clinical learning.

    PubMed

    Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N

    2013-10-01

    Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.

  10. Exploring the value and role of integrated supportive science courses in the reformed medical curriculum iMED: a mixed methods study.

    PubMed

    Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer

    2016-04-29

    Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase their motivation and engagement.

  11. Framework for Reducing Teaching Challenges Relating to Improvisation of Science Education Equipment and Materials in Schools

    ERIC Educational Resources Information Center

    Akuma, Fru Vitalis; Callaghan, Ronel

    2016-01-01

    The science education budget of many secondary schools has decreased, while shortages and environmental concerns linked to conventional Science Education Equipment and Materials (SEEMs) have emerged. Thus, in some schools, resourceful educators produce low-cost equipment from basic materials and use these so-called improvised SEEMs in practical…

  12. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  13. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  14. The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman

    2008-01-01

    Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…

  15. Life Science Standards and Curriculum Development for 9-12.

    ERIC Educational Resources Information Center

    Speece, Susan P.; Andersen, Hans O.

    1996-01-01

    Proposes a design for a life science curriculum following the National Research Council National Science Education Standards. The overarching theme is that science as inquiry should be recognized as a basic and controlling principle in the ultimate organization and experiences in students' science education. Six-week units include Matter, Energy,…

  16. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    ERIC Educational Resources Information Center

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  17. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    PubMed

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  18. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  19. Pre-Service Teachers' Mental Models of Basic Astronomy Concepts

    ERIC Educational Resources Information Center

    Arslan, A. Saglam; Durikan, U.

    2016-01-01

    The aim of the present study is to determine pre-service teachers' mental models related to basic astronomy concepts. The study was conducted using a survey method with 293 pre-service teachers from 4 different departments; physics education, science education, primary teacher education and early childhood education. An achievement test with…

  20. Interprofessional education and the basic sciences: Rationale and outcomes.

    PubMed

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  1. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  2. Engineering Education: A Clear Decision

    ERIC Educational Resources Information Center

    Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.

    2017-01-01

    The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…

  3. A Three-Step Approach to Veterinary Medical Education

    ERIC Educational Resources Information Center

    Kavanaugh, J. F.

    1976-01-01

    A formal education plan with two admission steps is outlined. Animal agriculture and the basic sciences are combined in a two-year middle stage. The medical education (third stage) that specifically addresses pathology and the clinical sciences encompasses three years. (Author/LBH)

  4. Master in Oral Biology Program: A Path to Addressing the Need for Future Dental Educators

    ERIC Educational Resources Information Center

    Jergenson, Margaret A.; Barritt, Laura C.; O'Kane, Barbara J.; Norton, Neil S.

    2017-01-01

    In dental education, the anatomical sciences, which include gross anatomy, histology, embryology, and neuroanatomy, encompass an important component of the basic science curriculum. At Creighton University School of Dentistry, strength in anatomic science education has been coupled with a solid applicant pool to develop a novel Master of Science…

  5. Harnessing the Use of Open Learning Exchange to Support Basic Education in Science and Mathematics in the Philippines

    ERIC Educational Resources Information Center

    Feliciano, Josephine S.; Mandapat, Louie Carl R.; Khan, Concepcion L.

    2013-01-01

    This paper presents the open learning initiatives of the Science Education Institute of the Department of Science and Technology to overcome certain barriers, such as enabling access, cost of replication, timely feedback, monitoring and continuous improvement of learning modules. Using an open-education model, like MIT's (Massachusetts Institute…

  6. The Problem of Science Education in Minority Areas--Based on a Study in Gansu Province of China

    ERIC Educational Resources Information Center

    Liang, Bai

    2017-01-01

    After 60 years of development, minority education not only has made great achievements in China, but also faces many problems. Among them is the problem of science education. The students learning in high school in the basic education in minority areas have faced particular difficulties in learning science. The teaching quality is not high,…

  7. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  8. The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?

    ERIC Educational Resources Information Center

    Garant, Philias R.

    1986-01-01

    The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)

  9. 76 FR 38666 - Food and Drug Administration (FDA) and Marine Environmental Sciences Consortium/Dauphin Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... actively involved in both basic and applied research in coastal waters of the northern Gulf of Mexico. The... between the Center for Food Safety and Applied Nutrition (CFSAN) and the Marine Environmental Sciences Consortium/Dauphin Island Sea Lab (DISL). The goal of the DISL is marine science education, basic and applied...

  10. Development and Validation of a Project Package for Junior Secondary School Basic Science

    ERIC Educational Resources Information Center

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  11. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    ERIC Educational Resources Information Center

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  12. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance. Using T-test analysis correlations, results indicate that having completed multiple undergraduate basic science courses (as reported by AADSAS BCP hours) did not significantly (p < .05) enhance student performance in any of these parameters. Based on these results, we conclude that student dentists with undergraduate preparation in science and nonscience majors can successfully negotiate the dental school curriculum, even though the students themselves would increase admission requirements to include more basic science courses than commonly required. Basically, the students' recommendations for required undergraduate basic science courses would replicate the standard basic science coursework found in most dental schools: anatomy, histology, biochemistry, microbiology, physiology, and immunology plus the universal foundation course of biology.

  13. Analysing Theoretical Frameworks of Moral Education through Lakatos's Philosophy of Science

    ERIC Educational Resources Information Center

    Han, Hyemin

    2014-01-01

    The structure of studies of moral education is basically interdisciplinary; it includes moral philosophy, psychology, and educational research. This article systematically analyses the structure of studies of moral educational from the vantage points of philosophy of science. Among the various theoretical frameworks in the field of philosophy of…

  14. Collaboration in Science and Technology. An Inter-American Perspective. Issues in International Education Report No. 4.

    ERIC Educational Resources Information Center

    Rao, K. N.

    Political events in Latin America in recent years have caused universities to re-examine their goals and external relationships, especially in terms of science and technology. The reexamination has led to a renewed stress on basic science education and an explosive growth of graduate education. In view of these structural changes, almost every…

  15. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    NASA Astrophysics Data System (ADS)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing learning activities that link ocean sciences with real-life issues relevant to employment, environment and economic concerns.

  16. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-09-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  17. Integrated Medical Curriculum: Advantages and Disadvantages

    PubMed Central

    Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria

    2016-01-01

    Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303

  18. Heuristic and algorithmic processing in English, mathematics, and science education.

    PubMed

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  19. An overview of conceptual understanding in science education curriculum in Indonesia

    NASA Astrophysics Data System (ADS)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  20. Issues of teaching science to nurses in the tertiary sector

    NASA Astrophysics Data System (ADS)

    Strube, Paul

    1991-12-01

    The shift of nurse education from the hospitals to higher education institutions has resulted in a large pool of students within the Universities requiring basic science instruction. Most of these students are female, often mature age, with limited science backgrounds. This paper discusses the type of science education demanded by the nursing profession, the view of science as a subject held by these students, and the key role played by constructivist thinking in dealing with both of these.

  1. Scientific and Technical Information Transfer for Education (STITE). Research Report No. 2.

    ERIC Educational Resources Information Center

    Zunde, Pranas

    STITE (Scientific and Technical Information Transfer for Education) is basically a system to interface between science information and the science learner. As such STITE acts as a link between STIC (Science and Technology Infromation Centers) and LIS (Learning Information Systems). In this second progress report the internal knowledge of STITE is…

  2. Recapturing the Lead in Math and Science. Focus 14.

    ERIC Educational Resources Information Center

    Benderson, Albert

    1984-01-01

    This document examines various topics and issues related to the quality of science and mathematics education in the United States. They include: (1) competition from Japan and the Soviet Union; (2) federal programs and legislation designed to improve the quality of science and mathematics education; (3) scientific literacy; (4) the basics in…

  3. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  4. 75 FR 63491 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Drug Abuse Special Emphasis Panel, NIDA Research Education and Science Education Program Review (R25... Panel, NIDA Basic Science Conference Grant (R13) Review. Date: October 27, 2010. Time: 9 a.m. to 5 p.m...

  5. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status.

    PubMed

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.

  6. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  7. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    PubMed

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  8. Emerging Trends in Japan in Education of the Gifted: A Focus on Science Education

    ERIC Educational Resources Information Center

    Sumida, Manabu

    2013-01-01

    Japan has no formal educational system for gifted children. However, in 2005, Japan's Cabinet approved and established the third Science and Technology Basic Plan (2006-10), which includes "nurturing the individuality and ability of gifted ("sainou" in Japanese) children." Enforcement of this plan is exemplified in programs…

  9. Anatomy Integration Blueprint: A Fourth-Year Musculoskeletal Anatomy Elective Model

    ERIC Educational Resources Information Center

    Lazarus, Michelle D.; Kauffman, Gordon L., Jr.; Kothari, Milind J.; Mosher, Timothy J.; Silvis, Matthew L.; Wawrzyniak, John R.; Anderson, Daniel T.; Black, Kevin P.

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of…

  10. A Human Dissection Training Program at Indiana University School of Medicine-Northwest

    ERIC Educational Resources Information Center

    Talarico, Ernest F., Jr.

    2010-01-01

    As human cadavers are widely used in basic sciences, medical education, and other training and research venues, there is a real need for experts trained in anatomy and dissection. This article describes a program that gives individuals interested in clinical and basic sciences practical experience working with cadavers. Participants are selected…

  11. Technology Literacy: A Key to the New Basic Skills.

    ERIC Educational Resources Information Center

    Brown, Richard

    The United States needs a vocational educational system that delivers, in an applied technological setting, the new basic skills that industry needs, as well as a general education system that provides creative instruction in applied math, physics, and science. To be effective, technological training should encompass, along with machine-specific…

  12. DEVELOPMENT OF A THEORY OF EDUCATION FROM PSYCHOLOGICAL AND OTHER BASIC RESEARCH FINDINGS.

    ERIC Educational Resources Information Center

    TAYLOR, CALVIN W.; AND OTHERS

    A BROAD EXPLORATORY AND THEORETICAL STUDY WAS CONDUCTED TO DETERMINE IN A FUNDAMENTAL SENSE THE IMPLICATIONS AND IMPACT WHICH NEW RESEARCH IN THE BASIC BEHAVIORAL SCIENCE FIELDS HAD ON EDUCATIONAL PRACTICE AND THEORY. THE TOTAL TASK WAS TO BUILD A NEW EDUCATIONAL THEORY USING SAMPLINGS FROM ALL BEHAVIORAL RESEARCH AND TO INVESTIGATE WAYS TO REDUCE…

  13. Science Education: A Case for Astronomy

    ERIC Educational Resources Information Center

    Wentzel, Donat G.

    1971-01-01

    Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)

  14. Scientific and Technical Information and Transfer for Education (STITE). Research Report No. 1.

    ERIC Educational Resources Information Center

    Zunde, Pranas

    STITE (Scientific and Technical Information Transfer for Education) is basically a system to interface between science information and the science learner. As such STITE acts as a link between STIC (Science and Technology Information Centers) and LIS (Learning Information Systems). After an introduction to the goals and objectives of the ongoing…

  15. NGSS and the Next Generation of Science Teachers

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger W.

    2014-03-01

    This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.

  16. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  17. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    ERIC Educational Resources Information Center

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  18. Plant Content in the National Science Education Standards

    ERIC Educational Resources Information Center

    Hershey, David R.

    2005-01-01

    The National Science Education Standards (NSES) provides few resources for teaching about plants. To assure students understand and appreciate plants, the author advocates teaching about plants as a basic biological concept, avoiding animal chauvinism in biology coursework, correcting pseudoscience and anthropomorphisms about plants, and making…

  19. Creatures in the Classroom: Preservice Teacher Beliefs About Fantastic Beasts, Magic, Extraterrestrials, Evolution and Creationism

    NASA Astrophysics Data System (ADS)

    Losh, Susan Carol; Nzekwe, Brandon

    2011-05-01

    Faculty have long expressed concern about pseudoscience belief among students. Most US research on such beliefs examines evolution-creation issues among liberal arts students, the general public, and occasionally science educators. Because of their future influence on youth, we examined basic science knowledge and several pseudoscience beliefs among 540 female and 123 male upperclass preservice teachers, comparing them with representative samples of comparably educated American adults. Future teachers resembled national adults on basic science knowledge. Their scores on evolution; creationism; intelligent design; fantastic beasts; magic; and extraterrestrials indices depended on the topic. Exempting science education, preservice teachers rejected evolution, accepting Biblical creation and intelligent design accounts. Sizable minorities "awaited more evidence" about fantastic beasts, magic, or extraterrestrials. Although gender, disciplinary major, grade point average, science knowledge, and two religiosity measures related to beliefs about evolution-creation, these factors were generally unassociated with the other indices. The findings suggest more training is needed for preservice educators in the critical evaluation of material evidence. We also discuss the judicious use of pseudoscience beliefs in such training.

  20. An Examination of Farmworker Pesticide Educators in a Southeastern State: Informal Science Educators and Risk Communication

    ERIC Educational Resources Information Center

    LePrevost, Catherine E.

    2011-01-01

    Because pesticide exposure is a significant hazard to farmworkers in their working and living environments, basic pesticide toxicology is a topic for farmworker science education that has implications beyond scientific literacy to encompass farmworkers' safety and health. Migrant and seasonal farmworkers have been identified as an at-risk…

  1. Identifying Contradictions in Science Education Activity Using the Change Laboratory Methodology

    ERIC Educational Resources Information Center

    Kornelaki, Athina Christina; Plakitsi, Katerina

    2018-01-01

    The study is based on an implementation of the basic steps of the Change Laboratory methodology (Engeström, Virkkunen, Helle, Pihlaja & Poikela, 1996) at the University of Ioannina. It was derived by a discussion with master's students during a course about science education curricula in pre-school and primary education and their effectiveness…

  2. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status

    PubMed Central

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Background: Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. Materials and Methods: The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. Results: The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students’ academic performance in the comprehensive basic sciences examination. Conclusion: According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination. PMID:26430693

  3. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  4. The Relationship between Students' Perceptions of the Teaching and Learning Process and Academic Performance in Science of Seventh and Eighth Graders Enrolled in Seventh-Day Adventist Schools

    ERIC Educational Resources Information Center

    Burton, Larry D.; Kijai, Jimmy; Sargeant, Marcel A.

    2005-01-01

    This study investigated student perceptions of the 7th and 8th grade Adventist science education program and their relationship to achievement in science as defined by performance on the Iowa Test of Basic Skills. Findings revealed that students held generally poor perceptions of science education. Hierarchical regression analysis revealed 8…

  5. Biology Education in the United States: The Unfinished Century.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2002-01-01

    Adresses five themes basic to biology education: (1) increased recognition of advances in the science of learning; (2) implementation of scientific ideas and technological innovations; (3) incorporation of science- and technology-related issues; (4) elaboration of global perspectives; and (5) professional community and civil discourse. (MM)

  6. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    ERIC Educational Resources Information Center

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  7. Examining the Effect of Self-Explanation on Cognitive Integration of Basic and Clinical Sciences in Novices

    ERIC Educational Resources Information Center

    Lisk, Kristina; Agur, Anne M. R.; Woods, Nicole N.

    2017-01-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of "self-explanation" during learning has the…

  8. Long-Term Retention of Basic Science Knowledge: A Review Study

    ERIC Educational Resources Information Center

    Custers, Eugene J. F. M.

    2010-01-01

    In this paper, a review of long-term retention of basic science knowledge is presented. First, it is argued that retention of this knowledge has been a long-standing problem in medical education. Next, three types of studies are described that are employed in the literature to investigate long-term retention of knowledge in general. Subsequently,…

  9. Peer-Assisted Learning: Filling the Gaps in Basic Science Education for Preclinical Medical Students

    ERIC Educational Resources Information Center

    Sammaraiee, Yezen; Mistry, Ravi D.; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-01-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United…

  10. Improving the Teaching of Science through Discipline-Based Education Research: An Example from Physics

    ERIC Educational Resources Information Center

    McDermott, Lillian C.

    2013-01-01

    Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…

  11. Using Amphibians and Reptiles to Learn the Process of Science

    ERIC Educational Resources Information Center

    Greene, Janice Schnake; Greene, Brian D.

    2005-01-01

    Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…

  12. Engineering education in Bangladesh - an indicator of economic development

    NASA Astrophysics Data System (ADS)

    Chowdhury, Harun; Alam, Firoz

    2012-05-01

    Developing nations including Bangladesh are significantly lagging behind the millennium development target due to the lack of science, technology and engineering education. Bangladesh as a least developing country has only 44 engineers per million people. Its technological education and gross domestic product growth are not collinear. Although limited progress was made in humanities, basic sciences, agriculture and medical sciences, a vast gap is left in technical and engineering education. This paper describes the present condition of engineering education in the country and explores ways to improve engineering education in order to meet the national as well as global skills demand.

  13. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  14. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  15. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  16. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  17. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  18. Education for Today's Ecological Crisis

    ERIC Educational Resources Information Center

    Singer, S. Fred

    1970-01-01

    Describes the university's role in providing education for the ecological crisis, and divides environmental sciences into two major areas: basic and applied. Proposes a curriculum leading to a B.S. degree in physics consisting of a two-year honor physics program followed by specialization in environmental and planetary sciences (EPS). (PR)

  19. Geospatial Education: Working with the NASA Airborne Science Program

    NASA Astrophysics Data System (ADS)

    Lockwood, C. M.; Handley, L.; Handley, N.

    2010-12-01

    WETMAAP (Wetland Education Through Maps and Aerial Photography) , a program of CNL World, supports the NASA Strategic Goals and Objectives for Education by providing classroom teachers and formal and informal educators with professional development. WETMAAP promotes science by inquiry through the use of a building-block process, comparative analysis, and analytical observations. Through the WETMAAP workshops and website, educators receive the concepts necessary to provide students with a basic understanding of maps, aerial photography, and satellite and airborne imagery that focus on the study of wetlands and wetland change. The program targets educators, Grades 5 - 12, in earth science, environmental science, biology, geography, and mathematics, and emphasizes a comprehensive curriculum approach.

  20. Countering Climate Confusion in the Classroom: New Methods and Initiatives

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Reid, A. H.

    2014-12-01

    Politicians and ideologues blocking climate education through legislative manipulation. Free marketeers promoting the teaching of doubt and controversy to head off regulation. Education standards and curricula that skim over, omit, or misrepresent the causes, effects, risks and possible responses to climate change. Teachers who unknowingly foster confusion by presenting "both sides" of a phony scientific controversy. All of these contribute to dramatic differences in the quality and quantity of climate education received by U.S. students. Most U.S. adults and teens fail basic quizzes on energy and climate basics, in large part, because climate science has never been fully accepted as a vital component of a 21st-century science education. Often skipped or skimmed over, human contributions to climate change are sometimes taught as controversy or through debate, perpetuating a climate of confusion in many classrooms. This paper will review recent history of opposition to climate science education, and explore initial findings from a new survey of science teachers on whether, where and how climate change is being taught. It will highlight emerging effective pedagogical practices identified in McCaffrey's Climate Smart & Energy Wise, including the role of new initiatives such as the Next Generation Science Standards and Green Schools, and detail efforts of the Science League of America in countering denial and doubt so that educators can teach consistently and confidently about climate change.

  1. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    ERIC Educational Resources Information Center

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  2. Smartphones: Powerful Tools for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  3. Experience of the creative Space-Astrophysics Education in Israeli Science-Educational Center "Blossoms of Science" - creative activity from mini-projects in basic school to ASTROTOP-projects for graduates

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, L.; Pundak, D.

    We present 12 year experience of educational project in Space Astrophysics Environment field realized on the base of National Science-Educational Center Blossoms of Science of the Jordan Valley College Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state This approach shift center of the weight in educational process from direct lectures sermons explanation from teacher to children on own attempts of children to investigate problem what is interesting for them by themselves individually or in group Our approach includes four levels of the projects nano-projects for children garden and basic school up to 10-12 years micro-projects for intermediate school 12-16 years mini-projects for high school 16-18 years and macro-projects for the best graduates high schools and students of colleges 17-22 years These levels and projects are interconnected one with another and sometimes participants started on the micro-projects level in intermediate school continue their activity up to macro-projects of the graduate s diploma level For each level we organize courses for preparation of the teachers and instructors interested in the using of our receipts and published books and brochures for them The content of our activity for different levels a Level of kinder gardens-basic schools -- special software with interactive movie - - nano-projects b Level of intermediate school Days of Science in tens schools of Israel--

  4. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    ERIC Educational Resources Information Center

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  5. The Contemporary Issues Module: Its Use in the Science Methods Class

    ERIC Educational Resources Information Center

    Kuhn, David J.

    1973-01-01

    Author conducts preservice education for science teachers by engaging students in modules stressing contemporary issues. Basic features of the modules include providing individualized instruction and stressing the interdisciplinary aspects of pure applied and social sciences. (PS)

  6. Science Educational Outreach Programs That Benefit Students and Scientists

    PubMed Central

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  7. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    PubMed

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  8. Linking Introductory Astronomy Students' Basic Science Knowledge, Beliefs, Attitudes, Sources of Information, and Information Literacy

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.; Impey, Chris D.; Romine, James; Nieberding, Megan

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] We report on a study of almost 13 000 undergraduate students enrolled in introductory astronomy courses at the University of Arizona. From 1989 to 2016, students completed a basic science knowledge, beliefs, and attitudes survey. From 2014 to 2016, a subset of the…

  9. Exploration of an E-Learning Model to Foster Critical Thinking on Basic Science Concepts during Work Placements

    ERIC Educational Resources Information Center

    de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.

    2009-01-01

    We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…

  10. Effect of Self Regulated Learning Approach on Junior Secondary School Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel

    2015-01-01

    This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…

  11. S.E.E.ing the Future: Science, Engineering and Education. Commentary from the Scientific Grassroots. A White Paper on the Issues and Need for Public Funding of Basic Science and Engineering Research.

    ERIC Educational Resources Information Center

    Jemison, Mae C., Ed.

    This document reports on the results of an ad hoc workshop called "S.E.E.ing the Future: Science Engineering and Education" Held at Dartmouth College in November of 2000 and sponsored by Dartmouth, the National Science Foundation, the Dow Chemical Company, and Science Service of Washington, DC. This transdisciplinary conference was one of a series…

  12. Basic Skills Applications in Occupational Investigation.

    ERIC Educational Resources Information Center

    Hendrix, Mary

    This guide contains 50 lesson plans for learning activities that incorporate basic skills into content areas of career education, mathematics, science, social studies, communications, and productive work habits. Each lesson consists of a purpose, basic skills applications, approximate time required, materials needed, things for the teacher to do…

  13. Research projects in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016): a cohort study.

    PubMed

    Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L

    2016-01-01

    Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.

  14. 7 CFR 3406.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...

  15. 7 CFR 3406.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...

  16. 7 CFR 3406.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...

  17. 7 CFR 3406.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Food and agricultural sciences means basic, applied, and developmental research, extension, and... social sciences, in the broadest sense of these terms, including but not limited to, activities concerned... and experience in particular fields of science, education, or technology to give expert advice on the...

  18. The Impact of Computing in Education in Korea.

    ERIC Educational Resources Information Center

    Huh, Unna

    1993-01-01

    Discusses educational computing in Korea to be used for improving the teaching-learning process, improving science education, and preparing for an information society. Highlights include government, higher education, and private company support; basic objectives and long-term planning for educational computing; software applications; and future…

  19. Agriscience Education for the Middle School. Instructional Units. Grade 7: Agriscience Exploration.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    Designed to supplement the Agriscience Education for the Middle School curriculum guide, this instructional packet provides lessons to enable agriscience teachers to bring basic science concepts into the classroom through practical, hands-on activities and experiments. The course is designed to assist seventh-grade students in exploring science as…

  20. Demographics, Dollars and Difficulties in Graduate Education.

    ERIC Educational Resources Information Center

    Atkinson, Richard C.

    In a discussion of the crisis in graduate education in the sciences and engineering, focus is on factors that threaten American capability to produce world-class science in universities. While finances play a part, the causes are basically structural--the rigidity of university faculties, stemming from a significant expansion in tenured positions,…

  1. E-Basics: Online Basic Training in Program Evaluation

    ERIC Educational Resources Information Center

    Silliman, Ben

    2016-01-01

    E-Basics is an online training in program evaluation concepts and skills designed for youth development professionals, especially those working in nonformal science education. Ten hours of online training in seven modules is designed to prepare participants for mentoring and applied practice, mastery, and/or team leadership in program evaluation.…

  2. Back to the Basics: Kansas City, Missouri

    ERIC Educational Resources Information Center

    Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan

    2004-01-01

    "Back to the Basics" is an innovation of the WETMAAP Program (Wetland Education Through Maps and Aerial Photography) which offers a series of workshops that provide training in basics ecological concepts, technological skills, and methods of interpretation necessary for assessing geography and earth science topics. The precept of the…

  3. Effectiveness of interprofessional education in renal physiology curricula for health sciences graduate students.

    PubMed

    Harrison-Bernard, Lisa M; Naljayan, Mihran V; Eason, Jane M; Mercante, Donald E; Gunaldo, Tina P

    2017-12-01

    The primary purpose of conducting an interprofessional education (IPE) experience during the renal physiology block of a graduate-level course was to provide basic science, physical therapy, and physician assistant graduate students with an opportunity to work as a team in the diagnosis, treatment, and collaborative care of a patient with acute kidney injury. The secondary purpose was to enhance the understanding of basic renal physiology principles with a patient case presentation of renal pathophysiology. The overall purpose was to assess the value of IPE integration within a basic science course by examining student perceptions and program evaluation. Graduate-level students operated in interprofessional teams while working through an acute kidney injury patient case. The following Interprofessional Education Collaborative subcompetencies were targeted: Roles/Responsibilities (RR) Behavioral Expectations (RR1, RR4) and Interprofessional Communication (CC) Behavioral Expectations (CC4). Clinical and IPE stimulus questions were discussed both within and between teams with assistance provided by faculty facilitators. Students were given a pre- and postsurvey to determine their knowledge of IPE. There were statistically significant increases from pre- to postsurvey scores for all six IPE questions for all students. Physical therapy and physician assistant students had a statistically significant increase in pre- to postsurvey scores, indicating a more favorable perception of their interprofessional competence for RR1, RR4, and CC4. No changes were noted in pre- to postsurvey scores for basic science graduate students. Incorporating planned IPE experiences into multidisciplinary health science courses represents an appropriate venue to have students learn and apply interprofessional competencies. Copyright © 2017 the American Physiological Society.

  4. Innovative educational modules for the next generation of transportation professionals.

    DOT National Transportation Integrated Search

    2012-07-01

    Basic science and mathematics competence, including awareness of engineering careers, gained in grades K12 forms the foundation of an educated, capable, and technical future transportation workforce. This project developed a series of educational ...

  5. Strengthening capacity building in space science research: A developing country perspective on IHY activities

    NASA Astrophysics Data System (ADS)

    Munyeme, G.

    The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be

  6. An outsider's perspective on a provocative proposal: what would Flexner think?

    PubMed

    Anderson, M Brownell

    2010-01-01

    This viewpoint commentary focuses on a proposal for integrated anatomy education in undergraduate college from Dr. Darda published in the Anatomical Sciences Education. Although the proposal is for college level education, the proposal echoes some ideas proposed a century ago by Abraham Flexner when he wrote his report titled "Medical Education in the United States and Canada." It begins with an acknowledgement of the author's status as an outsider. There have been numerous calls for change in basic science education, particularly in medical education. Interestingly, however, the monumental reforms of the "Flexner Report" were impelled largely from outside the specific discipline of medical education. The commentary discussion then moves to observations about the proposal for Integrative Anatomy and support for the proposal from both the Flexner Report and the 2009 report from the Association of American Medical Colleges and the Howard Hughes Medical Institute, "Scientific Foundations for Future Physicians." The essay considers the benefits of the research on the learning sciences that now inform our work in education; the influence of competency-based education that frees education from a lock-step approach of course completion to a student-focused integrative approach to learning; and the availability of online resources for anatomy education through repositories, such as MedEdPORTAL. The final observation is that the changes underway in education and in the sciences basic to medicine, in particular, are substantial and will require the dialogue that Dr. Darda is promoting with his provocative proposal. Copyright 2010 American Association of Anatomists.

  7. 7 CFR 3406.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be made available to CSREES upon request. Food and agricultural sciences means basic, applied, and... resources, forestry, and physical and social sciences, in the broadest sense of these terms, including but... experts or consultants, qualified by training and experience in particular fields of science, education...

  8. The Integration of Nutrition Education in the Basic Biomedical Sciences

    ERIC Educational Resources Information Center

    Raw, Isaias

    1977-01-01

    At the Center for Biomedical Education at the City University of New York, nutrition is integrated into the chemistry-biochemistry sequence of a six-year B.S.-M.D. program. Students perform an actual analysis of a sample of their own food, learning basic techniques and concepts, and also carry on experiments with rats on other diets. (Editor/LBH)

  9. The Impact of Biotechnology upon Pharmacy Education.

    ERIC Educational Resources Information Center

    Speedie, Marilyn K.

    1990-01-01

    Biotechnology is defined, and its impact on pharmacy practice, the professional curriculum (clinical pharmacy, pharmacy administration, pharmacology, medicinal chemistry, pharmaceutics, basic sciences, and continuing education), research in pharmacy schools, and graduate education are discussed. Resulting faculty, library, and research resource…

  10. Education and the Brain; The Seventy-seventh Yearbook of the National Society for the Study of Education. Part II.

    ERIC Educational Resources Information Center

    Chall, Jeanne S., Ed.; Mirsky, Allan F., Ed.

    The brain sciences and education is the topic for this yearbook volume, which is divided into five parts. Part one consists of an introduction to the brain sciences that is a primer on the neuroanatomy, neurochemistry, and neurophysiology of the brain. Part two contains chapters on some of the basic processes of the brain: attention, cognition,…

  11. Integrating basic science in academic cardiology training: two international perspectives on a common challenge.

    PubMed

    Bode, Michael F; Hilgendorf, Ingo

    2018-06-09

    Political bodies and professional societies acknowledge that translational research benefits from researchers trained in both, clinical medicine and basic science. Yet, few physicians undergoing clinical training in cardiology seek this dual career (Milewicz et al. J Clin Invest 125:3742-3747, 2015). The reasons are likely manifold, but with cardiology having become increasingly interventional and facing economic pressure, how much attention, credit, and encouragement is given to physicians interested in basic cardiovascular science? Having studied and worked in hospitals and laboratories, in both Germany and the USA, we aim to compare in this article how basic science education is currently integrated into cardiology training at German and US university hospitals, from medical school to more advanced career stages. By doing so, we hope to provide some outside perspectives to young physicians and decision makers alike, that may inspire changes to curricula in the respective countries and around the world.

  12. Components of Environmental Literacy in Elementary Science Education Curriculum in Bulgaria and Turkey

    ERIC Educational Resources Information Center

    Erdogan, Mehmet; Kostova, Zdravka; Marcinkowski, Thomas

    2009-01-01

    The purpose of this study was to analyze the extent to which science education objectives in elementary schools addressed to the six basic components of environmental literacy (EL), and how this attention differed from Bulgaria to Turkey. The main method in the study involved comparative content analysis of these objectives. The courses sampled…

  13. Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules

    ERIC Educational Resources Information Center

    Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie

    2016-01-01

    Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…

  14. Marine Science Technician Second Class, 15-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, was designed to provide the theory portion of the Marine Science Technician Program. It includes a review of basic subjects, marine biology, oceanography, as well as meteorologic observations and recording. The course consists of a lesson book…

  15. Math Avoidance: A Barrier to American Indian Science Education and Science Careers.

    ERIC Educational Resources Information Center

    Green, Rayna

    1978-01-01

    For American Indian students, math anxiety and math avoidance are the most serious obstacles to general education and to the choice of scientific careers. Indian students interviewed generally exhibited fear and loathing of mathematics and a major lack of basic skills which were caused by a missing or negative impression of the mathematics…

  16. Doctoral and Postdoctoral Education in Science and Engineering: Europe in the International Competition

    ERIC Educational Resources Information Center

    MOGUEROU, PHILIPPE

    2005-01-01

    In this article, we discuss the recent evolutions of science and engineering doctoral and postdoctoral education in Europe. Indeed, Ph.Ds are crucial to the conduct of research and innovation in the national innovation systems, as they provide a large amount of input into creating the competitive advantage, notably through basic research. First,…

  17. Food Science. Content Modules for Food Science Featuring Problem-Solving Activities in Family and Consumer Sciences.

    ERIC Educational Resources Information Center

    Roff, Lori; Stringer, Lola

    The food science course developed in Missouri combines basic scientific and mathematics principles in a hands-on instructional format as a part of the family and consumer sciences education curriculum. Throughout the course, students conduct controlled experiments and use scientific laboratory techniques and information to explore the biological…

  18. Entrepreneur Program. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    De Maria, Richard

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The document consists of matrices that describe the relationship of vocational skills to basic communication, mathematics, and science skills within the entrepreneur…

  19. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  20. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  1. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  2. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  3. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Scientific Computing Staff (7) Superconducting Super Collider (8) University and Science Education Programs... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations...

  4. Development of Science and Technology Literacy Materials at the Basic Level: Exemplar Materials. Revised during the Regional Workshop Organized within the Framework of Project 2000+: Scientific and Technological Literacy for All (Philippines, November 4-8, 1997).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This collection of science activities is designed to supplement traditional science education by encompassing an issues-based approach to helping students develop scientific and technological literacy. Each unit can be used within an existing teaching sequence and includes an introduction specifying scientific issues and educational objectives, a…

  5. Science Curriculum Resource Handbook: A Practical Guide for K-12 Science Curriculum.

    ERIC Educational Resources Information Center

    Cheek, Dennis W., Ed.; And Others

    This handbook is one of a series of practical references for curriculum developers, education faculty, veteran teachers, and student teachers. The handbook is designed to provide basic information on the background of the science curriculum, and current information on publications, standards, and special materials for K-12 science. Part 1 contains…

  6. An Examination of the Relationship between Professional Development Providers' Epistemological and Nature of Science Beliefs and Their Professional Development Programs

    NASA Astrophysics Data System (ADS)

    Garcia Arriola, Alfonso

    In the last twenty years in US science education, professional development has emphasized the need to change science instruction from a direct instruction model to a more participatory and constructivist learning model. The result of these reform efforts has seen an increase in science education professional development that is focused on providing teaching strategies that promote inquiry learning to learn science content. Given these reform efforts and teacher responses to professional development, research seems to indicate that whether teachers actually change their practice may depend on the teachers' basic epistemological beliefs about the nature of science. The person who builds the bridge between teacher beliefs and teacher practice is the designer and facilitator of science teacher professional development. Even though these designers and facilitators of professional development are critical to science teacher change, few have studied how these professionals approach their work and what influence their beliefs have on their professional development activities. Eight developers and designers of science education professional development participated in this study through interviews and the completion of an online questionnaire. To examine the relationship between professional development providers' science beliefs and their design, development, and implementation of professional development experiences for science teachers, this study used the Views on Science Education Questionnaire (VOSE), and interview transcripts as well as analysis of the documents from teacher professional development experiences. Through a basic interpretive qualitative analysis, the predominant themes that emerged from this study suggest that the nature of science is often equated with the practice of science, personal beliefs about the nature of science have a minimal impact on the design of professional development experiences, current reform efforts in science education have a strong influence on the design of professional development, and those providing science education professional development have diverse views about epistemology and the nature of science. The results and conclusions from this study lead to a discussion of implications and recommendations for the planning and design of professional development for science teachers, including the need to making equity and social justice issues an integral part of inquiry and scientific practice.

  7. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    NASA Astrophysics Data System (ADS)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  8. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.

  9. Simple webs of natural environment theme as a result of sharing in science teacher training

    NASA Astrophysics Data System (ADS)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-03-01

    Thematic learning is one type of integrated science (Biology, Physics, Chemistry and Earth Science) in Science Education. This study is concerning about simple webs of natural environment theme in science learning, as one of training material in science teacher training program. Making simple web is a goal of first step in teacher training program. Every group explain their web illustration to other group. Twenty Junior High School science teacher above one education foundation participate in science teacher training program. In order to gather simple webs, sharing method was used in this first step of science teacher training. The result of this study is five different simple web of natural environment themes. These webs represent science learning in class VII/Semester I, class VII/Semester II, Class VIII, Class IX/Semester I, Class IX/Semester II based on basic competency in National Curriculum 2013. Each group discussed web of natural environment theme based on their learning experience in real class which basic competency and subject matters are linked with natural environment theme. As a conclusion, simple webs are potential to develop in the next step of science teacher training program and to be implemented in real class.

  10. Preparing medical students for future learning using basic science instruction.

    PubMed

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment in medical education. © 2014 John Wiley & Sons Ltd.

  11. From bedside to blackboard: the benefits of teaching molecular biology within a medical context.

    PubMed

    Sitaraman, Ramakrishnan

    2012-01-01

    Courses in molecular biology are part of practically every degree program in medicine and the life sciences. Historically, many basic discoveries in this field have resulted from investigations by doctors into the nature of diseases. This essay suggests that medical educators deliberately incorporate such material, whether historical or contemporaneous, into their molecular and cell biology courses. An example of such usage, an early report of the detection of bacteriophage activity on pathogenic bacteria, is discussed in detail. Such an approach can potentially narrow the perceived gap between "basic" and "applied" science. As medicine is so intimately and obviously linked with human welfare, this also provides an avenue for educators to discuss issues of scientific integrity and ethics within a "pure science" course.

  12. Further Education and Training of the Labour Force. Country Report: The Netherlands.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    In the Netherlands, 15 to 17.5 percent of the working age population participated in further education and training for adults in 1985-88. Enterprises, state ministries, and private institutions supply adult education; enterprises, ministries, and sectoral institutions finance it. The Ministry of Education and Sciences provides basic education,…

  13. Professional Training Programs of Masters in Adult Education at Universities of Germany

    ERIC Educational Resources Information Center

    Hizhynska, Tetiana

    2015-01-01

    The German experience in professional training of teaching staff in adult education has been analyzed; it has been clarified that modern educational programs of Bachelor and Master specialties are based on the basic educational program offered by Adult Education Sectional Commission of Pedagogical Sciences in Germany (DGfE); value-targeted and…

  14. Using Educational Games and Simulation Software in a Computer Science Course: Learning Achievements and Student Flow Experiences

    ERIC Educational Resources Information Center

    Liu, Tsung-Yu

    2016-01-01

    This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…

  15. Beating the Language Barrier in Science Education: In-Service Educators' Coping with Slow Learners in Mauritius

    ERIC Educational Resources Information Center

    Cyparsade, Mohun; Auckloo, Pritee; Belath, Ismut; Dookhee, Helina; Hurreeram, Navin

    2013-01-01

    This study describes how in-service teachers in the pre-vocational sector in Mauritius adopted specific strategies to overcome the language barrier in the learning of science (Van Driel, Verloop & de Vos, 1998). Students of form III were taught few basic ideas related to "Earth & Space" through the use of role play and ICT. The…

  16. Improvement of Nickel-Stanogermanide Contact Properties by Platinum Interlayer

    NASA Astrophysics Data System (ADS)

    Wan, Wei-Jun; Ren, Wei; Meng, Xiao-Ran; Ping, Yun-Xia; Wei, Xing; Xue, Zhong-Ying; Yu, Wen-Jie; Zhang, Miao; Di, Zeng-Feng; Zhang, Bo

    2018-05-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51672171 and 61604094, the Natural Science Foundation of Shanghai under Grant No 14ZR1418300, the National Key Basic Research Program of China under Grant No 2015CB921600, the Eastern Scholar Program from the Shanghai Municipal Education Commission, and the Fok Ying Tung Education Foundation.

  17. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  18. Reading, Writing & Rings: Science Literacy for K-4 Students

    NASA Astrophysics Data System (ADS)

    McConnell, S.; Spilker, L.; Zimmerman-Brachman, R.

    2007-12-01

    Scientific discovery is the impetus for the K-4 Education program, "Reading, Writing & Rings." This program is unique because its focus is to engage elementary students in reading and writing to strengthen these basic academic skills through scientific content. As science has been increasingly overtaken by the language arts in elementary classrooms, the Cassini Education Program has taken advantage of a new cross-disciplinary approach to use language arts as a vehicle for increasing scientific content in the classroom. By utilizing the planet Saturn and the Cassini-Huygens mission as a model in both primary reading and writing students in these grade levels, young students can explore science material while at the same time learning these basic academic skills. Content includes reading, thinking, and hands-on activities. Developed in partnership with the Cassini-Huygens Education and Public Outreach Program, the Bay Area Writing Project/California Writing Project, Foundations in Reading Through Science & Technology (FIRST), and the Caltech Pre-College Science Initiative (CAPSI), and classroom educators, "Reading, Writing & Rings" blends the excitement of space exploration with reading and writing. All materials are teacher developed, aligned with national science and language education standards, and are available from the Cassini-Huygens website: http://saturn.jpl.nasa.gov/education/edu-k4.cfm Materials are divided into two grade level units. One unit is designed for students in grades 1 and 2 while the other unit focuses on students in grades 3 and 4. Each includes a series of lessons that take students on a path of exploration of Saturn using reading and writing prompts.

  19. 1.4 Research and the dental student.

    PubMed

    DePaola, Dominick; Howell, Howard; Baker, Charles G; Boy-Lefevre, Marie Laure; Hull, Peter; Holmstrup, Palle; Jerolimov, Vjekoslav; Hardwick, Kevin; Lamster, Ira B; Lopez, Nestor J; Rifkin, Barry

    2002-01-01

    There has been significant concern that the dental curriculum and system of clinical education, in particular, is not designed to take advantage of the explosion in knowledge in biomedical science and its application to the health of the public. Although there are some examples of innovations in dental education on a global scale that have the capacity to increase the assimilation of basic and clinical knowledge, most of the dental education models are mired in the traditional '2 + 2' approach to education. This can be seen in North America and the European '2 + 3' model or the stomatological '4 + 2' approach. In each of these systems, the basic and behavioural science courses continue to be perceived as hurdles over which students must leap in order to reach the clinical programmes where there is little opportunity to use basic science information to advance patient care and treatment. Examples of issues that are not well represented include: innovations in imaging; diagnosis; bio-materials; science-based approaches to clinical practice; novel approaches to therapeutics; interactions between the oral, dental and craniofacial complex and systemic health and disorders; the role of oral infections and systemic disease; the increasing appreciation of chronic diseases and disorders such as osteoporosis and diabetes that affect oral tissues; the promise of bioengineering, tissue engineering and biomimetics; the potential use of saliva as a diagnostic tool; the understanding of oral complications of cancer treatment; the treatments of HIV/AIDS diseases and hepatitis; the use of dental and dental hygiene staff on health-care teams to deal with issues such as birth defects, orofacial trauma, head and neck cancer, chronic pain management and so on. There seems to be an excessive emphasis on restorative dentistry and, to a lesser extent, on the more biological approaches to diagnosis, prevention and therapeutics. This continued lack of integration of basic and clinical sciences in the curriculum continues to foster a dental workforce that is highly technically competent to provide specific clinical services but poorly equipped to evaluate and implement new biological approaches to diagnosis, therapeutics and intervention. Unfortunately, after many attempts by organized dental symposia aimed at the integration of basic and clinical sciences, there has been little discernible curricular change. It appears that there is an opportunity through this global congress to identify the best practices in the various global curricula that could change this paradigm in dental education and lead us toward the education of a more scientifically orientated practitioner-one who can take advantage of innovations in new and emerging technologies in their application to patient care. It is the challenge of this section to try to ascertain the best method or methods by which dental education promotes research to the dental student and what research represents in terms of critical thinking and evidence-based approaches to dental education and clinical practice.

  20. Understanding and Practice of Argumentation: A Pilot Study with Mainland Chinese Pre-Service Teachers in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Xie, Qun; So, Winnie Wing Mui

    2012-01-01

    Argumentation is recognized as a significant aspect of science education for the development of students' scientific literacy, and the science teacher is the key factor in organizing argumentative discourse in the science classroom. Composing argumentation in the classroom requires teachers to not only acquire the basic understandings and skills…

  1. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    PubMed

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.

  2. Anatomy integration blueprint: A fourth-year musculoskeletal anatomy elective model.

    PubMed

    Lazarus, Michelle D; Kauffman, Gordon L; Kothari, Milind J; Mosher, Timothy J; Silvis, Matthew L; Wawrzyniak, John R; Anderson, Daniel T; Black, Kevin P

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi-specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school. © 2014 American Association of Anatomists.

  3. Student opinion in England about science and technology

    NASA Astrophysics Data System (ADS)

    Jenkins, Edgar W.

    2006-05-01

    An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate year of compulsory schooling, think about science and technology. It suggests that several basic research questions need to be addressed and answered if the present widespread decline in the industrialised world in the popularity of the physical sciences as subjects of advanced study is to be halted.

  4. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    PubMed

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  5. Online Learning Tools as Supplements for Basic and Clinical Science Education.

    PubMed

    Ellman, Matthew S; Schwartz, Michael L

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  6. Online Learning Tools as Supplements for Basic and Clinical Science Education

    PubMed Central

    Ellman, Matthew S.; Schwartz, Michael L.

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered. PMID:29349323

  7. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  8. Complexity and health professions education: a basic glossary.

    PubMed

    Mennin, Stewart

    2010-08-01

    The study of health professions education in the context of complexity science and complex adaptive systems involves different concepts and terminology that are likely to be unfamiliar to many health professions educators. A list of selected key terms and definitions from the literature of complexity science is provided to assist readers to navigate familiar territory from a different perspective. include agent, attractor, bifurcation, chaos, co-evolution, collective variable, complex adaptive systems, complexity science, deterministic systems, dynamical system, edge of chaos, emergence, equilibrium, far from equilibrium, fuzzy boundaries, linear system, non-linear system, random, self-organization and self-similarity.

  9. From Orthodoxy to Plurality in the Nature of Science (NOS) and Science Education: A Metacommentary

    ERIC Educational Resources Information Center

    Bazzul, Jesse

    2017-01-01

    This article provides a metacommentary on the special issue on nature of science (NOS). The issue is composed of senior scholars discussing Hodson and Wong's (2017, this issue) critique of the consensus view of nature of science, which on a basic level states that there are agreed-upon aspects of science that can be taught in K-12 schools. Each…

  10. The soil education technical commission of the Brazilian Soil Science Society: achievements and challenges

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Aparecida de Mello, Nilvania

    2013-04-01

    The Soil Education and public awareness technical commission of the Brazilian Soil Science Society was created in 1987 as Soil Science teaching commission at that time. In the 90's of the last century the commission was very active and realized three national symposia in the years 1994 to 1996: in Viçosa, Minas Gerais; Santa Maria, Rio Grande do Sul and Pato Branco, Paraná. The following symposium scheduled to happen in Brasilia, 1997 could not be realized and was followed by a weakening and reduction of the involved group. Those three symposia were focused on the aspects of soil science taught at the university educational level, mainly in agrarian sciences. The concern about what was going on at basic education and perception by society was not much present. The commission was revitalized in 2005 and in 2007 realized its first meeting at the Brazilian Congress of Soil Science in Gramado, Rio Grande do Sul. At that meeting it was already an urge to assume the approach of soil education instead of soil science teaching, within a major concern how society consider soils. It was accepted and adequate under the structural reorganization undergone by the national society following the IUSS main lines. The commission was renamed and got two new mates at the newly created Division IV, Soils, Environment and Society, of the Brazilian Soil Science Society: Soils and Food Safety and History, Epistemology and Sociology of Soil Science. The national symposia were relaunched to happen biannually. An inventory of the soil education experiences around the country started and the geographic distribution of the future symposia intended to rescue and bring together experiences in different parts of the country that would not be known by other means. Three symposia were already realized: Piracicaba, Sao Paulo, 2008 (southeast); Curitiba, Paraná, 2010 (south) and Sobral, Ceará, 2012 (northeast). The next is planned to happen in Recife, Pernambuco in April 2014. The scope of the last three symposia was dramatically changed compared to the former ones, considering both participants and papers: basic school teachers, science mediators instead of university docents and a prevalence of papers on soil education in basic schools and non-formal education. The main challenge for soil scientists remains in how to spread the knowledge about the importance of soil and its care among individuals and society in general. Diversified experiences, strategies and instruments are on the move, still soils are overlooked in the present environmental issues. Within the commission the challenge remains with the popularity of the subject in the academic world: it is marginal, it is an interface between knowledge areas and it is commonly the second subject of researchers, easily abandoned when work pressure grows.

  11. Survey of checkpoints along the pathway to diverse biomedical research faculty

    PubMed Central

    Brown, Abigail M.; Moneta-Koehler, Liane; Chalkley, Roger

    2018-01-01

    There is a persistent shortage of underrepresented minority (URM) faculty who are involved in basic biomedical research at medical schools. We examined the entire training pathway of potential candidates to identify the points of greatest loss. Using a range of recent national data sources, including the National Science Foundation’s Survey of Earned Doctorates and Survey of Doctoral Recipients, we analyzed the demographics of the population of interest, specifically those from URM backgrounds with an interest in biomedical sciences. We examined the URM population from high school graduates through undergraduate, graduate, and postdoctoral training as well as the URM population in basic science tenure track faculty positions at medical schools. We find that URM and non-URM trainees are equally likely to transition into doctoral programs, to receive their doctoral degree, and to secure a postdoctoral position. However, the analysis reveals that the diversions from developing a faculty career are found primarily at two clearly identifiable places, specifically during undergraduate education and in transition from postdoctoral fellowship to tenure track faculty in the basic sciences at medical schools. We suggest focusing additional interventions on these two stages along the educational pathway. PMID:29338019

  12. A Priority for California's Future: Science for Students. Analysis of Public Opinion Research. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Center for the Future of Teaching and Learning, 2010

    2010-01-01

    California's public schools have struggled since the passage of Proposition 13 in 1978, and today face enormous challenges to try to regain lost quality and standing as a national education leader. In light of the current economic crisis, competition for limited resources is fierce and the pressure is on to eliminate all but the basic "Three…

  13. Trends of Science Ability in the National Assessment of Educational Achievement (NAEA) of Korean Ninth Graders

    ERIC Educational Resources Information Center

    Kim, Hyun-Kyung; Lee, Dong-Heon; Kim, Soojin

    2016-01-01

    The results of the National Assessment of Educational Achievement from 2010 to 2013 have shown a downward trend in ninth graders' science average achievement scores from 2011 to 2013. The percentage of students in the Advanced level decreased dramatically from 19.95% in 2010 to 11.48% in 2013, while the percentage of students in the Basic level…

  14. Arts in Education: Where Are We? Where Should We Be? Who Is Involved?

    ERIC Educational Resources Information Center

    Martin, Kathryn A.

    1990-01-01

    Responds to Charles Fowler's article, "Arts Education and the NEA: Does the National Science Foundation Point the Way?" Suggests that arts education is in crisis because of lack of audience support. Recommends that the National Endowment for the Arts (NEA) emphasize the importance of arts education as a part of basic education. (KM)

  15. 25 CFR 36.22 - Standard VII-Elementary instructional program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Mathematics. (3) Social studies. (4) Sciences. (5) Fine arts. (6) Physical education. (b) Each school shall... Section 36.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Minimum...

  16. 25 CFR 36.22 - Standard VII-Elementary instructional program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Mathematics. (3) Social studies. (4) Sciences. (5) Fine arts. (6) Physical education. (b) Each school shall... Section 36.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Minimum...

  17. Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.

    ERIC Educational Resources Information Center

    Anderson, Charles; Biggs, Pat; Brown, Deborah; Culivan, Steve; Ellis, Sue; Gerard, James; Hardwick, Ellen; Poff, Norm; Rosenberg, Carla; Shearer, Deborah; Tripp, Octavia; Ernst, Ron

    This educator's guide explains basic aeronautical concepts and provides a background in the history of aviation within the context of flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They were developed by NASA Aerospace Education Services Program specialists who have…

  18. Examining the effect of self-explanation on cognitive integration of basic and clinical sciences in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2017-12-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.

  19. An Endocrine Pharmacology Course for the Clinically-Oriented Pharmacy Curriculum

    ERIC Educational Resources Information Center

    Rahwan, Ralf G.

    1976-01-01

    In view of trends in clinical pharmacy education, the role of the traditional basic sciences has to be reassessed. An endocrine pharmacology course comprised of 49 clock-hours and open for professional undergraduate and graduate credit is described that blends basic and applied pharmacology. (LBH)

  20. Comparison of Basic Science Knowledge Between DO and MD Students.

    PubMed

    Davis, Glenn E; Gayer, Gregory G

    2017-02-01

    With the coming single accreditation system for graduate medical education, medical educators may wonder whether knowledge in basic sciences is equivalent for osteopathic and allopathic medical students. To examine whether medical students' basic science knowledge is the same among osteopathic and allopathic medical students. A dataset of the Touro University College of Osteopathic Medicine-CA student records from the classes of 2013, 2014, and 2015 and the national cohort of National Board of Medical Examiners Comprehensive Basic Science Examination (NBME-CBSE) parameters for MD students were used. Models of the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 scores were fit using linear and logistic regression. The models included variables used in both osteopathic and allopathic medical professions to predict COMLEX-USA outcomes, such as Medical College Admission Test biology scores, preclinical grade point average, number of undergraduate science units, and scores on the NBME-CBSE. Regression statistics were studied to compare the effectiveness of models that included or excluded NBME-CBSE scores at predicting COMLEX-USA Level 1 scores. Variance inflation factor was used to investigate multicollinearity. Receiver operating characteristic curves were used to show the effectiveness of NBME-CBSE scores at predicting COMLEX-USA Level 1 pass/fail outcomes. A t test at 99% level was used to compare mean NBME-CBSE scores with the national cohort. A total of 390 student records were analyzed. Scores on the NBME-CBSE were found to be an effective predictor of COMLEX-USA Level 1 scores (P<.001). The pass/fail outcome on COMLEX-USA Level 1 was also well predicted by NBME-CBSE scores (P<.001). No significant difference was found in performance on the NBME-CBSE between osteopathic and allopathic medical students (P=.322). As an examination constructed to assess the basic science knowledge of allopathic medical students, the NBME-CBSE is effective at predicting performance on COMLEX-USA Level 1. In addition, osteopathic medical students performed the same as allopathic medical students on the NBME-CBSE. The results imply that the same basic science knowledge is expected for DO and MD students.

  1. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    NASA Astrophysics Data System (ADS)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  2. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  3. Science Illiteracy: Breaking the Cycle

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    2003-12-01

    At the University of Arizona, as at many state universities and colleges, the introductory science classes for non-science majors may be the only science classes that future K--8 teachers will take. The design of the UA's General Education program requires all future non-science certified teachers to take the General Education science classes. These classes are therefore an ideal venue for the training of the state's future teachers. Many students, often including future teachers, are ill-prepared for college, i.e., they lack basic science content knowledge, basic mathematics skills, and reading and writing skills. They also lack basic critical thinking skills and study skills. It is within this context that our future teachers are trained. How do we break the cycle of science illiteracy? There is no simple solution, and certainly not a one-size-fits-all panacea that complements every professor's style of instruction. However, there are several programs at the University of Arizona, and also principles that I apply in my own classes, that may be adaptable in other classrooms. Assessment of K--12 students' learning supports the use of inquiry-based science instruction. This approach can be incorporated in college classes. Modeling proven and productive teaching methods for the future teachers provides far more than ``just the facts,'' and all students gain from the inquiry approach. Providing authentic research opportunities employs an inquiry-based approach. Reading (outside the textbook) and writing provide feedback to students with poor writing and critical thinking skills. Using peer tutors and an instant messaging hot line gives experience to the tutors and offers "comfortable" assistance to students.

  4. NASA: Data on the Web.

    ERIC Educational Resources Information Center

    Galica, Carol

    1997-01-01

    Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…

  5. Progress Report, June 1974: Reaching Out...

    ERIC Educational Resources Information Center

    Research for Better Schools, Inc., Philadelphia, PA.

    This report reviews programs of individualized instruction in the basic skills of mathematics, language arts, science, and social education as well as in new curriculums which foster the skills needed for social education as well and emotional growth. The development and operation of an experience-based model for career education is described, and…

  6. 7 CFR 3405.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., education, or technology to give expert advice on the merit of grant applications in such fields, who... least one discipline or area of the food and agricultural sciences. The definition includes a research.... (k) Food and agricultural sciences means basic, applied, and developmental research, extension, and...

  7. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  8. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  9. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    PubMed Central

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations. PMID:27486351

  10. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    PubMed

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  11. Reducing Inequities by Linking Basic Research and Political Action

    ERIC Educational Resources Information Center

    Mehan, Hugh

    2012-01-01

    In this comment, on Terri McCarty's Presidential Address, I focus on her dynamic approach to investigation that contributes to a vibrant and constructively critical exploration of the place of basic research, critical policy analysis, and activism in the anthropology of education and the social sciences more broadly.

  12. Welding. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Browning, Terry

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  13. An upcoming program for medical humanities education in Fudan University's School of Basic Medical Sciences.

    PubMed

    Liu, Ye; Cheng, Xunjia

    2017-05-23

    Ideal medical care requires professional skills as well as appropriate communication skills. However, traditional medical education in medical schools mostly emphasizes the former. To remedy this situation, medical humanities education will be incorporated into education for medical students at Fudan University. Comprehensive medical education that includes both medical skills and humanities may greatly improve medical care.

  14. Computer Databases as an Educational Tool in the Basic Sciences.

    ERIC Educational Resources Information Center

    Friedman, Charles P.; And Others

    1990-01-01

    The University of North Carolina School of Medicine developed a computer database, INQUIRER, containing scientific information in bacteriology, and then integrated the database into routine educational activities for first-year medical students in their microbiology course. (Author/MLW)

  15. Pharmacology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  16. A research project to develop and evaluate a technical education component on materials technology for orientation to space-age technology

    NASA Technical Reports Server (NTRS)

    Jacobs, J. A.

    1976-01-01

    A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.

  17. Canadian Association for the Study of Adult Education. Proceedings of the Annual Conference (3rd, Guelph, Ontario, Canada, June 8-10, 1984).

    ERIC Educational Resources Information Center

    Bartram, Peter E., Ed.

    These proceedings contain 24 papers in English and 3 papers in French: "Adult Education and the Social Sciences" (Draper); "Readability as Applied to an ABE (Adult Basic Education) Assessment Instrument" (Taylor, Wahlstrom); "Quality of Worklife: Adult Education Administrators Speak Out" (McKee, Murphy); "The…

  18. Methods and successes of New York University workshops for science graduate students and post-docs in science writing for general audiences (readers and radio listeners)

    NASA Astrophysics Data System (ADS)

    Hall, S. S.

    2012-12-01

    Scientists and science administrators often stress the importance of communication to the general public, but rarely develop educational infrastructures to achieve this goal. Since 2009, the Arthur L. Carter Journalism Institute at New York University has offered a series of basic and advanced writing workshops for graduate students and post-docs in NYU's eight scientific divisions (neuroscience, psychology, physics, biology, chemistry, mathematics, anthropology, and computer science). The basic methodology of the NYU approach will be described, along with successful examples of both written and radio work by students that have been either published or broadcast by general interest journalism outlets.

  19. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    ERIC Educational Resources Information Center

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  20. Soils. Science Education Research Unit. Working Paper 201.

    ERIC Educational Resources Information Center

    Happs, John C.

    The Learning in Science Project has adopted the view that science teaching might be improved if teachers can be given some appreciation of students' views of the world and the beliefs, expectations, and language that learners bring to new learning situations. This investigation looks at the topic of soil, one of the basic resources of New Zealand…

  1. Charlatans, Knowledge, Curriculum and Phenomenological Research. Working Papers in Distance Education, No. 5.

    ERIC Educational Resources Information Center

    Vandenberg, Donald

    Arguing that the word "knowledge" has become unfashionable, having been replaced by "science," this paper begins by positing that there are many sciences and that it is the task of basic theorist within each science to ascertain the appropriate procedures, principles, and canons of enquiry based on detailed knowledge of the…

  2. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    ERIC Educational Resources Information Center

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  3. An Attention-Grabbing Approach to Introducing Students to Argumentation in Science

    ERIC Educational Resources Information Center

    Wojdak, Jeremy M.

    2010-01-01

    Argumentation and basic logic are foundations of scientific inquiry, and thus should be foundations of science education. Students often are uninterested in formal logic, and do not understand the connection to science or society. I describe a way to engage students in the study of argumentation and to help develop student's ability to critically…

  4. Science Education Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Included is information regarding: the adaptation of microcomputer materials in physics curricula; a school-industry liaison case study involving basic electronics for teachers; the use of language in science lessons; problems in teaching image-synthesis skills; and tabulated results of a questionnaire concerning a ten-year span of organic…

  5. Accepting Evolution or Discarding Science

    ERIC Educational Resources Information Center

    Sharpes, Donald K.; Peramas, Mary M.

    2006-01-01

    Challenging basic principles of constitutional law, advocates of intelligent design are undermining educators' ability to teach evolution in their science classrooms. Because US Supreme Court rulings now prohibit creationist accounts of the origin of life in schools, arguments favoring divine intervention, known as intelligent design, have emerged…

  6. The New Environmentalist.

    ERIC Educational Resources Information Center

    Waller, Edmund

    1991-01-01

    Basic training in the earth sciences, social sciences, and visual arts is discussed as essential for the education and training of government advisers on physical planning matters. Urban planning examples are presented that highlight the ecological factors, social influences, and aesthetic values which need to be considered when dealing with…

  7. Program evaluation of an Integrated Basic Science Medical Curriculum in Shiraz Medical School, Using CIPP Evaluation Model

    PubMed Central

    ROOHOLAMINI, AZADEH; AMINI, MITRA; BAZRAFKAN, LEILA; DEHGHANI, MOHAMMAD REZA; ESMAEILZADEH, ZOHREH; NABEIEI, PARISA; REZAEE, RITA; KOJURI, JAVAD

    2017-01-01

    Introduction: In recent years curriculum reform and integration was done in many medical schools. The integrated curriculum is a popular concept all over the world. In Shiraz medical school, the reform was initiated by stablishing the horizontal basic science integration model and Early Clinical Exposure (ECE) for undergraduate medical education. The purpose of this study was to provide the required data for the program evaluation of this curriculum for undergraduate medical students, using CIPP program evaluation model. Methods: This study is an analytic descriptive and triangulation mixed method study which was carried out in Shiraz Medical School in 2012, based on the views of professors of basic sciences courses and first and second year medical students. The study evaluated the quality of the relationship between basic sciences and clinical courses and the method of presenting such courses based on the Context, Input, Process and Product (CIPP) model. The tools for collecting data, both quantitatively and qualitatively, were some questionnaires, content analysis of portfolios, semi- structured interview and brain storming sessions. For quantitative data analysis, SPSS software, version 14, was used. Results: In the context evaluation by modified DREEM questionnaire, 77.75%of the students believed that this educational system encourages them to actively participate in classes. Course schedule and atmosphere of class were reported suitable by 87.81% and 83.86% of students. In input domain that was measured by a researcher made questionnaire, the facilities for education were acceptable except for shortage of cadavers. In process evaluation, the quality of integrated modules presentation and Early Clinical Exposure (ECE) was good from the students’ viewpoint. In product evaluation, students’ brain storming, students’ portfolio and semi-structured interview with faculties were done, showing some positive aspects of integration and some areas that need improvement. Conclusion: The main advantage of assessing an educational program based on CIPP evaluation model is that the context, input, process and product of the program are viewed and evaluated systematically. This will help the educational authorities to make proper decisions based on the weaknesses and strengths of the program on its continuation, cessation and revision. Based on the results of this study, the integrated basic sciences course for undergraduate medical students in Shiraz Medical School is at a desirable level. However, attempts to improve or reform some sections and continual evaluation of the program and its accreditation seem to be necessary. PMID:28761888

  8. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo

    2016-07-01

    This project aims to develop interdisciplinary actions, articulated and convergence in the field of education, dissemination and popularization of science and technology in Brasilia-DF, the Federal District of Brazil. These actions are also been carried out at DF surroundings areas. Since 2015 linked convergent actions are focused on the development of space science and astronomy teaching with hands on experimental activities. Workshops, short basic astronomy courses, expositions and planetarium show are been carried out by a team of professors, graduate and under graduate students from University of Brasilia- UnB. At the same time upgrade actions are been done in order to modernize The Luiz Cruls Astronomical Observatory located at the far campus of UnB, named Fazenda Água Limpa. It is now a Center for research and space science dissemination and popularization not only for students but also for the whole community of Brasilia. Working toghether with the Physics Institute of UnB we have the recently created Museum of Science and Technology of Brasilia, also located at the UnB campus. The Museum is responsible for contac with schools and Brasilia community and for the organization of the activities of the Science on the School Project. Science on the School is an educational, scientific and cultural proposal approved and financed by the brazillian national research council (CNPq) and by the Science and Technology Reseach Foundation of Brasilia. Besides science dissemination for the brazillian society the project is also developing theoretical and experimental research in the area of Space Science and Astronomy. The project also aim to transform the Museum in a strong Science Education Center for the Brazil central region population, It is going to be a cultural environment and leisure for the Federal District and surrounding areas of Brasilia. In this work we will describe the coordinate actions of The Luiz Cruls Astronomical Observatory the Physics Institute of UnB and of the Museum of Science and Technology of Brasilia destinate to converge public communication of science. In their facilities will be possible to conceive, plan, develop, encourage and support scientific activities (playful and interactive) in schools and communities in the Federal District and surrounding areas of Brasilia, focusing on different aspects of science and technology and their relationship with society through investigative practices involving, particularly students and teachers of basic education and the community in General. The project will act even in the promotion of events, courses, workshops and scientific-cultural experiences, production of radio and TV programs aimed at promoting initiation into Science and environmental awareness on basic education.

  9. Basic science curriculums in nuclear cardiology and cardiovascular imaging: evolving and emerging concepts.

    PubMed

    Van Decker, William A; Villafana, Theodore

    2008-01-01

    The teaching of basic science with regard to physics, instrumentation, and radiation safety has been part of nuclear cardiology training since its inception. Although there are clear educational and quality rationale for such, regulations associated with the Nuclear Regulatory Commission Subpart J of old 10 CFR section 35 (Title 10, Code of Federal Regulations, Part 35) from the 1960s mandated such prescriptive instruction. Cardiovascular fellowship training programs now have a new opportunity to rethink their basic science imaging curriculums with the era of "revised 10 CFR section 35" and the growing implementation of multimodality imaging training and expertise. This review focuses on the history and the why, what, and how of such a curriculum arising in one city and suggests examples of future implementation in other locations.

  10. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    PubMed

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  11. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between theory and practice. Along with its usage in graduate and postgraduate education, "Climate" is used as a framework for a developed basic information course on climate change for common public. In this course basic concepts and problems of modern climate change and its possible consequences are described for non-specialists. The course will also include links to relevant information resources on topical issues of Earth Sciences and a number of case studies, which are carried out for a selected region to consolidate the received knowledge.

  12. Positions Toward Science Studies in Medicine Among University Graduates of Medicine and the Teenaged Participants of the "Medical Systems" Study Program

    NASA Astrophysics Data System (ADS)

    Ben-Zvi-Assaraf, Orit; Even-Israel, Chava

    2011-08-01

    The "Medical Systems" program was designed to introduce high school students to the world of advanced medicine. Its premise was to use an applied scientific discipline like medicine to encourage high-school students' interest in basic science. This study compares the teen-aged graduates of "Medical Systems" with fourth and fifth-year medical students. It aims to identify the attitudes of these two groups towards medical science and basic sciences in medicine. The population included 94 graduates of "Medical Systems" from schools throughout Israel, who had also completed an advanced-level course in a basic science (biology, chemistry or physics), and 96 medical students from different Israeli universities. The students' attitudes were measured using West et al.'s questionnaire (Med Educ 16(4):188-191, 1982), which assesses both the attitude of the participants towards basic science knowledge, and their attitude towards their learning experience in medical school. Nine participants from each group were also interviewed using a semi-structured interview protocol. The results showed essential differences in the attitudes of the two groups. The high school students consider scientific knowledge far more essential for a physician than do the medical students, who also showed a far lower estimation of the effectiveness of their science studies.

  13. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    PubMed

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Examination of the relationship between preservice science teachers' scientific reasoning and problem solving skills on basic mechanics

    NASA Astrophysics Data System (ADS)

    Yuksel, Ibrahim; Ates, Salih

    2018-02-01

    The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.

  15. Current Status and Issues in Basic Pharmaceutical Education.

    PubMed

    Yasuhara, Tomohisa

    2017-01-01

    Basic research in pharmaceutical sciences has a long and successful history. Researchers in this field have long given prime importance to the knowledge they have gained through their pharmaceutical education. The transition of pharmacy education to a 6-year course term has not only extended its duration but also placed more emphasis on practical clinical education. The School Education Act (in article 87, second paragraph) determines that "the term of the course, whose main purpose is to cultivate practical ability in clinical pharmacy, shall be six years" (excerpt). The 6-year pharmacy education is an exception to the general 4-year university term determined by the School Education Act. Therefore, the purpose of the 6-year course in pharmacy is clearly proscribed. This is true of the basic course in pharmaceutical education as well; hence, the basic course must be oriented toward developing "practical ability in clinical" education, too. The 6-year pharmacy course, starting from practice (Do), has evolved with the development of a syllabus that includes a model core curriculum (Plan). Furthermore, improvement in the course can be seen by the promoted development of faculty (Act). Now, evidence-based education research will be introduced (Check). This is how the Plan-Do-Check-Act cycle in pharmaceutical education is expected to work. Currently, pedagogy research in pharmacy education has just begun, so it is difficult to evaluate at this time whether basic pharmaceutical education does in fact contribute to enhancing the "practical clinical ability" component of pharmaceutical education.

  16. Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum.

    PubMed

    Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M

    2017-01-01

    There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.

  17. Learning Theories 101: Application to Everyday Teaching and Scholarship

    ERIC Educational Resources Information Center

    Kay, Denise; Kibble, Jonathan

    2016-01-01

    Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the…

  18. NASSP Curriculum Report, Vol. 7, No. 1. Education for Citizenship.

    ERIC Educational Resources Information Center

    Larkin, Brian; Pannwitt, Barbara

    This issue examines the trend of citizenship education in the public schools. Four basic approaches are described. The content approach is based on the belief that knowledge gained from certain courses will aid students in rational decision making and in being responsible citizens. It emphasizes law-related education, political science, and…

  19. Interprofessional Education in Gross Anatomy: Experience with First-Year Medical and Physical Therapy Students at Mayo Clinic

    ERIC Educational Resources Information Center

    Hamilton, Steven S.; Yuan, Brandon J.; Lachman, Nirusha; Hellyer, Nathan J.; Krause, David A.; Hollman, John H.; Youdas, James W.; Pawlina, Wojciech

    2008-01-01

    Interprofessional education (IPE) in clinical practice is believed to improve outcomes in health care delivery. Integrating teaching and learning objectives through cross discipline student interaction in basic sciences has the potential to initiate interprofessional collaboration at the early stages of health care education. Student attitudes and…

  20. Teaching about Hazardous and Toxic Materials. Teaching Activities in Environmental Education Series.

    ERIC Educational Resources Information Center

    Disinger, John F.; Lisowski, Marylin

    Designed to assist practitioners of both formal and non-formal settings, this 18th volume of the ERIC Clearinghouse for Science, Mathematics, and Environmental Education's Teaching Activities in Environmental Education series specifically focuses on the theme of hazardous and toxic materials. Initially, basic environmental concepts that deal with…

  1. Mathematics and Science Instruction in Southern California.

    ERIC Educational Resources Information Center

    Myers, Edwin C.; Mineo, R. James

    To provide information to support school district considerations of changes in mathematics and science instruction, three issues were considered: (1) the adequacy of the California Basic Education Data System (CBEDS) for supporting an analysis of subject matter instruction; (2) the distribution of teaching effort and student enrollments among…

  2. Bush Pledges Increased Science Research and Education Funding

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-02-01

    In his 31 January State of the Union address, U.S. President George W. Bush announced two new initiatives aimed at galvanizing scientific research and education. For the American Competitiveness Initiative, Bush proposes to ``double the federal commitment to the most critical basic research programs in the physical sciences in the next 10 years. . .[and to] make permanent the research and development tax credit to encourage bolder private-sector initiative in technology.''

  3. The Impact of Research on the Future of Dental Education: How Research and Innovation Shape Dental Education and the Dental Profession.

    PubMed

    Slavkin, Harold C

    2017-09-01

    Scientific inquiry and discovery are the fuel for education, research, technology, and health care in all the health professions: dentistry, medicine, nursing, pharmacy, and allied health sciences. The progression of discoveries from basic or fundamental to clinical research is followed by the progression from clinical to implementation and improved health outcomes and processes. Generally, implementation science is the scientific study of methods to promote the systematic uptake of research findings (e.g., basic, translational, behavioral, socioeconomic, and clinical) as well as other related evidence-based practices into standards of care, thereby improving the quality, effectiveness, and cost benefits of health care services. There is little doubt that science has and will continue to provide the essential fuel for innovations that lead to new and improved technologies for risk assessment, prevention, diagnosis, treatments and therapeutics, and implementation for addressing oral and craniofacial diseases and disorders. The history of the U.S. dental profession reviewed in this article gives testimony to the continued need for investments in scientific inquiry that accelerate progress in comprehensive health care for all people. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  4. Educational process in modern climatology within the web-GIS platform "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.

  5. Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.

    PubMed

    Azevedo, Maria-Manuel; Duarte, Sofia

    2018-01-01

    Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.

  6. Automotive Mechanics. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Brown, Desmond

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  7. Design Drafting. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Sharkey, Jeff

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  8. Workshop on Science and Technology Education and Productive Work. Final Report.

    ERIC Educational Resources Information Center

    Ministry of Education, Addis Ababa (Ethiopia).

    This workshop was organized as a contribution to Ethiopia's human resettlement activities necessitated by the recurrent drought. The objectives of the workshop were to: (1) appraise the relevance of basic rural technologies and identify modalities of their application; (2) develop materials in the fields of biotechnology and basic technology; (3)…

  9. Marine Trades. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Abbott, Alan

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  10. Fashion Merchandising. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Williams, Edwina

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  11. Food Services. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Vastano, Josephine; And Others

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  12. Recreational Vehicle Maintenance and Repair. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Felice, Michael

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  13. Commercial Building Construction (Masonry). COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Keck, Robert

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  14. Teaching Skills to Promote Clinical Reasoning in Early Basic Science Courses

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo Enrique; Morales-Gomez, Jesus Alberto; Morquecho-Espinoza, Orlando; Hinojosa-Amaya, Jose Miguel; Villarreal-Silva, Eliud Enrique; Garcia-Rodriguez, Maria de los Angeles; Guzman-Lopez, Santos

    2010-01-01

    Basic and superior reasoning skills are woven into the clinical reasoning process just as they are used to solve any problem. As clinical reasoning is the central competence of medical education, development of these reasoning skills should occur throughout the undergraduate medical curriculum. The authors describe here a method of teaching…

  15. Plumbing and Heating. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Mahieu, Louis

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  16. 42 CFR 410.69 - Services of a certified registered nurse anesthetist or an anesthesiologist's assistant: Basic...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Basic rule. Medicare Part B pays for anesthesia services and related care furnished by a certified... anesthesia at a level that builds on a premedical undergraduate science background. Anesthetist includes both... respect to non-physician anesthetists; (3) Has graduated from a nurse anesthesia educational program that...

  17. Air Conditioning, Refrigeration and Heating. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Hardman, Thomas

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  18. Building Trades. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Gudzak, Raymond

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; a preface; a…

  19. Auto Body Repair. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Ormsbee, Robert

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  20. Electrical Trades. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Cannone, Richard

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  1. Cosmetology/Hairstyling. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Romano, Marie

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  2. Automotive and Diesel Engine Rebuilding. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Salvatore, Gerald

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  3. Custom Cabinetmaking. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Holmes, Kenneth

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  4. Medical Office Receptionist/Assistant. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Gorman, Dolores

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  5. Landscaping and Greenhouse Technology. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Kucharewski, Dennis

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  6. Child Care Aide. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Moore, Pamela Hullen

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  7. Dental Assisting. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Mattia, Nancy

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  8. The Complementary Teaching of Physics and Music Acoustics - The Science of Sound

    NASA Astrophysics Data System (ADS)

    Milicevic, D.; Markusev, D.; Nesic, Lj.; Djordjevic, G.

    2007-04-01

    The results of some up-to-date solutions referring to teaching physics as a part of educational reform in Serbia, can be negative in a great deal to content and scope of teaching process which has existed so far. Basic course and characteristics of those solutions mean decreasing the number of classes of full-time physics teaching. Such tendencies are unjustified for many reasons, and the basic one is that physics is the foundation of understanding not only natural science, but also art and music (optics and acoustics respectively) and physical education (statics and dynamics). As a result of all this, there is necessity to have natural lessons of physics with the teachers of subjects such as music, art and physical education. The main objective of it is to conclude one good quality teaching cycle, and make student acquire new as well as revise their knowledge in different subjects.

  9. Space Sciences Education and Outreach Project of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space sciences educational activity of Moscow State University is a non-profit project and is open for all interested parties. “Space schools” for university teachers and students were held in the autumn of 2004 and 2005. The main objective of those schools was to attract interest in space research. Tutors and students who took part in these schools had never before been involved in the space sciences. The idea behind these schools was to join forces: Moscow State University scientists gave space science lectures, students from different universities (Ulianovsk, Samara, Kostroma and other Russian universities) performed the work (prepared educational material) and their university teachers managed the students. After participating in these schools, both students and teachers started to study space science related topics emphasizing the success of these schools. It is important for the educational community to understand what skills future space scientists and space industry employees must be equipped with. In the next years, emphasis is to be placed on space science education at all educational levels and better communication should be practiced between universities and industry.

  10. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    PubMed

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. An Informed Approach to Improving Quantitative Literacy and Mitigating Math Anxiety in Undergraduates Through Introductory Science Courses

    NASA Astrophysics Data System (ADS)

    Follette, K.; McCarthy, D.

    2012-08-01

    Current trends in the teaching of high school and college science avoid numerical engagement because nearly all students lack basic arithmetic skills and experience anxiety when encountering numbers. Nevertheless, such skills are essential to science and vital to becoming savvy consumers, citizens capable of recognizing pseudoscience, and discerning interpreters of statistics in ever-present polls, studies, and surveys in which our society is awash. Can a general-education collegiate course motivate students to value numeracy and to improve their quantitative skills in what may well be their final opportunity in formal education? We present a tool to assess whether skills in numeracy/quantitative literacy can be fostered and improved in college students through the vehicle of non-major introductory courses in astronomy. Initial classroom applications define the magnitude of this problem and indicate that significant improvements are possible. Based on these initial results we offer this tool online and hope to collaborate with other educators, both formal and informal, to develop effective mechanisms for encouraging all students to value and improve their skills in basic numeracy.

  12. Consumer Citizenship Curriculum Guides for Social Studies, English, Science, Mathematics.

    ERIC Educational Resources Information Center

    MacKenzie, Louise; Smith, Alice

    These four consumer citizenship curriculum guides for social studies, English, science, and mathematics incorporate consumer education into these subject matter areas in grades 8-12. Each guide is organized around 10 main component/goals. They are basic economics in the marketplace, credit, consumer law/protection, banking skills, comparison…

  13. 77 FR 43849 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... applications. Place: Hilton Garden Inn Durham Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact... Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  14. Sociotechnical Systems Design: An Engineering Program for Social-Science Students.

    ERIC Educational Resources Information Center

    Harrison, Howard L.; And Others

    The University of Wisconsin College of Engineering's Sociotechnical Systems Design (STSD) Program, which was developed to provide social science students with systems concepts and basic technological skills necessary for attacking these problems, is considered. The need for such professionals, current educational responses, the organization of the…

  15. Science Journalism

    ERIC Educational Resources Information Center

    Polman, Joseph; Newman, Alan; Farrar, Cathy; Saul, E. Wendy

    2012-01-01

    Much of the National Science Education Standards (NRC 1996), aside from the inquiry and teaching sections, focus on content. The authors' call is instead to build standards that focus on what students need to be scientifically literate in 10 or 15 years. Although a basic understanding of important scientific concepts and an understanding of how…

  16. Funding the Foundation: Basic Science at the Crossroads

    ERIC Educational Resources Information Center

    Hughes, Kent, Ed.; Sha, Lynn, Ed.

    2006-01-01

    These proceedings from a conference with leading experts examines the hugely successful American model of technological and scientific innovation. They stress the critical importance of government funding of physical science for the realms of national security, education, and industry. Kent Hughes and Frederick M. Bush, both of the Woodrow Wilson…

  17. A Content-Oriented Model for Science Exhibit Engineering

    ERIC Educational Resources Information Center

    Achiam, Marianne Foss

    2013-01-01

    Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful in prompting visitors to carry out intended…

  18. Developing an Assessment Program for a University Health Sciences Major.

    ERIC Educational Resources Information Center

    Travis, H. Richard

    1996-01-01

    Reviews the procedures used by James Madison University (Virginia) to develop an assessment plan for the Health Sciences major. The assessment program included cognitive areas, basic competencies of entry-level health educators, student teaching, alumni surveys, and information literacy. The assessment program was reviewed by outside peer…

  19. Urban science education: examining current issues through a historical lens

    NASA Astrophysics Data System (ADS)

    McLaughlin, Cheryl A.

    2014-12-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.

  20. It's Elementary, er, Basic, Dr. Watson

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2010-01-01

    The National Assessment Governing Board (NAGB) has stated that "the overall achievement goal for American students is performance that qualifies at the Proficient level or higher" (Loomis & Bourke, 2001, p. 2). The Institute for Educational Sciences of the U.S. Department of Education went even further, "The Proficient level…

  1. Resonance and Radio

    ERIC Educational Resources Information Center

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  2. Hands-on, online, and workshop-based K-12 weather and climate education resources from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.

    2009-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  3. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy

    ERIC Educational Resources Information Center

    Okulu, Hasan Zuhtu; Oguz-Unver, Ayse

    2015-01-01

    From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…

  4. Teaching Future Teachers Basic Astronomy Concepts--Seasonal Changes--at a Time of Reform in Science Education

    ERIC Educational Resources Information Center

    Trumper, Ricardo

    2006-01-01

    Bearing in mind students' misconceptions about basic concepts in astronomy, the present study conducted a series of constructivist activities aimed at changing future elementary and junior high school teachers' conceptions about the cause of seasonal changes, and several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…

  5. New Genetics

    MedlinePlus

    ... Century-Old Evolutionary Puzzle Computing Genetics Model Organisms RNA Interference The New Genetics is a science education ... the basics of DNA and its molecular cousin RNA, and new directions in genetic research. The New ...

  6. The Effectiveness of Traditional and 21st Century Teaching Tools on Students' Science Learning

    ERIC Educational Resources Information Center

    Bellflower, Julie V.

    2012-01-01

    Any student seeking a high school diploma from the public school system in one U.S. state must pass the state's high school graduation test. In 2009, only 88% of students at one high school in the state met the basic proficiency requirements on the science portion of the test. Because improved science education has been identified as an explicit…

  7. Opportunities to Learn in School and at Home: How Can They Predict Students' Understanding of Basic Science Concepts and Principles?

    ERIC Educational Resources Information Center

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-01-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science…

  8. Does Gender Inequality Influence Interest in Pursuing a Career in Science or Mathematics Teaching?

    ERIC Educational Resources Information Center

    Morales, Marie Paz E.; Avilla, Ruel A.; Espinosa, Allen A.

    2016-01-01

    The present study explored gender inequality in K to 12 basic education, based on the experiences of first year pre-service science and mathematics teachers. It also determined if pre-service teachers' pursuit of a career in science or mathematics teaching was related to gender influences. A survey instrument was used to gather data for the study.…

  9. The Future of the Pharmaceutical Sciences and Graduate Education: Recommendations from the AACP Graduate Education Special Interest Group

    PubMed Central

    Gobburu, Jogarao; O’Barr, Stephen; Shah, Kumar; Huber, Jason; Weiner, Daniel

    2013-01-01

    Despite pharma's recent sea change in approach to drug discovery and development, U.S. pharmaceutical sciences graduate programs are currently maintaining traditional methods for master's and doctoral student education. The literature on graduate education in the biomedical sciences has long been advocating educating students to hone soft skills like communication and teamwork, in addition to maintaining excellent basic skills in research. However, recommendations to date have not taken into account the future trends in the pharmaceutical industry. The AACP Graduate Education Special Interest Group has completed a literature survey of the trends in the pharmaceutical industry and graduate education in order to determine whether our graduate programs are strategically positioned to prepare our graduates for successful careers in the next few decades. We recommend that our pharmaceutical sciences graduate programs take a proactive leadership role in meeting the needs of our future graduates and employers. Our graduate programs should bring to education the innovation and collaboration that our industry also requires to be successful and relevant in this century. PMID:23716757

  10. The future of the pharmaceutical sciences and graduate education: recommendations from the AACP Graduate Education Special Interest Group.

    PubMed

    Wu-Pong, Susanna; Gobburu, Jogarao; O'Barr, Stephen; Shah, Kumar; Huber, Jason; Weiner, Daniel

    2013-05-13

    Despite pharma's recent sea change in approach to drug discovery and development, U.S. pharmaceutical sciences graduate programs are currently maintaining traditional methods for master's and doctoral student education. The literature on graduate education in the biomedical sciences has long been advocating educating students to hone soft skills like communication and teamwork, in addition to maintaining excellent basic skills in research. However, recommendations to date have not taken into account the future trends in the pharmaceutical industry. The AACP Graduate Education Special Interest Group has completed a literature survey of the trends in the pharmaceutical industry and graduate education in order to determine whether our graduate programs are strategically positioned to prepare our graduates for successful careers in the next few decades. We recommend that our pharmaceutical sciences graduate programs take a proactive leadership role in meeting the needs of our future graduates and employers. Our graduate programs should bring to education the innovation and collaboration that our industry also requires to be successful and relevant in this century.

  11. Educational Software for First Order Logic Semantics in Introductory Logic Courses

    ERIC Educational Resources Information Center

    Mauco, María Virginia; Ferrante, Enzo; Felice, Laura

    2014-01-01

    Basic courses on logic are common in most computer science curricula. Students often have difficulties in handling formalisms and getting familiar with them. Educational software helps to motivate and improve the teaching-learning processes. Therefore, incorporating these kinds of tools becomes important, because they contribute to gaining…

  12. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  13. Synergetics in Science and Education

    ERIC Educational Resources Information Center

    Steklova, I.

    2004-01-01

    The natural crisis in contemporary culture, conditioned by the emergence of a new cultural paradigm, makes it essential to look for methodological and theoretical foundations of a possible new scientific paradigm, one closely linked to issues in education. In this article, the author presents basic conditions for the self-organization and…

  14. Anatomy Education Faces Challenges in Pakistan

    ERIC Educational Resources Information Center

    Memon, Ismail K.

    2009-01-01

    Anatomy education in Pakistan is facing many of the same challenges as in other parts of the world. Roughly, a decade ago, all medical and dental colleges in Pakistan emphasized anatomy as a core basic discipline within a traditional medical science curriculum. Now institutions are adopting problem based learning (PBL) teaching philosophies, and…

  15. Nutrition Education in the Medical Curriculum.

    ERIC Educational Resources Information Center

    Cardullo, Alice C.

    1982-01-01

    It is important that nutrition education be made part of the regular and postgraduate curriculum in all medical schools. The medical student should be provided training in nutrition and dietetics, both as part of the basic science syllabus and of the clinical aspects as they apply to disease states. (MSE)

  16. Interprofessional Education and the Basic Sciences: Rationale and Outcomes

    ERIC Educational Resources Information Center

    Thistlethwaite, Jill E.

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on…

  17. The Wisdom of Scientific Inquiry on Education

    ERIC Educational Resources Information Center

    Glass, Gene V.

    1972-01-01

    Under current conditions evaluative research based on curriculum products of master teachers using basic knowledge from the social and natural sciences is more likely to contribute to the improvement of educational practice than is an attempt to build theories of teaching based upon rapidly changing philosophy and technique. (AL)

  18. How to Assess Student Performance in Science: Going beyond Multiple-Choice Tests. Third Edition

    ERIC Educational Resources Information Center

    Butler, Susan M.; McColskey, Wendy; O'Sullivan, Rita

    2005-01-01

    Educational systems promote student growth in a variety of dimensions. Basic content knowledge can be effectively assessed with multiple-choice and completion tests. However educational reforms have become more concerned with higher-order cognitive dimensions (problem-solving, creativity), social dimensions (communication skills, ability to work…

  19. Faking It Won't Make It in Science

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2004-01-01

    For years, educators and researchers have seen teachers at all grade levels attempt to upgrade their grasp of physics, chemistry, and biology, from basic theories to complex material. Now, the pressure on schools and instructors to improve science instruction is likely to intensify, with approaching federal requirements on states to test students…

  20. Math/Science/Technology Projects for the Technology Teacher. A Professional Monograph.

    ERIC Educational Resources Information Center

    Maley, Donald L., Ed.

    The underlying development behind this monograph grew out of a series of 14 panels (20 inches by 28 inches) illustrating the basic linkages between existing industrial arts/technology education activities and mathematics or science principles or societal and environmental impacts. Specifically, each panel contained a full-color photograph of a…

  1. Creatures in the Classroom: Preservice Teacher Beliefs about Fantastic Beasts, Magic, Extraterrestrials, Evolution and Creationism

    ERIC Educational Resources Information Center

    Losh, Susan Carol; Nzekwe, Brandon

    2011-01-01

    Faculty have long expressed concern about pseudoscience belief among students. Most US research on such beliefs examines evolution-creation issues among liberal arts students, the general public, and occasionally science educators. Because of their future influence on youth, we examined basic science knowledge and several pseudoscience beliefs…

  2. Safety in Science for Primary Schools. 1st Edition.

    ERIC Educational Resources Information Center

    Association for Science Education, Cambridge (England).

    This packet of teacher education materials is based on the publication "Be Safe!" and is intended for those teaching science to children ages 4 to 12. The pack contains INSET materials that supplement a safety exhibition contained in the second edition of "Be Safe!." Five basic activities include instructions for training…

  3. Sums and Products of Jointly Distributed Random Variables: A Simplified Approach

    ERIC Educational Resources Information Center

    Stein, Sheldon H.

    2005-01-01

    Three basic theorems concerning expected values and variances of sums and products of random variables play an important role in mathematical statistics and its applications in education, business, the social sciences, and the natural sciences. A solid understanding of these theorems requires that students be familiar with the proofs of these…

  4. Sustainable Energy for University Science Majors: Developing Guidelines for Educators

    ERIC Educational Resources Information Center

    Langbeheim, Elon; Rez, Peter

    2017-01-01

    This paper describes the basic tenets of a sustainable energy course for university science majors. First, it outlines the three core components of the course: (1) The scientific evidence for the connection between climate change and energy usage; (2) An analysis of the capacity and environmental impact of various renewable and traditional energy…

  5. Using Excel in Teacher Education for Sustainability

    ERIC Educational Resources Information Center

    Aydin, Serhat

    2016-01-01

    In this study, the feasibility of using Excel software in teaching whole Basic Statistics Course and its influence on the attitudes of pre-service science teachers towards statistics were investigated. One hundred and two pre-service science teachers in their second year participated in the study. The data were collected from the prospective…

  6. Unit: Life in Freshwater, Inspection Set, National Trials.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This verion of a unit written by the Australian Science Education project, which is preparing materials for science instruction in grades seven through ten, is available for national testing. It contains two student books, the first providing instruction for six activities considered basic to an understanding of the aquatic habitat, and reading on…

  7. What Type of Faculty and Training Are Required for a Successful Basic Sciences Program?

    ERIC Educational Resources Information Center

    Adams, Anthony

    1992-01-01

    Science education for optometry must go beyond therapeutic patient management to more preparation for biologically based care. Optometry faculty should be involved in research driven by specific patient problems and should prepare professionals to address patient quality-of-life and daily living needs. Interdisciplinary collaboration is needed.…

  8. How neuroscience is taught to North American dental students: results of the Basic Science Survey Series.

    PubMed

    Gould, Douglas J; Clarkson, Mackenzie J; Hutchins, Bob; Lambert, H Wayne

    2014-03-01

    The purpose of this study was to determine how North American dental students are taught neuroscience during their preclinical dental education. This survey represents one part of a larger research project, the Basic Science Survey Series for Dentistry, which covers all of the biomedical science coursework required of preclinical students in North American dental schools. Members of the Section on Anatomical Sciences of the American Dental Education Association assembled, distributed, and analyzed the neuroscience survey, which had a 98.5 percent response from course directors of the sixty-seven North American dental schools. The eighteen-item instrument collected demographic data on the course directors, information on the content in each course, and information on how neuroscience content is presented. Findings indicate that 1) most neuroscience instruction is conducted by non-dental school faculty members; 2) large content variability exists between programs; and 3) an increase in didactic instruction, integrated curricula, and use of computer-aided instruction is occurring. It is anticipated that the information derived from the survey will help guide neuroscience curricula in dental schools and aid in identifying appropriate content.

  9. [Basic science and applied science].

    PubMed

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  10. Parliamentary Hearings "On the Conception of Reforming the System of Education of the Russian Federation" (20 January 1998).

    ERIC Educational Resources Information Center

    Russian Education and Society, 1998

    1998-01-01

    Provides the discussion from the parliamentary hearings of the Russian Committee of the State Duma for Education and Science, held at Moscow State University, that focused on the draft of a plan to change some of the basic elements of Russian education. Offers recommendations of the parliamentary hearings and three letters. (CMK)

  11. Teaching the nature of physics through art: a new art of teaching

    NASA Astrophysics Data System (ADS)

    Colletti, Leonardo

    2018-01-01

    Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics courses in secondary schools, in order to convey, in a memorable way, some basic features of physics methodology. For an understanding of the overall characteristics of science should be regarded as one of the crucial goals of physics education. As a part of a general education, the forgetting of physics concepts may be acceptable, but failing to grasp the very nature of science is not. Images may help in conveying the nature of science, especially for humanities-oriented students. Moreover, famous paintings, with their familiarity and availability, are a valid tool in facilitating this.

  12. On the problem of making science attractive for women and minorities: An annotated bibliography

    NASA Astrophysics Data System (ADS)

    Yarrison-Rice, Jan M.

    1995-03-01

    How can educators assess and address the lack of interest exhibited by underrepresented youth in science? What strategies can be employed to recruit and retain these young people? Along with a bibliography, the author provides the reader with a brief summary of 20 notable works in the field of recruitment and retention of underrepresented students in math and science. Although highlighted retention and intervention programs reported herein are targeted at young women in particular, many of the suggested strategies are applicable to all students regardless of race, gender, or socio-economic background. It provides scientists who have an interest in science education with basic literature addressing this topic.

  13. Science ethics education part II: changes in attitude toward scientific fraud among medical researchers after a short course in science ethics.

    PubMed

    Vuckovic-Dekic, L; Gavrilovic, D; Kezic, I; Bogdanovic, G; Brkic, S

    2012-01-01

    To determine the impact of the short science ethics courses on the knowledge of basic principles of responsible conduct of research (RCR), and on the attitude toward scientific fraud among young biomedical researchers. A total of 361 attendees of the course on science ethics answered a specially designed anonymous multiple- choice questionnaire before and after a one-day course in science ethics. The educational course consisted of 10 lectures: 1) Good scientific practice - basic principles; 2) Publication ethics; 3) Scientific fraud - fabrication, falsification, plagiarism; 4) Conflict of interests; 5) Underpublishing; 6) Mentorship; 7) Authorship; 8) Coauthorship; 9) False authorship; 10) Good scientific practice - ethical codex of science. In comparison to their answers before the course, a significantly higher (p<0.001) number of students qualified their knowledge of science ethics as sufficient after the course was completed. That the wrongdoers deserve severe punishment for all types of scientific fraud, including false authorship, thought significantly (p<0.001) more attendees than before the course, while notably fewer attendees (p<0.001) would give or accept undeserved authorship Even a short course in science ethics had a great impact on the attendees, enlarging their knowledge of responsible conduct of research and changing their previous, somewhat opportunistic, behavior regarding the reluctance to react publicly and punish the wrongdoers.

  14. Contexts, concepts and cognition: principles for the transfer of basic science knowledge.

    PubMed

    Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey

    2017-02-01

    Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise conceptual structure. This means teaching must focus on conserved basic science knowledge and de-emphasise superficial features. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  15. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Taylor, P. L.; Lee, R. L.

    2000-10-01

    The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.

  16. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  17. Acquisition of Innovative and Entrepreneurial Skills in Basic Science Education for Job Creation in Nigeria

    ERIC Educational Resources Information Center

    Mbanefo, Maryrose Chinwe; Eboka, Obiajulu C.

    2017-01-01

    Innovative and entrepreneurial skill acquisition in Nigeria entails focusing on what should be done to bridge the gap between the school and labor market, where the learner will work after graduation, so as to be self-reliant in the society. Specifically, the study determined: The innovative and entrepreneurial skills needed in basic science…

  18. Teaching Future Teachers Basic Astronomy Concepts--Sun-Earth-Moon Relative Movements--at a Time of Reform in Science Education

    ERIC Educational Resources Information Center

    Trumper, Ricardo

    2006-01-01

    In view of students' alternative conceptions about basic concepts in astronomy, we conducted a series of constructivist activities with future elementary and junior high school teachers aimed at changing their conceptions about the cause of seasonal changes, and of several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…

  19. Applying Metacognition Through Patient Encounters and Illness Scripts to Create a Conceptual Framework for Basic Science Integration, Storage, and Retrieval.

    PubMed

    Hennrikus, Eileen F; Skolka, Michael P; Hennrikus, Nicholas

    2018-01-01

    Medical school curriculum continues to search for methods to develop a conceptual educational framework that promotes the storage, retrieval, transfer, and application of basic science to the human experience. To achieve this goal, we propose a metacognitive approach that integrates basic science with the humanistic and health system aspects of medical education. During the week, via problem-based learning and lectures, first-year medical students were taught the basic science underlying a disease. Each Friday, a patient with the disease spoke to the class. Students then wrote illness scripts, which required them to metacognitively reflect not only on disease pathophysiology, complications, and treatments but also on the humanistic and health system issues revealed during the patient encounter. Evaluation of the intervention was conducted by measuring results on course exams and national board exams and analyzing free responses on the illness scripts and student course feedback. The course exams and National Board of Medical Examiners questions were divided into 3 categories: content covered in lecture, problem-based learning, or patient + illness script. Comparisons were made using Student t -test. Free responses were inductively analyzed using grounded theory methodology. This curricular intervention was implemented during the first 13-week basic science course of medical school. The main objective of the course, Scientific Principles of Medicine, is to lay the scientific foundation for subsequent organ system courses. A total of 150 students were enrolled each year. We evaluated this intervention over 2 years, totaling 300 students. Students scored significantly higher on illness script content compared to lecture content on the course exams (mean difference = 11.1, P  = .006) and national board exams given in December (mean difference = 21.8, P  = .0002) and June (mean difference = 12.7, P  = .016). Themes extracted from students' free responses included the following: relevance of basic science, humanistic themes of empathy, resilience, and the doctor-patient relationship, and systems themes of cost, barriers to care, and support systems. A metacognitive approach to learning through the use of patient encounters and illness script reflections creates stronger conceptual frameworks for students to integrate, store, retain, and retrieve knowledge.

  20. Open Science: a first step towards Science Communication

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  1. Mapping and Auditing Information and Communication Technologies in Library and Information Science Education in Africa: A Review of the Literature

    ERIC Educational Resources Information Center

    Minishi-Majanja, Mabel K.

    2003-01-01

    Information and communication technologies (ICTs) have become basic ingredients of, and competitive tools in, the information-intensive tertiary/higher education sector. Their increased and specialised use in teaching and learning, research, academic administration, institutional management and information provision translates into greater access…

  2. Agriscience Education for the Middle School. Instructional Units. Grade 6: Introduction to Agriscience.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    Designed to supplement the Agriscience Education for the Middle School curriculum guide, this instructional packet provides lessons to enable agriscience teachers to bring basic science concepts into the classroom through practical, hands-on activities and experiments. The course is designed to develop in sixth-grade students an awareness of the…

  3. Teaching Conceptually Oriented Social Science Education Programs in the Elementary School.

    ERIC Educational Resources Information Center

    Mahlios, Marc C.

    Approaches to elementary social studies education that focus on concept and inquiry learning are outlined. The basic goal of the teacher in concept teaching is to aid the student in developing relationships among factual learning, conceptualization, and personal behavior. Learning activities should focus on the process concept (i.e., one that is…

  4. 78 FR 21118 - Agency Information Collection Activities; Submission to the Office of Management and Budget for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Universe Survey 2013-16 AGENCY: Institute of Education Sciences/National Center for Education Statistics... of Collection: Private School Universe Survey 2013-16. OMB Control Number: 1850-0641. Type of Review...: The Private School Universe Survey (PSS) is the NCES collection of basic data from the universe of...

  5. Student versus Faculty Attitudes toward the Veterinary Medical Profession and Education.

    ERIC Educational Resources Information Center

    Hoppe, Astrid; Trowald-Wigh, Gunilla

    2000-01-01

    Surveyed and interviewed first-year students and faculty in veterinary medicine at the Swedish University of Agricultural Sciences on attitudes toward education and practice. Students placed emphasis on specific knowledge and practical skills, while faculty spoke in favor of basic theory; students also wanted integrated exams. Both agreed that…

  6. Great Lakes Education Booklet, 1990-1991.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    This booklet integrates science, history, and environmental education to help students acquire a basic understanding of the importance of the Great Lakes located in the United States. The packet also contains a Great Lakes Basin resource map and a sand dune poster. These materials introduce students to a brief history of the lakes, the diversity…

  7. The Flinders experiment in medical education revisited.

    PubMed

    Geffen, L B; Birkett, D J; Alpers, J H

    The undergraduate medical curriculum of the Flinders University of South Australia is reviewed and evaluated against American recommendations for the basic education of doctors practising in the 21st century. Two previous articles in The Medical Journal of Australia describing earlier versions of the Flinders curriculum and the report on General Professional Education for the Physician of the Association of American Medical Colleges. The Flinders curriculum attempts to fully integrate the teaching of medical science and clinical disciplines. The earliest version of the curriculum emphasised horizontal integration of normal structure and function of body systems, followed by abnormalities of these systems, and finally clinical practice. The second version introduced vertical integration of basic science and clinical medicine within a body system. The present version attempts to balance the demands of horizontal and vertical integration. An important feature of all versions is the large proportion of time allowed for elective studies in most years of the course. The Flinders curriculum has been able to adapt to the changing needs of medical education because its organisation is relatively free from the constraints of departmental rivalry over resources.

  8. Computers, Education and the Library at The Bronx High School of Science.

    ERIC Educational Resources Information Center

    Nachbar, Sondra; Sussman, Valerie

    1988-01-01

    Describes the services and programs offered by the library at The Bronx High School of Science. Topics discussed include the library collection; a basic library skills mini-course for freshmen and incoming sophomores; current uses of the library's computer system; and plans to automate the library's card catalog and circulation records.…

  9. Understanding the Science of Environmental Issues: Development of a Subject Knowledge Guide for Primary Teacher Education.

    ERIC Educational Resources Information Center

    Summers, Mike; Kruger, Colin; Childs, Ann; Mant, Jenny

    2001-01-01

    Uses a questionnaire to explore understanding in practicing primary school teachers (n=170), primary trainees (n= 120), and secondary science trainees (n=88) in the areas of biodiversity, carbon cycle, ozone, and global warming. Suggests that both basic explanations and difficulties in understanding of teachers in some areas can usefully inform…

  10. Exploring the Extreme: High Performance Learning Activities in Mathematics, Science and Technology.

    ERIC Educational Resources Information Center

    2003

    This educator guide for grades K-4 and 5-8 presents the basic science of aeronautics by emphasizing hands-on involvement, prediction, data collections and interpretation, teamwork, and problem solving. Activities include: (1) Finding the Center of Gravity Using Rulers; (2) Finding the Center of Gravity Using Plumb Lines; (3) Changing the Center of…

  11. Physical Optics. [Aids to Individualize the Teaching of Science, Mini-Course Units.

    ERIC Educational Resources Information Center

    Brilhart, Walt

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to secondary science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total curriculum, and relate…

  12. Basic Mathematics Test Predicts Statistics Achievement and Overall First Year Academic Success

    ERIC Educational Resources Information Center

    Fonteyne, Lot; De Fruyt, Filip; Dewulf, Nele; Duyck, Wouter; Erauw, Kris; Goeminne, Katy; Lammertyn, Jan; Marchant, Thierry; Moerkerke, Beatrijs; Oosterlinck, Tom; Rosseel, Yves

    2015-01-01

    In the psychology and educational science programs at Ghent University, only 36.1% of the new incoming students in 2011 and 2012 passed all exams. Despite availability of information, many students underestimate the scientific character of social science programs. Statistics courses are a major obstacle in this matter. Not all enrolling students…

  13. minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education

    ERIC Educational Resources Information Center

    Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.

    2005-01-01

    In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…

  14. Meeting Report: Genomics in the Undergraduate Curriculum--Rocket Science or Basic Science?

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2002-01-01

    At the 102nd annual meeting of the American Society for Microbiology (ASM) in Salt Lake City, Utah, members of the Genome Consortium for Active Teaching and faculty from around the world gathered to discuss educational genomics. The focus of the gathering was a series of presentations by faculty who have successfully incorporated genomics and…

  15. Program for Educational Mobility for Health Manpower (The Basic Sciences), June 12-August 25, 1970. Preliminary Report.

    ERIC Educational Resources Information Center

    Coordinating Council for Education in the Health Sciences for San Diego and Imperial Counties, CA.

    Community college administrators and faculty in the areas of anatomy, physiology, chemistry, physics, and microbiology attended an 11-day workshop to redefine, modify, and develop science concepts for a core curriculum in the allied health field. To achieve workshop objectives, the committee heard presentations by consultants, visited clinical…

  16. Color, Temperature and Heat: Exploring University Students Mental Thoughts

    ERIC Educational Resources Information Center

    Canlas, Ian Phil

    2016-01-01

    Color, temperature and heat are among the concepts in science that are interconnected. These concepts are introduced to learners even before they enter the basic education. On the other hand, in school, it is formally introduced to them not only in science but also in the humanities. The foregoing study attempted to explore the mental thoughts of…

  17. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    NASA Astrophysics Data System (ADS)

    Yager, K.; Balog, J. D.

    2014-12-01

    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.

  18. Elementary astronomy

    NASA Astrophysics Data System (ADS)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  19. Institutional Profile: University of Chicago Center for Personalized Therapeutics: research, education and implementation science.

    PubMed

    Dolan, M Eileen; Maitland, Michael L; O'Donnell, Peter H; Nakamura, Yusuke; Cox, Nancy J; Ratain, Mark J

    2013-09-01

    Pharmacogenomics is aimed at advancing our knowledge of the genetic basis of variable drug response. The Center for Personalized Therapeutics within the University of Chicago comprises basic, translational and clinical research as well as education including undergraduate, graduate, medical students, clinical/postdoctoral fellows and faculty. The Committee on Clinical Pharmacology and Pharmacogenomics is the educational arm of the Center aimed at training clinical and postdoctoral fellows in translational pharmacology and pharmacogenomics. Research runs the gamut from basic discovery and functional studies to pharmacogenomic implementation studies to evaluate physician adoption of genetic medicine. The mission of the Center is to facilitate research, education and implementation of pharmacogenomics to realize the true potential of personalized medicine and improve the lives of patients.

  20. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    NASA Astrophysics Data System (ADS)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  1. Scientists Interacting With University Science Educators

    NASA Astrophysics Data System (ADS)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including about eighteen hours in a natural science. Their doctorates in science education include in-depth understanding of how people construct basic science concepts and ways to mitigate conceptions not consistent with current science. They have learned ways to transform scientific information to various audiences enabling learners to construct meaningful understanding of science phenomena, the nature of science, and its historical and philosophical underpinnings. Lessons learned from current and past innovations will be presented.

  2. Effects of Reinforcement Method of Dissection Physiology Education on the Achievement in Pharmacology.

    PubMed

    Kitayama, Tomoya; Kagota, Satomi; Yoshikawa, Noriko; Kawai, Nobuyuki; Nishimura, Kanae; Miura, Takeshi; Yasui, Naomi; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu

    2016-01-01

    The Pharmaceutical Education Support Center was established in the Department of Pharmacy at the School of Pharmacy and Pharmaceutical Science of Mukogawa Women's University in 2014. We started teaching first and second years students according to proficiency from the 2014 academic year. Students were divided into two classes: the regular class (high proficiency class) and the basic class (low proficiency class), based on achievement in several basic subjects related to the study of pharmacy. The staffs in the Pharmaceutical Education Support Center reinforce what is taught to students in the basic class. In this reinforcement method of education, the class size is small, consisting of about 15 students, a quiz to review the previous lesson is given at the beginning of each lecture, and an additional five lectures are conducted, compared to the high proficiency class, which receives 15 lectures. In this study, we evaluated the effects of the reinforcement method of physiology education on achievement in pharmacology that was not conducted in the proficiency-dependent teaching method. The students in the basic class in physiology education were chosen based on achievement levels in anatomy. Achievement levels of pharmacology students in the basic class of physiology improved compared with those of students who had the same achievement levels in physiology but were not taught according to proficiency-dependent teaching in the 2013 academic year. These results suggest that the reinforcement method for education in basic subjects in pharmacy, such as physiology, can improve achievement in more advanced subjects, such as pharmacology.

  3. A pilot study designed to acquaint medical educators with basic pedagogic principles.

    PubMed

    McLeod, P J; Brawer, J; Steinert, Y; Chalk, C; McLeod, A

    2008-02-01

    Faculty development activities in medical schools regularly target teaching behaviours but rarely address basic pedagogic principles underlying those behaviours. Although many teachers have an intuitive or tacit knowledge of basic pedagogic principles, overt knowledge of fundamental educational principles is rare. We conducted a short-term pilot study designed to transform teachers' tacit knowledge into explicit knowledge of pedagogic principles. We hypothesized that conscious awareness of these principles will positively influence their teaching effectiveness. The intervention included a workshop, provision of a workbook on pedagogic principles and free access to educational consultants. For the intervention, we chose a purposive sample of experienced teachers at our medical school. Evaluation of the impact of the intervention using questionnaires and semi-structured interviews revealed three notable findings; 1. Participants were surprised to discover the existence of an extensive body of pedagogic science underlying teaching and learning. 2. They were enthusiastic about the intervention and expressed interest in learning more about basic pedagogic principles. 3. The knowledge acquired had an immediate impact on their teaching.

  4. Teaching microbiology to undergraduate students in the humanities and the social sciences.

    PubMed

    Oren, Aharon

    2015-10-01

    This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Basic Biological Concepts: What Should the World's Children Know? Proceedings from the International Union of Biological Sciences and the Commission for Biological Education (IUBS/CBE) Symposium (Colorado Springs, Colorado, August 30-September 5, 1992).

    ERIC Educational Resources Information Center

    McWethy, Patricia J., Ed.

    Science is not a phenomenon restricted to one group of people. Instead it is something that is experienced by all, though often its form is unrecognized. Because science is experienced by many, one would expect that different groups of people would share common experiences in science. In an effort to determine whether there are similarities in…

  6. Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.; Myers, R. J.

    2003-12-01

    Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.

  7. Field-based education and indigenous knowledge: Essential components of geoscience education for native American communities

    NASA Astrophysics Data System (ADS)

    Riggs, Eric M.

    2005-03-01

    The purpose of this study is to propose a framework drawing on theoretical and empirical science education research that explains the common prominent field-based components of the handful of persistent and successful Earth science education programs designed for indigenous communities in North America. These programs are primarily designed for adult learners, either in a postsecondary or in a technical education setting and all include active collaboration between local indigenous communities and geoscientists from nearby universities. Successful Earth science curricula for indigenous learners share in common an explicit emphasis on outdoor education, a place and problem-based structure, and the explicit inclusion of traditional indigenous knowledge in the instruction. Programs sharing this basic design have proven successful and popular for a wide range of indigenous cultures across North America. We present an analysis of common field-based elements to yield insight into indigenous Earth science education. We provide an explanation for the success of this design based in research on field-based learning, Native American learning styles research, and theoretical and empirical research into the nature and structure of indigenous knowledge. We also provide future research directions that can test and further refine our understanding of best practices in indigenous Earth science education.

  8. Clouds, weather, climate, and modeling for K-12 and public audiences from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.

    2010-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.

  9. Sputnik's Impact on Science Education in America

    NASA Astrophysics Data System (ADS)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  10. Abraham Flexner of Kentucky, his report, Medical Education in the United States and Canada, and the historical questions raised by the report.

    PubMed

    Halperin, Edward C; Perman, Jay A; Wilson, Emery A

    2010-02-01

    One hundred years ago, the time was right and the need was critical for medical education reform. Medical education had become a commercial enterprise with proprietary schools of variable quality, lectures delivered in crowded classrooms, and often no laboratory instruction or patient contact. Progress in science, technology, and the quality of medical care, along with political will and philanthropic support, contributed to the circumstances under which Abraham Flexner produced his report. Flexner was dismayed by the quality of many of the medical schools he visited in preparing the report. Many of the recommendations in Medical Education in the United States and Canada are still relevant, especially those concerning the physician as a practitioner whose purpose is more societal and preventive than individual and curative. Flexner helped establish standards for prerequisite education, framed medical school admission criteria, aided in the design of a curriculum introduced by the basic and followed by the clinical sciences, stipulated the resources necessary for medical education, and emphasized medical school affiliation with both a university and a strong clinical system. He proposed integration of basic and clinical sciences leading to contextual learning, active rather than passive learning, and the importance of philanthropy. Flexner's report poses several questions for the historian: How were his views on African American medical education shaped by his post-Civil War upbringing in Louisville? Was the report original or derivative? Why did it have such a large impact? This article describes Flexner's early life and the report's methodology and considers several of the historical questions.

  11. Clinical Pharmacy and Pharmocology: Friends or Foes?

    ERIC Educational Resources Information Center

    Csaky, T. Z.

    1973-01-01

    Two recent trends in the field of health education-the declining emphasis on basic sciences in medical instruction and the heavy emphasis on pharmacology, therapeutics, and clinical pharmacy in colleges of pharmacy-are compared. (Editor)

  12. Learning technologies and the cyber-science classroom

    NASA Astrophysics Data System (ADS)

    Houlihan, Gerard

    Access to computer and communication technology has long been regarded `part-and-parcel' of a good education. No educator can afford to ignore the profound impact of learning technologies on the way we teach science, nor fail to acknowledge that information literacy and computing skills will be fundamental to the practice of science in the next millennium. Nevertheless, there is still confusion concerning what technologies educators should employ in teaching science. Furthermore, a lack of knowledge combined with the pressures to be `seen' utilizing technology has lead some schools to waste scarce resources in a `grab-bag' attitude towards computers and technology. Such popularized `wish lists' can only drive schools to accumulate expensive equipment for no real learning purpose. In the future educators will have to reconsider their curriculum and pedagogy with a focus on the learning environment before determining what appropriate computing resources to acquire. This will be fundamental to the capabilities of science classrooms to engage with cutting-edge issues in science. This session will demonstrate the power of a broad range of learning technologies to enhance science education. The aim is to explore classroom possibilities as well as to provide a basic introduction to technical aspects of various software and hardware applications, including robotics and dataloggers and simulation software.

  13. Educational Intervention in a Medically Underserved Area.

    PubMed

    Atance, Joel; Mickalis, Morgan; Kincade, Brianna

    2018-04-01

    Medical students from rural and medically underserved areas (MUAs) are more likely than their peers to practice medicine in rural areas and MUAs. However, students from MUAs are also more likely to face socioeconomic barriers to a career in medicine. To determine whether a week-long summer enrichment experience (SEE) at Edward Via College of Osteopathic Medicine-Carolinas could successfully teach high school students from MUAs basic biomedical concepts and foster an interest in medicine and the health sciences. The SEE program is open to high school students in the Spartanburg, South Carolina, area. The program includes interactive lectures, laboratories, demonstrations on gross anatomy prosections, demonstrations on medical simulation models, tours of emergency vehicles, an introduction to osteopathic manipulative medicine, and student-led research projects. Participants were asked to complete a 15-question quiz that assessed their knowledge of basic biomedical concepts and a 10-question survey that assessed their attitudes toward careers in medicine and health sciences. Both the quiz and the survey were completed on both the first and final days of the program. The data were analyzed using paired t tests. Participant knowledge of basic biomedical concepts, as determined by the quiz scores, increased after completion of the program (9.1 average correct answers vs 12.6 average correct answers) (P<.001). Participant attitude toward medicine and the health sciences improved in 9 of the 10 items surveyed after completion of the program (P<.05). Participant knowledge of basic biomedical concepts and their knowledge of and interest in careers in the health sciences improved after completing the SEE program. These findings suggest that educational interventions for high school students could help to develop primary care physicians for rural areas and MUAs and that there is a role for osteopathic medical schools to nurture these students as early as possible.

  14. Learning theories 101: application to everyday teaching and scholarship.

    PubMed

    Kay, Denise; Kibble, Jonathan

    2016-03-01

    Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the introduction of five major learning theories. Foundational constructs and principles from each theory and how they apply to the proposed curriculum designs are described. A summative table that includes basic principles, constructs, and classroom applications as well as the role of the teacher and learner is also provided for each theory. Copyright © 2016 The American Physiological Society.

  15. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  16. Elements of a Science of Education

    ERIC Educational Resources Information Center

    Kalantzis, Mary

    2006-01-01

    Education has become a domain of considerable ideological division. Today the mantra is freedom and choice, yet at the same time, a push to "back to basics" is observed. This author attempts to trace the contours of this division by taking two steps back from the contemporary fray. One step is to situate present day discussions in a larger…

  17. Learning Surgically Oriented Anatomy in a Student-Run Extracurricular Club: An Education through Recreation Initiative

    ERIC Educational Resources Information Center

    Ullah, Shahnoor M.; Bodrogi, Andrew; Cristea, Octav; Johnson, Marjorie; McAlister, Vivian C.

    2012-01-01

    Didactic and laboratory anatomical education have seen significant reductions in the medical school curriculum due, in part, to the current shift from basic science to more clinically based teaching in North American medical schools. In order to increase medical student exposure to anatomy, with clinical applicability, a student-run initiative…

  18. Undergraduate Medical Education and the Elective System: Experience with the Duke Curriculum, 1966-75.

    ERIC Educational Resources Information Center

    Gifford, James F., Jr., Ed.; And Others

    In view of increased public demand since 1965 for medical curriculum re-evaluation, the Duke University School of Medicine offered the first new model of medical education responsive to social pressures for change. The new Duke curriculum included presentation by each basic science department of the core of principles and information considered…

  19. Beyond Detection: Nuclear Physics with a Webcam in an Educational Setting

    ERIC Educational Resources Information Center

    Pallone, A.; Barnes, P.

    2016-01-01

    Basic understanding of nuclear science enhances our daily-life experience in many areas, such as the environment, medicine, electric power generation, and even politics. Yet typical school curricula do not provide for experiments that explore the topic. We present a means by which educators can use the ubiquitous webcam and inexpensive sources of…

  20. Toward Integrating Environmental and Economic Education: Lessons from the U.S. Acid Rain Program

    ERIC Educational Resources Information Center

    Ellerbrock, Michael J.; Regn, Ann M.

    2004-01-01

    This field report presents an actual case study which illustrates that the natural and social sciences, in this case ecology and economics, can and should be integrated in environmental education and the formulation of public policy. After outlining basic economic approaches for addressing environmental problems, we focus on the process and…

  1. The Dialogues between Content and Language: Cautions and Challenges in the Emergence of a Bilingual Education Program

    ERIC Educational Resources Information Center

    Aguilar Cortés, Carlos Eduardo; Alzate B., Nelson Eduardo

    2015-01-01

    This paper presents a set of ideas about the basics for developing interdisciplinary dialogues between content (science) and language (English) in bilingual educational processes, under the premise that a satisfactory relationship between those elements help guarantee successful content-based instruction (CBI) in its form known as "sheltered…

  2. Transformative Connections: Community-Based K-12 Computing Program Strives to Strengthen Academic and Career Aspirations of Its Participants

    ERIC Educational Resources Information Center

    Roach, Ronald

    2005-01-01

    The Joint Educational Facilities Inc. (JEF) computer science program has as its goal to acquaint minority and socially disadvantaged K-12 students with computer science basics and the innovative subdisciplines within the field, and to reinforce the college ambitions of participants or help them consider college as an option. A non-profit…

  3. Paleo Biology, Bones: Clues to Mankind's Past. [Aids to Individualize the Teaching of Science, Mini-Course Units.

    ERIC Educational Resources Information Center

    Owens, Janet

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to secondary science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total curriculum, and relate…

  4. The Art of Astronomy: A New General Education Course for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  5. Development and Assessment of a Horizontally Integrated Biological Sciences Course Sequence for Pharmacy Education

    PubMed Central

    Wright, Nicholas J.D.; Alston, Gregory L.

    2015-01-01

    Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276

  6. Anatomical sciences: A foundation for a solid learning experience in dental technology and dental prosthetics.

    PubMed

    Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena

    2017-07-01

    Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  7. Approaches to the Nature of Educational Sloyd and Craft. Sloyd Competence in Nordic Culture. Part III. Research in Sloyd Education and Crafts Science B:2.

    ERIC Educational Resources Information Center

    Lindfors, Linnea, Ed.; Peltonen, Juhani, Ed.; Porko, Mia, Ed.

    These nine articles deal with basic philosophical questions concerned with the general nature of sloyd or with the educational aspect of sloyd. (Sloyd, derived from a Swedish word, is an umbrella term for making or crafting things by hand.) They report research on cultural questions related to goals and contents, ranging from sociocultural…

  8. Biostatistical and medical statistics graduate education

    PubMed Central

    2014-01-01

    The development of graduate education in biostatistics and medical statistics is discussed in the context of training within a medical center setting. The need for medical researchers to employ a wide variety of statistical designs in clinical, genetic, basic science and translational settings justifies the ongoing integration of biostatistical training into medical center educational settings and informs its content. The integration of large data issues are a challenge. PMID:24472088

  9. GREAT (Groundwater Resources & Educational Activities for Teaching). An Iowa Project for Earth/Life/General Science, 7th-9th Grades.

    ERIC Educational Resources Information Center

    George, Gail, Ed.

    These resource materials are a part of a larger plan for groundwater education, as detailed in the Iowa Groundwater Education Strategy. The six units are arranged in priority order. The first unit covers the basics of groundwater and hydrogeology in Iowa. The other five units cover Iowa's groundwater issues in priority order, as outlined in the…

  10. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  11. Academic pharmacy administrators' perceptions of core requirements for entry into professional pharmacy programs.

    PubMed

    Broedel-Zaugg, Kimberly; Buring, Shauna M; Shankar, Nathan; Soltis, Robert; Stamatakis, Mary K; Zaiken, Kathy; Bradberry, J Chris

    2008-06-15

    To determine which basic and social science courses academic pharmacy administrators believe should be required for entry into the professional pharmacy program and what they believe should be the required length of preprofessional study. An online survey was sent to deans of all colleges and schools of pharmacy in the United States. Survey respondents were asked to indicate their level of agreement as to whether the basic and social science courses listed in the survey instrument should be required for admission to the professional program. The survey instrument also included queries regarding the optimal length of preprofessional study, whether professional assessment testing should be part of admission requirements, and the respondents' demographic information. The majority of respondents strongly agreed that the fundamental coursework in the basic sciences (general biology, general chemistry, organic chemistry) and English composition should be required for entrance into the professional program. Most respondents also agreed that public speaking, ethics, and advanced basic science and math courses (physiology, biochemistry, calculus, statistics) should be completed prior to entering the professional program. The preprofessional requirements that respondents suggested were not necessary included many of the social science courses. Respondents were evenly divided over the ideal length for preprofessional pharmacy education programs. Although requirements for preprofessional admission have been changing, there is no consistent agreement on the content or length of the preprofessional program.

  12. Group Learning Assessments as a Vital Consideration in the Implementation of New Peer Learning Pedagogies in the Basic Science Curriculum of Health Profession Programs

    PubMed Central

    Briggs, Charlotte L.; Doubleday, Alison F.

    2016-01-01

    Inspired by reports of successful outcomes in health profession education literature, peer learning has progressively grown to become a fundamental characteristic of health profession curricula. Many studies, however, are anecdotal or philosophical in nature, particularly when addressing the effectiveness of assessments in the context of peer learning. This commentary provides an overview of the rationale for using group assessments in the basic sciences curriculum of health profession programs and highlights the challenges associated with implementing group assessments in this context. The dearth of appropriate means for measuring group process suggests that professional collaboration competencies need to be more clearly defined. Peer learning educators are advised to enhance their understanding of social psychological research in order to implement best practices in the development of appropriate group assessments for peer learning. PMID:29349309

  13. Group Learning Assessments as a Vital Consideration in the Implementation of New Peer Learning Pedagogies in the Basic Science Curriculum of Health Profession Programs.

    PubMed

    Briggs, Charlotte L; Doubleday, Alison F

    2016-01-01

    Inspired by reports of successful outcomes in health profession education literature, peer learning has progressively grown to become a fundamental characteristic of health profession curricula. Many studies, however, are anecdotal or philosophical in nature, particularly when addressing the effectiveness of assessments in the context of peer learning. This commentary provides an overview of the rationale for using group assessments in the basic sciences curriculum of health profession programs and highlights the challenges associated with implementing group assessments in this context. The dearth of appropriate means for measuring group process suggests that professional collaboration competencies need to be more clearly defined. Peer learning educators are advised to enhance their understanding of social psychological research in order to implement best practices in the development of appropriate group assessments for peer learning.

  14. Motivational Didactics Activities for Education of Astronomy in Basic Education

    NASA Astrophysics Data System (ADS)

    Melo, J.

    2010-03-01

    The present research was carried through with 234 pupils of the State school of Basic Education Mayor Rinaldo Poli located in the city of Guarulhos. In this project it was aspired to use topics of Astronomy with the following objectives: to motivate the pupils in the lessons of Sciences; to search ways so that the learning process would become more significant and also to help to spread out Astronomy in the level of basic education. Although being recommended in the "Parametros Curriculares Nacionais (PCN)", in the "Orientacoes Complementares aos Parametros (PCN+)" and more recently in the "Proposta Curricular do Estado de Sao Paulo", Astronomy is little imparted in the Basic Education. Initially a questionnaire was applied with the intention to verify the previous knowledge of the pupils, which evidenced that, among other things, 18.5% of the pupils of 5th grades knew what Astronomy investigates, whereas only 3.8% of the pupils of 6th grades knew what a planet is, and still 25.5% of the pupils of 8th grades knew how to define the Moon. The intervention work was conducted in the following form: first some Astronomy-related subjects were chosen which the pupils researched and afterwards presented in groups; then they built mockups, using Conceptual Maps to explain this subject and making a work with scales of the stars. After the intervention work the same questionnaire was applied and the index of rightness reached, respectively, the percentages of 63.0%, 39.2% and 68.1%, showing that the learning became significant. It is supposed that Astronomy is important in the process of Education Learning for being the oldest of the sciences, for having a character to multidiscipline, allowing the quarrel of fascinating and interesting subjects as, for example, the space origin of the universe, trips, the existence or non-existence of life in other planets, beyond current subjects as the new technologies.

  15. Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education

    PubMed Central

    Araújo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Cláudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Cláudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.

    2004-01-01

    The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals. PMID:15257338

  16. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating

    NASA Astrophysics Data System (ADS)

    Si-Yuan, Yu; Xu, Ni; Ye-Long, Xu; Cheng, He; Priyanka, Nayar; Ming-Hui, Lu; Yan-Feng, Chen

    2016-04-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2012CB921503, 2013CB632904 and 2013CB632702, the National Natural Science Foundation of China under Grant No 1134006, the Natural Science Foundation of Jiangsu Province under Grant No BK20140019, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education, and the China Postdoctoral Science Foundation under Grant Nos 2012M511249 and 2013T60521.

  17. Early bedside care during preclinical medical education: can technology-enhanced patient simulation advance the Flexnerian ideal?

    PubMed

    Gordon, James A; Hayden, Emily M; Ahmed, Rami A; Pawlowski, John B; Khoury, Kimberly N; Oriol, Nancy E

    2010-02-01

    Flexner wanted medical students to study at the patient bedside-a remarkable innovation in his time-so that they could apply science to clinical care under the watchful eye of senior physicians. Ever since his report, medical schools have reserved the latter years of their curricula for such an "advanced" apprenticeship, providing clinical clerkship experiences only after an initial period of instruction in basic medical sciences. Although Flexner codified the segregation of preclinical and clinical instruction, he was committed to ensuring that both domains were integrated into a modern medical education. The aspiration to fully integrate preclinical and clinical instruction continues to drive medical education reform even to this day. In this article, the authors revisit the original justification for sequential preclinical-clinical instruction and argue that modern, technology-enhanced patient simulation platforms are uniquely powerful for fostering simultaneous integration of preclinical-clinical content in a way that Flexner would have applauded. To date, medical educators tend to focus on using technology-enhanced medical simulation in clinical and postgraduate medical education; few have devoted significant attention to using immersive clinical simulation among preclinical students. The authors present an argument for the use of dynamic robot-mannequins in teaching basic medical science, and describe their experience with simulator-based preclinical instruction at Harvard Medical School. They discuss common misconceptions and barriers to the approach, describe their curricular responses to the technique, and articulate a unifying theory of cognitive and emotional learning that broadens the view of what is possible, feasible, and desirable with simulator-based medical education.

  18. Dental Students' Educational Achievement in Relation to Their Learning Styles: A Cross-Sectional Study in Iran.

    PubMed

    Hosseini, Seyed Masoud; Amery, Hamideh; Emadzadeh, Ali; Babazadeh, Saber

    2015-02-24

    In recent decades, many studies have been carried out on the importance of Kolb experiential learning theory (ELT) in teaching-learning processes and its effect on learning outcomes. However, some experts have criticized the Kolb theory and argue that there are some ambiguities on the validity of the theory as an important predictor of achievement. This study has been carried out on dental students' educational achievement in relation to their dominant learning styles based on Kolb theory in Mashhad University of Medical Sciences (Iran). In a cross sectional study, Kolb Learning Style Inventory (LSI Ver. 3.1) as well as a questionnaire containing students' demographic data, academic achievement marks including grade point average (GPA), theoretical and practical courses marks, and the comprehensive basic sciences exam (CBSE) scores were administered on a purposive sample of 162 dental students who had passed their comprehensive basic sciences exam. Educational achievement data were analyzed in relation to students' dominant learning styles, using descriptive and analytical statistics including χ2, Kruskal-Wallis and two-way ANOVA tests. The dominant learning styles of students were Assimilating (53.1%), Converging (24.1%), Diverging (14.2%) and Accommodating (8.6%). Although, the students with Assimilating and Converging learning styles had a better performance on their educational achievement, there was no significant relationship between educational achievement and dominant learning style (P≥0.05). Findings support that the dominant learning style is not exclusively an essential factor to predict educational achievement. Rather, it shows learning preferences of students that may be considered in designing learning opportunities by the teachers.

  19. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods

    NASA Astrophysics Data System (ADS)

    Hodson, Derek

    2014-10-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.

  20. Science is Cool with NASA's "Space School Musical"

    NASA Astrophysics Data System (ADS)

    Asplund, S.

    2011-10-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery and New Frontiers Programs have collaborated with KidTribe to create "Space School Musical," an innovative approach for teaching about the solar system. It's an educational "hip-hopera" that raps, rhymes, moves and grooves its way into the minds and memories of students and educators alike. The solar system comes alive, combining science content with music, fun lyrics, and choreography. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. The videos, songs, lyrics, and guides are available to all with free downloads at http://discovery.nasa.gov/

  1. 2017 American Heart Association Focused Update on Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.

    PubMed

    Kleinman, Monica E; Goldberger, Zachary D; Rea, Thomas; Swor, Robert A; Bobrow, Bentley J; Brennan, Erin E; Terry, Mark; Hemphill, Robin; Gazmuri, Raúl J; Hazinski, Mary Fran; Travers, Andrew H

    2018-01-02

    Cardiopulmonary resuscitation is a lifesaving technique for victims of sudden cardiac arrest. Despite advances in resuscitation science, basic life support remains a critical factor in determining outcomes. The American Heart Association recommendations for adult basic life support incorporate the most recently published evidence and serve as the basis for education and training for laypeople and healthcare providers who perform cardiopulmonary resuscitation. © 2017 American Heart Association, Inc.

  2. Very long-term retention of basic science knowledge in doctors after graduation.

    PubMed

    Custers, Eugène J F M; Ten Cate, Olle T J

    2011-04-01

    Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.

  3. Enrichment of Science Education Using Real-time Data Streams

    NASA Astrophysics Data System (ADS)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  4. Radiation 101: Effects on Hardware and Robotic Systems

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2015-01-01

    We present basic information on different types of radiation effects, including total ionizing dose, displacement damage, and single-event effects. The content is designed to educate space weather professionals, space operations professionals, and other science and engineering stakeholders.

  5. Primitive Saltmaking and Marine Science Education.

    ERIC Educational Resources Information Center

    Spence, Lundie; Copeland, B. J.

    1985-01-01

    Describes the procedures employed to make salt from seawater. Reviews the basic principles of seawater chemistry and discusses the techniques used to measure salinity. Identifies major saltworks locations and indicates the proper conditions needed for solar production of salt. (ML)

  6. Science Matters.

    ERIC Educational Resources Information Center

    Blanchard, Pam

    2000-01-01

    Describes Louisiana Sea Grant's most recent marine education program, the coastal Ecosystem Stewardship project. Its purpose is to provide students with background information on wetlands management issues; training in basic water quality monitoring methods, data collection, and manipulation; and opportunities to participate in a restoration…

  7. The Power of Edutainment: Alliance for Climate Education's Assembly Presentation: Impact on Student Knowledge, Attitude and Behavior

    NASA Astrophysics Data System (ADS)

    Lappe, M. D.

    2011-12-01

    The Alliance for Climate Education (ACE) is a national nonprofit that delivers an in-school multi-media assembly presentation to high school students about climate science and solutions. In two years of operation, ACE has reached 870,000 students in over 1400 schools. Throughout spring 2011 and fall 2012, the Alliance for Climate Education (ACE) will survey approximately 2000 high school students in 100 classrooms at 20 schools before and after its assembly to assess impact on knowledge, attitude and behavior related to global warming and climate science. The survey instrument has been designed in partnership with experts at the Yale School of the Environment and Stanford University's Precourt Energy Center. The knowledge section of the survey queries students' factual understanding of basic climate science. The behavior section asks students about basic climate-related habits related to waste, transportation and energy consumption. The attitude section is comprised of a 15-question subset of the national survey reported in Global Warming's Six Americas. Preliminary results from approximately 200 pre and post-presentation surveys suggest that after viewing the ACE Assembly, climate friendly behaviors increase slightly; correct answers to climate knowledge questions increase by 8%; and attitudes shift away from "Disengaged, Doubtful and Dismissive" toward "Alarmed, Concerned and Cautious."

  8. Diminishing Funding and Rising Expectations: Trends and Challenges for Public Research Universities. A Companion to Science and Engineering Indicators 2012. NSB-12-45

    ERIC Educational Resources Information Center

    National Science Foundation, 2012

    2012-01-01

    Research universities, both public and private alike, are the leading producers of science and engineering (S&E) bachelor's, master's, and doctoral degrees. They are contributors to economic development at the local, state, and national levels, performing over half of the Nation's total basic research in 2009, and they educate and train our…

  9. Some Challenges in the Empirical Investigation of Conceptual Mappings and Embodied Cognition in Science Education: Commentary on Dreyfus, Gupta and Redish; and Close and Scherr

    ERIC Educational Resources Information Center

    Núñez, Rafael

    2015-01-01

    The last couple of decades have seen an enormous development in the study of embodied cognition through the investigation of conceptual mappings, such as conceptual metaphor and conceptual blending. Initially, this progress was achieved at a theoretical level, and more recently through empirical research in basic science--from psycholinguistics,…

  10. Developing an Achievement Test for the Subject of Sound in Science Education

    ERIC Educational Resources Information Center

    Sözen, Merve; Bolat, Mualla

    2016-01-01

    The purpose of this study is to develop an achievement test which includes the basic concepts about the subject of sound and its properties in middle school science lessons and which at the same time aims to reveal the alternative concepts that the students already have. During the process of the development of the test, studies in the field and…

  11. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    ERIC Educational Resources Information Center

    Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…

  12. Using immersive healthcare simulation for physiology education: initial experience in high school, college, and graduate school curricula.

    PubMed

    Oriol, Nancy E; Hayden, Emily M; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A

    2011-09-01

    In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and graduate school science class work. Our experience is based on work with hundreds of high school, college, and graduate students enrolled in traditional science classes in which mannequin simulators were used to teach physiological principles. Specific case scenarios were integrated into the curriculum as problem-solving exercises chosen to accentuate the basic science objectives of the course. This report also highlights the historic and theoretical basis for the use of mannequin simulators as an important physiology education tool and outlines how the authors' experience in healthcare education has been effectively translated to nonclinical student populations. Particular areas of focus include critical-thinking and problem-solving behaviors and student reflections on the impact of the teaching approach.

  13. Importance of Adequate Gross Anatomy Education: The Impact of a Structured Pelvic Anatomy Course during Gynecology Fellowship

    ERIC Educational Resources Information Center

    Heisler, Christine Aminda

    2011-01-01

    Medical education underwent standardization at the turn of the 20th century and remained fairly consistent until recently. Incorporation of a patient-centered or case-based curriculum is believed to reinforce basic science concepts. One negative aspect is a reduction in hours spent with cadaveric dissection in the gross anatomy laboratory. For…

  14. Starting and Teaching Basic Robotics in the Classroom: Modern, Engaging Engineering in Technology Education

    ERIC Educational Resources Information Center

    Bianco, Andrew S.

    2014-01-01

    All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…

  15. Diagnosing Learners' Problem-Solving Strategies Using Learning Environments with Algorithmic Problems in Secondary Education

    ERIC Educational Resources Information Center

    Kiesmuller, Ulrich

    2009-01-01

    At schools special learning and programming environments are often used in the field of algorithms. Particularly with regard to computer science lessons in secondary education, they are supposed to help novices to learn the basics of programming. In several parts of Germany (e.g., Bavaria) these fundamentals are taught as early as in the seventh…

  16. Modern Aspects of Communication in Education of Teachers Using New Information and Communication Technologies (ICT)

    ERIC Educational Resources Information Center

    Tatkovic, Nevenka; Sehanovic, Jusuf; Ruzic, Maja

    2005-01-01

    This work deals with the need of introducing modern aspects of communication on higher education of future teachers using information and communication technologies. The emphasis is put on the importance for future teachers to have basic information science knowledge and skills and their preparations for using ICT. A growth of the number of…

  17. Bridging the Gap: A Manual Primer into Design Computing in the Context of Basic Design Education

    ERIC Educational Resources Information Center

    Uysal, V. Safak; Topaloglu, Fulden

    2017-01-01

    Design education is in need of a wider restructuring to accommodate new developments and paradigmatic shifts brought forth by the information age, all of which capitalise a move towards complexity theory, systems science and digital technologies. The intention of this article is to approach one particular aspect of this need: that is, how basic…

  18. Pseudo-Science and a Sound Basic Education: Voodoo Statistics in New York

    ERIC Educational Resources Information Center

    Hanushek, Eric

    2005-01-01

    The education problems in New York City (and a number of other jurisdictions that face court financing challenges) are real and important. Many people would indeed be willing to put more money into New York City schools (or any poorly performing school for that matter) if they had any reason to believe that students' achievement would improve…

  19. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  20. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  1. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  2. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  3. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  4. The pedagogy of argumentation in science education: science teachers' instructional practices

    NASA Astrophysics Data System (ADS)

    Özdem Yilmaz, Yasemin; Cakiroglu, Jale; Ertepinar, Hamide; Erduran, Sibel

    2017-07-01

    Argumentation has been a prominent concern in science education research and a common goal in science curriculum in many countries over the past decade. With reference to this goal, policy documents burden responsibilities on science teachers, such as involving students in dialogues and being guides in students' spoken or written argumentation. Consequently, teachers' pedagogical practices regarding argumentation gain importance due to their impact on how they incorporate this practice into their classrooms. In this study, therefore, we investigated the instructional strategies adopted by science teachers for their argumentation-based science teaching. Participants were one elementary science teacher, two chemistry teachers, and four graduate students, who have a background in science education. The study took place during a graduate course, which was aimed at developing science teachers' theory and pedagogy of argumentation. Data sources included the participants' video-recorded classroom practices, audio-recorded reflections, post-interviews, and participants' written materials. The findings revealed three typologies of instructional strategies towards argumentation. They are named as Basic Instructional Strategies for Argumentation, Meta-level Instructional ‌St‌‌rategies for ‌Argumentation, and Meta-strategic Instructional ‌St‌‌rategies for ‌Argumentation. In conclusion, the study provided a detailed coding framework for the exploration of science teachers' instructional practices while they are implementing argumentation-based lessons.

  5. Educational Effect of Project-based Learning (PBL) in Co-operated Education by Senior High School and Institute of Technology

    NASA Astrophysics Data System (ADS)

    Nakui, Yasuhiro; Kumagai, Koji; Hasegawa, Akira; Kaneko, Kenji; Takeuchi, Takahiro

    This paper reports PBL has been implemented in Senior High School, which is conducted with cooperation by university and civil engineering corporations as well. In the recent statement from Ministry of Education, Culture, Sports, Science and Technology, it has been notified that the purpose of students for studying at university has not been specified enough. To respond to this, this class is basically designed upon students’ interests; to foster communication skill, to provoke interest toward Science and Technology and to increase motivation for academic studies and future jobs. Fostering these elements, we conclude that PBL is suitable for senior high school from the survey.

  6. Communicating Science through Editorial Cartoons in Microbiology Classrooms †

    PubMed Central

    dela Cruz, Thomas Edison E.; Aril-dela Cruz, Jeane V.

    2018-01-01

    The use of graphical illustration in lecture presentations can make a seemingly boring lesson more attractive and enticing to students. Creating science-themed illustrations and science-based narratives can also lead to creative and critical thinking among students. We used writing editorials and creating editorial cartoons as a learning activity to promote critical thinking and creative skills that are essential in communicating scientific information. This activity can be used with a range of audiences, at various educational levels and in basic to advanced courses. PMID:29904513

  7. Pioneering Integrated Education and Research Program in Graduate School of Engineering and its Inquiry by Questionnaire

    NASA Astrophysics Data System (ADS)

    Minamino, Yoritoshi

    Department of Adaptive Machine Systems, Department of Materials and Manufucturing Science and Department of Business engineering have constructed the educational programs of consecutive system from master to doctor courses in graduate school of engineering, “Pioneering Integrated Education and Research Program (PP) ”, to produce volitional and original mind researchers with high abilities of research, internationality, leader, practice, management and economics by cooperation between them for reinforcement of their ordinary curriculums. This program consists of the basic PP for master course students and the international exchange PP, leadership pp and tie-up PP of company and University for Doctor course students. In 2005th the basic PP was given to the master course students and then their effectiveness of the PP was investigated by questionnaire. The results of questionnaire proved that the graduate school students improved their various abilities by the practical lesson in cooperation between companies and our Departments in the basic PP, and that the old boys after basic PP working in companies appreciated the advantages to business planning, original conception, finding solution, patents, discussion, report skills required in companies.

  8. Introducing evidence-based dentistry to dental students using histology.

    PubMed

    Lallier, Thomas E

    2014-03-01

    The expansion of evidence-based dentistry (EBD) is essential to the continued growth and development of the dental profession. Expanding EBD requires increased emphasis on critical thinking skills during dental education, as noted in the American Dental Education Association's Competencies for the New General Dentist. In order to achieve this goal, educational exercises must be introduced to increase the use of critical thinking skills early in the dental curriculum, with continued reinforcement as students progress through subsequent years. Described in this article is one approach to increasing student exposure to critical thinking during the early basic science curriculum-specifically, within the confines of a traditional histology course. A method of utilizing the medical and dental research literature to reinforce and enliven the concepts taught in histology is described, along with an approach for using peer-to-peer presentations to demonstrate the tools needed to critically evaluate research studies and their presentation in published articles. This approach, which could be applied to any basic science course, will result in a stronger foundation on which students can build their EBD and critical thinking skills.

  9. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  10. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  11. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  12. 10 CFR 605.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... award and administration of grants and cooperative agreements by the DOE Office of Energy Research (ER) and the Science and Technology Advisor (STA) Organization for basic and applied research, educational... OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE...

  13. 10 CFR 605.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... award and administration of grants and cooperative agreements by the DOE Office of Energy Research (ER) and the Science and Technology Advisor (STA) Organization for basic and applied research, educational... OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE...

  14. Effects of Fe-Oxide and Mg Layer Insertion on Tunneling Magnetoresistance Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Lou, Yong-Le; Zhang, Yu-Ming; Guo, Hui; Xu, Da-Qing; Zhang, Yi-Men

    2016-11-01

    Not Available Supported by the National Defense Advance Research Foundation under Grant No 9140A08XXXXXX0DZ106, the Basic Research Program of Ministry of Education of China under Grant No JY10000925005, the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 11JK0912, the Scientific Research Foundation of Xi'an University of Science and Technology under Grant No 2010011, and the Doctoral Research Startup Fund of Xi'an University of Science and Technology under Grant No 2010QDJ029.

  15. Mapping of the Academic Production at Science and Mathematics Education Postgraduate about the Theory of Social Representations

    NASA Astrophysics Data System (ADS)

    Barbosa, José Isnaldo de Lima; Curi, Edda; Voelzke, Marcos Rincon

    2016-12-01

    The theory of social representations, appeared in 1961, arrived in Brazil in 1982, and since then has advanced significantly, been used in various areas of knowledge, assumed a significant role also in education. Thus, the aim of this article is to make a mapping of theses and dissertations in post-graduation programs, whose basic area is the Teaching of Science and Mathematics, and used as the theoretical foundation the theory of social representations, highlighted the social groups that are subject of this research. This is a documentary research, and lifting to the "state of knowledge" of two theses and 36 dissertations, defended in ten of the 37 existing programs in the basic area of Science and Mathematics Teaching, with the delimitation of academic masters and doctorates. The data collection was executed on December 2014 and was placed in the virtual libraries of these masters and doctoral programs, these elements were analysed according to some categories established after reading the summaries of the work, and the results showed that the theory of social representations has been used as a theoretical framework in various research groups, established in postgraduate programs in this area, for almost the entire Brazil. As for the subjects involved in this research, three groups were detected, which are: Middle school and high school students, teachers who are in full swing, spread from the early years to higher education, and undergraduates in Science and Mathematics.

  16. Applied Electronics and Optical Laboratory: an optimized practical course for comprehensive training on optics and electronics

    NASA Astrophysics Data System (ADS)

    Wang, Kaiwei; Wang, Xiaoping

    2017-08-01

    In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.

  17. The concept of landscape education at school level with respect to the directions of the science of landscape

    NASA Astrophysics Data System (ADS)

    Szczęsna, Joanna

    2010-01-01

    School education is both a starting point for the development of various scientific disciplines (school educates future researchers) and the result of science. The landscape research is conducted within many scientific disciplines and has a long tradition. Lanscape education, which is the result of a scientific dimension, is implemented in primary school under the nature subject. Primary school education is the only level at which the geographical contents are carried out on landscape. The landscape is of interest to many disciplines: geography, architecture, social sciences and the arts. In recent years, there were many studies which contained an overview of the main strands of the science of landscape, presented the differences in the meaning of the concept and objectives of individual research disciplines. These studies have become the ground for the characterization of the concept of landscape education implemented in Polish school and its evaluation in terms of scientific achievements. A review of educational purposes, the basic content of education and achievements of students, demonstrate the influence of multiple scientific disciplines in school landscape education. The most significant share of the course content are achievements of geography disciplines, particularly: physical geography, environmental protection and landscape ecology. Other scientific fields: literature, art, psychology, sociology, and architecture do not have any impact on the school landscape education or their impact remains marginal.

  18. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    PubMed

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  19. Retention of knowledge and perceived relevance of basic sciences in an integrated case-based learning (CBL) curriculum

    PubMed Central

    2013-01-01

    Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045

  20. Science education as/for participation in the community

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael; Lee, Stuart

    2004-03-01

    In this paper, we take up and advance the project of rethinking scientific literacy by Eisenhart, Finkel, and Marion (American Educational Research Journal, 1996, 33, 261-295). As part of a project of rethinking science education, we advance three propositions. First, because society is built on division of labor, not everybody needs to know the same basic sets of concepts; it is more important to allow the emergence of scientific literacy as a collective property. Second, scientific knowledge ought not to be privileged in democratic collective decision making but ought to be one of many resources. Third, rethinking science education as and for participation in community life sets up the potential for lifelong participation in and learning of science-related issues. To show the viability of these propositions, we provide a case study based on a 3-year, multisite ethnographic research project as part of which we investigated science in the community. Framing our work in terms of activity theory, we provide descriptions of science in a local middle school, where students learn science while participating in a community effort to contribute to the knowledge base about a local creek. The children's activities are continuous with those of adults concerned about environmental health. In this way, rather than preparing for life after school, science education allows students to participate in legitimate ways in community life and therefore provides a starting point for uninterrupted lifelong learning across the presently existing boundary separating formal schooling from everyday life outside schools.

  1. Arbitrary frequency stabilization of a diode laser based on visual Labview PID VI and sound card output

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Sheng; Wu, Ji-Zhou; Wang, Xiao-Feng; Zheng, Ning-Xuan; Li, Yu-Qing; Ma, Jie; Xiao, Lian-Tuan; Jia, Suo-Tang

    2015-10-01

    We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers. Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, and 11434007), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).

  2. A Faculty Development Program can result in an improvement of the quality and output in medical education, basic sciences and clinical research and patient care.

    PubMed

    Dieter, Peter Erich

    2009-07-01

    The Carl Gustav Carus Faculty of Medicine, University of Technology Dresden, Germany, was founded in 1993 after the reunification of Germany. In 1999, a reform process of medical education was started together with Harvard Medical International.The traditional teacher- and discipline-centred curriculum was displaced by a student-centred, interdisciplinary and integrative curriculum, which has been named Dresden Integrative Patient/Problem-Oriented Learning (DIPOL). The reform process was accompanied and supported by a parallel-ongoing Faculty Development Program. In 2004, a Quality Management Program in medical education was implemented, and in 2005 medical education received DIN EN ISO 9001:2000 certification. Quality Management Program and DIN EN ISO 9001:2000 certification were/are unique for the 34 medical schools in Germany.The students play a very important strategic role in all processes. They are members in all committees like the Faculty Board, the Board of Study Affairs (with equal representation) and the ongoing audits in the Quality Management Program. The Faculty Development program, including a reform in medical education, the establishment of the Quality Management program and the certification, resulted in an improvement of the quality and output of medical education and was accompanied in an improvement of the quality and output of basic sciences and clinical research and interdisciplinary patient care.

  3. Educational Outreach at CASPER

    NASA Astrophysics Data System (ADS)

    Hyde, Truell; Smith, Bernard; Carmona-Reyes, Jorge

    2007-11-01

    The CASPER Educational Outreach program with support from the Department of Education, the Department of Labor and the National Science Foundation advances physics education through a variety of avenues including CASPER's REU / RET program, High School Scholars Program, spiral curriculum development program and the CASPER Physics Circus. These programs impact K-12 teachers and students providing teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science into the classroom. The most visible of the CASPER outreach programs is the Physics Circus, created during the 1999-2000 school year and funded since that time through two large grants from the Department of Education. The Physics Circus is part of GEAR UP Waco (Gaining Early Awareness and Readiness for Undergraduate Programs) and was originally one of 185 grants awarded nationwide by the U. S. Department of Education in 1999 to help 200,000 disadvantaged children prepare for and gain a pathway to undergraduate programs. The CASPER Physics Circus is composed of intense science explorations, physics demonstrations, hands-on interactive displays, theatrical performances, and excellent teaching experiences. Examples and efficacy data from the above will be discussed.

  4. Earth Science Digital Museum (ESDM): Toward a new paradigm for museums

    NASA Astrophysics Data System (ADS)

    Dong, Shaochun; Xu, Shijin; Wu, Gangshan

    2006-07-01

    New technologies have pushed traditional museums to take their exhibitions beyond the barrier of a museum's walls and enhance their functions: education and entertainment. Earth Science Digital Museum (ESDM) is such an emerging effort in this field. It serves as a platform for Earth Scientists to build a Web community to share knowledge about the Earth and is of to benefit the general public for their life-long learning. After analyzing the purposes and requirements of ESDM, we present here our basic philosophy of ESDM and a four-layer hierarchical architecture for enhancing the structure of ESDM via Internet. It is a Web-based application to enable specimens to be exhibited, shared and preserved in digital form, and to provide the functionalities of interoperability. One of the key components of ESDM is the development of a metadata set for describing Earth Science specimens and their digital representations, which is particularly important for building ESDM. Practical demonstrations show that ESDM is suitable for formal and informal Earth Science education, including classroom education, online education and life-long learning.

  5. Creepy Critters (Snakes). [Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.

    ERIC Educational Resources Information Center

    Best, Terrence

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to 7th, 8th, and 9th grade science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total…

  6. Protist: The "Unseen" Kingdom. [Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.

    ERIC Educational Resources Information Center

    Whitfield, Melvin

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to 7th, 8th, and 9th grade science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total…

  7. Your Child and Problem Solving, Math and Science. Getting Involved Workshop Guide: A Manual for the Parent Group Trainer. The Best of BES--Basic Educational Skills Materials.

    ERIC Educational Resources Information Center

    Rustling, Ruth; And Others

    This manual offers detailed guidelines for parent group trainers who conduct workshops on problem solving, math, and science for parents of young children. In addition, discussion starters, a list of hands-on activities, directions for drawing and using a poster, and learning activities for children are described. Counting books are briefly…

  8. A Gifted and Talented Curriculum Handbook for Science in the Intermediate Grades of Lee County's Department of Exceptional Children. Gifted and Talented Resource Program, Grades 4-6.

    ERIC Educational Resources Information Center

    Baggarley, Margaret; And Others

    Intended for regular classroom teachers in intermediate science classes serving the gifted and talented student, the curriculum handbook is designed to give a basic understanding of gifted education, to list appropriate goals and objectives for the gifted student, and to suggest materials and strategies for implementation within the regular…

  9. Space and Its Problems. [Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.

    ERIC Educational Resources Information Center

    Geist, John E.

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to 7th, 8th, and 9th grade science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total…

  10. Guess Who's Been Here for Dinner? [Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.

    ERIC Educational Resources Information Center

    Cook, Paul

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to 7th, 8th, and 9th grade science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total…

  11. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    PubMed

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  12. Successful strategies for integrating bedside ultrasound into undergraduate medical education.

    PubMed

    Palma, James K

    2015-04-01

    Nearly all physician specialties currently utilize bedside ultrasound, and its applications continue to expand. Bedside ultrasound is becoming a core skill for physicians; as such, it should be taught during undergraduate medical education. When ultrasound is integrated in a longitudinal manner beginning in the preclerkship phase of medical school, it not only enhances teaching the basic science topics of anatomy, physiology, and pathology but also ties those skills and knowledge to the clerkship phase and medical decision-making. Bedside ultrasound is a natural bridge from basic science to clinical science. The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine is currently in its fourth year of implementing an integrated ultrasound curriculum in the school of medicine. In our experience, successful integration of a bedside ultrasound curriculum should: align with unique focuses of a medical schools' mission, simplify complex anatomy through multimodal teaching, correlate to teaching of the physical examination, solidify understanding of physiology and pathology, directly link to other concurrent content, narrow differential diagnoses, enhance medical decision-making, improve procedural skills, match to year-group skillsets, develop teaching and leadership abilities, and have elective experiences for advanced topics. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  13. Factors affecting the results of comprehensive pre-internship exam among medical students of Kermanshah University of Medical Sciences.

    PubMed

    Khazaei, Mohammad Rasool; Zarin, Afshin; Rezaei, Mansuor; Khazaei, Mozafar

    2018-06-01

    This study was aimed to evaluate the factors affecting the results of comprehensive pre-internship exam (CPIE) among medicals students of Kermanshah University of Medical Sciences. In this descriptive-analytical study, all students (n=240) participating in CPIE over a 3-year period (2012-2014) were selected. Data were gathered by a questionnaire, including the CPIE results and educational and demographic data. Spearman correlation coefficient, Mann-Whitney U-test, and analysis of variance were used to analyze the association of students' success with study variables. Also, regression analysis was applied to determine the role of independent variables in students' success. The frequency of the failed units in apprenticeship course was one of the most important risk factors associated with failure in CPIE. Average scores of pre-internship course were the most important factors of success in CPIE. The CPIE score had the highest direct relationship with grade point average (GPA) of apprenticeship course, total GPA of all three courses, GPAs of physiopathology and basic sciences courses, and score of comprehensive basic sciences examination, respectively. CPIE showed the highest inverse correlation with the number of failed units in apprenticeship course. The most important factors influencing this exam were failure in apprenticeship course and GPA of previous educational stages.

  14. Measuring Mathematical Ability Needed for "Non-Mathematical" Majors: The Construction of a Scale Applying IRT and Differential Item Functioning across Educational Contexts

    ERIC Educational Resources Information Center

    Galli, Silvia; Chiesi, Francesca; Primi, Caterina

    2011-01-01

    Given that basic mathematical ability is a requirement to succeed in "non-mathematical" majors, e.g. degrees for Psychology, Education, and Health Sciences with compulsory introductory stats courses, assessing this ability can be useful to promote achievement. The aim of the present study was to develop a scale to measure the…

  15. Reframing Organizations: Artistry, Choice, and Leadership. Jossey-Bass Management Series, Social and Behavioral Science Series, and Higher and Adult Education Series.

    ERIC Educational Resources Information Center

    Bolman, Lee G.; Deal, Terrence E.

    This book shows how educators can become more versatile managers and more artistic leaders. In part 1, chapter 1 shows why reframing--the use of multiple lenses--is vital to effective leadership and management. It introduces the four basic lenses for organizational analysis--the structural, human resource, political, and symbolic frames--and show…

  16. Children and Television: A Basic Concern in Social Science Education. Occasional Paper No. 6.

    ERIC Educational Resources Information Center

    Ploghoft, Milton

    Television viewing by children is a major concern of parents, legislators, and educators in the United States today. By high school graduation a young person will have watched 15,000 hours of television as compared to 11,000 to 12,000 hours spent in school. Concerned groups fear a loss of reading ability, the development of a consumer mentality,…

  17. Education through Fiction: Acquiring Opinion-Forming Skills in the Context of Genomics

    ERIC Educational Resources Information Center

    Knippels, Marie-Christine P. J.; Severiens, Sabine E.; Klop, Tanja

    2009-01-01

    The present study examined the outcomes of a newly designed four-lesson science module on opinion-forming in the context of genomics in upper secondary education. The lesson plan aims to foster 16-year-old students' opinion-forming skills in the context of genomics and to test the effect of the use of fiction in the module. The basic hypothesis…

  18. Organizing Science Popularization and Teacher Training Workshops : A Nigerian Experience

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley; Okere, Bonaventure

    Funding for science popularization has become a huge challenge in recent times especially for developing countries like Nigeria. However, a change in the school system from the 6-3-3-4 system (6 years primary, 3 years Junior secondary, 3year senior secondary, and 4 years tertiary education) to the 9-3-4 system ( 9 years junior basic, 3 years secondary, and 4 tertiary education) has made it even more convenient to strategically target the students through their teachers to attain the desired quality of education since the introduction of space science into the curriculum at the primary and secondary levels. Considering the size of Nigeria, there Is need for a shift in paradigm for sourcing resources to tackle this deficiency in a sustainable manner. Recently a teacher training and science popularization workshop was organized as a first in a series of subsequent workshops geared towards having a sustainable means of popularizing Science in Nigeria. Principally, the key lies in the partnership with the colleges of education which produce the teachers for primary schools in addition to the usual governmental actions. Experiences from this workshop will be enumerated with the hope of inspiring the same success in similar societies.

  19. Redesigning a General Education Science Course to Promote Critical Thinking

    PubMed Central

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  20. Basic science research in urology training.

    PubMed

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  1. The Dark Side of Nuclear Arms Education.

    ERIC Educational Resources Information Center

    Jungerman, Nancy K.; Jungerman, John A.

    1985-01-01

    Outlines a course (offered jointly by physics and applied science departments) which focuses on basic physics and nuclear war effects. Due to the emotional impact of issues discussed in the course, faculty implemented a plan which included the use of counseling professionals. (DH)

  2. Latin America: Resource Management Awareness to Action.

    ERIC Educational Resources Information Center

    Leiberman, Gerald A.

    1985-01-01

    Discusses development, goals, and phases of the Resources Management Education Program. The program, designed to create a basic awareness of conservation and natural resources management issues for primary schools in Latin America, is taught in conjunction with the life and physical sciences. (DH)

  3. Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Chao; Zhang, Xin; Zhao, Wei-Chen; Chen, Zhao-Yang; Du, Pan; Zhao, Yong-Mei; Wu, Zheng-Long; Xu, Hai-Jun

    2018-02-01

    Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB745100), the National Natural Science Foundation of China (Grant Nos. 21390202 and 21676015), and the Beijing Higher Education Young Elite Teacher Project.

  4. How to link geography, cross-curricular approach and inquiry in science education at the primary schools

    NASA Astrophysics Data System (ADS)

    Karvánková, Petra; Popjaková, Dagmar

    2018-05-01

    Pupil research in school lessons in the sense of Inquiry-Based Education (IBE) is one of the constructivist approaches to education. Inquiry strengthens the positive approach of pupils to natural science subjects, encouraging them to study phenomena and processes taking place in the natural environment around them and use the acquired knowledge in their practical life. Geography as a school subject, due to the multidisciplinary nature of geography as a science, is close to natural sciences as well. This is because of the broadness of the subject of geographical studies, the complex (natural and cultural) landscape. The close links of geography to all cross-sectional themes make it a good support for teaching classical science subjects at schools such as mathematics, physics, chemistry or biology, environmental education. Moreover, the field teaching is one of the strong assets of the implementation of IBE in the school geography. Presented case study on the 'effect of noise on the surroundings' explores the facts mentioned above, in geography teaching. It verifies the pupils' knowledge and skills to adopt the basic principles of IBE in the practice. At the same time, it presents the concrete experiences how the children master the individual stages of IBE during the process of education.

  5. Dental Students’ Educational Achievement in Relation to Their Learning Styles: A Cross-sectional Study in Iran

    PubMed Central

    Hosseini, Seyed Masoud; Amery, Hamideh; Emadzadeh, Ali; Babazadeh, Saber

    2015-01-01

    Background and Objectives: In recent decades, many studies have been carried out on the importance of Kolb experiential learning theory (ELT) in teaching-learning processes and its effect on learning outcomes. However, some experts have criticized the Kolb theory and argue that there are some ambiguities on the validity of the theory as an important predictor of achievement. This study has been carried out on dental students’ educational achievement in relation to their dominant learning styles based on Kolb theory in Mashhad University of Medical Sciences (Iran). Methods: In a cross sectional study, Kolb Learning Style Inventory (LSI Ver. 3.1) as well as a questionnaire containing students’ demographic data, academic achievement marks including grade point average (GPA), theoretical and practical courses marks, and the comprehensive basic sciences exam (CBSE) scores were administered on a purposive sample of 162 dental students who had passed their comprehensive basic sciences exam. Educational achievement data were analyzed in relation to students’ dominant learning styles, using descriptive and analytical statistics including χ2, Kruskal-Wallis and two-way ANOVA tests. Results: The dominant learning styles of students were Assimilating (53.1%), Converging (24.1%), Diverging (14.2%) and Accommodating (8.6%). Although, the students with Assimilating and Converging learning styles had a better performance on their educational achievement, there was no significant relationship between educational achievement and dominant learning style (P≥0.05). Conclusion: Findings support that the dominant learning style is not exclusively an essential factor to predict educational achievement. Rather, it shows learning preferences of students that may be considered in designing learning opportunities by the teachers. PMID:26156915

  6. Taking a Scientific Approach to Science Teaching

    NASA Astrophysics Data System (ADS)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  7. Astronomy in the Initial Formation of Sciences Teachers

    NASA Astrophysics Data System (ADS)

    Costa, Samuel; Euzébio, Geison João; Damasio, Felipe

    2016-12-01

    Although astronomy is considered one of the older sciences of mankind, its teaching in basic education is facing problems. It is the school responsibility the dissemination of correct scientific concepts, including those related to Astronomy. This study was conducted at the Federal Institute of Education, Science and Technology of Santa Catarina, Campus Araranguá. In this article, we aimed to present the activities developed to help the formation of teachers, training undergraduate students in Natural Sciences with specialization in Physics to contribute to the dissemination and improvement of the teaching-learning of Astronomy. This paper presents the process and results of the evaluation of that training program. Analyses of the activity from the perspective of the participants are indicated and additional considerations are made regarding its use as a resource for teaching Astronomy and for teacher training.

  8. Teaching of anterior cruciate ligament function in osteopathic medical education.

    PubMed

    Surek, Christopher Chase; Lorimer, Shannon D; Dougherty, John J; Stephens, Robert E

    2011-04-01

    The anterior cruciate ligament (ACL) of the knee and the function of its anteromedial (AM) and posterolateral (PL) bundles are a focus of orthopedic research. Because of the probability that third-year and fourth-year osteopathic medical students will encounter ACL injuries during clinical rotations, it is of paramount importance that students fully understand the functions of the AM and PL bundles as 2 distinct functional components of the ACL. The authors assess the degree to which the AM and PL bundles are discussed within basic science curricula at colleges of osteopathic medicine (COMs). In September 2008, a 6-question survey addressing various aspects of ACL education was mailed to instructors of lower-extremity anatomy at all 28 COMs that existed at that time. Nine of the 21 responding institutions (42.9%) indicated that both the AM and PL bundles of the ACL are discussed within their basic science curricula. Four of these 9 COMs indicated that their instruction mentions that the bundles are parallel in extension and crossed in flexion. Nine of the 21 responding COMs (42.9%) indicated that they instruct students that the AM bundle is a major anterior-posterior restrictor, and 12 (57.1%) indicated that they instruct students that the PL bundle is the major rotational stabilizer of the ACL. In 7 of the 21 responding COMs (33.3%), the AM and PL bundles are identified via direct visualization during anatomic dissection of the ACL. The authors conclude that their findings suggest the need for enhanced presentation of the AM and PL bundles within the basic science curricula at COMs to provide osteopathic medical students with a more comprehensive education in anatomy.

  9. A Solid Earth educational module, co-operatively developed by scientists and high school teachers through the Scripps Classroom Connection GK12 Program

    NASA Astrophysics Data System (ADS)

    Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.

    2010-12-01

    The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.

  10. Management System for Integrating Basic Skills 2 Training and Unit Training Programs

    DTIC Science & Technology

    1983-09-01

    Social Sciences. NOTEs The findings in this report are not to be construed as en official Department of the Army position, unless so designated by other...This report describes methods used and results obtained in the design , development, and field test of a management system and curriculum components...for integrating the Army’s Basic Skills Education Program, Phase II (BSEP II) and unit training programs. The curriculum components are designed to

  11. Experimental Observation of the Ground-State Geometric Phase of Three-Spin XY Model

    NASA Astrophysics Data System (ADS)

    Hui, Zhou; Zhao-Kai, Li; Heng-Yan, Wang; Hong-Wei, Chen; Xin-Hua, Peng; Jiang-Feng, Du

    2016-06-01

    Not Available Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700, the National Science Fund for Distinguished Young Scholars under Grant No 11425523, the National Natural Science Foundation of China under Grant Nos 11375167, 11227901, 91021005 and 11575173, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant No XDB01030400, the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044, the China Postdoctoral Science Foundation, and the Fundamental Research Funds for the Central Universities.

  12. Analysis of knowledge in Astronomy of the students of the Course of Technology in Industrial Automation at the Federal Institute of Education, Science and Technology of São Paulo - Campus Cubatao

    NASA Astrophysics Data System (ADS)

    Moraes, A. C.

    2014-02-01

    This work is part of a research of the academic Masters in Science in Education. It seeks to present the results of the survey conducted among students of the technology course in industrial automation at the Federal Institute of Education, Science and Technology of São Paulo at the Campus Cubatão (IFSP Campus Cubatão). In the first step, the students' lack of knowledge to the related primary concepts of Astronomy turned out. In a second step, a Basic Course in Astronomy was held outside the syllabus, including classes, lectures and films with pertinent content, which corrected initially found erros. Through a special approach, containing diverse teaching strategies, astronomical concepts were learned or relearned. Analysing the responses of this second step it was found that students had a significant improvement in learning.

  13. Development strategies for science learning management to transition in the 21st century of Thailand 4.0

    NASA Astrophysics Data System (ADS)

    Jedaman, Pornchai; Buraphan, Khajornsak; Yuenyong, Chokchai; Suksup, Charoen; Kraisriwattana, Benchalax

    2018-01-01

    Science learning management aims to analyze the development strategies for science learning management to transition in the 21st Century of Thailand 4.0. Is qualitative study employed review of documentary, questionnaire both to the participatory action learning with the teachers intwenty-five Secondary education area offices in the basic education of Thailand. The participants were cluster sampling random of each 150 persons. Data analysis includes data reduction, data organization, data interpretation to conclusion. The main of this study were to a creating innovation, links and access to technology as well as to the changes. It is very important for needs to be learning management for effective of science subject in the educational. Led to the plan to driven for the science learning management were a success in the 21st century, spanning strategy were converted of practical the steps throughinstitutional research and development to solve problems in changing identity, reorientation, paradigm shifted, transformation of cultural to propel the country for first world Nation in the elements were "6R12C3E".

  14. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  15. Problems encountered by BA Cur graduates and recommendations for enhancing learner support.

    PubMed

    Ehlers, V

    2000-12-01

    Distance education is becoming ever more important in providing continuing post basic, and especially postgraduate, education to practising professional persons, including nurses. As more and more institutions in the Republic of South Africa offer distance education courses to nurses, it is essential to take note of the positive and negative experiences of successful graduates of these programmes, in order to enhance the learning opportunities, and the success rate of nurses pursuing such distance education courses. A brief historical overview is provided about the University of South Africa (Unisa) and about the Department of Advanced Nursing Sciences at this distance education university. This background information should assist the reader in contextualising the research findings. Questionnaires were posted to all Unisa's 1998 BA Cur graduates. The research report focuses on the 1998 BA Cur (nursing) graduates' biographic data, their experiences of pursuing distance education post basic nursing courses, their positive and negative perceptions of these experiences and their recommendations for enhancing other students' success.

  16. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    NASA Astrophysics Data System (ADS)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  17. Adult-Rated Oceanography Part 2: Examples from the Trenches

    NASA Astrophysics Data System (ADS)

    Torres, M. E.; Collier, R.; Cowles, S.

    2004-12-01

    We will share experiences and specific examples from an ongoing Ocean Science and Math Collaborative Project between OSU faculty and Community College instructors from the Oregon system of adult education and workforce development. The participants represent such diverse instructional programs as workforce training, workplace education (cannery workers), adult basic education, adult secondary education (GED preparation), English to Speakers of Other Languages, Family Literacy, and Tribal Education (Confederated Tribes of the Siletz Indians). This collaborative project is designed to integrate ocean sciences into the science, math, and critical thinking curriculum through the professional development activities of adult educators. Our strategy is to tailor new and existing ocean science resources to the needs of adult education instructors. This project provides a wide range of opportunities in time and effort for scientist involvement. Some scientists have chosen to participate in short interviews or conversations with adult educators, which give added value through real-world connections in the context of the larger project. Other participating scientists have made larger time investments, which include presentations at workshops, hosting teacher-at-sea opportunities and leading project planning and implementation efforts. This project serves as an efficient model for scientists to address the broader impact goals of their research. It takes advantage of a variety of established educational outreach resources funded through NSF (e.g. the national COSEE network and GeoEducation grants), NOAA (e.g. SeaGrant education and Ocean Explorer) as well as State and Federal adult education programs (e.g. The National Institute for Literacy Science and Numeracy Special Collection). We recognize the value and creativity inherent in these resources, and we are developing a model to "tune" their presentation, as well as their connection to new oceanographic research, in a manner that fits the needs of the adult education community.

  18. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  19. Foundations for Gerontological Education.

    ERIC Educational Resources Information Center

    Johnson, Harold R.; And Others

    1980-01-01

    Focuses on: (1) components of a basic core of knowledge essential for all people working in the field of aging; (2) knowledge essential for professions related to biomedical science, human services, social and physical environment; and (3) knowledge essential for clinical psychology, nursing, nutrition, and social work. (Author)

  20. A Humanities and Medicine Program for Faculty.

    ERIC Educational Resources Information Center

    Loftus, Loretta S.; And Others

    1991-01-01

    The da Vinci Society provides a format for integration of the humanities, arts, medical education, and clinical practice. The critical discussion group, whose meetings' atmosphere is informal and collegial, includes basic science faculty, academic clinicians, private practice physicians, allied health personnel, and occasional visiting artists.…

  1. 75 FR 26942 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... Academic Libraries Survey (ALS) provides the basic data needed to produce descriptive statistics for... Education Sciences Type of Review: Reinstatement. Title: Academic Libraries Survey (ALS): 2010-2012... separate biennial survey. The data are collected on the web and consist of information about library...

  2. Students' Mental Models of Atomic Spectra

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  3. Educator's Guide for Mission to Earth: LANDSAT Views the World

    NASA Technical Reports Server (NTRS)

    Tindal, M. A.

    1978-01-01

    This teacher's guide is specifically designed to provide information and suggestions for using LANDSAT imagery to teach basic concepts in several content areas. Content areas include: (1) Earth science and geology; (2) environmental studies; (3) geography; and (4) social and urban studies.

  4. Identification and Support of Outstanding Astronomy Students

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  5. Strengthening Faculty Recruitment for Health Professions Training in Basic Sciences in Zambia

    PubMed Central

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-01-01

    Zambia is facing a crisis in its human resources for health (HRH), with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools—two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master’s programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region. PMID:25072591

  6. Strengthening faculty recruitment for health professions training in basic sciences in Zambia.

    PubMed

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Nzala, Selestine; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-08-01

    Zambia is facing a crisis in its human resources for health, with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools--two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master's programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region.

  7. [ANTONIO SCARPA IN HIS FIRST YEARS AT MODENA UNIVERSITY (1772-1776)].

    PubMed

    Cavarra, Berenice

    2015-01-01

    Antonio Scarpa undertakes his teacher's role at Modena University (1772) in favourable conditions for disciplines renewals in medicine and carrying out of political and administrative reforms, also affecting health professions. Besides the establishment of basic educational teachings for doctors, surgeons and midwives, the construction of the anatomical theater, the involvement of high education and intellectuals in sciences and humanities in an extensive program of renewal of higher education, the promulgation of ducal provisions aims to rule the practice of medicine, at any level.

  8. Using a high-fidelity patient simulator with first-year medical students to facilitate learning of cardiovascular function curves.

    PubMed

    Harris, David M; Ryan, Kathleen; Rabuck, Cynthia

    2012-09-01

    Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.

  9. The International Heliophysical Year Education and Outreach Program

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M.; Morrow, C.; Thompson, B.

    2006-12-01

    The International Heliophysical Year (IHY) will celebrate the 50th anniversary of the International Geophysical Year (IGY) and will continue its tradition of international research collaboration. The term "heliophysical" is an extension of the term "geophysical", where the Earth, Sun & Solar System are studied not as separate domains but through the universal processes governing the heliosphere. IHY represents a logical next-step, extending the studies into the heliosphere and thus including the drivers of geophysical change. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe the IHY Education and Outreach Program, how to participate and the benefits in doing so. ~

  10. Nursing educators' perceptions about disaster preparedness and response in Istanbul and Miyazaki.

    PubMed

    Öztekin, Seher Deniz; Larson, Eric Edwin; Altun Uğraş, Gülay; Yüksel, Serpil; Savaşer, Sevim

    2015-04-01

    As healthcare professionals, nursing educators need to be prepared to manage and deliver care in what are often dangerous conditions. This research aims to determine and compare nursing educators' perceptions of disaster preparedness and response (DP&R) in Istanbul and Miyazaki. An 18 question descriptive questionnaire was used. One hundred and forty-four nursing educators representing two state university nursing schools in Istanbul, Turkey, and one state and two private universities in Miyazaki, Japan were enrolled. Educators had an average age of 40 years and had been educators for 1-15 years. Just over half of the participants had basic knowledge regarding DP&R with most of them considering taking special courses in the future. The majority considered "caregiver" as a role they could undertake in a disaster situation. The existence of major concerns and conflicts in disaster responses were low. The top ranked item was in the area of conflict between family and job responsibilities. Age and academic levels showed significant differences in basic knowledge on DP&R. Regardless of knowledge in this subject area, no statistical significance on personal preparedness or being a volunteer to disaster events was found. Nursing educators were not thinking about what kinds of disasters occur in the areas where they currently teach and were underprepared to deal with disaster situations. To improve the perceptions of the nursing educators on DP&R, mass casualty care and disaster management skills need to be incorporated into formal education and training on disaster preparedness and workplace preparedness. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  11. Invertebrate Fossils: Clues to the Distant Past. [Aids to Individualize the Teaching of Science, Mini-Course Units for Grades 7, 8, and 9.

    ERIC Educational Resources Information Center

    Geist, John E.

    This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to 7th, 8th, and 9th grade science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total…

  12. Study of Effectiveness of Army Continuing Education System

    DTIC Science & Technology

    1981-08-01

    Laboratories fI BASIC SKILLS INSTRUCTIONAL SYSTEMS TECHNICAL AREA OTIC C• U. S. Army Research rnstioute for the Behavioral and Social Sciences LU LL...Columbus, Ohio 43201 2Q263731A770 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE US Army Research Institute for the Behavioral and August 1981...FOR THE BEHAVIORAL AND SOCIAL SCIENCES 5001 Eisenhower Avenue, Alexandria, Virginia 22333 Office, Deputy Chief of Staff for PersonnelI Department of

  13. Evolution of the scientific basis for dentistry and its impact on dental education: past, present, and future.

    PubMed

    Slavkin, Harold C

    2012-01-01

    Science is the fuel for technology and the foundation for understanding the human condition. In dental education, as in all health professions, science informs a basic understanding of development, is essential to understand the structure and function of biological systems, and is prerequisite to understand and perform diagnostics, therapeutics, and clinical outcomes in the treatment of diseases and disorders. During the last seventy-five years, biomedical science has transformed from discipline-based scientists working on a problem to multidisciplinary research teams working to solve complex problems of significance to the larger society. Over these years, we witnessed the convergence of the biological and digital revolutions with clinical health care in medical, dental, pharmacy, nursing, and allied health care professional education. Biomedical science informs our understanding, from human genes and their functions to populations, health disparities, and the biosphere. Science is a "way of knowing," an international enterprise, a prerequisite for the health professions, and a calling and adventure to the curious mind. Science, the activity of doing science, is in the national self-interest, in the defense of a nation, and critical to the improvement of the human condition. In the words of Vannevar Bush, "science is the endless frontier."

  14. Planetary science education in a multidisciplinar environment: an alternative approach for ISU

    NASA Astrophysics Data System (ADS)

    Calzada, A.

    2012-09-01

    The aim of the International Space University (ISU) located in Strasbourg, France, is to provide to the participants of its programs an overview of all the aspects of the space field. This also includes a basic background on Planetary Sciences. During the Master 2012 an individual project about impact processes was done. During this project some issues regarding planetary science awareness arise and it brought to the table the need to increase its presence in the ISU programs. The conclusions may be extrapolated to other academic institutions.

  15. Past, present, and future of predoctoral dental education in orofacial pain and TMDs: a call for interprofessional education.

    PubMed

    Klasser, Gary D; Gremillion, Henry A

    2013-04-01

    Over the past several decades, there has been an explosion of knowledge in the fields of science and technology as they relate to the profession of dentistry. Due to these advances, dental curricula have had to incorporate many changes as they prepare students as well as faculty members for the twenty-first century. Dental educators have been encouraged to alter their paradigms to these new realities. One of the areas in which change has been profound is the field of orofacial pain (OFP) and, more specifically, temporomandibular disorders (TMDs). OFP/TMDs, once subject matters surrounded by ambiguity and controversy, are now being better understood due to advances in basic and clinical science research. In order to appreciate the impact that evidence-based science has had on the education of predoctoral students during past decades, it would be beneficial for dental educators to be cognizant of the history and current status regarding these topics. To promote the educational process of OFP/TMDs, a future directions approach is presented encompassing the concepts of interprofessional education so that innovation may be considered within our academic dental institutions.

  16. The Primacy of Cognition or of Perception? A Phenomenological Critique of the Theoretical Bases of Science Education

    NASA Astrophysics Data System (ADS)

    Dahlin, Bo

    This paper is a phenomenological critique of a particular trend in educational research and practice, which is identified as cognitivism. The basic feature of this trend is a one-sided and exclusive focus on conceptual cognition and concept formation, with a simultaneous neglect of sense experience. It is argued that this kind of thinking is the result of the reception by education of epistemological theories, which have an objective alien to that of education, which is the all-round development of human personality. The discussion draws mainly upon the philosophies of Dewey, Husserl and Merleau-Ponty. It is argued that present, mainstream theories of science education need to be complemented with phenomenological perspectives. This would make the transition from immediate life world experience to the idealizations of scientific theories less difficult for students. It would also contribute towards less alienation between man and nature.

  17. When Students Struggle with Gross Anatomy and Histology: A Strategy for Monitoring, Reviewing, and Promoting Student Academic Success in an Integrated Preclinical Medical Curriculum

    ERIC Educational Resources Information Center

    Hortsch, Michael; Mangrulkar, Rajesh S.

    2015-01-01

    Gross anatomy and histology are now often taught as parts of an integrated medical or dental curriculum. Although this puts these foundational basic sciences into a wider educational context, students may not fully appreciate their importance as essential components of their medical education and may not develop a sufficient level of competency,…

  18. Effectiveness of Learning with 3D-Lab on Omani Basic Education Students' Achievement, Attitudes and Scientific Thinking

    ERIC Educational Resources Information Center

    Musawi, Ali Al; Ambusaidi, Abdullah; Al-Balushi, Sulaiman; Al-Sinani, Mohamed; Al-Balushi, Kholoud

    2017-01-01

    This paper aims to measure the effectiveness of the 3DL on Omani students' acquisition of practical abilities and skills. It examines the effectiveness of the 3D-lab in science education and scientific thinking acquisition as part of a national project funded by The Research Council. Four research tools in a Pre-Post Test Control Group Design,…

  19. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    PubMed Central

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2016-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP)1. The TSTP is an intensive 2–3 day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. PMID:27231204

  20. The astronomy education through interactive materials

    NASA Astrophysics Data System (ADS)

    de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2014-11-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs

  1. Nuclear science and society: social inclusion through scientific education

    NASA Astrophysics Data System (ADS)

    Levy, Denise S.

    2017-11-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.

  2. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  3. Exploiting the Capabilities of NASA's Giovanni System for Oceanographic Education

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Petrucio, Emil; Leptoukh, Gregory; Shen, Suhung

    2007-01-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) Giovanni system [GES DISC Interactive Online Visualization ANd aNalysis Infrastructure] has significant capabilities for oceanographic education and independent research utilizing ocean color radiometry data products. Giovanni allows Web-based data discovery and basic analyses, and can be used both for guided illustration of a variety of marine processes and phenomena, and for independent research investigations. Giovanni's capabilities are particularly suited for advanced secondary school science and undergraduate (college) education. This presentation will describe a variety of ways that Giovanni can be used for oceanographic education. Auxiliary information resources that can be utilized will also be described. Several testimonies of Giovanni usage for instruction will be provided, and a recent case history of Giovanni utilization for instruction and research at the undergraduate level is highlighted.

  4. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    PubMed Central

    Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non–research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise. PMID:21885820

  5. Improving graduate education to support a branching career pipeline: recommendations based on a survey of doctoral students in the basic biomedical sciences.

    PubMed

    Fuhrmann, C N; Halme, D G; O'Sullivan, P S; Lindstaedt, B

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non-research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise.

  6. 76 FR 21387 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... applications. Place: Hilton Garden Inn Durham Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact....142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental...

  7. 75 FR 13558 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...: Hilton Garden Inn Durham Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact Person: Leroy..., NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental Health...

  8. 78 FR 26793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... evaluate grant applications. Place: Hilton Garden Inn Durham Southpoint Hotel, 7007 Fayetteville Road...--Health Risks from Environmental Exposures; 93.142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and...

  9. Agriscience Education for the Middle School.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    This curriculum guide, which is intended for middle school agriculture teachers in Virginia, outlines a three-course competency-based agriscience program to give middle school students an understanding of basic science concepts through agriculture. The guide begins with a program description that includes descriptions of the program's three…

  10. A Turing Machine Simulator.

    ERIC Educational Resources Information Center

    Navarro, Aaron B.

    1981-01-01

    Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)

  11. Guidelines and Recommendations for New Hampshire Public Elementary Schools, Kindergarten--Grade 6.

    ERIC Educational Resources Information Center

    New Hampshire State Dept. of Education, Concord.

    Sections concerned with facilities deal with library services, equipment and facilities for science and physical education, and the school building. Recommendations for library service include check lists and standards pertaining to objectives, basic equipment and supplies, individual classroom collections, audio visual collections, library…

  12. 75 FR 11870 - Notice of Proposed Information Collection Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    .... Abstract: The Academic Libraries Survey (ALS) provides the basic data needed to produce descriptive.... Institute of Education Sciences Type of Review: Reinstatement. Title: Academic Libraries Survey (ALS): 2010... 2000 it has been a separate biennial survey. The data are collected on the web and consist of...

  13. Teaching the Teachers: Physical Science for the Non-Scientific

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.

    2004-12-01

    The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.

  14. Practice of Regulatory Science (Drug Development).

    PubMed

    Kawanishi, Toru

    2017-01-01

    The practice of regulatory science (RS) for drug development is described. In the course material for education in pharmaceutical sciences drafted by the RS Division of the Pharmaceutical Society of Japan, RS for pharmaceuticals is defined as the science of predicting, assessing, and judging the quality, efficacy, and safety of pharmaceutical products throughout their lifespan. RS is also described as an integrated science based on basic and applied biomedical sciences, including analytical chemistry, biochemistry, pharmacology, toxicology, genetics, biostatistics, epidemiology, and clinical trial methodology, and social sciences such as decision science, risk assessment, and communication science. The involvement of RS in drug development generally starts after the optimization of lead compounds. RS plays important roles governing pharmaceuticals during their entire life cycle management phase as well as the drug development phase.

  15. Anatomy teaching assistants: facilitating teaching skills for medical students through apprenticeship and mentoring.

    PubMed

    Lachman, Nirusha; Christensen, Kevin N; Pawlina, Wojciech

    2013-01-01

    Significant increase in the literature regarding "residents as teachers" highlights the importance of providing opportunities and implementing guidelines for continuing medical education and professional growth. While most medical students are enthusiastic about their future role as resident-educators, both students and residents feel uncomfortable teaching their peers due to the lack of necessary skills. However, whilst limited and perhaps only available to select individuals, opportunities for developing good teaching practice do exist and may be identified in courses that offer basic sciences. The Department of Anatomy, College of Medicine, Mayo Clinic offers a teaching assistant (TA) elective experience to third- and fourth-year medical students through integrated apprenticeship and mentoring during the human structure didactic block. This article, aims to describe a curriculum for a TA elective within the framework of a basic science course through mentoring and apprenticeship. Opportunities for medical students to become TAs, process of TAs' recruitment, mentoring and facilitation of teaching and education research skills, a method for providing feedback and debriefing are described. Developing teaching practice based on apprenticeship and mentoring lends to more accountability to both TA's and course faculty by incorporating universal competencies to facilitate the TA experience.

  16. The promise of educational neuroscience: Comment on Bowers (2016).

    PubMed

    Gabrieli, John D E

    2016-10-01

    Bowers (2016) argues that there are practical and principled problems with how educational neuroscience may contribute to education, including lack of direct influences on teaching in the classroom. Some of the arguments made are convincing, including the critique of unsubstantiated claims about the impact of educational neuroscience and the reminder that the primary outcomes of education are behavioral, such as skill in reading or mathematics. Bowers' analysis falls short in 3 major respects. First, educational neuroscience is a basic science that has made unique contributions to basic education research; it is not part of applied classroom instruction. Second, educational neuroscience contributes to ideas about education practices and policies beyond classroom curriculum that are important for helping vulnerable students. Third, educational neuroscience studies using neuroimaging have not only revealed for the first time the brain basis of neurodevelopmental differences that have profound influences on educational outcomes, but have also identified individual brain differences that predict which students learn more or learn less from various curricula. In several cases, the brain measures significantly improved or vastly outperformed conventional behavioral measures in predicting what works for individual children. These findings indicate that educational neuroscience, at a minimum, has provided novel insights into the possibilities of individualized education for students, rather than the current practice of learning through failure that a curriculum did not support a student. In the best approach to improving education, educational neuroscience ought to contribute to basic research addressing the needs of students and teachers. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Interactive Learning During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steven (Technical Monitor)

    2001-01-01

    The goal of this project is to develop and distribute e-educational material for space science during times of solar activity that emphasizes underlying basic science principles of solar disturbances and their effects on Earth. This includes materials such as simulations, animations, group projects and other on-line materials to be used by students either in high school or at the introductory college level. The on-line delivery tool originally intended to be used is known as Interactive Multimedia Education at a Distance (IMED), which is a web-based software system used at UCLA for interactive distance learning. IMED is a password controlled system that allows students to access text, images, bulletin boards, chat rooms, animation, simulations and individual student web sites to study science and to collaborate on group projects.

  18. Old is Still New: Changing Global Concerns and Enduring Educational Values

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.

    2012-12-01

    In 1982 the primary technology of disseminating educational information was the printed book and the typewriter with the mimeograph machine. In 2012, the world wide web, interactive books, and social media are major players in educational technology. Students have moved from passive reading and listening to constructing their own knowledge. In 1982, the paradigm in science education included exploring the common interests of science and education, the role of formal and informal education, and the importance of providing scientists for the workforce. In 2012, conversations have broadened to include topics of citizen science, stakeholder involvement, and risk communication to policy makers and communities. As the population of Earth has grown from over 4.5 billion people to over 7 billion people in the same time period, the role of science education has expanded to global concerns. The Asia Pacific region bears a significant proportion of the world's population and high risks associated with natural hazards and with climate change. Educational conversations include how science impacts and informs public policy, community empowerment, and collaborations among the various types of groups which can affect change. These organizations include scientific research and educational institutions,; non-governmental organizations (NGOs); educators in schools, museums and science centers; and government officials from local to national levels. There is considerable interest in bridging disciplines that impact the populations at risk, i.e. education, development, disaster risk management, public communication, and others. Despite the broadening of concerns, changes in technology, and the ways people get information, education still focuses on some basic issues that have not changed. Some of these include interesting young people in STEM study and careers, providing messages that are clearly understood, trying to understand nature of working across disciplines, and involving the right stakeholders. Education continues to struggle with communication between scientists and the people who might benefit from scientific advances.

  19. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  20. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  1. Raising awareness about soil diversity: The Education Programme of the Earth Sciences Museum Alexis Dorofeef, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Muggler, C.

    2012-04-01

    Soils are usually overlooked as part of geodiversity and geoheritage. Increasing the public awareness about soils is a key issue in our changing world. Furthering public awareness involves developing a better understanding of soils, their functions, importance for environment and society, as well as a personal and collective commitment in the stewardship and protection from degradation and loss. This presentation describes the Soil and Environmental Education and Outreach Programme of the Alexis Dorofeef Earth Sciences Museum of the Soil University Department in Viçosa, Brazil. The program has developed different activities linked to formal and non formal education and its main audience are basic education teachers, school children and the general public. The museum acts in different and diverse fronts, supported on a pedagogical background based on Paulo Freire's educational approach, the social-constructivism, which considers social inclusion, knowledge building, horizontal learning and collective action. In its early years, the museum was mainly focused on formal education and this changed with time as our action was reshaped into a broader outreach action stimulated by the new Brazilian government. The museum's indoor activities consist of accompanied thematic visits, hands on experiments, basic school teacher's courses, development of learning materials and methods and professional training. Beyond of the Museum space local interdisciplinary projects with basic education schools are run along with temporary expositions coupled with short courses and workshops with farmers and social movements. We present the results of the changes in awareness about soils among three main groups: school teachers, basic education children and general public. After 10 years of activities, the Soil Education action of the Museum is recognized and well spread among school communities in the town and its neighbourhood. Many school teachers approach the contents and methodologies they learned at the museum, as well as many of the students that did their practical's at the museum do. As a side result, the Soil Education Program triggered the broadening of the museum themes into three main conceptual lines: Earth's dynamics, Natural resources: use and environmental impacts and, Soils: know to conserve. Today the Museum is spreading its knowledge about soil throughout the region, by means of temporary expositions and educational activities. Despite its achievements, the Museum still faces the challenge to broaden its action, reaching different and wider publics, making both the idea of visiting a museum and the knowledge about soils more popular.

  2. NOVA making stuff: Season 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leombruni, Lisa; Paulsen, Christine Andrews

    Over the course of four weeks in fall 2013, 11.7 million Americans tuned in to PBS to follow host David Pogue as he led them in search of engineering and scientific breakthroughs poised to change our world. Levitating trains, quantum computers, robotic bees, and bomb-detecting plants—these were just a few of the cutting-edge innovations brought into the living rooms of families across the country in NOVA’s four-part series, Making Stuff: Faster, Wilder, Colder, and Safer. Each of the four one-hour programs gave viewers a behind-the-scenes look at novel technologies poised to change our world—showing them how basic research and scientificmore » discovery can hold the keys to transforming how we live. Making Stuff Season 2 (MS2) combined true entertainment with educational value, creating a popular and engaging series that brought accessible science into the homes of millions. NOVA’s goal to engage the public with such technological innovation and basic research extended beyond the broadcast series, including a variety of online, educational, and promotional activities: original online science reporting, web-only short-form videos, a new online quiz-game, social media engagement and promotion, an educational outreach “toolkit” for science educators to create their own “makerspaces,” an online community of practice, a series of nationwide Innovation Cafés, educator professional development, a suite of teacher resources, an “Idealab,” participation in national conferences, and specialized station relation and marketing. A summative evaluation of the MS2 project indicates that overall, these activities helped make a significant impact on the viewers, users, and participants that NOVA reached. The final evaluation conducted by Concord Evaluation Group (CEG) confidently concluded that the broadcast, website, and outreach activities were successful at achieving the project’s intended impacts. CEG reported that the MS2 series and website content were successful in raising awareness and sparking interest in innovation, and increased public awareness that basic research leads to technological innovation; this interest was also sustained over a six month period. Efforts to create an online community of practice were also successful: the quality of collaboration increased, and community members felt supported while using Maker pedagogy. These findings provide clear evidence that large-scale science media projects like MS2 are an effective means of “moving the needle” on attitudes about and excitement for science. NOVA’s broadcast audience and ratings have always indicated that a large portion of the population is interested in and engages with educational science media on a weekly basis. Yet these evaluation results provide the empirical evidence that beyond being capable of attracting, maintaining, and growing a dedicated group of citizens interested in science, these shows—with their diverse content provided on a variety of media channels—are capable of sparking new interest in science, raising public awareness of the importance of science, and maintaining and growing that interest over time. In a country where approximately a quarter of the population doesn’t know the earth rotates around the sun,1 roughly half still don’t accept evolution,2 and about 20% don’t think climate change is happening,3 the importance of these findings cannot be overstated. The success of MS2 suggests that large-scale media projects dedicated to and linked by coverage of scientific “big ideas” are an effective means of shifting public opinion on—and improving understanding of—science. REFERENCES 1, 2 National Science Foundation, Science and Engineering Indicators (2014). Chapter 7: Science and Technology: Public Attitudes and Understanding. 3 Leiserowitz, A., Maibach, E., Roser-Renouf, C., Feinberg, G., & Rosenthal, S. (2014) Climate change in the American mind: April, 2014. Yale University and George Mason University. New Haven, CT: Yale Project on Climate Change Communication.« less

  3. Competency-based medical education: An overview and application in pharmacology

    PubMed Central

    Shah, Nilima; Desai, Chetna; Jorwekar, Gokul; Badyal, Dinesh; Singh, Tejinder

    2016-01-01

    Competency-based medical education (CBME) is gaining momentum across the globe. The Medical Council of India has described the basic competencies required of an Indian Medical Graduate and designed a competency-based module on attitudes and communication. Widespread adoption of a competency-based approach would mean a paradigm shift in the current approach to medical education. CBME, hence, needs to be reviewed for its usefulness and limitations in the Indian context. This article describes the rationale of CBME and provides an overview of its components, i.e., competency, entrustable professional activity, and milestones. It elaborates how CBME could be implemented in an institute, in the context of basic sciences in general and pharmacology in particular. The promises and perils of CBME that need to be kept in mind to maximize its gains are described. PMID:28031599

  4. Web portal on environmental sciences "ATMOS''

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.

    2006-06-01

    The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  5. Promoting Access, Retention, and Interest in Astronomy Higher Education: Developing the STEM Professionals of Tomorrow in New Mexico

    NASA Astrophysics Data System (ADS)

    Vogt, N. P.; Muise, A. S.; Cook, S.; Voges, E.

    2011-09-01

    Economic stability and success are becoming increasingly tied to the successful acquisition of basic academic skills, with the emergence of a computer- and data-oriented society. The recent doubling of the statewide requirement for laboratory science courses at the college level in New Mexico thus represents both an opportunity to further aid in the development of math and science skills in our general population and an added barrier to degree completion. Couple this to a geographically dispersed population of non-traditional students, with workforce and family responsibilities that compete directly for time with academics, and we have a compelling need for alternate methods of teaching science in New Mexico. We present a set of NASA- and NSF-sponsored resources under development to aid in teaching astronomy as a laboratory science at the college level, with usage results for a pilot group of students. Primary components include a self-review database of 10,000+ questions, an instructor review interface, a set of laboratory exercises suitable for students working alone at a distance, and interviews with diverse science, technology, engineering, and mathematics (STEM) individuals to help combat stereotype threat. We discuss learning strategies often employed by students without substantial scientific training and ways to incorporate these strategies into a conceptual framework based on the scientific method and basic techniques for data analysis. Interested science educators may request guest user status to access our self-review database and explore the possibility of using the database for a class or cohort of students at their own institutions.

  6. Astronomy Education in Greece

    NASA Astrophysics Data System (ADS)

    Metaxa, M.

    Basic education is fundamental to higher education and scientific and technological literacy. We can confront the widespread adult ignorance and apathy about science and technology. Astronomy, an interdisciplinary science, enhances students' interest and overcomes educational problems. Three years ago, we developed astronomy education in these ways: 1. Summer School for School Students. (50 students from Athens came to the first Summer School in Astrophysics at the National Observatory, September 2-5, 1996, for lectures by professional astronomers and to be familiarized with observatory instruments. 2. Introducing Students to Research. (This teaches students more about science so they are more confident about it. Our students have won top prizes in European research contests for their studies of objects on Schmidt plates and computations on PCs.) 3. Hands-on Activities. (Very important because they bring students close to their natural environment. Activities are: variable-star observations (AAVSO), Eratosthenes project, solar-eclipse, sunspot and comet studies. 4. Contact with Professional Astronomers and Institutes. (These help students reach their social environment and motivate them as "science carriers". We try to make contacts at astronomical events, and through visits to appropriate institutions.) 5. Internet Programs. (Students learn about and familiarize themselves with their technological environment.) 6. Laboratory exercises. (Students should do science, not just learn about it We introduced the following lab. exercises: supernova remnants, galaxy classification, both from Schmidt plates, celestial sphere.

  7. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  8. I'll Tell You What You Think: An Exercise in Pseudoscience Debunking in an Introductory Astronomy Course

    NASA Astrophysics Data System (ADS)

    Caton, Dan

    2013-11-01

    At Appalachian State University students have to take just two semesters of a physical or biological science to satisfy the general education requirements. Most non-science major students have little time in their crowded schedules to take additional science courses, whether they want to or not, and in fact face a surcharge when taking more courses than needed to graduate. Given this environment, it is essential that we cover more than just the basics of one particular discipline, like astronomy in my case. We should teach something about the overall philosophy of science, the scientific method, and the importance of science in our lives.

  9. Advancing Pre-college Science and Mathematics Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Rick

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less

  10. A Case Based-Shared Teaching Approach in Undergraduate Medical Curriculum: A Way for Integration in Basic and Clinical Sciences.

    PubMed

    Peiman, Soheil; Mirzazadeh, Azim; Alizadeh, Maryam; Mortaz Hejri, Sara; Najafi, Mohammad-Taghi; Tafakhori, Abbas; Larti, Farnoosh; Rahimi, Besharat; Geraiely, Babak; Pasbakhsh, Parichehr; Hassanzadeh, Gholamreza; Nabavizadeh Rafsanjani, Fatemeh; Ansari, Mohammad; Allameh, Seyed Farshad

    2017-04-01

    To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists). The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences. Students' reactions were assessed using an immediate post-session evaluation form on a 5-point Likert scale. Six two-hour sessions for 2 cohorts of students, 2013 and 2014 medical students during their two first years of study were implemented from April 2014 to March 2015. 17 faculty members participated in the program, 21 cases were designed, and participation average was 60 % at 6 sessions. Students were highly appreciative of this strategy. The majority of students in each course strongly agreed that this learning practice positively contributed to their learning (78%) and provided better understanding and application of the material learned in an integrated classroom course (74%). They believed that the sessions affected their view about medicine (73%), and should be continued in future courses (80%). The percentage demonstrates the average of all courses. The program helped the students learn how to apply basic sciences concepts to clinical medicine. Evaluation of the program indicated that students found the sessions beneficial to their learning.

  11. Vertical integration of basic science in final year of medical education.

    PubMed

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  12. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  13. AGU scientists urge Congress to invest in research and science education

    NASA Astrophysics Data System (ADS)

    Rothacker, Catherine

    2012-10-01

    With the "fiscal cliff" of sequestration drawing closer and threatening to hit basic science research funding with an 8.2% cut, according to an estimate by the Office of Management and Budget, congressional compromise on a budget plan is more urgent than ever. To discuss the value of scientific research and education with their senators and representatives, 55 Earth and space scientists from 17 states came to Washington, D. C., on 11-12 September to participate in the fifth annual Geosciences Congressional Visits Day sponsored by AGU and six other geoscience organizations. Although their specialties varied from space weather to soil science, the scientists engaged members of Congress and their staff in a total of 116 meetings to discuss a common goal: securing continued, steady investment in the basic scientific research that allows scientists to monitor natural hazards, manage water and energy resources, and develop technologies that spur economic growth and job creation. To make the most of these visits on 12 September, participants attended a training session the previous day, during which they learned about the details of the policy- making process and current legislative developments and practiced conducting a congressional meeting. Congressional Science Fellows, including past AGU fellow Rebecca French, described their experiences as scientists working on Capitol Hill, and White House policy analyst Bess Evans discussed the president's stance on sequestration and funding scientific research.

  14. Arizona's Three-Year Medical Curriculum: A Postmortem.

    ERIC Educational Resources Information Center

    Kettel, Louis J.; And Others

    1979-01-01

    Students and faculty at the University of Arizona College of Medicine found the three-year medical program to be an unsatisfactory educational experience due to excessive intensity of classroom work, insufficient vacation time, and inadequate time to teach basic science. Measures of student performance showed no differences between three- and…

  15. 76 FR 27653 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact Person: Linda K. Bass, PhD, Scientific Review... Estimation--Health Risks from Environmental Exposures; 93.142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and...

  16. More than Meets the Eye--Infrared Cameras in Open-Ended University Thermodynamics Labs

    ERIC Educational Resources Information Center

    Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan

    2016-01-01

    Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property.…

  17. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  18. The Problem of "Bildung" and the Basic Structure of "Bildungstheorie"

    ERIC Educational Resources Information Center

    Rucker, Thomas; Gerónimo, Eric Dan

    2017-01-01

    In this article, an attempt is made to introduce a systematization of the loosely connected group of authors called "Bildungstheorie". This ought to not only be of significance for German-speaking educational science, for the concept of "Bildung" is also increasingly used internationally for the formulation and development of…

  19. Teacher's Guide to Indoor Air Pollutants.

    ERIC Educational Resources Information Center

    National Safety Council, Washington, DC. Environmental Health Center.

    This guide, designed for fourth- through sixth-grade classrooms, contains information teachers will need to teach an educational unit on indoor air quality. It draws on a variety of students' skills, including science, vocabulary, reasoning, math, and basic biology. Each lesson comes with suggested activities that highlight and reinforce what is…

  20. DISCUS Interactive System Users' Manual. Final Report.

    ERIC Educational Resources Information Center

    Silver, Steven S.; Meredith, Joseph C.

    The results of the second 18 months (December 15, 1968-June 30, 1970) of effort toward developing an Information Processing Laboratory for research and education in library science is reported in six volumes. This volume contains: the basic on-line interchange, DISCUS operations, programming in DISCUS, concise DISCUS specifications, system author…

Top