Sample records for basic science questions

  1. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  2. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  3. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Affective science perspectives on cancer control: Strategically crafting a mutually beneficial research agenda

    PubMed Central

    Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman

    2015-01-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511

  5. Affective science perspectives on cancer control: strategically crafting a mutually beneficial research agenda.

    PubMed

    Ferrer, Rebecca A; Green, Paige A; Barrett, Lisa Feldman

    2015-05-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally laden. As such, affective science research to elucidate questions related to the basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this article is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. © The Author(s) 2015.

  6. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  7. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    ERIC Educational Resources Information Center

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  8. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  9. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  10. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  11. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    PubMed

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  12. Self-assessment of current knowledge in nuclear medicine (second edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, J.B.; Frey, G.D.; Cooper, J.F.

    1981-01-01

    In this updated second edition, the order of contents of the textbook has been reorganized. It has been divided into main parts: Basic Science and Clinical Nuclear Medicine. Basic Science, Part I, encompasses basic physics, radiation protection, interaction of radiation with matter and radiation detection, imaging, nuclear pharmacy, and radiation biology. Part II, Clinical Nuclear Medicine, covers the central nervous system, bone, gastroenterology (liver/spleen), cardiovascular system, pulmonary system, genitourinary system, thyroid and endocrine systems, gallium studies, radioassay, hematology, and therapy. The total number of pages of the current edition is increased to 250 from the 213 of the first editionmore » but there are fewer questions because those in the basic science area have been carefully selected to 60 of the original 98 questions. Compared with the previous edition, there are two advantages in the current one: (1) the addition of explanatory answers; and (2) the inclusion of up-to-date scintiphotos replacing rectilinear scan illustrations.« less

  13. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  14. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  15. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-09-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  16. Selective Attentional Effects of Adjunct Study Questions on Achievement in Nigerian Secondary School Science

    ERIC Educational Resources Information Center

    Okoye, Nnamdi S.

    2008-01-01

    The study investigated the selective attentional effects of adjunct study questions inserted before or after the presentation of science flow diagrams. The basic design for the study was a post-test only control group design involving a total of 252 students randomly selected from six secondary schools in Ile-Ife, Oshun State Nigeria. These were…

  17. 78 FR 55299 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... to address the effects of question design on survey estimates of public science knowledge and the...: Title: Experimentation with Factual Knowledge of Science Survey Items. OMB Approval Number: 3145-NEW.... 1862) authorizes the National Science foundation to ``initiate and support basic scientific research...

  18. Turkish Young Children's Views on Science and Scientists

    ERIC Educational Resources Information Center

    Ozgelen, Sinan

    2012-01-01

    The purpose of the study was to investigate 3rd grade primary students' views on science and scientists. The sample consisted of 254 3rd grade public school students in Mersin. Primary students were asked to answer three basic questions; 1) What is science? 2) Who does science? 3) How is science done? Primary students were requested to give…

  19. Heuristic and algorithmic processing in English, mathematics, and science education.

    PubMed

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  20. Answers to Science Questions from the "Stop Faking It!" Guy

    ERIC Educational Resources Information Center

    Robertson, William C.

    2009-01-01

    This valuable and entertaining compendium of Bill Robertson's popular "Science 101" columns, from NSTA member journal "Science and Children," proves you don't have to be a science geek to understand basic scientific concepts. The author of the best-selling "Stop Faking It!" series explains everything from quarks to photosynthesis, telescopes to…

  1. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  2. Prospective Science Teachers' Conceptions about Astronomical Subjects

    ERIC Educational Resources Information Center

    Küçüközer, Hüseyin

    2007-01-01

    The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…

  3. Kids Can Make a Difference! Environmental Science Activities.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book of more than 160 environmental science activities is designed to help students understand environmental issues, ask questions, and find solutions to the problems. Introductory sections address: (1) the nature of major global problems and a history of environmental concern; (2) basic environmental science terminology and scientific study…

  4. Dan Says - Continuum Magazine | NREL

    Science.gov Websites

    good science will reward you with unexpected insights - some more profound than you ever could have insights we gain through the basic science we perform is essential to our applied technology R&D, and answer the fundamental questions of science. Their colleagues forge those new insights into workable

  5. Research projects in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016): a cohort study.

    PubMed

    Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L

    2016-01-01

    Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.

  6. What is Basic Research? Insights from Historical Semantics.

    PubMed

    Schauz, Désirée

    2014-01-01

    For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.

  7. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  8. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    ERIC Educational Resources Information Center

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…

  9. Establishing health benefits of bioactive food components: a basic research scientist's perspective

    USDA-ARS?s Scientific Manuscript database

    Bioactive food components or functional foods have recently received significant attention because of their widely touted positive effects beyond basic nutrition. However, a question continues to lurk: are these 'super foods' backed by sound science or simply an exaggerated portrayal of very small '...

  10. Can Clinical Scenario Videos Improve Dental Students' Perceptions of the Basic Sciences and Ability to Apply Content Knowledge?

    PubMed

    Miller, Cynthia Jayne; Metz, Michael James

    2015-12-01

    Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to apply basic science content to clinically important scenarios.

  11. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    PubMed

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  12. Paired basic science and clinical problem-based learning faculty teaching side by side: do students evaluate them differently?

    PubMed

    Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G

    2005-02-01

    Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.

  13. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication

    PubMed Central

    2017-01-01

    Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277

  14. Assessment of Department of Defense Basic Research

    DTIC Science & Technology

    2005-01-01

    Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF...with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information... downloaded from: http://www.nap.edu/catalog/11177.html Assessment of Department of Defense Basic Research Committee on Department of Defense Basic

  15. Science 101: Can Electromagnetic Waves Affect Emotions?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2017-01-01

    The answer to this month's question, "Can electromagnetic waves affect emotions," is yes. Wherever there are electromagnetic (EM) waves (basically everywhere!), there is the potential for them directly or indirectly to affect the emotions. But what about the likely motivation behind the originally-posed question? Can EM waves affect your…

  16. Laws, causation, and explanation in the special sciences.

    PubMed

    Kim, Jaegwon

    2005-01-01

    There is the general philosophical question concerning the relationship between physics, which is often taken to be our fundamental and all-encompassing science, on one hand and the special sciences, such as biology and psychology, each of which deals with phenomena in some specially restricted domain, on the other. This paper deals with a narrower question: Are there laws in the special sciences, laws like those we find, or expect to find, in basic physics? Three arguments that are intended to show that there are no such laws are presented and examined. The paper ends with brief remarks concerning the implications of these arguments for explanation and causation in the special sciences.

  17. Big Science and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Giudice, Gian Francesco

    2012-03-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. I then compare the methodologies of Small and Big Science, emphasizing their mutual linkage. Finally, after examining the cost of Big Science projects, I highlight several general aspects of their beneficial implications for society.

  18. Public's Knowledge of Science and Technology

    ERIC Educational Resources Information Center

    Pew Research Center, 2013

    2013-01-01

    The public's knowledge of science and technology varies widely across a range of questions on current topics and basic scientific concepts, according to a new quiz by the Pew Research Center and "Smithsonian" magazine. About eight-in-ten Americans (83%) identify ultraviolet as the type of radiation that sunscreen protects against. Nearly…

  19. Session overview: forest ecosystems

    Treesearch

    John J. Battles; Robert C. Heald

    2004-01-01

    The core assumption of this symposium is that science can provide insight to management. Nowhere is this link more formally established than in regard to the science and management of forest ecosystems. The basic questions addressed are integral to our understanding of nature; the applications of this understanding are crucial to effective stewardship of natural...

  20. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    PubMed

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about the respondents' definition of "integration," this study provides a baseline assessment of perceptions at a dental school that is placing a priority on integration.

  1. Effectiveness of interprofessional education in renal physiology curricula for health sciences graduate students.

    PubMed

    Harrison-Bernard, Lisa M; Naljayan, Mihran V; Eason, Jane M; Mercante, Donald E; Gunaldo, Tina P

    2017-12-01

    The primary purpose of conducting an interprofessional education (IPE) experience during the renal physiology block of a graduate-level course was to provide basic science, physical therapy, and physician assistant graduate students with an opportunity to work as a team in the diagnosis, treatment, and collaborative care of a patient with acute kidney injury. The secondary purpose was to enhance the understanding of basic renal physiology principles with a patient case presentation of renal pathophysiology. The overall purpose was to assess the value of IPE integration within a basic science course by examining student perceptions and program evaluation. Graduate-level students operated in interprofessional teams while working through an acute kidney injury patient case. The following Interprofessional Education Collaborative subcompetencies were targeted: Roles/Responsibilities (RR) Behavioral Expectations (RR1, RR4) and Interprofessional Communication (CC) Behavioral Expectations (CC4). Clinical and IPE stimulus questions were discussed both within and between teams with assistance provided by faculty facilitators. Students were given a pre- and postsurvey to determine their knowledge of IPE. There were statistically significant increases from pre- to postsurvey scores for all six IPE questions for all students. Physical therapy and physician assistant students had a statistically significant increase in pre- to postsurvey scores, indicating a more favorable perception of their interprofessional competence for RR1, RR4, and CC4. No changes were noted in pre- to postsurvey scores for basic science graduate students. Incorporating planned IPE experiences into multidisciplinary health science courses represents an appropriate venue to have students learn and apply interprofessional competencies. Copyright © 2017 the American Physiological Society.

  2. Response: Training Doctoral Students to Be Scientists

    ERIC Educational Resources Information Center

    Pollio, David E.

    2012-01-01

    The purpose of this article is to begin framing doctoral training for a science of social work. This process starts by examining two seemingly simple questions: "What is a social work scientist?" and "How do we train social work scientists?" In answering the first question, some basic assumptions and concepts about what constitutes a "social work…

  3. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  4. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  5. Accuracy of Press Reports in Astronomy

    NASA Astrophysics Data System (ADS)

    Schaefer, B. E.; Hurley, K.; Nemiroff, R. J.; Branch, D.; Perlmutter, S.; Schaefer, M. W.; Consolmagno, G. J.; McSween, H.; Strom, R.

    1999-12-01

    Most Americans learn about modern science from press reports, while such articles have a bad reputation among scientists. We have performed a study of 403 news articles on three topics (gamma-ray astronomy, supernovae, and Mars) to quantitatively answer the questions 'How accurate are press reports of astronomy?' and 'What fraction of the basic science claims in the press are correct?' We have taken all articles on the topics from five news sources (UPI, NYT, S&T, SN, and 5 newspapers) for one decade (1987-1996). All articles were evaluated for a variety of errors, ranging from the fundamental to the trivial. For 'trivial' errors, S&T and SN were virtually perfect while the various newspapers averaged roughly one trivial error every two articles. For meaningful errors, we found that none of our 403 articles significantly mislead the reader or misrepresented the science. So a major result of our study is that reporters should be rehabilitated into the good graces of astronomers, since they are actually doing a good job. For our second question, we rated each story with the probability that its basic new science claim is correct. We found that the average probability over all stories is 70%, regardless of source, topic, importance, or quoted pundit. How do we reconcile our findings that the press does not make significant errors yet the basic science presented is 30% wrong? The reason is that the nature of news reporting is to present front-line science and the nature of front-line science is that reliable conclusions have not yet been reached. So a second major result of our study is to make the distinction between textbook science (with reliability near 100%) and front-line science which you read in the press (with reliability near 70%).

  6. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  7. [Trueness of modern natural science (1): the scientific revolution and the problem of philosophy].

    PubMed

    Maeda, Y

    2001-12-01

    How can one characterize modern Europe? This problem is essentially related to the meaning of modern natural science, which was developed during the scientific revolution. Then how did viewpoints change during this revolution? The answer to this question also determined the basic character of modern philosophy. Through the examination of Aristotle's geocentric theory and kinematics, I have come to believe that the defect of Aristotle's was that he concluded that a visible sense image is an actual reflection of the reality as it is. From this point of view, the traditional theory of truth called "correspondence theory" is found to be an insufficient one. Therefore, in this paper I will show that the methodological and philosophical question "How do we see reality among phenomena?" is a very important one. This question is the one Plato struggled with, and also the one which guided Kant. It may be said that this can be seen as a group for a new metaphysics as a basic theory of reality.

  8. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    PubMed

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  9. Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back

    ERIC Educational Resources Information Center

    Klahr, David; Li, Junlei

    2005-01-01

    Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and…

  10. The Use of a Science Interactive Videodisc in an Early Childhood Classroom.

    ERIC Educational Resources Information Center

    Shaw, Edward L., Jr.; And Others

    Basic and integrated science process skills form the basis for inquiry-based, hands-on learning. This study explores conditions that are essential for students to master the process skill of prediction. The following question is asked: Is there a significant difference between kindergarten students' prediction ability using hands-on objects…

  11. On-Line Search in the Science Classroom: Benefits and Possibilities.

    ERIC Educational Resources Information Center

    Wallace, Raven; Kupperman, Jeff

    This study addresses some basic questions about students' strategies for seeking and using information from the World Wide Web. The questions pertain to the effects of environment and attitudes on students' use of online resources to find information and the development of a typology of strategies. The focus of the study was on describing student…

  12. The Young Astrophysicist: A Very Inexpensive Activity to Discuss Spectroscopy

    ERIC Educational Resources Information Center

    Brockington, Guilherme; Testoni, Leonardo André; Pietrocola, Maurício

    2015-01-01

    The continuing fascination of young people with celestial bodies leads them to pose challenging questions to their science teachers, such as how was the universe born? How were the stars formed? In this paper we present an extremely inexpensive but highly engaging activity to teach the basics of spectroscopy. Guided by the question "how do…

  13. Cystic fibrosis research topics featured at the 14th ECFS Basic Science Conference: Chairman's summary.

    PubMed

    Mall, Marcus A; Hwang, Tzyh-Chang; Braakman, Ineke

    2018-03-01

    In recent years, tremendous progress has been made in the development of novel drugs targeting the basic defect in patients with cystic fibrosis (CF). This breakthrough is based on a solid foundation of knowledge on CFTR's function in health and how mutations in CFTR cause CF multi-organ disease. This knowledge has been collected and continuously expanded by an active and persistent CF research community and has paved the way for precision medicine for CF. Since 2004, the European Cystic Fibrosis Society (ECFS) has held an annual Basic Science Conference that has evolved as an international forum for interdisciplinary discussion of hot topics and unsolved questions related to CF research. This Special Issue reviews CF research topics featured at the 14th ECFS Basic Science Conference and provides an up-to-date overview of recent progress in our understanding of CFTR structure and function, disease mechanisms implicated in airway mucus plugging, inflammation and abnormal host-pathogen interactions, and advancements with enhanced cell and animal model systems and breakthrough therapies directed at mutant CFTR or alternative targets. In addition, this Special Issue also identifies a number of fundamental questions and hurdles that still have to be overcome to realize the full potential of precision medicine and develop transformative therapies for all patients with CF. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. A basic recursion concept inventory

    NASA Astrophysics Data System (ADS)

    Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.

    2017-04-01

    Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.

  15. Operator Certification Study Guide.

    ERIC Educational Resources Information Center

    American Water Works Association, Denver, CO.

    This study guide contains typical questions and answers that all levels of water treatment plant operators might expect to find on a certification examination. The manual covers the basic sciences, treatment techniques, testing procedures, and federal legislation. (Author/SB)

  16. The Relationship of Training in Self-Generated Questioning with Passage Difficulty and Immediate and Delayed Retention.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    A study was conducted to determine if covert reader-generation of interspersed prequestions would affect recall of science-oriented prose. Sixty college freshmen in a basic skills reading course were divided into three groups: Group I received 5 hours of training and practive in the construction of self-generated questions, including recognition…

  17. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  18. Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum.

    PubMed

    Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M

    2017-01-01

    There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.

  19. The function of questions in Omani fourth grade inquiry-based science classrooms: A sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Al-Shaibani, Madiha Ahmed

    2005-11-01

    Studies indicate that science education reforms are globally converging. Many countries are adopting the globally advocated science education reforms for the purpose of obtaining the competitive edge in science education and technology that are viewed as the driving forces of modern economies. Globally, science education reforms are emphasizing paradigm shifts in which constructivist instructional are foregrounded. Many science education curricular documents advocate teaching science through engaging students in scientific inquiry. As a result, science classrooms are becoming more student-centered where students are typically actively engaged in inquiry learning. Even though inquiry instruction has become the common approach in teaching science, the actual implementation of inquiry in classrooms indicates that there is a big gap between the intended inquiry advocated in curricula documents and the actual practices in classroom settings. One of the main features of inquiry instruction is student questions. Authentic student questions are essential for the initiating and main scientific inquiry. However, studies have also illustrated the rarity of student questions in classrooms. This dearth in student questions has been attributed to the discursive practices in classrooms. Classrooms that implement the traditional IRE discourse structure tend to have less student questions. On the other hand, reflective questioning is considered a more appropriate classroom discourse structure because it intentionally invites student questions and engages students in classroom discussions. This qualitative study addresses the issue of questioning in fourth grade inquiry-based science classrooms of the Omani Basic Education system. Methods employed in this study included: participant observation, individual interviews, focus group interviews and the collection of artifacts. Findings of this study illustrated the rarity of student questions in the classrooms. However this investigation also revealed the connection between teacher beliefs and implementation of reforms. Teachers whose beliefs were aligned with reforms came closer to implementing reform initiatives as opposed to teachers whose beliefs were not aligned with reform initiatives. The findings of this study were inconclusive when it came to linking teachers' questioning practices to teachers' understanding of inquiry methods.

  20. Aligning library instruction with the needs of basic sciences graduate students: a case study

    PubMed Central

    O'Malley, Donna; Delwiche, Frances A.

    2012-01-01

    Question: How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? Setting: The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. Methods: The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Results: Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Conclusion: Modifying the program's content and structure resulted in a program that appealed to the target audience. PMID:23133328

  1. The origins of the universe: why is there something rather than nothing?

    PubMed

    Paulson, Steve; Albert, David; Holt, Jim; Turok, Neil

    2015-12-01

    Perhaps the greatest mystery is why the universe exists in the first place. How is it possible for something to emerge from nothing, or has a universe in some form always existed? This question of origins-both of the universe as a whole and of the fundamental laws of physics-raises profound scientific, philosophical, and religious questions, culminating in the most basic existential question of all: Why are we here? Discussion of this and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  2. Certain Basic Concepts of Teaching Turkish as a Foreign Language

    ERIC Educational Resources Information Center

    Sen, Ülker

    2016-01-01

    Concept that is defined to be the intangible and general designs emerging in a mind that belongs to an object or thought, has become both subject and object of a very large field ranging from philosophy to linguistics, from social sciences to science. Regardless of which field is in question, the unity of concept is important in order to pave the…

  3. Large Stationary Gravity Waves: A Game Changer for Venus' Science

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Schubert, G.; Lebonnois, S.

    2017-11-01

    In 2015, the discovery by the Akatsuki spacecraft of an astonishing, unexpected, 10,000 km long meridional structure at the cloud top, stationary with respect to the surface, calls into question our very basic understanding of Venus.

  4. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    PubMed

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Educational Intervention in a Medically Underserved Area.

    PubMed

    Atance, Joel; Mickalis, Morgan; Kincade, Brianna

    2018-04-01

    Medical students from rural and medically underserved areas (MUAs) are more likely than their peers to practice medicine in rural areas and MUAs. However, students from MUAs are also more likely to face socioeconomic barriers to a career in medicine. To determine whether a week-long summer enrichment experience (SEE) at Edward Via College of Osteopathic Medicine-Carolinas could successfully teach high school students from MUAs basic biomedical concepts and foster an interest in medicine and the health sciences. The SEE program is open to high school students in the Spartanburg, South Carolina, area. The program includes interactive lectures, laboratories, demonstrations on gross anatomy prosections, demonstrations on medical simulation models, tours of emergency vehicles, an introduction to osteopathic manipulative medicine, and student-led research projects. Participants were asked to complete a 15-question quiz that assessed their knowledge of basic biomedical concepts and a 10-question survey that assessed their attitudes toward careers in medicine and health sciences. Both the quiz and the survey were completed on both the first and final days of the program. The data were analyzed using paired t tests. Participant knowledge of basic biomedical concepts, as determined by the quiz scores, increased after completion of the program (9.1 average correct answers vs 12.6 average correct answers) (P<.001). Participant attitude toward medicine and the health sciences improved in 9 of the 10 items surveyed after completion of the program (P<.05). Participant knowledge of basic biomedical concepts and their knowledge of and interest in careers in the health sciences improved after completing the SEE program. These findings suggest that educational interventions for high school students could help to develop primary care physicians for rural areas and MUAs and that there is a role for osteopathic medical schools to nurture these students as early as possible.

  6. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  7. Approaches to the Nature of Educational Sloyd and Craft. Sloyd Competence in Nordic Culture. Part III. Research in Sloyd Education and Crafts Science B:2.

    ERIC Educational Resources Information Center

    Lindfors, Linnea, Ed.; Peltonen, Juhani, Ed.; Porko, Mia, Ed.

    These nine articles deal with basic philosophical questions concerned with the general nature of sloyd or with the educational aspect of sloyd. (Sloyd, derived from a Swedish word, is an umbrella term for making or crafting things by hand.) They report research on cultural questions related to goals and contents, ranging from sociocultural…

  8. Translational research in behavior analysis: historical traditions and imperative for the future.

    PubMed

    Mace, F Charles; Critchfield, Thomas S

    2010-05-01

    "Pure basic" science can become detached from the natural world that it is supposed to explain. "Pure applied" work can become detached from fundamental processes that shape the world it is supposed to improve. Neither demands the intellectual support of a broad scholarly community or the material support of society. Translational research can do better by seeking innovation in theory or practice through the synthesis of basic and applied questions, literatures, and methods. Although translational thinking has always occurred in behavior analysis, progress often has been constrained by a functional separation of basic and applied communities. A review of translational traditions in behavior analysis suggests that innovation is most likely when individuals with basic and applied expertise collaborate. Such innovation may have to accelerate for behavior analysis to be taken seriously as a general-purpose science of behavior. We discuss the need for better coordination between the basic and applied sectors, and argue that such coordination compromises neither while benefiting both.

  9. Integrating the dimensions of sex and gender into basic life sciences research: methodologic and ethical issues.

    PubMed

    Holdcroft, Anita

    2007-01-01

    The research process -- from study design and selecting a species and its husbandry, through the experiment, analysis, peer review, and publication -- is rarely subject to questions about sex or gender differences in mainstream life sciences research. However, the impact of sex and gender on these processes is important in explaining biological variations and presentation of symptoms and diseases. This review aims to challenge assumptions and to develop opportunities to mainstream sex and gender in basic scientific research. Questions about the mechanisms of sex and gender effects were reviewed in relation to biological, environmental, social, and psychological interactions. Gender variations, in respect to aging, socializing, and reproduction, that are present in human populations but are rarely featured in laboratory research were considered to more effectively translate animal research into clinical health care. Methodologic approaches to address the present lack of a gender dimension in research include actively reducing variations through attention to physical factors, biological rhythms, and experimental design. In addition, through genomic and acute nongenomic activity, hormones may compound effects through multiple small sex differences that occur during the course of an acute pathologic event. Furthermore, the many exogenous sex steroid hormones and their congeners used in medicine (eg, in contraception and cancer therapies) may add to these effects. The studies reviewed provide evidence that sex and gender are determinants of many outcomes in life science research. To embed the gender dimension into basic scientific research, a broad approach -- gender mainstreaming -- is warranted. One example is the use of review boards (eg, animal ethical review boards and journal peer-review boards) in which gender-related standardized questions can be asked about study design and analysis. A more fundamental approach is to question the relevance of present-day laboratory models to design methods to best represent the age-related changes, comorbidity, and variations experienced by each sex in clinical medicine.

  10. Student opinion in England about science and technology

    NASA Astrophysics Data System (ADS)

    Jenkins, Edgar W.

    2006-05-01

    An earlier paper in this Journal (Jenkins & Nelson, 2005) drew upon the findings of the Relevance of Science Education Project (ROSE) to report the attitudes of students in England towards their secondary school science education. The present paper draws upon the same project to explore what the same students, almost all in their penultimate year of compulsory schooling, think about science and technology. It suggests that several basic research questions need to be addressed and answered if the present widespread decline in the industrialised world in the popularity of the physical sciences as subjects of advanced study is to be halted.

  11. Is cognitive science usefully cast as complexity science?

    PubMed

    Van Orden, Guy; Stephen, Damian G

    2012-01-01

    Readers of TopiCS are invited to join a debate about the utility of ideas and methods of complexity science. The topics of debate include empirical instances of qualitative change in cognitive activity and whether this empirical work demonstrates sufficiently the empirical flags of complexity. In addition, new phenomena discovered by complexity scientists, and motivated by complexity theory, call into question some basic assumptions of conventional cognitive science such as stable equilibria and homogeneous variance. The articles and commentaries that appear in this issue also illustrate a new debate style format for topiCS. Copyright © 2011 Cognitive Science Society, Inc.

  12. Cloning: can it be good for us? An overview of cloning technology and its moral implications.

    PubMed

    FitzGerald, K

    2001-01-01

    Adequate answers to moral questions about cloning require a working knowledge of the science and technology involved, both present and anticipated. This essay presents an overview of the current state of somatic cell nuclear transfer technology (SCNT), the type of cloning that now permits whole organism reproduction from adult DNA. This essay explains the basic science and technology of SCNT and explores its potential uses. Next, this essay notes remaining scientific obstacles and unanswered moral questions that must be resolved before SCNT can be used for human reproduction. Attention is given to aspects related to cloning for therapeutic and research purposes.

  13. Can science be a business? Lessons from biotech.

    PubMed

    Pisano, Gary P

    2006-10-01

    In 1976, Genentech, the first biotechnology company, was founded by a young venture capitalist and a university professor to exploit recombinant DNA technology. Thirty years and more than 300 billion dollars in investments later, only a handful of biotech firms have matched Genentech's success or even shown a profit. No avalanche of new drugs has hit the market, and the long-awaited breakthrough in R&D productivity has yet to materialize. This disappointing performance raises a question: Can organizations motivated by the need to make profits and please shareholders successfully conduct basic scientific research as a core activity? The question has largely been ignored, despite intense debate over whether business's invasion of basic science-long the domain of universities and nonprofit research institutions- is limiting access to discoveries, thereby slowing advances in science. Biotech has not lived up to its promise, says the author, because its anatomy, which has worked well in other high-tech sectors, can't handle the fundamental challenges facing drug R&D: profound, persistent uncertainty and high risks rooted in the limited knowledge of human biology; the need for the diverse disciplines involved in drug discovery to work together in an integrated fashion; and barriers to learning, including tacit knowledge and murky intellectual property rights, which can slow the pace of scientific advance. A more suitable anatomy would include increased vertical integration; a smaller number of closer, longer collaborations; an emphasis by universities on sharing rather than patenting scientific discoveries; more cross-disciplinary academic research; and more federal and private funding for translational research, which bridges basic and applied science. With such modifications, science can be a business.

  14. Values in translation: how asking the right questions can move translational science toward greater health impact.

    PubMed

    Kelley, Maureen; Edwards, Kelly; Starks, Helene; Fullerton, Stephanie M; James, Rosalina; Goering, Sara; Holland, Suzanne; Disis, Mary L; Burke, Wylie

    2012-12-01

    The speed and effectiveness of current approaches to research translation are widely viewed as disappointing given small gains in real population health outcomes despite huge investments in basic and translational science. We identify critical value questions-ethical, social, economic, and cultural-that arise at moments throughout the research pathway. By making these questions visible, and promoting discussion of them with diverse stakeholders, we can facilitate handoffs along the translational pathway and increase uptake of effective interventions. Who is involved with those discussions will determine which research projects, populations, and methods get prioritized. We argue that some upfront investment in community and interdisciplinary engagement, shaped by familiar questions in ethics, social justice, and cultural knowledge, can save time and resources in the long run because interventions and strategies will be aimed in the right direction, that is, toward health improvements for all. © 2012 Wiley Periodicals, Inc.

  15. Vision Science and Adaptive Optics, The State of the Field

    PubMed Central

    Marcos, Susana; Werner, John S.; Burns, Stephen A; Merigan, William H.; Artal, Pablo; Atchison, David A.; Hampson, Karen M.; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S.; Doble, Nathan; Dubis, Adam M.; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T.; Paques, Michel; Smithson, Hannah E.; Young, Laura K.; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C.

    2017-01-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. PMID:28212982

  16. Environmental health discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in environmental health. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; animal and human subjects; and research and development. This document summarizes the history and current status of the program elements, outlines available knowledge, establishes goals and objectives, identifies scientific priorities, and defines critical questions in the three disciplines: (1) Barophysiology, (2) Toxicology, and (3) Microbiology. This document contains a general plan that will be used by both NASA Headquarters Program Officers and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area. The document is divided into sections addressing these three disciplines.

  17. Assessment of Translational and Interdisciplinary Clinical Research at an Oklahoma Health Sciences Center

    PubMed Central

    Dao, Hanh Dung; Kota, Pravina; James, Judith A.; Stoner, Julie A.; Akins, Darrin R.

    2015-01-01

    Purpose In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma. Methods An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions. Results Responses were received from 126 faculty members (24%). Two-thirds spent ≥20% time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research. Conclusion While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure. PMID:26242016

  18. Serving epigenetics before its time.

    PubMed

    Juengst, Eric T; Fishman, Jennifer R; McGowan, Michelle L; Settersten, Richard A

    2014-10-01

    Society prizes the rapid translation of basic biological science into ways to prevent human illness. However, the premature rush to take murine epigenetic findings in these directions makes impossible demands on prospective parents and triggers serious social and ethical questions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Life Sciences program at the NASA Ames Research Center - An overview

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan; Sharp, Joseph C.

    1989-01-01

    The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.

  20. Relevancy in Basic Courses: Considering Toxic Chemical Disposal.

    ERIC Educational Resources Information Center

    Sollimo, Vincent J.

    1985-01-01

    A 2-week unit on toxic chemical waste disposal is used in a physical science course for nonscience majors. Descriptions of the unit, supplementary student activities, and student library project are provided. Also provided are selected student responses to a five-question survey on the unit. (JN)

  1. [Kraepelin's basic nosologic postulates. An attempt at a critical evaluation of the later works of Kraepelin].

    PubMed

    Hoff, P

    1988-01-01

    This study discusses three important papers by Emil Kraepelin, published between 1918 and 1920. Kraepelin supports--in accordance with his teacher Wilhelm Wundt--the view of psychophysical parallelism as a basic principle of dealing with the questions of mental illness. Kraepelin is often called a nosologist; but one must not forget that Kraepelins nosology was not a static one, nor did he vote in favor of any kind of dogmatism. Only when Kraepelin's basic positions are reflected in a differentiated way, his enormous influence on very different parts of psychiatry as science can be understood.

  2. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.

  3. Negotiating the Inquiry Question: A Comparison of Whole Class and Small Group Strategies in Grade Five Science Classrooms

    NASA Astrophysics Data System (ADS)

    Cavagnetto, Andy R.; Hand, Brian; Norton-Meier, Lori

    2011-03-01

    The purpose of this study is to examine the effect of two strategies for negotiating the question for exploration during science inquiry on student achievement and teachers' perceptions. The study is set in the context of the Science Writing Heuristic. The first strategy (small group) consisted of each group of four students negotiating a question for inquiry with the teacher while the second strategy (whole class) consisted of the entire class negotiating a single question for inquiry with the teacher. The study utilized a mixed-method approach. A quasi-experimental repeated measures design was used to determine the effect of strategy on student achievement and semi-structured teacher interviews were used to probe the question of teacher perceptions of the two strategies. Teacher observations were conducted using the Reformed Teaching Observation Protocol (RTOP) to check for variation in implementation of the two strategies. Iowa Test of Basic Skills Science (ITBSS) (2005 and 2006) and teacher/researcher developed unit exams (pre and post) were used as student achievement measures. No statistically significant differences were found among students in the two treatment groups on the ITBSS or unit exams. RTOP observations suggest that teacher implementation was consistent across the two treatment strategies. Teachers disclosed personal preferences for the two strategies, indicating the whole class treatment was easier to manage (at least at the beginning of the school year) as students gained experience with science inquiry and the associated increased responsibility. Possible mechanisms linking the two strategies, negotiated questions, and student outcomes are discussed.

  4. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  5. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Who's Afraid of the Bad Little Fowl?

    ERIC Educational Resources Information Center

    Keenan, Celia

    2004-01-01

    The question this article addresses is: Is "Artemis" art? That is, how successful is Eoin Colfer's attempt to combine disparate forms, such as fairy stories, science fiction stories and thrillers in the three "Artemis Fowl" novels? Basic elements of story, such as narrative stance, characterisation and plot, as well as some particularly…

  7. Introduction to the theory of machines and languages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidhaas, P. P.

    1976-04-01

    This text is intended to be an elementary ''guided tour'' through some basic concepts of modern computer science. Various models of computing machines and formal languages are studied in detail. Discussions center around questions such as, ''What is the scope of problems that can or cannot be solved by computers.''

  8. Traditional Labs + New Questions = Improved Student Performance.

    ERIC Educational Resources Information Center

    Rezba, Richard J.; And Others

    1992-01-01

    Presents three typical lab activities involving the breathing rate of fish, the behavior of electromagnets, and tests for water hardness to demonstrate how labs can be modified to teach process skills. Discusses how basic concepts about experimentation are developed and ways of generating and improving science experiments. Includes a laboratory…

  9. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  10. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  11. The role of a science story, activities, and dialogue modeled on Philosophy for Children in teaching basic science process skills to fifth graders

    NASA Astrophysics Data System (ADS)

    Ferreira, Louise Brandes Moura

    This study was an application of Philosophy for Children pedagogy to science education. It was designed to answer the question, What roles do a science story (Harry Discovers Science), multi-sensorial activities designed to accompany the story, and classroom dialogue associated with the story---all modeled on the Philosophy for Children curriculum---play in the learning processes of a class of fifth graders with regard to the basic science process skills of classification, observation, and inference? To answer the question, I collected qualitative data as I carried out a participatory study in which I taught science to fifth graders at an international, bilingual private religious school in Brasilia, Brazil for a period of one semester. Twenty-one (n = 21) children participated in the study, 10 females and 11 males, who came from a predominantly middle and upper class social background. Data were collected through student interviews, student class reflection sheets, written learning assessments, audiotapes of all class sessions, including whole-class and small-class group discussions, and a videotape of one class session. Some of the key findings were that the story, activities and dialogue facilitated the children's learning in a number of ways. The story modeled the performance of classification, observation and inference skills for the children as well as reflection on the meaning of inference. The majority of the students identified with the fictional characters, particularly regarding traits such as cleverness and inquisitiveness, and with the learning context of the story. The multi-sensorial activities helped children learn observation and inference skills as well as dialogue. Dialogue also helped children self-correct and build upon each other's ideas. Some students developed theories about how ideal dialogue should work. In spite of the inherent limitations of qualitative and teacher research studies, as well as the limitations of this particular study, and despite the fact that there is a need for further research to confirm the transferability of findings, this study both supports and expands to the domain of basic science process skills the claim that Philosophy for Children helps students develop thinking skills.

  12. Retention of knowledge and perceived relevance of basic sciences in an integrated case-based learning (CBL) curriculum

    PubMed Central

    2013-01-01

    Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045

  13. Clinical caring science as a scientific discipline.

    PubMed

    Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å

    2017-09-01

    Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.

  14. Medical University admission test: a confirmatory factor analysis of the results.

    PubMed

    Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert

    2016-05-01

    The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.

  15. Application of basic science to clinical problems: traditional vs. hybrid problem-based learning.

    PubMed

    Callis, Amber N; McCann, Ann L; Schneiderman, Emet D; Babler, William J; Lacy, Ernestine S; Hale, David Sidney

    2010-10-01

    It is widely acknowledged that clinical problem-solving is a key skill for dental practitioners. The aim of this study was to determine if students in a hybrid problem-based learning curriculum (h-PBL) were better at integrating basic science knowledge with clinical cases than students in a traditional, lecture-based curriculum (TC). The performance of TC students (n=40) was compared to that of h-PBL students (n=31). Participants read two clinical scenarios and answered a series of questions regarding each. To control for differences in ability, Dental Admission Test (DAT) Academic Average scores and predental grade point averages (GPAs) were compared, and an ANCOVA was used to adjust for the significant differences in DAT (t-test, p=0.002). Results showed that h-PBL students were better at applying basic science knowledge to a clinical case (ANCOVA, p=0.022) based on overall scores on one case. TC students' overall scores were better than h-PBL students on a separate case; however, it was not statistically significant (p=0.107). The h-PBL students also demonstrated greater skills in the areas of hypothesis generation (Mann-Whitney U, p=0.016) and communication (p=0.006). Basic science comprehension (p=0.01) and neurology (p<0.001) were two areas in which the TC students did score significantly higher than h-PBL students.

  16. Research, the lifeline of medicine.

    PubMed

    Kornberg, A

    1976-05-27

    Advances in medicine spring from discoveries in physics, chemistry and biology. Among key contributions to the diagnosis, treatment and prevention of cardiovascular and pulmonary diseases, a recent Comroe-Dripps analysis shows two thirds to have been basic rather than applied research. Without a firm foundation in basic knowledge innovations perceived as advances prove hollow and collapse. Strong social, economic and political pressures now threaten acquisition of basic knowledge. Scientists feel driven to undertake excessively complex problems and gamble against the historical record that science generally progresses by tackling discrete and well defined questions. Regardless of circumstances, professional standards require the physician and scientist to be creative and enlarge the fund of knowledge.

  17. Utilization and value of personal digital assistants on an epidemiology final examination.

    PubMed

    Lawler, Frank H; Cacy, Jim

    2005-01-01

    The utility of personal digital assistants (PDAs) in basic science medical education is uncertain. Student outcomes on an epidemiology course final examination for academic years 2003 and 2004 were examined. Students were given permission to use PDAs on the final examination, and self-selected whether these instruments were used. Performance on the examination based on use of a PDA and whether students thought it was useful for the examination was compared. A total of 389 students took the final examination, with an 88% response rate to the survey questions. No statistically significant differences were found on final examination scores. No trends toward significance were found on analyses of the total examination, specific topical domains, or on specific questions where a PDA might be expected to be especially useful. From this study, it can be concluded that use of PDAs and whether students thought they might be helpful had no measurable effect on performance on an epidemiology final examination. Further delineation of the possible use of PDAs in a basic science course and on the final examination is indicated.

  18. The Power of Edutainment: Alliance for Climate Education's Assembly Presentation: Impact on Student Knowledge, Attitude and Behavior

    NASA Astrophysics Data System (ADS)

    Lappe, M. D.

    2011-12-01

    The Alliance for Climate Education (ACE) is a national nonprofit that delivers an in-school multi-media assembly presentation to high school students about climate science and solutions. In two years of operation, ACE has reached 870,000 students in over 1400 schools. Throughout spring 2011 and fall 2012, the Alliance for Climate Education (ACE) will survey approximately 2000 high school students in 100 classrooms at 20 schools before and after its assembly to assess impact on knowledge, attitude and behavior related to global warming and climate science. The survey instrument has been designed in partnership with experts at the Yale School of the Environment and Stanford University's Precourt Energy Center. The knowledge section of the survey queries students' factual understanding of basic climate science. The behavior section asks students about basic climate-related habits related to waste, transportation and energy consumption. The attitude section is comprised of a 15-question subset of the national survey reported in Global Warming's Six Americas. Preliminary results from approximately 200 pre and post-presentation surveys suggest that after viewing the ACE Assembly, climate friendly behaviors increase slightly; correct answers to climate knowledge questions increase by 8%; and attitudes shift away from "Disengaged, Doubtful and Dismissive" toward "Alarmed, Concerned and Cautious."

  19. From Ideas to Efficacy: The ORBIT Model for Developing Behavioral Treatments for Chronic Diseases

    PubMed Central

    Czajkowski, Susan M.; Powell, Lynda H.; Adler, Nancy; Naar-King, Sylvie; Reynolds, Kim D.; Hunter, Christine M.; Laraia, Barbara; Olster, Deborah H.; Perna, Frank M.; Peterson, Janey C.; Epel, Elissa; Boyington, Josephine E.; Charlson, Mary E.

    2015-01-01

    Objective Given the critical role of behavior in preventing and treating chronic diseases, it is important to accelerate the development of behavioral treatments that can improve chronic disease prevention and outcomes. Findings from basic behavioral and social science research hold great promise for addressing behaviorally-based clinical health problems, yet there is currently no established pathway for translating fundamental behavioral science discoveries into health-related treatments ready for Phase III efficacy testing. This article provides a systematic framework for guiding efforts to translate basic behavioral science findings into behavioral treatments for preventing and treating chronic illness. Methods The ORBIT model for behavioral treatment development is described as involving a flexible and progressive process, pre-specified clinically significant milestones for forward movement, and return to earlier stages for refinement and optimization. Results This article presents the background and rationale for the ORBIT model, a summary of key questions for each phase, a selection of study designs and methodologies well-suited to answering these questions, and pre-specified milestones for forward or backward movement across phases. Conclusions The ORBIT model provides a progressive, clinically-relevant approach to increasing the number of evidence-based behavioral treatments available to prevent and treat chronic diseases. PMID:25642841

  20. Accuracy of press reports on gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Nemiroff, Robert J.; Hurley, Kevin

    2000-09-01

    Most Americans learn about modern science from press reports, while such articles have a bad reputation among scientists. We have performed a study of 148 news articles on gamma-ray astronomy to quantitatively answer the questions ``How accurate are press reports of gamma-ray astronomy?'' and ``What fraction of the basic claims in the press are correct?'' We have taken all articles on the topic from five news sources (UPI, New York Times, Sky & Telescope, Science News, and five middle-sized city newspapers) for one decade (1987-1996) We found an average rate of roughly one trivial error every two articles, while none of our 148 articles significantly mislead the reader or misrepresented the science. This quantitative result is in stark contrast to the nearly universal opinion among scientists that the press frequently butchers science stories. So a major result from our study is that reporters should be rehabilitated into the good graces of astrophysicists, since they actually are doing a good job. For our second question, we rated each story with the probability that its basic new science claim is correct. We found that the average probability over all stories is 70%. Since the reporters and the scientists are both doing good jobs, then why is 30% of the science you read in the press wrong? The reason is that the nature of news reporting is to present front-line science and the nature of front-line science is that reliable conclusions have not yet been reached. The combination of these two natures forces fast breaking science news to have frequent incorrect ideas that are subsequently identified and corrected. So a second major result from our study is to make the distinction between textbook science (with reliabilities near 100%) and front-line science which you read about in the press (with reliabilities near 70%). .

  1. Structures, Not Strings: Linguistics as Part of the Cognitive Sciences.

    PubMed

    Everaert, Martin B H; Huybregts, Marinus A C; Chomsky, Noam; Berwick, Robert C; Bolhuis, Johan J

    2015-12-01

    There are many questions one can ask about human language: its distinctive properties, neural representation, characteristic uses including use in communicative contexts, variation, growth in the individual, and origin. Every such inquiry is guided by some concept of what 'language' is. Sharpening the core question--what is language?--and paying close attention to the basic property of the language faculty and its biological foundations makes it clear how linguistics is firmly positioned within the cognitive sciences. Here we will show how recent developments in generative grammar, taking language as a computational cognitive mechanism seriously, allow us to address issues left unexplained in the increasingly popular surface-oriented approaches to language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Proceedings of an AAAS Symposium on January 8, 1980: How Much does the Defense Department Advance Science?

    DTIC Science & Technology

    1980-09-24

    DEFENSE OF FREEDOM 18 Edward Teller DANGERS OF USING SCIENCE FOR THE ARMS BUSINESS IN A CORPORATE STATE 21 George Wald DISCUSSION . 25...many other questions. Does the Don’s basic-research program oversupport research which is oriented to the solution of applied problems? Has DOD...long-range goal of being technologically superior in the world. We would be very short-sighted if our program was directed only to the solution of

  3. Polydopamine--a nature-inspired polymer coating for biomedical science.

    PubMed

    Lynge, Martin E; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  4. Bridging the Gap Between Research and Practice: Implementation Science.

    PubMed

    Olswang, Lesley B; Prelock, Patricia A

    2015-12-01

    This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate evidence-based service delivery. This review identifies challenges in developing and testing interventions in order to achieve widespread adoption in practice settings. A framework for conceptualizing implementation research is provided, including an example to illustrate the application of principles in speech-language pathology. Last, the authors reflect on the status of implementation research in the discipline of communication sciences and disorders. The extant literature highlights the value of implementation science for reducing the gap between research and practice in our discipline. While having unique principles guiding implementation research, many of the challenges and questions are similar to those facing any investigators who are attempting to design valid and reliable studies. This article is intended to invigorate interest in the uniqueness of implementation science among those pursuing both basic and applied research. In this way, it should help ensure the discipline's knowledge base is realized in practice and policy that affects the lives of individuals with communication disorders.

  5. Knowledge loss of medical students on first year basic science courses at the university of Saskatchewan

    PubMed Central

    D'Eon, Marcel F

    2006-01-01

    Background Many senior undergraduate students from the University of Saskatchewan indicated informally that they did not remember much from their first year courses and wondered why we were teaching content that did not seem relevant to later clinical work or studies. To determine the extent of the problem a course evaluation study that measured the knowledge loss of medical students on selected first year courses was conducted. This study replicates previous memory decrement studies with three first year medicine basic science courses, something that was not found in the literature. It was expected that some courses would show more and some courses would show less knowledge loss. Methods In the spring of 2004 over 20 students were recruited to retake questions from three first year courses: Immunology, physiology, and neuroanatomy. Student scores on the selected questions at the time of the final examination in May 2003 (the 'test') were compared with their scores on the questions 10 or 11 months later (the 're-test') using paired samples t -tests. A repeated-measures MANOVA was used to compare the test and re-test scores among the three courses. The re-test scores were matched with the overall student ratings of the courses and the student scores on the May 2003 examinations. Results A statistically significant main effect of knowledge loss (F = 297.385; p < .001) and an interaction effect by course (F = 46.081; p < .001) were found. The students' scores in the Immunology course dropped 13.1%, 46.5% in Neuroanatomy, and 16.1% in physiology. Bonferroni post hoc comparisons showed a significant difference between Neuroanatomy and Physiology (mean difference of 10.7, p = .004). Conclusion There was considerable knowledge loss among medical students in the three basic science courses tested and this loss was not uniform across courses. Knowledge loss does not seem to be related to the marks on the final examination or the assessment of course quality by the students. PMID:16412241

  6. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  7. The Ethical Challenges of Socially Responsible Science

    PubMed Central

    Resnik, David B.; Elliott, Kevin C.

    2015-01-01

    Social responsibility is an essential part of the responsible conduct of research that presents difficult ethical questions for scientists. Recognizing one’s social responsibilities as a scientist is an important first step toward exercising social responsibility, but it is only the beginning, since scientists may confront difficult value questions when deciding how to act responsibly. Ethical dilemmas related to socially responsible science fall into at least three basic categories: 1) dilemmas related to problem selection, 2) dilemmas related to publication and data sharing, and 3) dilemmas related to engaging society. In responding to these dilemmas, scientists must decide how to balance their social responsibilities against other professional commitments and how to avoid compromising their objectivity. In this article, we will examine the philosophical and ethical basis of social responsibility in science, discuss some of the ethical dilemmas related to exercising social responsibility, and make five recommendations to help scientists deal with these issues. PMID:26193168

  8. The Ethical Challenges of Socially Responsible Science.

    PubMed

    Resnik, David B; Elliott, Kevin C

    2016-01-01

    Social responsibility is an essential part of the responsible conduct of research that presents difficult ethical questions for scientists. Recognizing one's social responsibilities as a scientist is an important first step toward exercising social responsibility, but it is only the beginning, since scientists may confront difficult value questions when deciding how to act responsibly. Ethical dilemmas related to socially responsible science fall into at least three basic categories: 1) dilemmas related to problem selection, 2) dilemmas related to publication and data sharing, and 3) dilemmas related to engaging society. In responding to these dilemmas, scientists must decide how to balance their social responsibilities against other professional commitments and how to avoid compromising their objectivity. In this article, we will examine the philosophical and ethical basis of social responsibility in science, discuss some of the ethical dilemmas related to exercising social responsibility, and make five recommendations to help scientists deal with these issues.

  9. Tendon basic science: Development, repair, regeneration, and healing.

    PubMed

    Andarawis-Puri, Nelly; Flatow, Evan L; Soslowsky, Louis J

    2015-06-01

    Tendinopathy and tendon rupture are common and disabling musculoskeletal conditions. Despite the prevalence of these injuries, a limited number of investigators are conducting fundamental, basic science studies focused on understanding processes governing tendinopathies and tendon healing. Development of effective therapeutics is hindered by the lack of fundamental guiding data on the biology of tendon development, signal transduction, mechanotransduction, and basic mechanisms underlying tendon pathogenesis and healing. To propel much needed progress, the New Frontiers in Tendon Research Conference, co-sponsored by NIAMS/NIH, the Orthopaedic Research Society, and the Icahn School of Medicine at Mount Sinai, was held to promote exchange of ideas between tendon researchers and basic science experts from outside the tendon field. Discussed research areas that are underdeveloped and represent major hurdles to the progress of the field will be presented in this review. To address some of these outstanding questions, conference discussions and breakout sessions focused on six topic areas (Cell Biology and Mechanics, Functional Extracellular Matrix, Development, Mechano-biology, Scarless Healing, and Mechanisms of Injury and Repair), which are reviewed in this special issue and briefly presented in this review. Review articles in this special issue summarize the progress in the field and identify essential new research directions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. The Difference between Uncertainty and Information, and Why This Matters

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.

    2016-12-01

    Earth science investigation and arbitration (for decision making) is very often organized around a concept of uncertainty. It seems relatively straightforward that the purpose of our science is to reduce uncertainty about how environmental systems will react and evolve under different conditions. I propose here that approaching a science of complex systems as a process of quantifying and reducing uncertainty is a mistake, and specifically a mistake that is rooted in certain rather hisoric logical errors. Instead I propose that we should be asking questions about information. I argue here that an information-based perspective facilitates almost trivial answers to environmental science questions that are either difficult or theoretically impossible to answer when posed as questions about uncertainty. In particular, I propose that an information-centric perspective leads to: Coherent and non-subjective hypothesis tests for complex system models. Process-level diagnostics for complex systems models. Methods for building complex systems models that allow for inductive inference without the need for a priori specification of likelihood functions or ad hoc error metrics. Asymptotically correct quantification of epistemic uncertainty. To put this in slightly more basic terms, I propose that an information-theoretic philosophy of science has the potential to resolve certain important aspects of the Demarcation Problem and the Duhem-Quine Problem, and that Hydrology and other Earth Systems Sciences can immediately capitalize on this to address some of our most difficult and persistent problems.

  11. Abraham Flexner of Kentucky, his report, Medical Education in the United States and Canada, and the historical questions raised by the report.

    PubMed

    Halperin, Edward C; Perman, Jay A; Wilson, Emery A

    2010-02-01

    One hundred years ago, the time was right and the need was critical for medical education reform. Medical education had become a commercial enterprise with proprietary schools of variable quality, lectures delivered in crowded classrooms, and often no laboratory instruction or patient contact. Progress in science, technology, and the quality of medical care, along with political will and philanthropic support, contributed to the circumstances under which Abraham Flexner produced his report. Flexner was dismayed by the quality of many of the medical schools he visited in preparing the report. Many of the recommendations in Medical Education in the United States and Canada are still relevant, especially those concerning the physician as a practitioner whose purpose is more societal and preventive than individual and curative. Flexner helped establish standards for prerequisite education, framed medical school admission criteria, aided in the design of a curriculum introduced by the basic and followed by the clinical sciences, stipulated the resources necessary for medical education, and emphasized medical school affiliation with both a university and a strong clinical system. He proposed integration of basic and clinical sciences leading to contextual learning, active rather than passive learning, and the importance of philanthropy. Flexner's report poses several questions for the historian: How were his views on African American medical education shaped by his post-Civil War upbringing in Louisville? Was the report original or derivative? Why did it have such a large impact? This article describes Flexner's early life and the report's methodology and considers several of the historical questions.

  12. Moonshot Science-Risks and Benefits.

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2016-08-30

    Ever since the successful Apollo 11 Moon landing in 1969, a "moonshot" has come to signify a bold effort to achieve a seemingly impossible task. The Obama administration recently called for a moonshot to cure cancer, an initiative that has elicited mixed responses from researchers who welcome additional funding but worry about raising expectations. We suggest that a successful moonshot requires a sufficient understanding of the basic science underlying a problem in question so that efforts can be focused on engineering a solution. Current gaps in our basic knowledge of cancer biology make the cancer moonshot a uniquely challenging endeavor. Nevertheless, history has shown that intensive research efforts have frequently yielded conceptual and technological breakthroughs with unanticipated benefits for society. We expect that this effort will be no different. Copyright © 2016 Casadevall and Fang.

  13. Computer literacy for life sciences: helping the digital-era biology undergraduates face today's research.

    PubMed

    Smolinski, Tomasz G

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of computers in their lives, seem to be largely unfamiliar with how computers are being used to pursue and answer such questions. This article describes an innovative undergraduate-level course, titled Computer Literacy for Life Sciences, that aims to teach students the basics of a computerized scientific research pursuit. The purpose of the course is for students to develop a hands-on working experience in using standard computer software tools as well as computer techniques and methodologies used in life sciences research. This paper provides a detailed description of the didactical tools and assessment methods used in and outside of the classroom as well as a discussion of the lessons learned during the first installment of the course taught at Emory University in fall semester 2009.

  14. Context for Education in the Seventies.

    ERIC Educational Resources Information Center

    Harman, Willis W.

    Three forces are pushing man toward a drastic shift in cultural values and basic premises. These are: 1) the existence of a world macroproblem which requires such a shift for its solution; 2) the "great refusal" of youth to go along with the values of the past; and 3) the questioning within science as to whether its classical "value-free" stance…

  15. Moral Development and Behavior: Theory, Research, and Social Issues.

    ERIC Educational Resources Information Center

    Lickona, Thomas, Ed.

    This book contains selections from psychologists, social scientists, and educators on the origins and nature of moral reasoning and behavior. Part one is an introduction and is intended to help the reader organize the wealth of theory and research in the field around eight basic questions confronting a science of morality. Part two sets forth…

  16. Integrating Technology in Today's Undergraduate Classrooms: A Look at Students' Perspectives

    ERIC Educational Resources Information Center

    Meehan, Kimberly C.; Salmun, Haydee

    2016-01-01

    The authors present the findings of a small-scale study of student opinions drawn from an anonymous and voluntary survey in an undergraduate science classroom. The survey questions focused on the use of basic tools in a college classroom. The tools included in the survey were PowerPoint, overhead projectors/chalkboards, personal response units,…

  17. Diagnostic Tests for Entering and Departing Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Waltham, Chris; Kotlicki, A.

    2006-12-01

    A diagnostic test administered at the start of a class should test basic concepts which are recognized as course prerequisites. The questions should not be over-packaged: e.g. students should be required to create models, rather than this being done for them each time. Students should be allowed great latitude in their answers, so we can discover what they are thinking. When administered at the end of a class the goals should be similar: testing concepts taught in the class itself and the retention of necessary concepts from previous classes. Great care has to be taken to avoid teaching to the test. In assessing an entire program, for example an undergraduate majors degree in physics, then one looks for very general skills and knowledge not specific to any one course. The purpose of an undergraduate degree in physics (or indeed any science) is to equip the students with a set of problem-solving skills and basic knowledge which can be applied in a large variety of workplace settings and to allow that student to contribute to civic society as a science-literate person. The creator of any diagnostic test should always have these big goals in mind. We have developed a set of questions which we think fulfill these criteria, yet are not specific to any particular level of science education. They have been administered to students in secondary schools across Canada, incoming first-year science students and final-year physics students at the University of British Columbia. The results will be presented.

  18. The history of space exploration

    NASA Technical Reports Server (NTRS)

    Collins, Martin J.; Kraemer, Sylvia K.

    1994-01-01

    Presented are the acknowledgements and introduction sections of the book 'Space: Discovery and Exploration.' The goal of the book is to address some basic questions of American space history, including how this history compares with previous eras of exploration, why the space program was initiated when it was, and how the U.S. space program developed. In pursuing these questions, the intention is not to provide exhaustive answers, but to point the reader toward a more varied picture of how our venture in space has intersected with American government, politics, business, and science.

  19. Ethnic Differences and Motivation Based on Maslow's Theory on Iranian Employees.

    PubMed

    Mousavi, Seyed Hadi; Dargahi, Hossein

    2013-01-01

    The aim of this study was to assess the levels of Maslow's hierarchy of needs theory had been fulfilled and to compare the Maslow's hierarchy of needs among Iranian different ethnic groups at Tehran University of Medical Sciences (TUMS). This research was a descriptive-analytical study which conducted among administrative employees of Tehran University of Medical Sciences; Tehran, Iran. The structured questionnaire consisted of 20 questions and demographic details. Each question had 4 parts to measure Maslow's hierarchy of needs. The questionnaire was distributed randomly among 133 employees to fill-up the demographic details and the other questions. Data was collected and analyzed by SPSS software, and One Way ANOVA, T-test, Spearman and Mann Whitney statistical methods. TUMS ethnic groups of the employees placed most importance on Basic, Self-esteem and Self-actualization. In addition, we found that Persians, Mazandaranians, and Turks ethnic groups, scored the most mean for Maslow's hierarchical needs compared to the other ethnic groups. Basic needs and safety needs is available amongst the different ethnic groups in Iran. As though, self-actualization needs are ultimate human goal, Iranian employees' ethnic groups pay emphasis on these needs. We believe that new structures and work practices such as prevailing cultural values and beliefs of the society or the organizations must be explored if Iranian-based organizations want to remain responsive to the needs of the workplace.

  20. Science ethics education: effects of a short lecture on plagiarism on the knowledge of young medical researchers.

    PubMed

    Brkic, S; Bogdanovic, G; Vuckovic-Dekic, Lj; Gavrilovic, D; Kezic, I

    2012-01-01

    Plagiarism is the most common form of scientific fraud. It is agreed that the best preventive measure is education of young scientists on basic principles of responsible conduct of research and writing. The purpose of this article was to contribute to the students' knowledge and adoption of the rules of scientific writing. A 45 min lecture was delivered to 98 attendees during 3 courses on science ethics. Before and after the course the attendees fulfilled an especially designed questionnaire with 13 questions, specifically related to the definition and various types of plagiarism and self-plagiarism. Although considering themselves as insufficiently educated in science ethics, the majority of the attendees responded correctly to almost all questions even before the course, with percentages of correct responses to the specific question varying from 45.9-85.7%. After completion of the course, these percentages were significantly (p<0.01) higher, ranging from 66.3-98.8%. The percentage of improvement of the knowledge about plagiarism ranged from 9.18- 42.86%. The percentage of impairment ranged from 1.02- 16.33%, the latter being related to the question on correct citing unpublished materials of other people; only for this question the percentage of impairment (16.33%) was greater than the percentage of improvement (11.22%). Even a short lecture focused on plagiarism contributed to the students' awareness that there are many forms of plagiarism, and that plagiarism is a serious violation of science ethics. This result confirms the largely accepted opinion that education is the best means in preventing plagiarism.

  1. Within-Case and Cross-Case Analyses of Questions Posed by Fifth-Grade Students Working in Small Groups to Investigate Pendulum Motion

    NASA Astrophysics Data System (ADS)

    Tisel, James Michael

    The focus of this basic qualitative research is student questions in an unstructured inquiry setting. Case and cross-case analyses were conducted (Miles and Huberman, 1984) of the questions posed by fifth grade students working in laboratory groups of size three to five students as they investigated pendulum motion. To establish the conceptual framework for the study, literature was reviewed in the areas of cognitive theory (constructivism, conceptual change, and other theories), approaches to science, and the importance of student questions in the learning process. A review of group work, related studies of student questions and activities and relevant methods of qualitative research was also undertaken. The current study occupies the relatively unique position of being about the questions students posed to each other (not the teacher) at the outset of and throughout an unstructured inquiry activity with a minimum of teacher initiation or intervention. The focus is on finding out what questions students ask, when they ask them, what categories the questions fall into in relation to possible models of the scientific method, student motivation, and what role the questions play as the students take part in an inquiry activity. Students were video and/or audio-recorded as they did the investigation. They wrote down their questions during one-minute pauses that occurred at roughly eight-minute intervals. The groups were interviewed the next day about their experience. The recordings, question sheets, and interview accounts and recordings were analyzed by the researcher. Accounts of the experience of each group were prepared, and reiterated attempts were made to classify the questions as the main themes and categories emerged. It was found that students posed their key research question (most typically related to pendulum damping effects) midway through the first half of their activity, after having first met some competence and other needs in relation to measurement procedures and basic information. The main research question typically emerged gradually in an implicitly shared form. It was found that Deci and Ryan's self-determination theory (2000) with the core needs of competence, autonomy, and relatedness, served as a useful tool for categorizing and understanding the role of the questions. Basic questions about procedures in relation to gaining competence with measurement were considered by the researcher to be most prevalent. When compared to, for instance, Lawson's hypothetico-predictive model of doing science (2003a) it was noted that puzzling observations were not necessarily made at the outset, and key questions took place much later in the investigative process than what typical scientific models might suggest. Further, more focused research in the areas of self-determination theory in relation to student questions as they engage in inquiry could be of benefit in determining the motivations behind student questions. Educational programs that have, as their goal, authentic student inquiry should take into account that student research questions evolve over time as they meet various needs in the process of initiating their investigations.

  2. The Evolution of Vocational Psychology: Questions for a Postmodern Applied Discipline

    ERIC Educational Resources Information Center

    Krieshok, Thomas S.; Motl, Thomas C.; Rutt, Benjamin T.

    2011-01-01

    Vocational psychology has a long history of acting as a lens that focuses research in basic sciences on the particular experience of work in people's lives. This article presents several areas on the ascendancy in the broader scientific literature and ask how vocational psychology might apply them to issues of work in people's lives. The authors'…

  3. Starting and Teaching Basic Robotics in the Classroom: Modern, Engaging Engineering in Technology Education

    ERIC Educational Resources Information Center

    Bianco, Andrew S.

    2014-01-01

    All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…

  4. Computational thinking and thinking about computing

    PubMed Central

    Wing, Jeannette M.

    2008-01-01

    Computational thinking will influence everyone in every field of endeavour. This vision poses a new educational challenge for our society, especially for our children. In thinking about computing, we need to be attuned to the three drivers of our field: science, technology and society. Accelerating technological advances and monumental societal demands force us to revisit the most basic scientific questions of computing. PMID:18672462

  5. They Don't Tell the Truth about the Wind: Hands-On Explorations in K-3 Science.

    ERIC Educational Resources Information Center

    Fleer, Marilyn; And Others

    This book is a child-centered program for students of ages four through eight to enable children to make sense of their experience, build meaning, and take effective action in their world. The units describe classroom techniques for determining what basic ideas, experiences, and questions the children have and continuing the instructional process…

  6. Expanding the basic science debate: the role of physics knowledge in interpreting clinical findings.

    PubMed

    Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L; Skye, Aimee L; Woods, Nicole N

    2012-10-01

    Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical information. Participants studied a handout about several respiratory disorders and how to interpret respiratory exam findings. The control group received the information in standard "textbook" format and the experimental group was presented with the same information as well as a causal explanation about how sound travels through lungs in both the normal and disease states. Comprehension and memory of the information was evaluated with a multiple-choice exam. Several questions that were not related to the causal knowledge served as control items. Questions related to the interpretation of physical exam findings served as the critical test items. The experimental group outperformed the control group on the critical test items, and our study shows that a causal explanation can improve a student's memory for interpreting clinical details. We suggest an expansion of which basic sciences are considered fundamental to medical education.

  7. Integrating pharmacology topics in high school biology and chemistry classes improves performance

    NASA Astrophysics Data System (ADS)

    Schwartz-Bloom, Rochelle D.; Halpin, Myra J.

    2003-11-01

    Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.

  8. [Basic research during residency in Israel: is change needed?].

    PubMed

    Fishbain, Dana; Shoenfeld, Yehuda; Ashkenazi, Shai

    2013-10-01

    A six-month research period is a mandatory part of the residency training program in most basic specialties in Israel and is named: the "basic science period". This is the only period in an Israeli physician's medical career which is dedicated strictly to research, accentuating the importance of medical research to the quality of training and level of medicine in Israel. From another point of view, one may argue that in an era of shortage of physicians on the one hand and the dizzying rate of growth in medical knowledge on the other hand, every moment spent training in residency is precious, therefore, making the decision of whether to dedicate six months for research becomes ever more relevant. This question is currently raised for discussion once again by the Scientific Council of the Israeli Medical Association. The Scientific Council lately issued a call for comments sent to all Israeli physicians, asking their opinion on several key questions regarding basic science research. Learning the public's opinion will serve as a background for discussion. A total of 380 physicians responded to the call and specified their standpoint on the subject, among them heads of departments, units and clinics, senior physicians and residents. The findings pointed to strong support in maintaining the research period as part of residency training due to its importance to medical training and medicine, although half the respondents supported the use of various alternative formats for research together with the existing format. Those alternative format suggestions will be thoroughly reviewed. A smaller group of respondents supported allowing residents a choice between two tracks--with or without a research period, and only a few were in favor of canceling the research requirement altogether. The writers maintain that the "basic science period" of research during residency training is vital and its contribution to the high level of specialists and high level of medicine requires its conservation. Nevertheless, alternative formats which might be suitable for some residents should be considered, and auxiliary tools to help residents fulfill their potential in research and raise the quality of written research papers should be constructed.

  9. Undergraduate Conceptions About What it Means to Study Something Scientifically

    NASA Astrophysics Data System (ADS)

    Nieberding, Megan; Impey, Chris; Buxner, Sanlyn; Romine, James

    2014-11-01

    Non-science major students represent individuals who will become productive members of society in non-science fields including our business leaders, policy makers, and teachers. Their college non-major science courses are often the last formal instruction they will receive in science. As such, it important to understand what students already know about science and provide instruction that is engaging and helps them gain a greater appreciation for doing science. We report on a study of almost 12,000 undergraduate students enrolled in introduction astronomy courses from 1989 - 2014, most of who were freshman or sophomore students. Almost every year during the 25 year period, students were asked to complete an in-class survey that included basic science content questions and attitude towards science questions. They were also asked to write a response to the question, “What does it mean to study something scientifically?”Sixty-five percent of responses were meaningful and considered to be on target. In their responses 16% of students described science as a way of gaining knowledge or learning about something. Twenty three percent of respondents described science as using observations or experimentation and 10% described it as involving a hypothesis. Only 8% of respondents mentioned data analysis while 6% described using data or evidence. Four percent of respondents mentioned science was a way to solve problems and 4% described science as being systematic. Students who were self-reported STEM majors (Pre-med, engineering, math, and science majors) more often mentioned that science is an empirical technique as well as the use of hypotheses in science STEM majors also mentioned data twice as often as non-STEM majors in their responses. Education majors, who made up 6% of the sample, had the least descriptive answers overall, and were the group who most often not include aspects that were essential to studying science.Gathering this information has helped characterize students’ knowledge about science and make instruction to support their knowledge

  10. "Why did you really do it?" A mixed-method analysis of the factors underpinning motivations to register as a body donor.

    PubMed

    Cornwall, Jon; Poppelwell, Zoe; McManus, Ruth

    2018-05-15

    Individuals who register as body donors do so for various reasons, with aiding medical science a common motivation. Despite awareness of several key reasons for donation, there are few in-depth explorations of these motivations to contextualize persons' reasons for donating. This study undertakes a mixed-method exploration of motivations for body donation to facilitate deeper understanding of the reasons underpinning donor registration. A survey of all newly registered body donors at a New Zealand university was performed over a single year. The survey included basic demographic information, a categorical question on reason for donation, a free-text question on donation motivation, and a free-text question allowing "other" comments on body donation. Basic statistical analysis was performed on demographic and categorical data, and thematic analysis used on free-text responses. From 169 registrants, 126 people (average age 70.5 years; 72 female) returned completed surveys (response rate 75%). Categorical data indicate a primary motivation of aiding medical science (86%). Fifty-one respondents (40%) provided free-text data on motivation, with other comments related to motivation provided by forty-one (33%). Common themes included reference to usefulness, uniqueness (pathophysiology and anatomy), gift-giving, kinship, and impermanence of the physical body. Consistent with previous studies, the primary reason for body donation was aiding medical science, however underpinning this was a complex layer of themes and sub-themes shaping motivations for choices. Findings provide important information that can guide development of robust informed consent processes, aid appropriate thanksgiving service delivery, and further contextualize the importance of medical professionals in body donation culture. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  11. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  12. Student Assistant for Learning from Text (SALT): a hypermedia reading aid.

    PubMed

    MacArthur, C A; Haynes, J B

    1995-03-01

    Student Assistant for Learning from Text (SALT) is a software system for developing hypermedia versions of textbooks designed to help students with learning disabilities and other low-achieving students to compensate for their reading difficulties. In the present study, 10 students with learning disabilities (3 young women and 7 young men ages 15 to 17) in Grades 9 and 10 read passages from a science textbook using a basic computer version and an enhanced computer version. The basic version included the components found in the printed textbook (text, graphics, outline, and questions) and a notebook. The enhanced version added speech synthesis, an on-line glossary, links between questions and text, highlighting of main ideas, and supplementary explanations that summarized important ideas. Students received significantly higher comprehension scores using the enhanced version. Furthermore, students preferred the enhanced version and thought it helped them learn the material better.

  13. Visualizing Culturally Relevant Science Pedagogy Through Photonarratives of Black Middle School Teachers

    NASA Astrophysics Data System (ADS)

    Goldston, M. Jenice; Nichols, Sharon

    2009-04-01

    This study situated in a Southern resegregated Black middle school involved four Black teachers and two White science educators’ use of photonarratives to envision culturally relevant science pedagogy. Two questions guided the study: (1) What community referents are important for conceptualizing culturally relevant practices in Black science classrooms? and (2) How do teachers’ photonarratives serve to open conversations and notions of culturally relevant science practices? The research methodologically drew upon memory-work, Black feminism, critical theory, visual methodology, and narrative inquiry as “portraiture.” Issues of positionality and identity proved to be central to this work, as three luminaries portray Black teachers’ insights about supports and barriers to teaching and learning science. The community referents identified were associated with church and its oral traditions, inequities of the market place in meeting their basic human needs, and community spaces.

  14. Facts, values, and journalism.

    PubMed

    Gilbert, Susan

    2017-03-01

    At a time of fake news, hacks, leaks, and unverified reports, many people are unsure whom to believe. How can we communicate in ways that make individuals question their assumptions and learn? My colleagues at The Hastings Center and many journalists and scientists are grappling with this question and have, independently, reached the same first step: recognize that facts can't be fully understood without probing their connection to values. "Explaining the basics is important, of course, but we also need to diversify our approach to the coverage of science-particularly as it intersects with the matrix of cultural, religious, social, and political values of our readers," said an article in Undark, an online magazine of science journalism. An editorial in Nature called for scientists to engage directly with citizens in debates over climate change and genome editing, noting that "the ethical issues can be critically dependent on the science, for example, in understanding where the boundaries between non-heritable and heritable genome modifications might be." We're here to help. © 2017 The Hastings Center.

  15. Using Astrobiology case studies to bring science decision making into the classroom: Mars sample return, exobiology and SETI

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    As citizens and decision makers of the future, today's students need to understand the nature of science and the implications of scientific discoveries and activities in a broad societal context. Astrobiology provides an opportunity to introduce students to real world decision-making involving cutting edge, multidisciplinary research topics that involve Earth, the solar system and beyond. Although textbooks and curricular materials may take years to develop, teachers can easily bring the latest astrobiological discoveries and hypotheses into the classroom in the form of case studies to complement science classes. For example, using basic biological, geological and chemical information from Earth and other planets, students can discuss the same questions that experts consider when planning a Mars Sample Return mission. How would you recognize extraterrestrial life? What would be the impact of bringing martian life to Earth? How should martian samples be handled and tested to determine whether they pose hazards to Earth's biota and ecosystems? If truly martian life exists, what are the implications for future human missions or colonies on the planet? What are the ethical and societal implications of discovering extraterrestrial life, whether in the solar system or beyond? What difference world it make if the extraterrestrial life is microbial and simple vs. intelligent and advanced? By integrating basic science concepts, up-to-date research findings, and information about laws, societal concerns, and public decision making, students can experience first-hand the kind of questions and challenges we're likely to face in the years ahead.

  16. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  17. A high arctic experience of uniting research and monitoring

    NASA Astrophysics Data System (ADS)

    Schmidt, Niels Martin; Christensen, Torben R.; Roslin, Tomas

    2017-07-01

    Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"—particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system—to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.

  18. Engaging Oral Health Students in Learning Basic Science Through Assessment That Weaves in Personal Experience.

    PubMed

    Leadbeatter, Delyse; Gao, Jinlong

    2018-04-01

    Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek integrative methods to help students engage in meaningful knowledge production and understand that what they are learning goes beyond acquisition of scientific facts.

  19. Design of Chemical Literacy Assessment by Using Model of Educational Reconstruction (MER) on Solubility Topic

    NASA Astrophysics Data System (ADS)

    Yusmaita, E.; Nasra, Edi

    2018-04-01

    This research aims to produce instrument for measuring chemical literacy assessment in basic chemistry courses with solubility topic. The construction of this measuring instrument is adapted to the PISA (Programme for International Student Assessment) problem’s characteristics and the Syllaby of Basic Chemistry in KKNI-IndonesianNational Qualification Framework. The PISA is a cross-country study conducted periodically to monitor the outcomes of learners' achievement in each participating country. So far, studies conducted by PISA include reading literacy, mathematic literacy and scientific literacy. Refered to the scientific competence of the PISA study on science literacy, an assessment designed to measure the chemical literacy of the chemistry department’s students in UNP. The research model used is MER (Model of Educational Reconstruction). The validity and reliability values of discourse questions is measured using the software ANATES. Based on the acquisition of these values is obtained a valid and reliable chemical literacy questions.There are seven question items limited response on the topic of solubility with valid category, the acquisition value of test reliability is 0,86, and has a difficulty index and distinguishing good

  20. The Importance of Mixing Virtual and Real Information in Games

    NASA Astrophysics Data System (ADS)

    Gaonach, H.

    2014-12-01

    Educational technology is rapidly evolving, today's classrooms are replete with ipads, iphones, interactive white boards, and other Internet tools and gadgets. However we mustn't be diverted by the technology and lose the basic focus on the communication of scientific ideas to the students. What do we want to teach them? I will present new educational kits including games about active volcanoes as well as climates and climate change. These tools have been created for 8-12 year olds who play on teams. The teams use question-cards and basic geographic knowledge to move on a regular play board by answering scientific questions. In addition to learning the science, through interpreting latitudes and longitudes, children will better understand the link between Google map and the world map after such exercises! With their teacher, they will be able to play with traditional pieces but also use tablets or computers to listen to videos as well as obtain additional subject related questions and activities. In this way, the Web is an infinite extension of the regular game played on a table with physical pieces. Let's see how it works!

  1. Ethnic Differences and Motivation Based on Maslow’s Theory on Iranian Employees

    PubMed Central

    MOUSAVI, Seyed Hadi; DARGAHI, Hossein

    2013-01-01

    Background The aim of this study was to assess the levels of Maslow’s hierarchy of needs theory had been fulfilled and to compare the Maslow’s hierarchy of needs among Iranian different ethnic groups at Tehran University of Medical Sciences (TUMS). Methods: This research was a descriptive-analytical study which conducted among administrative employees of Tehran University of Medical Sciences; Tehran, Iran. The structured questionnaire consisted of 20 questions and demographic details. Each question had 4 parts to measure Maslow’s hierarchy of needs. The questionnaire was distributed randomly among 133 employees to fill-up the demographic details and the other questions. Data was collected and analyzed by SPSS software, and One Way ANOVA, T-test, Spearman and Mann Whitney statistical methods. Results: TUMS ethnic groups of the employees placed most importance on Basic, Self-esteem and Self-actualization. In addition, we found that Persians, Mazandaranians, and Turks ethnic groups, scored the most mean for Maslow’s hierarchical needs compared to the other ethnic groups. Conclusion: Basic needs and safety needs is available amongst the different ethnic groups in Iran. As though, self-actualization needs are ultimate human goal, Iranian employees’ ethnic groups pay emphasis on these needs. We believe that new structures and work practices such as prevailing cultural values and beliefs of the society or the organizations must be explored if Iranian-based organizations want to remain responsive to the needs of the workplace. PMID:23802110

  2. Thermodynamics and Diffusion Coupling in Alloys—Application-Driven Science

    NASA Astrophysics Data System (ADS)

    Ågren, John

    2012-10-01

    As emphasized by Stokes (1997), the common assumption of a linear progression from basic research (science), via applied research, to technological innovations (engineering) should be questioned. In fact, society would gain much by supporting long-term research that stems from practical problems and has usefulness as a key word. Such research may be fundamental, and often, it cannot be distinguished from "basic" research if it were not for its different motivation. The development of the Calphad method and the more recent development of accompanying kinetic approaches for diffusion serve as excellent examples and are the themes of this symposium. The drivers are, e.g., the development of new materials, processes, and lifetime predictions. Many challenges of the utmost practical importance require long-term fundamental research. This presentation will address some of them, e.g., the effect of various ordering phenomena on activation barriers, and the strength and practical importance of correlation effects.

  3. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  4. How much basic science content do second-year medical students remember from their first year?

    PubMed

    Schneid, Stephen D; Pashler, Hal; Armour, Chris

    2018-01-23

    While most medical students generally perform well on examinations and pass their courses during the first year, we do not know how much basic science content they retain at the start of their second year and how that relates to minimal competency set by the faculty. In the fall of 2014, before starting their second-year courses, 27 medical students volunteered to participate in a study of long-term retention of the basic sciences by taking a "retention exam" after a delay of 5-11 months. The overall mean performance when the students initially answered the 60 multiple choice questions (MCQs) was 82.8% [standard deviation (SD) = 7.4%], which fell to 50.1% (SD = 12.1%) on the retention exam. This gave a mean retention of 60.4% (SD = 12.8%) with the retention for individual students ranging from 37 to 81%. The majority of students (23/27; 85%) fell below the minimal level of competency to start their second year. Medical educators should be more aware of the significant amount of forgetting that occurs during training and make better use of instructional strategies that promote long-term learning such as retrieval practice, interleaving, and spacing.

  5. Cardiopulmonary discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.

  6. Medical students' attitudes towards early clinical exposure in Iran.

    PubMed

    Khabaz Mafinejad, Mahboobeh; Mirzazadeh, Azim; Peiman, Soheil; Khajavirad, Nasim; Mirabdolhagh Hazaveh, Mojgan; Edalatifard, Maryam; Allameh, Seyed-Farshad; Naderi, Neda; Foroumandi, Morteza; Afshari, Ali; Asghari, Fariba

    2016-06-19

    This study was carried out to investigate the medical students' attitudes towards early clinical exposure at Tehran University of Medical Sciences. A cross-sectional study was conducted during 2012-2015. A convenience sample of 298 first- and second-year students, enrolled in the undergraduate medical curriculum, participated in an early clinical exposure program. To collect data from medical students, a questionnaire consisting of open-ended questions and structured questions, rated on a five-point Likert scale, was used to investigate students' attitudes toward early clinical exposure. Of the 298 medical students, 216 (72%) completed the questionnaires. The results demonstrated that medical students had a positive attitude toward early clinical exposure. Most students (80.1%) stated that early clinical exposure could familiarize them with the role of basic sciences knowledge in medicine and how to apply this knowledge in clinical settings. Moreover, 84.5% of them believed that early clinical exposure increased their interest in medicine and encouraged them to read more. Furthermore, content analysis of the students' responses uncovered three main themes of early clinical exposure, were considered helpful to improve learning: "integration of theory and practice", "interaction with others and professional development" and "desire and motivation for learning medicine". Medical students found their first experience with clinical setting valuable. Providing clinical exposure in the initial years of medical curricula and teaching the application of basic sciences knowledge in clinical practice can enhance students' understanding of the role they will play in the future as a physician.

  7. Computational complexity of ecological and evolutionary spatial dynamics

    PubMed Central

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu; Nowak, Martin A.

    2015-01-01

    There are deep, yet largely unexplored, connections between computer science and biology. Both disciplines examine how information proliferates in time and space. Central results in computer science describe the complexity of algorithms that solve certain classes of problems. An algorithm is deemed efficient if it can solve a problem in polynomial time, which means the running time of the algorithm is a polynomial function of the length of the input. There are classes of harder problems for which the fastest possible algorithm requires exponential time. Another criterion is the space requirement of the algorithm. There is a crucial distinction between algorithms that can find a solution, verify a solution, or list several distinct solutions in given time and space. The complexity hierarchy that is generated in this way is the foundation of theoretical computer science. Precise complexity results can be notoriously difficult. The famous question whether polynomial time equals nondeterministic polynomial time (i.e., P = NP) is one of the hardest open problems in computer science and all of mathematics. Here, we consider simple processes of ecological and evolutionary spatial dynamics. The basic question is: What is the probability that a new invader (or a new mutant) will take over a resident population? We derive precise complexity results for a variety of scenarios. We therefore show that some fundamental questions in this area cannot be answered by simple equations (assuming that P is not equal to NP). PMID:26644569

  8. Historical legacies, information and contemporary water science and management

    USGS Publications Warehouse

    Bain, Daniel J.; Arrigo, Jennifer A.S.; Green, Mark B.; Pellerin, Brian A.; Vörösmarty, Charles J.

    2011-01-01

    Hydrologic science has largely built its understanding of the hydrologic cycle using contemporary data sources (i.e., last 100 years). However, as we try to meet water demand over the next 100 years at scales from local to global, we need to expand our scope and embrace other data that address human activities and the alteration of hydrologic systems. For example, the accumulation of human impacts on water systems requires exploration of incompletely documented eras. When examining these historical periods, basic questions relevant to modern systems arise: (1) How is better information incorporated into water management strategies? (2) Does any point in the past (e.g., colonial/pre-European conditions in North America) provide a suitable restoration target? and (3) How can understanding legacies improve our ability to plan for future conditions? Beginning to answer these questions indicates the vital need to incorporate disparate data and less accepted methods to meet looming water management challenges.

  9. Applying Metacognition Through Patient Encounters and Illness Scripts to Create a Conceptual Framework for Basic Science Integration, Storage, and Retrieval.

    PubMed

    Hennrikus, Eileen F; Skolka, Michael P; Hennrikus, Nicholas

    2018-01-01

    Medical school curriculum continues to search for methods to develop a conceptual educational framework that promotes the storage, retrieval, transfer, and application of basic science to the human experience. To achieve this goal, we propose a metacognitive approach that integrates basic science with the humanistic and health system aspects of medical education. During the week, via problem-based learning and lectures, first-year medical students were taught the basic science underlying a disease. Each Friday, a patient with the disease spoke to the class. Students then wrote illness scripts, which required them to metacognitively reflect not only on disease pathophysiology, complications, and treatments but also on the humanistic and health system issues revealed during the patient encounter. Evaluation of the intervention was conducted by measuring results on course exams and national board exams and analyzing free responses on the illness scripts and student course feedback. The course exams and National Board of Medical Examiners questions were divided into 3 categories: content covered in lecture, problem-based learning, or patient + illness script. Comparisons were made using Student t -test. Free responses were inductively analyzed using grounded theory methodology. This curricular intervention was implemented during the first 13-week basic science course of medical school. The main objective of the course, Scientific Principles of Medicine, is to lay the scientific foundation for subsequent organ system courses. A total of 150 students were enrolled each year. We evaluated this intervention over 2 years, totaling 300 students. Students scored significantly higher on illness script content compared to lecture content on the course exams (mean difference = 11.1, P  = .006) and national board exams given in December (mean difference = 21.8, P  = .0002) and June (mean difference = 12.7, P  = .016). Themes extracted from students' free responses included the following: relevance of basic science, humanistic themes of empathy, resilience, and the doctor-patient relationship, and systems themes of cost, barriers to care, and support systems. A metacognitive approach to learning through the use of patient encounters and illness script reflections creates stronger conceptual frameworks for students to integrate, store, retain, and retrieve knowledge.

  10. Factors Associated with Evidence-Based Clinical Questions Presented in a Vertically Integrated Seminar Series at a U.S. Dental School.

    PubMed

    Shenoy, Gayathri M; Dragan, Irina F; Pagni, Sarah; Murphy, Jennipher; Karimbux, Nadeem

    2018-06-01

    The Basic Science/Clinical Science Spiral Seminar Series (BaSiCSsss) was implemented at Tufts University School of Dental Medicine in 2013. In the series, teams of dental students from all four years presented components of a clinical case, supported by evidence-based dentistry concepts. The role of the third-year student on each team was to present questions based on the PICO (Population, Intervention, Comparison, Outcome) method to support the treatment plan for the selected case. The primary aim of this study was to identify the dental discipline from which the PICO question was chosen, and the secondary aim was to review the level of evidence (journal impact factor, study design, and year of publication) of sources used to support the PICO questions. Presentations compiled during the 2014-15 and 2015-16 academic years were reviewed. The PICO questions and additional details from the publications used as reference (choice of journal, year of publication, study design) were reviewed. A total of 224 presentations were reviewed. The results showed that most topics were from the subjects of periodontology and prosthodontics. Systematic reviews and cohort studies were the most often used types of study design. The majority of the articles cited were recently published. The students used supporting references for the clinical questions published recently with a high level of evidence.

  11. Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems--beyond the digital hegemony.

    PubMed

    Crutchfield, James P; Ditto, William L; Sinha, Sudeshna

    2010-09-01

    How dynamical systems store and process information is a fundamental question that touches a remarkably wide set of contemporary issues: from the breakdown of Moore's scaling laws--that predicted the inexorable improvement in digital circuitry--to basic philosophical problems of pattern in the natural world. It is a question that also returns one to the earliest days of the foundations of dynamical systems theory, probability theory, mathematical logic, communication theory, and theoretical computer science. We introduce the broad and rather eclectic set of articles in this Focus Issue that highlights a range of current challenges in computing and dynamical systems.

  12. Tackling overweight and obesity: does the public health message match the science?

    PubMed

    Hafekost, Katherine; Lawrence, David; Mitrou, Francis; O'Sullivan, Therese A; Zubrick, Stephen R

    2013-02-18

    Despite the increasing understanding of the mechanisms relating to weight loss and maintenance, there are currently no validated public health interventions that are able to achieve sustained long-term weight loss or to stem the increasing prevalence of obesity in the population. We aimed to examine the models of energy balance underpinning current research about weight-loss intervention from the field of public health, and to determine whether they are consistent with the model provided by basic science. EMBASE was searched for papers published in 2011 on weight-loss interventions. We extracted details of the population, nature of the intervention, and key findings for 27 articles. Most public health interventions identified were based on a simple model of energy balance, and thus attempted to reduce caloric consumption and/or increase physical activity in order to create a negative energy balance. There appeared to be little consideration of homeostatic feedback mechanisms and their effect on weight-loss success. It seems that there has been a lack of translation between recent advances in understanding of the basic science behind weight loss, and the concepts underpinning the increasingly urgent efforts to reduce excess weight in the population. Public health weight-loss interventions seem to be based on an outdated understanding of the science. Their continued failure to achieve any meaningful, long-term results reflects the need to develop intervention science that is integrated with knowledge from basic science. Instead of asking why people persist in eating too much and exercising too little, the key questions of obesity research should address those factors (environmental, behavioral or otherwise) that lead to dysregulation of the homeostatic mechanism of energy regulation. There is a need for a multidisciplinary approach in the design of future weight-loss interventions in order to improve long-term weight-loss success.

  13. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    PubMed

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    PubMed

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  15. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    NASA Astrophysics Data System (ADS)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  16. Leveraging the power of music to improve science education

    NASA Astrophysics Data System (ADS)

    Crowther, Gregory J.; McFadden, Tom; Fleming, Jean S.; Davis, Katie

    2016-01-01

    We assessed the impact of music videos with science-based lyrics on content knowledge and attitudes in a three-part experimental research study of over 1000 participants (mostly K-12 students). In Study A, 13 of 15 music videos were followed by statistically significant improvements on questions about material covered in the videos, while performance on 'bonus questions' not covered by the videos did not improve. Video-specific improvement was observed in both basic knowledge and genuine comprehension (levels 1 and 2 of Bloom's taxonomy, respectively) and after both lyrics-only and visually rich versions of some videos. In Study B, musical versions of additional science videos were not superior to non-musical ones in their immediate impact on content knowledge, though musical versions were significantly more enjoyable. In Study C, a non-musical video on fossils elicited greater immediate test improvement than the musical version ('Fossil Rock Anthem'); however, viewers of the music video enjoyed a modest advantage on a delayed post-test administered 28 days later. Music video viewers more frequently rated their video as 'fun', and seemed more likely to revisit and/or share the video. Our findings contribute to a broader dialogue on promising new pedagogical strategies in science education.

  17. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas; Schuman, Catherine; Patton, Robert

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less

  18. A study of the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained in year 1 and 2.

    PubMed

    Gowda, Veena Bhaskar S; Nagaiah, Bhaskar Hebbani; Sengodan, Bharathi

    2016-01-01

    Medical students build clinical knowledge on the grounds of previously obtained basic knowledge. The study aimed to evaluate the competency of third year medical students to interpret biochemically based clinical scenarios using knowledge and skills gained during year 1 and 2 of undergraduate medical training. Study was conducted on year 3 MBBS students at AIMST University, Malaysia. Clinical scenarios (25) were constructed and administered to student volunteers, making sure at least one question from each system of year 2 was represented. Feedback was obtained on a five-point Likert scale regarding perception of learning biochemistry in MBBS year 1 versus 2. Mean score of test was 18 (72.11%). Performance was comparatively better in questions related to topics learnt in year 1 and reinforced in year 2 compared to those learnt for first time in year 2. In the feedback obtained, 31% strongly agreed and 56% agreed understanding the subject was helped more by learning biochemistry in year 2 than in year 1. Likewise, 36% strongly agreed and 56% agreed appreciating the importance of biochemistry in patient diagnosis was helped more by learning biochemistry in year 2 than year 1. Thirty one percent strongly agreed and 54% agreed that year 1 biochemistry would have been more relevant if case discussions were done simultaneously. Students retain basic science subjects better and appreciate the importance of basic sciences in patient diagnosis if they are reinforced in the context of clinical situations. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Regulatory physiology discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  20. Awareness of basic life support among dental practitioners.

    PubMed

    Baduni, Neha; Prakash, Prem; Srivastava, Dhirendra; Sanwal, Manoj Kumar; Singh, Bijender Pal

    2014-01-01

    It is important that every member of our community should be trained in effective BLS technique to save lives. At least doctors including dental practitioners, and medical and paramedical staff should be trained in high quality CPR, as it is a basic medical skill which can save many lives if implemented timely. Our aim was to study the awareness of Basic Life Support (BLS) among dental students and practitioners in New Delhi. This cross sectional study was conducted by assessing responses to 20 selected questions pertaining to BLS among dental students, resident doctors/tutors, faculty members and private practitioners in New Delhi. All participants were given a printed questionnaire where they had to mention their qualifications and clinical experience, apart from answering 20 questions. Data was collected and evaluated using commercially available statistical package for social sciences (SPSS version 12). One hundred and four responders were included. Sadly, none of our responders had complete knowledge about BLS. The maximum mean score (9.19 ± 1.23) was obtained by dentists with clinical experience between 1-5 years. To ensure better and safer healthcare, it is essential for all dental practitioners to be well versed with BLS.

  1. Your Genes, Your Choices: Exploring the Issues Raised by Genetic Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, C.

    1999-05-31

    Your Genes, Your Choices provides accurate information about the ethical, legal, and social implications of the Human Genome Project and genetic research in an easy-to-read style and format. Each chapter in the book begins with a brief vignette, which introduces an issue within a human story, and raises a question for the reader to think about as the basic science and information are presented in the rest of the chapter.

  2. Conceptual and methodological issues in research on mindfulness and meditation.

    PubMed

    Davidson, Richard J; Kaszniak, Alfred W

    2015-10-01

    Both basic science and clinical research on mindfulness, meditation, and related constructs have dramatically increased in recent years. However, interpretation of these research results has been challenging. The present article addresses unique conceptual and methodological problems posed by research in this area. Included among the key topics is the role of first-person experience and how it can be best studied, the challenges posed by intervention research designs in which true double-blinding is not possible, the nature of control and comparison conditions for research that includes mindfulness or other meditation-based interventions, issues in the adequate description of mindfulness and related trainings and interventions, the question of how mindfulness can be measured, questions regarding what can and cannot be inferred from self-report measures, and considerations regarding the structure of study design and data analyses. Most of these topics are germane to both basic and clinical research studies and have important bearing on the future scientific understanding of mindfulness and meditation. (c) 2015 APA, all rights reserved).

  3. Conceptual and Methodological Issues in Research on Mindfulness and Meditation

    PubMed Central

    Davidson, Richard J.; Kaszniak, Alfred W.

    2015-01-01

    Both basic science and clinical research on mindfulness, meditation, and related constructs has dramatically increased in recent years. However, interpretation of these research results has been challenging. The present article addresses unique conceptual and methodological problems posed by research in this area. Included among the key topics is the role of first person experience and how it can be best studied; the challenges posed by intervention research designs in which true double-blinding is not possible; the nature of control and comparison conditions for research that includes mindfulness or other meditation-based interventions; issues in the adequate description of mindfulness and related trainings and interventions; the question of how mindfulness can be measured; questions regarding what can and cannot be inferred from self-report measures; and considerations regarding the structure of study design and data analyses. Most of these topics are germane to both basic and clinical research studies and have important bearing on the future scientific understanding of mindfulness and meditation. PMID:26436310

  4. An extensible and successful method of identifying collaborators for National Library of Medicine informationist projects

    PubMed Central

    Williams, Jeff D.; Rambo, Neil H.

    2015-01-01

    Question/Purpose The New York University (NYU) Health Sciences Library used a new method to arrange in-depth discussions with basic science researchers. The objective was to identify collaborators for a new National Library of Medicine administrative supplement. Setting The research took place at the NYU Health Sciences Library. Methods Using the National Institutes of Health (NIH) RePORTER, forty-four researchers were identified and later contacted through individualized emails. Results Nine researchers responded to the email followed by six in-person or phone discussions. At the conclusion of this process, two researchers submitted applications for supplemental funding, and both of these applications were successful. Conclusions This method confirmed these users could benefit from the skills and knowledge of health sciences librarians, but they are largely unaware of this. PMID:26213507

  5. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences.

    PubMed

    Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J

    2016-03-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.

  6. Determination of the dominant catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst system: Is it single-metal Rh₁Cp*-based, subnanometer Rh₄ cluster-based, or Rh(0) n nanoparticle-based cyclohexene hydrogenation catalysis at room temperature and mild pressures?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayram, Ercan; Linehan, John C.; Fulton, John L.

    Determining the kinetically dominant catalyst in a given catalytic system is a forefront topic in catalysis. The [RhCp*Cl₂]₂ (Cp* =[η⁵-C₅(CH₃)₅]) system pioneered by Maitlis and co-workers is a classic precatalyst system from which homogeneous mononuclear Rh₁, subnanometer Rh₄ cluster, and heterogeneous polymetallic Rh(0) n nanoparticle have all arisen as viable candidates for the true hydrogenation catalyst, depending on the precise substrate, H₂ pressure, temperature, and catalyst concentration conditions. Addressed herein is the question of whether the prior assignment of homogeneous, mononuclear Rh₁Cp*-based catalysis is correct, or are trace Rh₄ subnanometer clusters or possibly Rh(0) n nanoparticles the dominant, actualmore » cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm initial H₂ pressure? The observation herein of Rh₄ species by in operando-X-ray absorption fine structure (XAFS) spectroscopy, at the only slightly more vigorous conditions of 26 °C and 8.3 atm H₂ pressure, and the confirmation of Rh₄ clusters by ex situ mass spectroscopy raises the question of the dominant, room temperature, and mild pressure cyclohexene hydrogenation catalyst derived from the classic [RhCp*Cl₂]₂ precatalyst pioneered by Maitlis and co-workers. Ten lines of evidence are provided herein to address the nature of the true room temperature and mild pressure cyclohexene hydrogenation catalyst derived from [RhCp*Cl₂]₂. Especially significant among those experiments are quantitative catalyst poisoning experiments, in the present case using 1,10-phenanthroline. Those poisoning studies allow one to distinguish mononuclear Rh₁, subnanometer Rh₄ cluster, and Rh(0) n nanoparticle catalysis hypotheses. The evidence obtained provides a compelling case for a mononuclear, Rh₁Cp*-based cyclohexene hydrogenation catalyst at 22 °C and 2.7 atm H₂ pressure. The resultant methodology, especially the quantitative catalyst poisoning experiments in combination with in operando spectroscopy, is expected to be more broadly applicable to the study of other systems and the “what is the true catalyst?” question. The authors would like to thank Finke Group members and Prof. Saim Ö zkar for their valuable input as this work was proceeding. This work was supported at Colorado State University by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, vial DOE Grant SE-FG402-03ER15453. The work at PNNL was also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geo-sciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle. XSD/PNC facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy, Basic Energy Sciences; a Major Resources Support Grant from NSERC; the University of Washington; the Canadian Light Source; and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357.« less

  7. Improving Medical Students' Application of Knowledge and Clinical Decision-Making Through a Porcine-Based Integrated Cardiac Basic Science Program.

    PubMed

    Stott, Martyn Charles; Gooseman, Michael Richard; Briffa, Norman Paul

    2016-01-01

    Despite the concerted effort of modern undergraduate curriculum designers, the ability to integrate basic sciences in clinical rotations is an ongoing problem in medical education. Students and newly qualified doctors themselves report worry about the effect this has on their clinical performance. There are examples in the literature to support development of attempts at integrating such aspects, but this "vertical integration" has proven to be difficult. We designed an expert-led integrated program using dissection of porcine hearts to improve the use of cardiac basic sciences in clinical medical students' decision-making processes. To our knowledge, this is the first time in the United Kingdom that an animal model has been used to teach undergraduate clinical anatomy to medical students to direct wider application of knowledge. Action research methodology was used to evaluate the local curriculum and assess learners needs, and the agreed teaching outcomes, methods, and delivery outline were established. A total of 18 students in the clinical years of their degree program attended, completing precourse and postcourse multichoice questions examinations and questionnaires to assess learners' development. Student's knowledge scores improved by 17.5% (p = 0.01; students t-test). Students also felt more confident at applying underlying knowledge to decision-making and diagnosis in clinical medicine. An expert teacher (consultant surgeon) was seen as beneficial to students' understanding and appreciation. This study outlines how the development of a teaching intervention using porcine-based methods successfully improved both student's knowledge and application of cardiac basic sciences. We recommend that clinicians fully engage with integrating previously learnt underlying sciences to aid students in developing decision-making and diagnostic skills as well as a deeper approach to learning. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  9. Medical students’ attitudes towards early clinical exposure in Iran

    PubMed Central

    Khabaz Mafinejad, Mahboobeh; Peiman, Soheil; Khajavirad, Nasim; Mirabdolhagh Hazaveh, Mojgan; Edalatifard, Maryam; Allameh, Seyed-Farshad; Naderi, Neda; Foroumandi, Morteza; Afshari, Ali; Asghari, Fariba

    2016-01-01

    Objectives This study was carried out to investigate the medical students’ attitudes towards early clinical exposure at Tehran University of Medical Sciences. Methods A cross-sectional study was conducted during 2012-2015. A convenience sample of 298 first- and second-year students, enrolled in the undergraduate medical curriculum, participated in an early clinical exposure program. To collect data from medical students, a questionnaire consisting of open-ended questions and structured questions, rated on a five-point Likert scale, was used to investigate students’ attitudes toward early clinical exposure. Results Of the 298 medical students, 216 (72%) completed the questionnaires. The results demonstrated that medical students had a positive attitude toward early clinical exposure. Most students (80.1%) stated that early clinical exposure could familiarize them with the role of basic sciences knowledge in medicine and how to apply this knowledge in clinical settings. Moreover, 84.5% of them believed that early clinical exposure increased their interest in medicine and encouraged them to read more. Furthermore, content analysis of the students’ responses uncovered three main themes of early clinical exposure, were considered helpful to improve learning: “integration of theory and practice”, “interaction with others and professional development” and “desire and motivation for learning medicine”. Conclusions Medical students found their first experience with clinical setting valuable. Providing clinical exposure in the initial years of medical curricula and teaching the application of basic sciences knowledge in clinical practice can enhance students’ understanding of the role they will play in the future as a physician. PMID:27318794

  10. Awareness of basic life support among staff and students in a dental school.

    PubMed

    Reddy, Sahithi; Doshi, Dolar; Reddy, Padma; Kulkarni, Suhas; Reddy, Srikanth

    2013-05-01

    To assess and compare the knowledge of basic life support (BLS) among third, fourth and fifth (III, IV and V) year Bachelor of Dental Surgery (BDS) clinical students, dental interns, postgraduate students and Bachelor of Dental Surgery (BDS) and Master of Dental Surgery (MDS) faculty of Panineeya Institute of Dental Sciences and Hospital, Hyderabad, India. A BLS questionnaire consisting of 22 questions was used to assess the levels of III, IV and V years BDS clinical students, dental interns, postgraduate students and BDS and MDS faculty of Panineeya Institute of Dental Sciences and Hospital, Hyderabad, India. Statistical Package for Social Sciences software (SPSS version 12.0) was used to analyze the statistical data. The p<0.05 was considered statistically significant. A total of 338 respondents took part in the study. When gender comparison was done with correct knowledge responses, statistically significant differences were noted for Q6, Q9, Q12, Q13, Q15 and Q17. For age groups and educational qualifications, significant difference was observed for all questions. It was noted that III, IV and V year undergraduate clinical students and half of interns had adequate knowledge when compared to postgraduate students (6.9%), BDS tutors (0.00%) and MDS staff (10.7%). The study concludes that there is a significant lack of knowledge among postgraduates students BDS and MDS faculty, regarding BLS when compared to III, IV and V year's clinical BDS students and dental interns. This study emphasizes the need for all health care professionals to regularly update the knowledge and skills regarding BLS.

  11. Redesigning a General Education Science Course to Promote Critical Thinking

    PubMed Central

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  12. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    NASA Astrophysics Data System (ADS)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  13. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  14. 2015 Proceedings of the National Heart, Lung, and Blood Institute's State of the Science in Transfusion Medicine Symposium

    PubMed Central

    Spitalnik, Steven L.; Triulzi, Darrell; Devine, Dana V.; Dzik, Walter H.; Eder, Anne F.; Gernsheimer, Terry; Josephson, Cassandra D.; Kor, Daryl J.; Luban, Naomi L. C.; Roubinian, Nareg H.; Mondoro, Traci; Welniak, Lisbeth A.; Zou, Shimian; Glynn, Simone

    2015-01-01

    On March 25-26, 2015, the National Heart, Lung, and Blood Institute sponsored a meeting on the State of the Science in Transfusion Medicine on the NIH campus in Bethesda, MD, which was attended by a diverse group of 330 registrants. The meeting's goal was to identify important research questions that could be answered in the next 5-10 years, and which would have the potential to transform the clinical practice of transfusion medicine. These questions could be addressed by basic, translational, and/or clinical research studies and were focused on four areas: the three “classical” transfusion products (i.e., red blood cells, platelets, and plasma) and blood donor issues. Prior to the meeting, four Working Groups, one for each area, prepared five major questions for discussion along with a list of 5-10 additional questions for consideration. At the meeting itself, all of these questions, and others, were discussed in Keynote lectures, small group breakout sessions, and large group sessions with open discourse involving all meeting attendees. In addition to the final lists of questions, provided herein, the meeting attendees identified multiple overarching, cross-cutting themes that addressed issues common to all four areas; the latter are also provided. It is anticipated that addressing these scientific priorities, with careful attention to the overarching themes, will inform funding priorities developed by the NIH and provide a solid research platform for transforming the future practice of transfusion medicine. PMID:26260861

  15. Choosing Open Source ERP Systems: What Reasons Are There For Doing So?

    NASA Astrophysics Data System (ADS)

    Johansson, Björn; Sudzina, Frantisek

    Enterprise resource planning (ERP) systems attract a high attention and open source software does it as well. The question is then if, and if so, when do open source ERP systems take off. The paper describes the status of open source ERP systems. Based on literature review of ERP system selection criteria based on Web of Science articles, it discusses reported reasons for choosing open source or proprietary ERP systems. Last but not least, the article presents some conclusions that could act as input for future research. The paper aims at building up a foundation for the basic question: What are the reasons for an organization to adopt open source ERP systems.

  16. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  17. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  18. Rockets: Physical science teacher's guide with activities

    NASA Astrophysics Data System (ADS)

    Vogt, Gregory L.; Rosenberg, Carla R.

    1993-07-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  19. Rockets: Physical science teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  20. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  1. A model project for exploring the role of sustainability science in a citizen-centered, collaborative decision-making process

    USGS Publications Warehouse

    Karl, Herman A.; Turner, Christine

    2002-01-01

    The role of science in society is evolving as we enter the 21st century. The report, Science — The Endless Frontier (Bush 1990[1945]), outlined a model of national scientific research that served the country for 50 years. The contract between science and society established in that report stipulated that science is essential and that basic research meets national needs (Pielke and Byerly 1998). This stipulation and the abundant — seemingly unlimited and unquestioned — funding for research during the Cold War caused many scientists to come to believe that funding for science was an entitlement independent of societal needs. Implicit in this belief is that science alone can solve society’s problems. We now are learning that many policy issues that involve science involve diverse economic, political, social, and aesthetic values as well, and rarely, if ever, is scientific information alone the basis of public policy (e.g., see Sarewitz 1996a, 1996b; Frodeman 1997). Moreover, resources are increasingly more limited and many in society are questioning the value of public-supported science.

  2. Assessment of numeracy in sports and exercise science students at an Australian university

    NASA Astrophysics Data System (ADS)

    Green, Simon; McGlynn, Susan; Stuart, Deidre; Fahey, Paul; Pettigrew, Jim; Clothier, Peter

    2018-05-01

    The effect of high school study of mathematics on numeracy performance of sports and exercise science (SES) students is not clear. To investigate this further, we tested the numeracy skills of 401 students enrolled in a Bachelor of Health Sciences degree in SES using a multiple-choice survey consisting of four background questions and 39 numeracy test questions. Background questions (5-point scale) focused on highest level of mathematics studied at high school, self-perception of mathematics proficiency, perceived importance of mathematics to SES and likelihood of seeking help with mathematics. Numeracy questions focused on rational number, ratios and rates, basic algebra and graph interpretation. Numeracy performance was based on answers to these questions (1 mark each) and represented by the total score (maximum = 39). Students from first (n = 212), second (n = 78) and third (n = 111) years of the SES degree completed the test. The distribution of numeracy test scores for the entire cohort was negatively skewed with a median (IQR) score of 27(11). We observed statistically significant associations between test scores and the highest level of mathematics studied (P < 0.05), being lowest in students who studied Year 10 Mathematics (20 (9)), intermediate in students who studied Year 12 General Mathematics (26 (8)) and highest in two groups of students who studied higher-level Year 12 Mathematics (31 (9), 31 (6)). There were statistically significant associations between test scores and level of self-perception of mathematics proficiency and also likelihood of seeking help with mathematics (P < 0.05) but not with perceived importance of mathematics to SES. These findings reveal that the level of mathematics studied in high school is a critical factor determining the level of numeracy performance in SES students.

  3. Evaluation of Computer-Based Training for Health Workers in Echocardiography for RHD.

    PubMed

    Engelman, Daniel; Okello, Emmy; Beaton, Andrea; Selnow, Gary; Remenyi, Bo; Watson, Caroline; Longenecker, Chris T; Sable, Craig; Steer, Andrew C

    2017-03-01

    The implementation of screening for rheumatic heart disease at a population-scale would require a considerable increase in human resources. Training nonexpert staff in echocardiography requires appropriate methods and materials. This pre/post study aims to measure the change in the knowledge and confidence of a group of health workers after a computer-assisted training intervention in basic echocardiography for rheumatic heart disease. A syllabus of self-guided, computer-based modules to train nonexpert health workers in basic echocardiography for rheumatic heart disease was developed. Thirty-eight health workers from Uganda participated in the training. Using a pre/post design, identical test instruments were administered before and after the training intervention, assessing the knowledge (using multiple-choice questions) and confidence (using Likert scale questions) in clinical science and echocardiography. The mean total score on knowledge tests rose from 44.8% to 85.4% (mean difference: 40.6%, 95% confidence interval [CI]: 35.4% to 45.8%), with strong evidence for an increase in scores across all knowledge theme areas (p < 0.001). Increased confidence with each key aspect was reported, and there was strong evidence for an increase in the mean score for confidence scales in clinical science (difference: 7.1, 95% CI: 6.2 to 8.0; p < 0.001) and echocardiography (difference: 18.3, 95% CI: 16.6 to 20.0; p < 0.001). The training program was effective at increasing knowledge and confidence for basic echocardiography in nonexpert health workers. Use of computer-assisted learning may reduce the human resource requirements for training staff in echocardiography. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  4. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    NASA Astrophysics Data System (ADS)

    Burian, Richard M.

    2013-02-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college course in history of genetics or a course designed to teach non-science majors how science works or the rudiments of the genetics in a way that will help them as citizens. The approach aims to teach the processes of discovery, correction, and validation by utilizing illustrative episodes from the history of genetics. The episodes are treated in way that should foster understanding of basic questions about genes, the sorts of techniques used to answer questions about the constitution and structure of genes, how they function, and what they determine, and some of the major biological disagreements that arose in dealing with these questions. The material covered here could be connected to social and political issues raised by genetics, but these connections are not surveyed here. As it is, to cover this much territory, the article is limited to four major episodes from Mendel's paper to the beginning of World War II. A sequel will deal with the molecularization of genetics and with molecular gene concepts through the Human Genome Project.

  5. From Flavr Savr Tomatoes to Stem Cell Therapy: Young People's Understandings of Gene Technology, 15 Years on

    NASA Astrophysics Data System (ADS)

    Lewis, Jenny

    2014-02-01

    This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a `science for all' National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of students had been taught to the National Curriculum for Science) with 154 students in 2011 (genomics had replaced gene technology as a rapidly developing area of science with potential to impact on everyday life; science as a core subject within the National Curriculum was well established). These studies used the same questions, with the same age group (14-16) across the same (full) ability range; in addition the 2011 sample were asked about stem cells, stem cell technology and epigenetics. Students in 2011 showed: better knowledge of basic genetics but continuing difficulty in developing coherent explanatory frameworks; a good understanding of the nature of stem cells but no understanding of the process by which such cells become specialised; better understanding of different genetic technologies but also a wider range of misunderstandings and confusions (both between different genetic technologies and with other biological processes); continuing difficulty in evaluating potential veracity of short `news' items but greater awareness of ethical issues and the range of factors (including knowledge of genetics) which could be drawn on when justifying a view or coming to a decision. Implications for a `science for all' curriculum are considered.

  6. Musculoskeletal discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Life sciences research in the musculoskeletal discipline must identify possible consequences of weightlessness on this system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers. The musculoskeletal system is highly plastic in that is possesses the inherent capability to adapt its structural and functional properties in accordance with the type and degree of stimuli imposed on it. Prolonged space travel is essentially a period of significant unloading of the musculoskeletal system. This results in adaptive responses in the structure and function of this system, placing it on the low end of a continuum from one of complete disuse to one of maximal use. There is a high probability that the musculoskeletal system is functionally impaired with increasing duration of weightlessness. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences division research and development activities in the area of musculoskeletal function. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines research opportunities, which encompass critical questions in the subdiscipline areas (e.g., muscle, bone, and other musculoskeletal connective tissues). These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  7. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-02-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.

  8. Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.

    PubMed

    Azevedo, Maria-Manuel; Duarte, Sofia

    2018-01-01

    Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.

  9. Implementing Elementary School Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Kennedy, Katheryn B.

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.

  10. Are we working towards global research priorities for management and conservation of sea turtles?

    USGS Publications Warehouse

    Rees, A.F.; Alfaro-Shigueto, J.; Barata, P.C.R.; Bjorndal, K.A.; Bolten, A.B.; Bourjea, J.; Broderick, A.C.; Campbell, L.M.; Cardona, L.; Carreras, C.; Casale, P.; Ceriani, S.A.; Dutton, P.H.; Eguchi, T.; Formia, A.; Fuentes, M.M.P.B.; Fuller, W.J.; Girondot, M.; Godfrey, M.H.; Hamann, M.; Hart, Kristen M.; Hays, G.C.; Hochscheid, S.; Kaska, Y.; Jensen, M.P.; Mangel, J.C.; Mortimer, J.A.; Naro-Maciel, E.; Ng, C.K.Y.; Nichols, W.J.; Phillott, A.D.; Reina, R.D.; Revuelta, O.; Schofield, G.; Seminoff, J.A.; Shanker, K.; Tomás, J.; van de Merwe, J.P.; Van Houtan, K.S.; Vander Zanden, H.B.; Wallace, B.P.; Wedemeyer-Strombel, K.R.; Work, Thierry M.; Godley, B.J.

    2016-01-01

    In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring. Progress to answering the 20 questions was not uniform, and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is obviously not the only, and possibly not the best, metric for understanding progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium was assigned to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservation.

  11. [Application of problem-based learning in teaching practice of Science of Meridians and Acupoints].

    PubMed

    Wang, Xiaoyan; Tang, Jiqin; Ying, Zhenhao; Zhang, Yongchen

    2015-02-01

    Science of Meridians and Acupoints is the bridge between basic medicine and clinical medicine of acupuncture and moxibustion. This teaching practice was conducted in reference to the teaching mode of problembased learning (PBL), in association with the clinical design problems, by taking as the students as the role and guided by teachers. In order to stimulate students' active learning enthusiasm, the writers implemented the class teaching in views of the typical questions of clinical design, presentation of study group, emphasis on drawing meridian running courses and acupoint locations, summarization and analysis, as well as comprehensive evaluation so that the comprehensive innovative ability of students and the teaching quality could be improved.

  12. An Analysis of the Most Commonly Tested Topics and Their Taxonomy From Recent Self-Assessment Examinations.

    PubMed

    Krueger, Chad A; Moroze, Sean; Murtha, Andrew S; Rivera, Jessica C

    The purpose of this study is to determine the most commonly tested topics and the question taxonomy of the American Academy of Orthopaedic Surgeons Self-Assessment Examinations (SAE) from 2009 through 2014. All SAEs were analyzed from 2009 through 2014. The SAEs were separated by subject and the questions of each SAE were analyzed for topic, taxonomic classification, and question type. A total of 2107 questions were reviewed from 10 different subjects. In all, 6 of the 9 subjects had roughly 1/3 of their questions composed of the 3 most commonly tested topics. Each subject had at least 1 trauma-related question within its top 5 most commonly tested topics. Almost half (47%) of all questions were of taxonomy 1 classification and 29% were taxonomy 3. The Basic Science SAEs had the greatest percentage of taxonomy 1 questions of any subject (83%) whereas Trauma contained the highest percentage of taxonomy 3 questions (47%). Certain topics within each subject are consistently tested more often than other topics. In general, the 3 most commonly tested topics comprise about one-third of total questions and orthopedic surgeons should be very familiar with these topics in order to best prepare for standardized examinations. Published by Elsevier Inc.

  13. Systemic lupus erythematosus: Clinical and experimental aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolen, J.S.

    1987-01-01

    This text covers questions related to the history, etiology, pathogenesis, clinical aspects and therapy of systematic lupus erythematosus (SLE). Both animal models and human SLE are considered. With regard to basic science, concise information on cellular immunology, autoantibodies, viral aspects and molecular biology in SLE is provided. Clinical topics then deal with medical, dermatologic, neurologic, radiologic, pathologic, and therapeutic aspects. The book not only presents the most recent information on clinical and experimental insights, but also looks at future aspects related to the diagnosis and therapy of SLE.

  14. Lidar - ESRL WindCube 200s, Wasco Airport - Processed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choukulkar, Aditya

    The available "Readme" file introduces the basics of the Doppler lidar data and offers a detailed description of the variables present in the data files. For those with any further questions about the data and its interpretation, contact either Alan Brewer () or Aditya Choukulkar (). It is highly recommended to discuss any planned use of the data with National Oceanic and Atmospheric Administration-Chemical Sciences Division (NOAA-CSD) scientists. For more information, refer to the Readme file: "noaa-esrl-wascolidar-readme.docx."

  15. Lidar - ESRL WindCube 200s, Wasco Airport - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choukulkar, Aditya

    The available "Readme" file introduces the basics of the Doppler lidar data and offers a detailed description of the variables present in the data files. For those with any further questions about the data and its interpretation, contact either Alan Brewer () or Aditya Choukulkar (). It is highly recommended to discuss any planned use of the data with National Oceanic and Atmospheric Administration-Chemical Sciences Division (NOAA-CSD) scientists. For more information, refer to the Readme file: "noaa-esrl-wascolidar-readme.docx."

  16. Lidar - ESRL WindCube 200s, Wasco Airport - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choukulkar, Aditya

    The available "Readme" file introduces the basics of the Doppler lidar data and offers a detailed description of the variables present in the data files. For those with any further questions about the data and its interpretation, contact either Alan Brewer () or Aditya Choukulkar (). It is highly recommended to discuss any planned use of the data with National Oceanic and Atmospheric Administration-Chemical Sciences Division (NOAA-CSD) scientists. For more information, refer to the Readme file: "noaa-esrl-wascolidar-readme-1.pdf."

  17. Lidar - ESRL WindCube 200s, Arlington Airport - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choukulkar, Aditya

    The available "readme" file introduces the basics of the Doppler lidar data and offers a detailed description of the variables present in the data files. For those with any further questions about the data and its interpretation, contact either Alan Brewer () or Aditya Choukulkar (). It is highly recommended to discuss any planned use of the data with National Oceanic and Atmospheric Administration-Chemical Sciences Division (NOAA-CSD) scientists. For more information, refer to the Readme file: "noaa-esrl-arlingtonlidar-readme-1.pdf."

  18. My Summer with Science Policy

    NASA Astrophysics Data System (ADS)

    Murray, Marissa

    This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.

  19. Basic science conferences in residency training: a national survey.

    PubMed

    Cruz, P D; Charley, M R; Bergstresser, P R

    1987-02-01

    Basic science teaching is an important component of dermatology residency training, and the basic science conference is the major tool utilized by departments of dermatology for its implementation. To characterize the role of basic science conferences in dermatology training, a national survey of chief residents was conducted. Although the survey confirmed that a high value is placed on basic science conferences, a surprising finding was a significant level of dissatisfaction among chief residents, particularly those from university-based programs. Results of the survey have been used to redefine our own objectives in basic science teaching and to propose elements of methodology and curriculum.

  20. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus.

    PubMed

    Toris, Carol B; Gelfman, Claire; Whitlock, Andy; Sponsel, William E; Rowe-Rendleman, Cheryl L

    2017-09-01

    Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.

  1. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    ERIC Educational Resources Information Center

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  2. Aura Science and Validation

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Schoeberl, M.; Douglass, A.; Anderson, J.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The EOS-Aura Mission is designed to answer three basic questions concerning the Earth's atmosphere: 1) Is ozone recovering as predicted, 2) is air quality getting worse, and 3) how is climate changing? Aura's four instruments work synergistically and are dedicated to answering these questions. These questions relate to NASA Earth Science Enterprise's overall strategic questions, which seek to understand the consequences of climate change for human civilization and determine if these changes can be predicted. NASA supports an ongoing research and analysis program, which is conducted independently and in support of satellite missions. The research program conducts several on-going field campaigns employing aircraft, balloons, and ground based systems. These campaigns have focused on exploring processes in the tropics, high latitudes, and continental outflow to explain the chemistry and transport in the troposphere and stratosphere and how these regions interact. NASA is now studying how the Aura mission and requirements of the research and analysis program might be merged to achieve its strategic goals related to global atmospheric chemistry changes. In addition, NASA field campaign resources will be folded into Aura's validation requirements. Aura validation requires correlative measurements throughout the troposphere and stratosphere under a range of observing and geophysical conditions. Because of the recent launches of Envisat and other smaller international chemistry satellites, the NASA program plans to collaborate with European space agencies in developing a series of campaigns that will provide continuity between those satellites missions and Aura.

  3. Forensic psychology and correctional psychology: Distinct but related subfields of psychological science and practice.

    PubMed

    Neal, Tess M S

    2018-02-12

    This article delineates 2 separate but related subfields of psychological science and practice applicable across all major areas of the field (e.g., clinical, counseling, developmental, social, cognitive, community). Forensic and correctional psychology are related by their historical roots, involvement in the justice system, and the shared population of people they study and serve. The practical and ethical contexts of these subfields is distinct from other areas of psychology-and from one another-with important implications for ecologically valid research and ethically sound practice. Forensic psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the law to help resolve legal, contractual, or administrative matters. Correctional psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the justice system to inform the classification, treatment, and management of offenders to reduce risk and improve public safety. There has been and continues to be great interest in both subfields-especially the potential for forensic and correctional psychological science to help resolve practical issues and questions in legal and justice settings. This article traces the shared and separate developmental histories of these subfields, outlines their important distinctions and implications, and provides a common understanding and shared language for psychologists interested in applying their knowledge in forensic or correctional contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...

  5. What Questions Should I Ask My Doctor?

    MedlinePlus

    ... Trials Database Supporting Research Raising Awareness Our Blog Patient Education Pancreas News Basics of Pancreatic Cancer FAQs The ... Detection- Goggins Lab Sol Goldman Center Discussion Board Patient Education / Basics of Pancreatic Cancer Questions What questions should ...

  6. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  7. Training of physicians for the twenty-first century: role of the basic sciences.

    PubMed

    Grande, Joseph P

    2009-09-01

    Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.

  8. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  9. Promoting Access, Retention, and Interest in Astronomy Higher Education: Developing the STEM Professionals of Tomorrow in New Mexico

    NASA Astrophysics Data System (ADS)

    Vogt, N. P.; Muise, A. S.; Cook, S.; Voges, E.

    2011-09-01

    Economic stability and success are becoming increasingly tied to the successful acquisition of basic academic skills, with the emergence of a computer- and data-oriented society. The recent doubling of the statewide requirement for laboratory science courses at the college level in New Mexico thus represents both an opportunity to further aid in the development of math and science skills in our general population and an added barrier to degree completion. Couple this to a geographically dispersed population of non-traditional students, with workforce and family responsibilities that compete directly for time with academics, and we have a compelling need for alternate methods of teaching science in New Mexico. We present a set of NASA- and NSF-sponsored resources under development to aid in teaching astronomy as a laboratory science at the college level, with usage results for a pilot group of students. Primary components include a self-review database of 10,000+ questions, an instructor review interface, a set of laboratory exercises suitable for students working alone at a distance, and interviews with diverse science, technology, engineering, and mathematics (STEM) individuals to help combat stereotype threat. We discuss learning strategies often employed by students without substantial scientific training and ways to incorporate these strategies into a conceptual framework based on the scientific method and basic techniques for data analysis. Interested science educators may request guest user status to access our self-review database and explore the possibility of using the database for a class or cohort of students at their own institutions.

  10. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  11. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  12. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    PubMed Central

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers suitable for high-school students. Since a scientific paper poses a research question, demonstrates the events that led to the answer, and poses new questions, we attempted to examine the effect of studying through research papers on students' ability to pose questions. Students were asked before, during, and after instruction what they found interesting to know about embryonic development. In addition, we monitored students' questions, which were asked orally during the lessons. Questions were scored according to three categories: properties, comparisons, and causal relationships. We found that before learning through research papers, students tend to ask only questions of the properties category. In contrast, students tend to pose questions that reveal a higher level of thinking and uniqueness during or following instruction with research papers. This change was not observed during or following instruction with a textbook. We suggest that learning through research papers may be one way to provide a stimulus for question-asking by high-school students and results in higher thinking levels and uniqueness. PMID:14673492

  13. Basic science right, not basic science lite: medical education at a crossroad.

    PubMed

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  14. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  15. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary.

    PubMed

    Olasveengen, Theresa M; de Caen, Allan R; Mancini, Mary E; Maconochie, Ian K; Aickin, Richard; Atkins, Dianne L; Berg, Robert A; Bingham, Robert M; Brooks, Steven C; Castrén, Maaret; Chung, Sung Phil; Considine, Julie; Couto, Thomaz Bittencourt; Escalante, Raffo; Gazmuri, Raúl J; Guerguerian, Anne-Marie; Hatanaka, Tetsuo; Koster, Rudolph W; Kudenchuk, Peter J; Lang, Eddy; Lim, Swee Han; Løfgren, Bo; Meaney, Peter A; Montgomery, William H; Morley, Peter T; Morrison, Laurie J; Nation, Kevin J; Ng, Kee-Chong; Nadkarni, Vinay M; Nishiyama, Chika; Nuthall, Gabrielle; Ong, Gene Yong-Kwang; Perkins, Gavin D; Reis, Amelia G; Ristagno, Giuseppe; Sakamoto, Tetsuya; Sayre, Michael R; Schexnayder, Stephen M; Sierra, Alfredo F; Singletary, Eunice M; Shimizu, Naoki; Smyth, Michael A; Stanton, David; Tijssen, Janice A; Travers, Andrew; Vaillancourt, Christian; Van de Voorde, Patrick; Hazinski, Mary Fran; Nolan, Jerry P

    2017-12-01

    The International Liaison Committee on Resuscitation has initiated a near-continuous review of cardiopulmonary resuscitation science that replaces the previous 5-year cyclic batch-and-queue approach process. This is the first of an annual series of International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations summary articles that will include the cardiopulmonary resuscitation science reviewed by the International Liaison Committee on Resuscitation in the previous year. The review this year includes 5 basic life support and 1 paediatric Consensuses on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Each of these includes a summary of the science and its quality based on Grading of Recommendations, Assessment, Development, and Evaluation criteria and treatment recommendations. Insights into the deliberations of the International Liaison Committee on Resuscitation task force members are provided in Values and Preferences sections. Finally, the task force members have prioritised and listed the top 3 knowledge gaps for each population, intervention, comparator, and outcome question. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary.

    PubMed

    Olasveengen, Theresa M; de Caen, Allan R; Mancini, Mary E; Maconochie, Ian K; Aickin, Richard; Atkins, Dianne L; Berg, Robert A; Bingham, Robert M; Brooks, Steven C; Castrén, Maaret; Chung, Sung Phil; Considine, Julie; Couto, Thomaz Bittencourt; Escalante, Raffo; Gazmuri, Raúl J; Guerguerian, Anne-Marie; Hatanaka, Tetsuo; Koster, Rudolph W; Kudenchuk, Peter J; Lang, Eddy; Lim, Swee Han; Løfgren, Bo; Meaney, Peter A; Montgomery, William H; Morley, Peter T; Morrison, Laurie J; Nation, Kevin J; Ng, Kee-Chong; Nadkarni, Vinay M; Nishiyama, Chika; Nuthall, Gabrielle; Ong, Gene Yong-Kwang; Perkins, Gavin D; Reis, Amelia G; Ristagno, Giuseppe; Sakamoto, Tetsuya; Sayre, Michael R; Schexnayder, Stephen M; Sierra, Alfredo F; Singletary, Eunice M; Shimizu, Naoki; Smyth, Michael A; Stanton, David; Tijssen, Janice A; Travers, Andrew; Vaillancourt, Christian; Van de Voorde, Patrick; Hazinski, Mary Fran; Nolan, Jerry P

    2017-12-05

    The International Liaison Committee on Resuscitation has initiated a near-continuous review of cardiopulmonary resuscitation science that replaces the previous 5-year cyclic batch-and-queue approach process. This is the first of an annual series of International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations summary articles that will include the cardiopulmonary resuscitation science reviewed by the International Liaison Committee on Resuscitation in the previous year. The review this year includes 5 basic life support and 1 pediatric Consensuses on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Each of these includes a summary of the science and its quality based on Grading of Recommendations, Assessment, Development, and Evaluation criteria and treatment recommendations. Insights into the deliberations of the International Liaison Committee on Resuscitation task force members are provided in Values and Preferences sections. Finally, the task force members have prioritized and listed the top 3 knowledge gaps for each population, intervention, comparator, and outcome question. © 2017 American Heart Association, Inc., and European Resuscitation Council.

  17. The case for advanced physics topics in oral and maxillofacial surgery.

    PubMed

    Tandon, Rahul; Herford, Alan S

    2014-10-01

    Research in oral and maxillofacial surgery has focused mainly on principles founded in the biological and chemical sciences, which have provided excellent answers to many questions. However, recent technologic advances have begun to gain prominence in many of the medical sciences, providing clinicians with more effective tools for diagnosis and treatment. The era of modern physics has led to the development of diagnostic techniques that could provide information at a more basic level than many of the current biochemical methods used. The goal of this report is to introduce 2 of these methods and describe how they can be applied to oral and maxillofacial surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Grids: The Top Ten Questions

    DOE PAGES

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  19. Uncertain for a century: quantum mechanics and the dilemma of interpretation.

    PubMed

    Frank, Adam

    2015-12-01

    Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.

  20. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  1. Information processing as a paradigm for decision making.

    PubMed

    Oppenheimer, Daniel M; Kelso, Evan

    2015-01-03

    For decades, the dominant paradigm for studying decision making--the expected utility framework--has been burdened by an increasing number of empirical findings that question its validity as a model of human cognition and behavior. However, as Kuhn (1962) argued in his seminal discussion of paradigm shifts, an old paradigm cannot be abandoned until a new paradigm emerges to replace it. In this article, we argue that the recent shift in researcher attention toward basic cognitive processes that give rise to decision phenomena constitutes the beginning of that replacement paradigm. Models grounded in basic perceptual, attentional, memory, and aggregation processes have begun to proliferate. The development of this new approach closely aligns with Kuhn's notion of paradigm shift, suggesting that this is a particularly generative and revolutionary time to be studying decision science.

  2. HARNESSING VALUES TO PROMOTE MOTIVATION IN EDUCATION.

    PubMed

    Harackiewicz, Judith M; Tibbetts, Yoi; Canning, Elizabeth; Hyde, Janet S

    2014-01-01

    We review the interventions that promote motivation in academic contexts, with a focus on two primary questions: How can we motivate students to take more STEM courses? Once in those STEM courses, how can we keep students motivated and promote their academic achievement? We have approached these two motivational questions from several perspectives, examining the theoretical issues with basic laboratory research, conducting longitudinal questionnaire studies in classrooms, and developing interventions implemented in different STEM contexts. Our research is grounded in three theories that we believe are complementary: expectancy-value theory (Eccles & Wigfield, 2002), interest theory (Hidi & Renninger, 2006), and self-affirmation theory (Steele, 1988). As social psychologists, we have focused on motivational theory and used experimental methods, with an emphasis on values - students' perceptions of the value of academic tasks and students' personal values that shape their experiences in academic contexts. We review the experimental field studies in high-school science and college psychology classes, in which utility-value interventions promoted interest and performance for high-school students in science classes and for undergraduate students in psychology courses. We also review a randomized intervention in which parents received information about the utility value of math and science for their teens in high school; this intervention led students to take nearly one semester more of science and mathematics, compared with the control group. Finally, we review an experimental study of values affirmation in a college biology course and found that the intervention improved performance and retention for first-generation college students, closing the social-class achievement gap by 50%. We conclude by discussing the mechanisms through which these interventions work. These interventions are exciting for their broad applicability in improving students' academic choices and performance, they are also exciting regarding their potential for contributions to basic science. The combination of laboratory experiments and field experiments is advancing our understanding of the motivational principles and almost certainly will continue to do so. At the same time, interventions may benefit from becoming increasingly targeted at specific motivational processes that are effective with particular groups or in particular contexts.

  3. HARNESSING VALUES TO PROMOTE MOTIVATION IN EDUCATION

    PubMed Central

    Harackiewicz, Judith M.; Tibbetts, Yoi; Canning, Elizabeth; Hyde, Janet S.

    2017-01-01

    Purpose We review the interventions that promote motivation in academic contexts, with a focus on two primary questions: How can we motivate students to take more STEM courses? Once in those STEM courses, how can we keep students motivated and promote their academic achievement? Design/methodology/approach We have approached these two motivational questions from several perspectives, examining the theoretical issues with basic laboratory research, conducting longitudinal questionnaire studies in classrooms, and developing interventions implemented in different STEM contexts. Our research is grounded in three theories that we believe are complementary: expectancy-value theory (Eccles & Wigfield, 2002), interest theory (Hidi & Renninger, 2006), and self-affirmation theory (Steele, 1988). As social psychologists, we have focused on motivational theory and used experimental methods, with an emphasis on values – students’ perceptions of the value of academic tasks and students’ personal values that shape their experiences in academic contexts. Findings We review the experimental field studies in high-school science and college psychology classes, in which utility-value interventions promoted interest and performance for high-school students in science classes and for undergraduate students in psychology courses. We also review a randomized intervention in which parents received information about the utility value of math and science for their teens in high school; this intervention led students to take nearly one semester more of science and mathematics, compared with the control group. Finally, we review an experimental study of values affirmation in a college biology course and found that the intervention improved performance and retention for first-generation college students, closing the social-class achievement gap by 50%. We conclude by discussing the mechanisms through which these interventions work. Originality/value These interventions are exciting for their broad applicability in improving students’ academic choices and performance, they are also exciting regarding their potential for contributions to basic science. The combination of laboratory experiments and field experiments is advancing our understanding of the motivational principles and almost certainly will continue to do so. At the same time, interventions may benefit from becoming increasingly targeted at specific motivational processes that are effective with particular groups or in particular contexts. PMID:28890603

  4. Thirty-sixth Lauriston S. Taylor Lecture on radiation protection and measurements--from the field to the laboratory and back: the what ifs, wows, and who cares of radiation biology.

    PubMed

    Brooks, Antone L

    2013-11-01

    My scientific journey started at the University of Utah chasing fallout. It was on everything, in everything, and was distributed throughout the ecosystem. This resulted in radiation doses to humans and caused me great concern. From this concern I asked the question, "Are there health effects from these radiation doses and levels of radioactive contamination?" I have invested my scientific career trying to address this basic question. While conducting research, I got acquainted with many of the What ifs of radiation biology. The major What if in my research was, "What if we have underestimated the radiation risk for internally-deposited radioactive material?" While conducting research to address this important question, many other What ifs came up related to dose, dose rate, and dose distribution. I also encountered a large number of Wows. One of the first was when I went from conducting environmental fallout studies to research in a controlled laboratory. The activity in fallout was expressed as pCi L⁻¹, whereas it was necessary to inject laboratory animals with μCi g⁻¹ body weight to induce measurable biological changes, chromosome aberrations, and cancer. Wow! That is seven to nine orders of magnitude above the activity levels found in the environment. Other Wows have made it necessary for the field of radiation biology to make important paradigm shifts. For example, one shift involved changing from "hit theory" to total tissue responses as the result of bystander effects. Finally, Who cares? While working at U.S. Department of Energy headquarters and serving on many scientific committees, I found that science does not drive regulatory and funding decisions. Public perception and politics seem to be major driving forces. If scientific data suggested that risk had been underestimated, everyone cared. When science suggested that risk had been overestimated, no one cared. This result-dependent Who cares? was demonstrated as we tried to generate interactions by holding meetings with individuals involved in basic low-dose research, regulators, and the news media. As the scientists presented their "exciting data" that suggested that risk was overestimated, many of the regulators simply said, "We cannot use such data." The newspaper people said, "It is not possible to get such information by my editors." In spite of these difficulties, research results from basic science must be made available and considered by members of the public as well as by those that make regulatory recommendations. Public outreach of the data is critical and must continue to be a future focus to address properly the question of, "Who cares?" My journey in science, like many of yours, has been a mixture of chasing money, beatings, and the joys of unique and interesting research results. Perhaps through our experiences, we can improve research environments, funding, and use of the valuable information that is generated. Scientists that study at all levels of biological organization, from the environment to the laboratory and human epidemiology, must share expertise and data to address the What Ifs, Wows, and Who Cares of radiation biology.

  5. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  6. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    NASA Astrophysics Data System (ADS)

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboğlu, Canan

    2013-08-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society, economy, and international politics. One article discusses a new thermonuclear reactor, and the second one is about depleted uranium and its danger for health. 189 first-year undergraduate physics and primary education Greek students were given one of the two articles each, and asked to answer a number of accompanying questions dealing with knowledge that is part of the Greek high school curriculum. The study was repeated with 272 first-year undergraduate physics, physics education, science education, and primary education Turkish students. Acceptable or partially acceptable answers were provided on average by around 20 % of Greek and 11 % of Turkish students, while a large proportion (on the average, around 50 % of Greek and 27 % of Turkish students) abstained from answering the questions. These findings are disappointing, but should be seen in the light of the limited or no coverage of the relevant learning material in the Greek and the Turkish high-school programs. Student conceptual difficulties, misconceptions and implications for research and high school curricula are discussed.

  7. Clinical Competencies and the Basic Sciences: An Online Case Tutorial Paradigm for Delivery of Integrated Clinical and Basic Science Content

    ERIC Educational Resources Information Center

    DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.

    2009-01-01

    Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…

  8. The use of simulation in teaching the basic sciences.

    PubMed

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  9. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  10. Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.

    1995-07-01

    The debate over the relative value of practical or applied versus fundamental research has heated up considerably in recent years, and oceanography has not been spared this re-evaluation of science funding policy. Some federal agencies with marine interests have always focused their resources on practical problems, but those with a traditional commitment to basic research such as the National Science Foundation have increasingly had to fight to maintain their freedom to fund quality science without regard to practical or commercial applications. Within this context, it is instructive to highlight the extent to which certain scientific programs can satisfy both sides of this policy dilemma—i.e. address important societal issues through advances in fundamental or basic research. One clear oceanographic example of such a program involves the phenomena called "red tides" or "harmful algal blooms". This paper describes the nature and extent of the problems caused by these outbreaks, emphasizing the alarming expansion in their incidence and their impacts in recent years, both in the U.S. and worldwide. The objective is to highlight fundamental physical, biological, and chemical oceanographic question that must be addressed if we are to achieve the practical goal of scientifically based management of fisheries resources, public health, and ecosystem health in regions threatened by toxic and harmful algae.

  11. Creation of virtual patients from CT images of cadavers to enhance integration of clinical and basic science student learning in anatomy.

    PubMed

    Jacobson, Stanley; Epstein, Scott K; Albright, Susan; Ochieng, Joseph; Griffiths, Jeffrey; Coppersmith, Veronica; Polak, Joseph F

    2009-08-01

    The goal of this study was to determine whether computerized tomographic (CT) images of cadavers could be used in addition to images from patients to develop virtual patients (VPs) to enhance integrated learning of basic and clinical science. We imaged 13 cadavers on a Siemens CT system. The DICOM images from the CT were noted to be of high quality by a radiologist who systematically identified all abnormal and pathological findings. The pathological findings from the CT images and the cause of death were used to develop plausible clinical cases and study questions. Each case was designed to highlight and explain the abnormal anatomic findings encountered during the cadaveric dissection. A 3D reconstruction was produced using OsiriX and then formatted into a QuickTime movie which was then stored on the Tufts University Sciences Knowledgebase (TUSK) as a VP. We conclude that CT scanning of cadavers produces high-quality images that can be used to develop VPs. Although the use of the VPs was optional and fewer than half of the students had an imaged cadaver for dissection, 59 of the 172 (34%) students accessed and reviewed the cases and images positively and were very encouraging for us to continue.

  12. Science in the regulatory setting: a challenging but incompatible mix?

    PubMed

    Yetley, Elizabeth A

    2007-01-01

    Regulatory decisions informed by sound science have an important role in many regulatory applications involving drugs and foods, including applications related to dietary supplements. However, science is only one of many factors that must be taken into account in the regulatory decision-making process. In many cases, the scientific input to a regulatory decision must compete with other factors (e.g. economics, legal requirements, stakeholder interests) for impact on the resultant policy decision. Therefore, timely and effective articulation of the available science to support a regulatory decision can significantly affect the relative weight given to science. However, the incorporation of science into the regulatory process for dietary supplements is often fraught with challenges. The available scientific evidence has rarely been designed for the purpose of addressing regulatory questions and is often preliminary and of widely varying scientific quality. To add to the confusion, the same scientific evidence may result in what appears to be different regulatory decisions because the context in which the science is used differs. The underlying assumption is that scientists who have a basic understanding of the interface between science and policy decisions can more effectively provide scientific input into these decisions.

  13. I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.

    PubMed

    Kofler, Walter

    2007-01-01

    There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.

  14. The progress test as a diagnostic tool for a new PBL curriculum.

    PubMed

    Al Alwan, I; Al-Moamary, M; Al-Attas, N; Al Kushi, A; AlBanyan, E; Zamakhshary, M; Al Kadri, H M F; Tamim, H; Magzoub, M; Hajeer, A; Schmidt, H

    2011-12-01

    The College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) is running a PBL-based curriculum. A progress test was used to evaluate components of the basic medical and clinical sciences curriculum. To evaluate the performance of students at different levels of the college of medicine curriculum through USMLE-based test that focused on basic medical and clinical sciences topics. The USMLE-based basic medical and clinical sciences progress test has been conducted since 2007. It covers nine topics, including: anatomy; physiology; histology; epidemiology; biochemistry; behavioral sciences, pathology, pharmacology and immunology/microbiology. Here we analyzed results of three consecutive years of all students in years 1-4. There was a good correlation between progress test results and students' GPA. Progress test results in the clinical topics were better than basic medical sciences. In basic medical sciences, results of pharmacology, biochemistry, behavioral sciences and histology gave lower results than the other disciplines. Results of our progress test proved to be a useful indicator for both basic medical sciences and clinical sciences curriculum. Results are being utilized to help in modifying our curriculum.

  15. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...

  16. Building on the foundation for an engineering career

    NASA Technical Reports Server (NTRS)

    White, Susan; White, Ruth

    1994-01-01

    A predictable and preventable hurdle stops a majority of young women from entering the scientific and technical fields. This cuts down the individual's career possibilities and cuts in half the pool of potential U.S. engineers later available to industry. The waste of talent does not advance our country's competitive position. The typical American adolescent girl has acquired all the basic mathematical skills needed to pursue science and math, but, from adolescence on, she does not build the foundation of science and math courses that she would need later in life to work in engineering. Several questions are addressed: Why are some young women stopped cold in their mathematical tracks during adolescence? What is the influence of psychology, including discussion of the personality traits quantifiably shared by women in technical fields? and How should the school system adapt to keep their female charges learning math and science?

  17. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    NASA Astrophysics Data System (ADS)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  18. Creating Critical Consumers of Health and Science News: Teaching Science to the Non-Scientist Using Newsworthy Topics in the Life Sciences†

    PubMed Central

    Coderre, Raymond W.; Uekermann, Kristen A.; Choi, Youngeun; Anderson, William J.

    2016-01-01

    Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype. PMID:27047603

  19. Overview and research agenda arising from the 7th World Workshop on Oral Health and Disease in AIDS.

    PubMed

    Tappuni, A R; Shiboski, C

    2016-04-01

    The Research Agenda generated by the 7th World Workshop on Oral Health and Disease in AIDS (WW7) is delivered in this paper. Panels of international experts presided over nine workshops that constituted the conference held in November 2014 in Hyderabad, India. The main goal of the Workshop was to bring together clinician and scientists interested in the subject to debate with world-wide perspectives current issues related to the oral manifestations in HIV/AIDS. The workshops were structured around three themes; basic science, clinical/translational science and social science and were attended by 135 participants from 31 countries. The research questions debated at the workshops are presented in nine consensus papers published in this issue and are summarised in this paper along with an outline of the identified research needs in the field. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Life in the Universe: A Multidisciplinary Science Curriculum for Undergraduate Honors Students

    NASA Astrophysics Data System (ADS)

    Danly, L.

    2004-05-01

    Astrobiology provides an excellent framework for an interdisciplinary study of the sciences, especially for non-majors. To be conversant in astrobiology, one must have a basic understanding of astronomy, planetary science, geology, chemistry, biology, and environmental science. To explore the possible futures for life on Earth one must also consider political, economic, and other societal issues. And, as the questions addressed in astrobiology are also profoundly philosophical topics that have been considered by artists and writers of all cultures, the humanities also play an important role. The study of the past, present, and future possibilities for life in the universe, therefore, can offer curricular opportunities for students of all disciplines to have something to share with and something to learn from their peers. This paper describes a three-term curriculum for Honors Program students at the University of Denver that includes, among other innovations, peer learning, student goal/syllabus setting, integration of University of Denver faculty research programs, and community service.

  1. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  2. When science became Western: historiographical reflections.

    PubMed

    Elshakry, Marwa

    2010-03-01

    While thinking about the notion of the "global" in the history of the history of science, this essay examines a related but equally basic concept: the idea of "Western science." Tracing its rise in the nineteenth century, it shows how it developed as much outside the Western world as within it. Ironically, while the idea itself was crucial for the disciplinary formation of the history of science, the global history behind this story has not been much attended to. Drawing on examples from nineteenth-century Egypt and China, the essay begins by looking at how international vectors of knowledge production (viz., missionaries and technocrats) created new global histories of science through the construction of novel genealogies and through a process of conceptual syncretism. Turning next to the work of early professional historians of science, it shows how Arabic and Chinese knowledge traditions were similarly reinterpreted in light of the modern sciences, now viewed as part of a diachronic and universalist teleology ending in "Western science." It concludes by arguing that examining the global emergence of the idea of Western science in this way highlights key questions pertaining to the relation of the history of science to knowledge traditions across the world and the continuing search for global histories of science.

  3. Cosmology. A first course

    NASA Astrophysics Data System (ADS)

    Lachieze-Rey, Marc

    This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.

  4. A Trait-Based Approach to Advance Coral Reef Science.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R; Darling, Emily S; Falster, Daniel S; Huang, Danwei; Keith, Sally A; Mizerek, Toni; Pandolfi, John M; Putnam, Hollie M; Baird, Andrew H

    2016-06-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...

  6. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  7. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  8. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  9. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  10. A critical narrative review of transfer of basic science knowledge in health professions education.

    PubMed

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-06-01

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that requires further development for implementation and scholarship. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  11. Impact of Integrated Teaching Sessions for Comprehensive Learning and Rational Pharmacotherapeutics for Medical Undergraduates

    PubMed Central

    Ambwani, Sneha; Vegada, Bhavisha; Sidhu, Rimple; Charan, Jaykaran

    2017-01-01

    Background: It is postulated that integrated teaching method may enhance retention of the knowledge and clinical applicability of the basic sciences as compared to the didactic method. Aim: The present study was undertaken to compare the integrated teaching method with the didactic method for the learning ability and clinical applicability of the basic sciences. Materials and Methods: The 2nd year MBBS students were divided into two groups randomly. The study was conducted into two stages. In the first stage, conventional didactic lectures on hypertension (HT) were delivered to one group and multidisciplinary integrated teaching to another group. For the second stage, diabetes mellitus groups were swapped. Retention of the knowledge between the groups were assessed through a multiple choice questions (MCQ) test. Feedback of the students and faculty was obtained on a 5 point Likert scale. For the comparison, student's data were regrouped into four groups, i.e., integrated HT, didactic HT, integrated diabetes and didactic diabetes. Results: There was no significant difference of MCQ score between integrated HT, didactic HT, and integrated diabetes group. However, the score obtained in didactic diabetes was significantly more (P = 0.00) than other groups. Majority of the students favored integrated teaching for clinical application of basic science and learning of the skill for the future clinical practice. Faculties considered integrated method as a useful method and suggested frequent use of this method. Conclusion: There was no clear difference in knowledge acquisition; however, the students and faculties favored integrated teaching method in the feedback questionnaire. PMID:29344460

  12. Physics For Dummies

    NASA Astrophysics Data System (ADS)

    Holzner, Steve; Ph., D.

    2005-11-01

    The fun and easy way to understand the basic principles of physics How does gravity work? What does e=mc2 really mean? And what's a charm quark? Physics For Dummies answers these questions and more, explaining the basics of physical science and its importance in our everyday lives in a simple, clear, and entertaining fashion. Whether readers are taking a class, helping kids with homework, or are simply interested in how the world works, this plain-English guide gives them the knowledge they need to understand basic physics. Through real-world examples and problems, it covers such key topics as motion, energy, and waves (sound, light, wave-particle); solids, liquids, and gases; thermodynamics; electromagnetism; relativity; atomic and nuclear structures; and the Big Bang and stars. Steven Holzner, PhD (Ithaca, NY), is the author of more than 40 books and a former contributing editor at PC Magazine. He has been on the faculty of MIT and taught Physics 101 and 102 at Cornell for over ten years.

  13. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...

  14. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

    NASA Astrophysics Data System (ADS)

    Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang

    2017-10-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

  15. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  16. Physics in the Courtroom

    NASA Astrophysics Data System (ADS)

    Vosk, Ted

    2011-10-01

    The principles, methods and technologies of physics can provide a powerful tool for the discovery of truth in the criminal justice system. Accordingly, physics based forensic evidence is relied upon in criminal prosecutions around the country every day. Infrared spectroscopy for the determination of the alcohol concentration of an individual's breath, force, momentum and multi-body dynamics for purposes of accident reconstruction and the basic application of sound metrological (measurement) practices constitute but a few examples. In many cases, a jury's determination of guilt or innocence, upon which the liberty of a Citizen rests, may in fact be determined by such evidence. Society may well place a high degree of confidence in the integrity of verdicts so obtained when ``the physics'' has been applied in a valid manner. Unfortunately, as concluded by the National Academy of Sciences, ``The law's greatest dilemma in its heavy reliance on forensic evidence--concerns the question of whether---and to what extent-- -there is science in any given `forensic science' discipline.'' Even where valid physical principles are relied upon, their improper application by forensic practitioners who have little physics training, background and/or understanding calls into question the validity of results or conclusions obtained. This presentation provides examples of the application of physics in the courtroom, where problems have been discovered and how they can be addressed by the physics community.

  17. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  18. Physician perceptions of the role and value of basic science knowledge in daily clinical practice.

    PubMed

    Fischer, Jennifer A; Muller-Weeks, Susan

    2012-01-01

    The role of basic science education in a clinical setting remains unclear. Research to understand how academic clinicians perceive and use this part of their education can aid curricular development. To assess physician's attitudes toward the value of science knowledge in their clinical practice. Academic physicians from three medical schools completed a questionnaire about the utility of basic science education in core clinical tasks and in practice-based learning and improvement. A total of 109 clinical faculty returned the survey. Overall, 89% of the respondents indicated that basic science education is valuable to their clinical practice. When asked about the utility of basic science information in relation to direct patient care, greater than 50% of the doctors felt they use this when diagnosing and communicating with patients. This rose to greater than 60% when asked about choosing treatment options for their patients. Individuals also responded that basic science knowledge is valuable when developing evidence-based best practices. Specifically, 89% felt that they draw upon this information when training students/residents and 84% use this information when reading journal articles. This study shows that basic science education is perceived by responding academic physicians to be important to their clinical work.

  19. Investigating Turkish Primary School Students' Interest in Science by Using Their Self-Generated Questions

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin; Sevindik, Hatice; Pektas, Meryem; Uysal, Asli; Kole, Fatma; Kavak, Gamze

    2012-01-01

    This paper reports on an attempt to investigate Turkish primary school students' interest in science by using their self-generated questions. We investigated students' interest in science by analyzing 1704 self-generated science-related questions. Among them, 826 questions were submitted to a popular science magazine called Science and Children.…

  20. Radiation effects in the environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begay, F.; Rosen, L.; Petersen, D.F.

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make anmore » attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.« less

  1. The Communication Strategy of NASA's Earth Observatory

    NASA Astrophysics Data System (ADS)

    Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.

    2010-12-01

    Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.

  2. Glossary of Terms

    MedlinePlus

    ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...

  3. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance. Using T-test analysis correlations, results indicate that having completed multiple undergraduate basic science courses (as reported by AADSAS BCP hours) did not significantly (p < .05) enhance student performance in any of these parameters. Based on these results, we conclude that student dentists with undergraduate preparation in science and nonscience majors can successfully negotiate the dental school curriculum, even though the students themselves would increase admission requirements to include more basic science courses than commonly required. Basically, the students' recommendations for required undergraduate basic science courses would replicate the standard basic science coursework found in most dental schools: anatomy, histology, biochemistry, microbiology, physiology, and immunology plus the universal foundation course of biology.

  4. Interdisciplinary Subject "Yakugaku Nyumon" for First-year Students Constructed with Lectures and Problem-based Learning.

    PubMed

    Yamaki, Kouya; Ueda, Masafumi; Ueda, Kumiko; Emoto, Noriaki; Mizutani, Nobuaki; Ikeda, Koji; Yagi, Keiko; Tanaka, Masafumi; Habu, Yasushi; Nakayama, Yoshiaki; Takeda, Norihiko; Moriwaki, Kensuke; Kitagawa, Shuji

    2016-01-01

    In 2013, Kobe Pharmaceutical University established "Yakugaku Nyumon", an interdisciplinary course, which consists of omnibus lectures and problem-based learning (PBL) on topics ranging from basic to clinical subjects. The themes of the PBL were original ones; "Study from package inserts of aspirin", which aimed to reinforce the contents of the interdisciplinary lectures, and "Let's think about aspirin derivatives (super-aspirin)", which aimed to engender an interest in studying pharmacy. The PBL featured questions from teachers to help with study and was therefore referred to as "question-led PBL" (Q-PBL). The Q-PBL regarding aspirin derivatives began with preparing answers to the questions for a small group discussion (SGD) as an assignment, followed by a SGD, a presentation, and peer-feedback. From an analysis of the questionnaire survey, it was found that students considered the Q-PBL satisfying and that they had achieved the 4 aims: (1) to increase the motivation to study, (2) to enhance an understanding of the relations and significance of basic and clinical sciences, (3) to comprehend the learning content, and (4) to recognize the importance of communication. The Q-PBL with assignments has two favorable points. One is that the first-year students can challenge difficult and high-level questions when they are given these as assignments. The other is that students, who are unfamiliar with SGD can engage in discussions with other students using the knowledge gained from the assignment. The introduction of omnibus lectures and Q-PBL, along with these improvements in theme, application, and review process, promises increased learning efficacy at the university.

  5. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  6. The ergonomics of learning: educational design and learning performance.

    PubMed

    Smith, T J

    2007-10-01

    The application of ergonomics/human factors (E/HF) principles and practices, and the implementation of ergonomics programmes, have achieved proven success in improving performance, productivity, competitiveness, and safety and health in most occupational sectors. However, the benefits that the application of E/HF science might bring to promoting student learning have yet to be widely recognized. This paper deals with the fundamental purpose of education - student learning - and with the question of how the ergonomic design of the learning environment influences learning performance. The underlying premise, embodied in the quote below, is that student learning performance to a substantial degree is context specific - influenced and specialized in relation to specific design factors in the learning environment. The basic scientific question confronting learning ergonomics is which design characteristics in the learning environment have the greatest influence on variability in learning performance. Practically, the basic challenge is to apply this scientific understanding to ergonomic interventions directed at design improvements of learning environments to benefit learning. This paper expands upon these themes by addressing the origins and scope of learning ergonomics, differing perspectives on the nature of learning, evidence for context specificity in learning and conclusions and research implications regarding an ergonomics perspective on learning.

  7. Concurrent cervical and craniofacial pain. A review of empiric and basic science evidence.

    PubMed

    Browne, P A; Clark, G T; Kuboki, T; Adachi, N Y

    1998-12-01

    Because many patients present themselves for treatment with both craniofacial and craniocervical pain, 2 questions arise: (1) What are the sensory and motor consequences of dysfunction in either of these areas on the other? (2) Do craniofacial and craniocervical pain have a similar cause? These questions formed the impetus for this review article. The phenomenon of concurrent pain in craniofacial and cervical structures is considered, and clinical reports and opinions are presented regarding theories of cervical-to-craniofacial and craniofacial-to-cervical pain referral. Because pain referral between these 2 areas requires anatomic and functional connectivity between trigeminally and cervically innervated structures, basic neurophysiologic and neuroanatomic literature is reviewed. The published data clearly demonstrate neurophysiologic and structural convergence of cervical sensory and muscle afferent inputs onto trigeminal subnucleus caudalis nociceptive and non-nociceptive neurons. Moreover, changes in metabolic activity and blood flow in the brainstem and cervical dorsal horn of the spinal cord in both monkeys and cats have been demonstrated after electric stimulation of the V1-innervated superior sagittal sinus. In conclusion, the animal experimental data support the findings of human empiric and experimental studies, which suggest that strong connectivity exists between trigeminal and cervical motor and sensory responses.

  8. Climate Change: On Scientists and Advocacy

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.

    2014-01-01

    Last year, I asked a crowd of a few hundred geoscientists from around the world what positions related to climate science and policy they would be comfortable publicly advocating. I presented a list of recommendations that included increased research funding, greater resources for education, and specific emission reduction technologies. In almost every case, a majority of the audience felt comfortable arguing for them. The only clear exceptions were related to geo-engineering research and nuclear power. I had queried the researchers because the relationship between science and advocacy is marked by many assumptions and little clarity. This despite the fact that the basic question of how scientists can be responsible advocates on issues related to their expertise has been discussed for decades most notably in the case of climate change by the late Stephen Schneider.

  9. Thrombosis in Cancer: Research Priorities Identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group.

    PubMed

    Key, Nigel S; Khorana, Alok A; Mackman, Nigel; McCarty, Owen J T; White, Gilbert C; Francis, Charles W; McCrae, Keith R; Palumbo, Joseph S; Raskob, Gary E; Chan, Andrew T; Sood, Anil K

    2016-07-01

    The risk for venous thromboembolism (VTE) is increased in cancer and particularly with chemotherapy, and it portends poorer survival among patients with cancer. However, many fundamental questions about cancer-associated VTE, or Trousseau syndrome, remain unanswered. This report summarizes the proceedings of a working group assembled by the NCI and NHLBI in August 2014 to explore the state of the science in cancer-associated VTE, identify clinically important research gaps, and develop consensus on priorities for future research. Representing a convergence of research priorities between the two NIH Institutes, the workshop addressed epidemiologic, basic science, clinical, and translational issues in cancer-associated VTE. Cancer Res; 76(13); 3671-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. Professional fulfillment and parenting work-life balance in female physicians in Basic Sciences and medical research: a nationwide cross-sectional survey of all 80 medical schools in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Marui, Eiji

    2017-09-15

    In Japan, the field of Basic Sciences encompasses clinical, academic, and translational research, as well as the teaching of medical sciences, with both an MD and PhD typically required. In this study, it was hypothesized that the characteristics of a Basic Sciences career path could offer the professional advancement and personal fulfillment that many female medical doctors would find advantageous. Moreover, encouraging interest in Basic Sciences could help stem shortages that Japan is experiencing in medical fields, as noted in the three principal contributing factors: premature resignation of female clinicians, an imbalance of female physicians engaged in research, and a shortage of medical doctors in the Basic Sciences. This study examines the professional and personal fulfillment expressed by Japanese female medical doctors who hold positions in Basic Sciences. Topics include career advancement, interest in medical research, and greater flexibility for parenting. A cross-sectional questionnaire survey was distributed at all 80 medical schools in Japan, directed to 228 female medical doctors whose academic rank was assistant professor or higher in departments of Basic Sciences in 2012. Chi-square tests and the binary logistic regression model were used to investigate the impact of parenthood on career satisfaction, academic rank, salary, etc. The survey response rate of female physicians in Basic Sciences was 54.0%. Regardless of parental status, one in three respondents cited research interest as their rationale for entering Basic Sciences, well over twice other motivations. A majority had clinical experience, with clinical duties maintained part-time by about half of respondents and particularly parents. Only one third expressed afterthoughts about relinquishing full-time clinical practice, with physicians who were parents expressing stronger regrets. Parental status had little effect on academic rank and income within the Basic Sciences, CONCLUSION: Scientific curiosity and a desire to improve community health are hallmarks of those choosing a challenging career in medicine. Therefore, it is unsurprising that interest in research is the primary motivation for a female medical doctor to choose a career in Basic Sciences. Additionally, as with many young professionals with families, female doctors seek balance in professional and private lives. Although many expressed afterthoughts relinquishing a full-time clinical practice, mothers generally benefited from greater job flexibility, with little significant effect on career development and income as Basic Scientists.

  11. Lunar interferometric astronomy: Some basic questions

    NASA Technical Reports Server (NTRS)

    Woolf, Neville

    1992-01-01

    The author examines some basic questions as to why there should be astronomical facilities on the far side of the moon. The questions are ones of appropriateness, i.e., is this a proper use for human resources, what the real goals are, and are the present concepts the best match for the goals.

  12. Driving forces of biomedical science education and research in state-of-the arts academic medical centres: the United States as example.

    PubMed

    John, T A

    2011-06-01

    Basic science departments in academic medical centres are influenced by changes that are commonly directed at medical education and financial gain. Some of such changes may have been detrimental to or may have enhanced basic science education. They may have determined basic science research focus or basic science research methods. However, there is lack of research on the educational process in the basic sciences including training of PhD's while there is ample research on medical education pertaining to training of medical doctors. The author here identifies, from university websites and available literature, some forces that have driven teaching and research focus and methods in state-of-the-arts academic medical centres in recent times with a view of seeing through their possible influences on basic science education and research, using the United States of America as an example. The "forces" are: Changes in medical schools; Medical educational philosophies: problem based learning, evidence based medicine, cyberlearning and self-directed learning; Shifting impressions of the value of basic sciences in medical schools; Research trends in Basic Sciences: role of antivivisectionists, alternative experimentations, explosion of molecular and cell biology; Technological advancements; Commercialization of research; and Funding agencies. The author encourages African leaders in academia to pay attention to such forces as the leadership seeks to raise African Universities as centres of knowledge that have a major role in acquiring, preserving, imparting, and utilizing knowledge.

  13. A meeting of minds: interdisciplinary research in the health sciences in Canada

    PubMed Central

    Hall, Judith G.; Bainbridge, Lesley; Buchan, Alison; Cribb, Alastair; Drummond, Jane; Gyles, Carlton; Hicks, T. Philip; McWilliam, Carol; Paterson, Barbara; Ratner, Pamela A.; Skarakis-Doyle, Elizabeth; Solomon, Patty

    2006-01-01

    Brought together by the newly formed Canadian Academy of Health Sciences (CAHS), recognized national leaders in the 6 health sciences disciplines consider the environment for conducting interdisciplinary health research (IDHR) in Canada. Based on first-hand knowledge and thoughtful reflection, the authors argue that although much progress has been made in support of IDHR in Canada, the practical experience of researchers does not always bear this out. This article examines government, industry and academia to identify the cultural and structural characteristics that demand, promote or prevent IDHR in each sector. At its heart is the question, How can universities best support and enhance IDHR, not only for the benefit of science, but also to meet the growing needs of industry and government for intellectual capital? Focusing on the predominant health sciences disciplines, the authors define IDHR as a team of researchers, solidly grounded in their respective disciplines, who come together around an important and challenging health issue, the research question for which is determined by a shared understanding in an interactive and iterative process. In addition, they suggest that IDHR is directly linked to translational research, which is the application of basic science to clinical practice and the generation of scientific questions through clinical observation. This analysis of academic, industry and government sectors is not intended to offer rigorous data on the current state of IDHR in Canada. Rather, the goal is to stimulate research-policy dialogue by suggesting a number of immediate measures that can help promote IDHR in Canada. Recommended measures to support IDHR are aimed at better resourcing and recognition (by universities and granting agencies), along with novel approaches to training, such as government- and industry-based studentships. In addition, we recommend that professional organizations reconsider their policies on publication and governance. Although intended to maintain professional scopes of practice, these policies also serve to entrench disciplinary boundaries in research. We conclude by suggesting a number of research questions for a more rigorous assessment of the climate for IDHR in Canada. We call for an inventory and comparative analysis of academic centres, institutes and consortiums in Canada that strive to facilitate IDHR; an examination of the impact of professional organizations on health research, and on IDHR in particular; and a systematic review of research training opportunities that promote IDHR, with a view to identifying and replicating proven models. PMID:17001059

  14. Student-Posed Problems

    NASA Astrophysics Data System (ADS)

    Harper, Kathleen A.; Etkina, Eugenia

    2002-10-01

    As part of weekly reports,1 structured journals in which students answer three standard questions each week, they respond to the prompt, If I were the instructor, what questions would I ask or problems assign to determine if my students understood the material? An initial analysis of the results shows that some student-generated problems indicate fundamental misunderstandings of basic physical concepts. A further investigation explores the relevance of the problems to the week's material, whether the problems are solvable, and the type of problems (conceptual or calculation-based) written. Also, possible links between various characteristics of the problems and conceptual achievement are being explored. The results of this study spark many more questions for further work. A summary of current findings will be presented, along with its relationship to previous work concerning problem posing.2 1Etkina, E. Weekly Reports;A Two-Way Feedback Tool, Science Education, 84, 594-605 (2000). 2Mestre, J.P., Probing Adults Conceptual Understanding and Transfer of Learning Via Problem Posing, Journal of Applied Developmental Psychology, 23, 9-50 (2002).

  15. Properties of Life: Toward a Coherent Understanding of the Organism.

    PubMed

    Rosslenbroich, Bernd

    2016-09-01

    The question of specific properties of life compared to nonliving things accompanied biology throughout its history. At times this question generated major controversies with largely diverging opinions. Basically, mechanistic thinkers, who tried to understand organismic functions in terms of nonliving machines, were opposed by those who tried to describe specific properties or even special forces being active within living entities. As this question included the human body, these controversies always have been of special relevance to our self-image and also touched practical issues of medicine. During the second half of the twentieth century, it seemed to be resolved that organisms are explainable basically as physicochemical machines. Especially from the perspective of molecular biology, it seemed to be clear that organisms need to be explained solely by the chemical functions of their component parts, although some resistance to this view never ceased. This research program has been working quite successfully, so that science today knows a lot about the physiological and chemical processes within organisms. However, again new doubts arise questioning whether the mere continuation of this analytical approach will finally generate a fundamental understanding of living entities. At the beginning of the twenty-first century the quest for a new synthesis actually comes from analytical empiricists themselves. The hypothesis of the present paper is that empirical research has been developed far enough today, that it reveals by itself the materials and the prerequisites to understand more of the specific properties of life. Without recourse to mysterious forces, it is possible to generate answers to this age-old question, just using recent, empirically generated knowledge. This view does not contradict the results of reductionistic research, but rather grants them meaning within the context of organismic systems and also may increase their practical usefulness. Although several of these properties have been discussed before, different authors usually concentrated on a single one or some of them. The paper describes ten specific properties of living entities as they can be deduced from contemporary science. The aim is to demonstrate that the results of empirical research show both the necessity as well as the possibility of the development of a new conception of life to build a coherent understanding of organismic functions.

  16. Use of the National Board of Medical Examiners® Comprehensive Basic Science Exam: survey results of US medical schools.

    PubMed

    Wright, William S; Baston, Kirk

    2017-01-01

    The National Board of Medical Examiners ® (NBME) Comprehensive Basic Science Exam (CBSE) is a subject exam offered to US medical schools, where it has been used for external validation of student preparedness for the United States Medical Licensing Examination ® (USMLE) Step 1 in new schools and schools undergoing curricular reform. Information regarding the actual use of the NBME CBSE is limited. Therefore, the aim of the survey was to determine the scope and utilization of the NBME CBSE by US medical schools. A survey was sent in May 2016 to curriculum leadership of the 139 US medical schools listed on the Liaison Committee on Medical Education (LCME ® ) website with provisional or full accreditation as of February 29, 2016. Responses were received from 53 schools (38% response rate). A series of different follow-up questions were asked if respondents stated "yes" or "no" to the initial question "Does your institution administer the NBME CBSE prior to the USMLE Step 1?". A total of 37 schools (70%) administered the NBME CBSE. In all, 36 of the 37 schools responded to follow-up questions. Of 36 schools, 13 schools (36%) used the NBME CBSE for curriculum modification. Six schools (17%) used the NBME CBSE for formative assessment for a course, and five schools (14%) used the NBME CBSE for summative assessment for a course. A total of 28 schools (78%) used the NBME CBSE for identifying students performing below expectations and providing targeted intervention strategies. In all, 24 schools (67%) of the 36 responding schools administering the NBME CBSE administered the test once prior to the administration of the USMLE Step 1, whereas 10 (28%) schools administered the NBME CBSE two or more times prior to the administration of the USMLE Step 1. Our data suggest that the NBME CBSE is administered by many US medical schools. However, the objective, timing, and number of exams administered vary greatly among schools.

  17. Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions across the Inquiry Continuum

    ERIC Educational Resources Information Center

    Biggers, Mandy

    2018-01-01

    Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in…

  18. Connecting Science and Society: Basic Research in the Service of Social Objectives

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard

    2007-03-01

    A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.

  19. Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.

    ERIC Educational Resources Information Center

    Lall, Bernard M.

    The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…

  20. The Effect of Home Related Science Activities on Students' Performance in Basic Science

    ERIC Educational Resources Information Center

    Obomanu, B. J.; Akporehwe, J. N.

    2012-01-01

    Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…

  1. Soft Skills for Hard Impact

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Davidson, Joy; Knoth, Petr; Kuchma, Iryna; Schmidt, Birgit; Rettberg, Najla; Rogrigues, Eloy

    2015-04-01

    Marine and Earth Science graduates will be under increasing pressure in future to delve into research questions of relevance to societal challenges. Even fundamental research focused on basic processes of the environment and universe will in the coming decade need to justify their societal impact. As the Research Excellence Frameworks (REF) for research evaluation shift more and more away from the classical Impact Factor and number of peer-reviewed publications to "societal impact", the question remains whether the current graduates, and future researchers, are sufficiently prepared to deal with this reality. The essential compliment of skills beyond research excellence, rigor and method are traditionally described as "soft skills". This includes how to formulate an argument, how to construct a scientific publication, how to communicate such publications to non-experts, place them in context of societal challenges and relevant policies, how to write a competitive proposal and "market" one's research idea to build a research group around an interesting research topic. Such "soft skills" can produce very measurable and concrete impact for career development, but are rarely provided systematically and coherently by graduate schools in general. The presentation will focus on Open Science as a set of "soft skills", and demonstrate why graduate schools should train Open Science competencies alongside research excellence by default. Open Science is about removing all barriers to research process and outputs, both published and unpublished, and directly supports transparency and reproducibility of the research process. Open Science as a set of news competencies can also foster unexpected collaborations, engage citizen scientists into co-creation of solutions to societal challenges, as well as use concepts of Open Science to transfer new knowledge to the knowledge-based private sector, and help them with formulating more competitive research proposals in future.

  2. Space Science for the 21st Century. Strategic Plan for 1995-2000

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This publication is one of three volumes in 'Space Science for the 21st Century', the Office of Space Science Strategic plan for 1995-2000. The other two volumes are the recently released Integrated Technology Strategy and the Education Plan, which is in preparation at this publication date. The Science Plan was developed by the Office of Space Science (OSS) in partnership with the Space Science Advisory Committee. The mission of the OSS is to seek answers to fundamental questions about: the galaxy and the universe; the connection between the Sun, Earth, and Heliosphere; the origin and evolution of planetary systems; and the origin and distribution of life in the universe. The strategy to answer these questions includes completing the means to survey the universe across the entire electromagnetic spectrum; completing the survey of cosmic rays through their highest energies, and of interstellar gas; carrying out a basic new test of the Theory of General Relativity; completing development of the means to understand the mechanisms of solar variability and its effects on Earth; completing the first exploration of the inner and outer frontiers of the heliosphere; determining the plasma environments of the solar system planets and how those environments are affected by solar activity; completing development of the means to finish the reconnaissance of the entire solar system from the Sun to Pluto; beginning the comprehensive search for other planets around other stars; resuming surface exploration of solar system bodies to understand the origin and evolution of the Sun's planetary system; continuing the study of biogenic compounds and their evolution in the universe; and searching for indicators of past and present conditions conducive to life.

  3. Impact of the 3-D model strategy on science learning of the solar system

    NASA Astrophysics Data System (ADS)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  4. Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines

    NASA Astrophysics Data System (ADS)

    Marulcu, Ismail; Barnett, Michael

    2016-01-01

    Background: Elementary Science Education is struggling with multiple challenges. National and State test results confirm the need for deeper understanding in elementary science education. Moreover, national policy statements and researchers call for increased exposure to engineering and technology in elementary science education. The basic motivation of this study is to suggest a solution to both improving elementary science education and increasing exposure to engineering and technology in it. Purpose/Hypothesis: This mixed-method study examined the impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. We hypothesize that the LEGO-engineering design unit is as successful as the inquiry-based unit in terms of students' science content learning of simple machines. Design/Method: We used a mixed-methods approach to investigate our research questions; we compared the control and the experimental groups' scores from the tests and interviews by using Analysis of Covariance (ANCOVA) and compared each group's pre- and post-scores by using paired t-tests. Results: Our findings from the paired t-tests show that both the experimental and comparison groups significantly improved their scores from the pre-test to post-test on the multiple-choice, open-ended, and interview items. Moreover, ANCOVA results show that students in the experimental group, who learned simple machines with the design-based unit, performed significantly better on the interview questions. Conclusions: Our analyses revealed that the design-based Design a people mover: Simple machines unit was, if not better, as successful as the inquiry-based FOSS Levers and pulleys unit in terms of students' science content learning.

  5. Goethe's phenomenology of nature: a juvenilization of science.

    PubMed

    Skaftnesmo, Trond

    2009-01-01

    Empirical science is not a mere collection of facts. It builds theories and frames hypotheses within those theories. Empirical theories are stated as plausible answers to questions we pose to nature. According to the Galilean-Baconian tradition within science, these questions should basically explore the causes of observed phenomena, and further be restricted to the measurable and quantitative realm. Thus, the answers are generally expected to explain the effective causes behind the actual phenomena. By framing falsifiable hypotheses, the theories are tested against the empirical foundation on which they rest. In this way we try to relieve science from false theories. Thus, we have two epistemological levels: First, the theoretical level; the scientific theory explaining the phenomena, and second, the empirical level; the phenomena or facts verifying or falsifying those theories. According to the poet and multi-scientist Johann Wolfgang von Goethe (1749-1832), there is however another way of science, namely an approach where these two levels fuse and become one. Goethe intended this approach to be a complementation of the Galilean-Baconian method, more than an alternative. He considered his "hypothesis-free method" to be a more comprehensive and secure way to understand nature. Whereas the Galilean-Baconian method aimed at explaining the effective causes of natural phenomena, in order to control and exploit nature for technical and industrial purposes, Goethe aimed at an exposition of the inherent meaning of the phenomena.We will explore, exemplify and discuss this approach with reference to the inherently Goethean phenomenology of evolution credited to the Dutch anatomist Louis Bolk (1866-1930), later commented and complemented by Stephen Jay Gould (1941-2002) and Jos Verhulst (1949 ). In the course of this presentation we will outline the Goethean approach as a method representing a juvenilization or in Bolk's terms, a fetalization of science.

  6. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  7. Effect of gravity on vestibular neural development

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  8. Do Racial and Gender Disparities Exist in Newer Glaucoma Treatments?

    MedlinePlus

    ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...

  9. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  10. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  11. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  12. Editorial Commentary: A Model for Shoulder Rotator Cuff Repair and for Basic Science Investigations.

    PubMed

    Brand, Jefferson C

    2018-04-01

    "Breaking the fourth wall" is a theater convention where the narrator or character speaks directly to the audience. As an Assistant Editor-in-Chief, as I comment on a recent basic science study investigating rotator cuff repair, I break the fourth wall and articulate areas of basic science research excellence that align with the vision that we hold for our journal. Inclusion of a powerful video strengthens the submission. We prefer to publish clinical videos in our companion journal, Arthroscopy Techniques, and encourage basic science video submissions to Arthroscopy. Basic science research requires step-by-tedious-step analogous to climbing a mountain. Establishment of a murine rotator cuff repair model was rigorous and research intensive, biomechanically, radiographically, histologically, and genetically documented, a huge step toward the bone-to-tendon healing research summit. This research results in a model for both rotator cuff repair and the pinnacle of quality, basic science research. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Cause and Effect: Testing a Mechanism and Method for the Cognitive Integration of Basic Science.

    PubMed

    Kulasegaram, Kulamakan; Manzone, Julian C; Ku, Cheryl; Skye, Aimee; Wadey, Veronica; Woods, Nicole N

    2015-11-01

    Methods of integrating basic science with clinical knowledge are still debated in medical training. One possibility is increasing the spatial and temporal proximity of clinical content to basic science. An alternative model argues that teaching must purposefully expose relationships between the domains. The authors compared different methods of integrating basic science: causal explanations linking basic science to clinical features, presenting both domains separately but in proximity, and simply presenting clinical features First-year undergraduate health professions students were randomized to four conditions: (1) science-causal explanations (SC), (2) basic science before clinical concepts (BC), (3) clinical concepts before basic science (CB), and (4) clinical features list only (FL). Based on assigned conditions, participants were given explanations for four disorders in neurology or rheumatology followed by a memory quiz and diagnostic test consisting of 12 cases which were repeated after one week. Ninety-four participants completed the study. No difference was found on memory test performance, but on the diagnostic test, a condition by time interaction was found (F[3,88] = 3.05, P < .03, ηp = 0.10). Although all groups had similar immediate performance, the SC group had a minimal decrease in performance on delayed testing; the CB and FL groups had the greatest decreases. These results suggest that creating proximity between basic science and clinical concepts may not guarantee cognitive integration. Although cause-and-effect explanations may not be possible for all domains, making explicit and specific connections between domains will likely facilitate the benefits of integration for learners.

  14. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  15. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  16. How Nanotechnology and Biomedical Engineering Are Supporting the Identification of Predictive Biomarkers in Neuro-Oncology.

    PubMed

    Ganau, Mario; Paris, Marco; Syrmos, Nikolaos; Ganau, Laura; Ligarotti, Gianfranco K I; Moghaddamjou, Ali; Prisco, Lara; Ambu, Rossano; Chibbaro, Salvatore

    2018-02-26

    The field of neuro-oncology is rapidly progressing and internalizing many of the recent discoveries coming from research conducted in basic science laboratories worldwide. This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers with a potential application in the management of patients with brain tumors. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials: all available basic science and clinical papers relevant to address the above-stated research question were included and analyzed in this study. Based on the results of this systematic review we can conclude that: (1) the advances in nanotechnology and bioengineering are supporting tremendous efforts in optimizing the methods for genomic, epigenomic and proteomic profiling; (2) a successful translational approach is attempting to identify a growing number of biomarkers, some of which appear to be promising candidates in many areas of neuro-oncology; (3) the designing of Randomized Controlled Trials will be warranted to better define the prognostic value of those biomarkers and biosignatures.

  17. Clinician-scientist trainee: a German perspective.

    PubMed

    Bossé, Dominick; Milger, Katrin; Morty, Rory E

    2011-12-01

    Clinician-scientists are particularly well positioned to bring basic science findings to the patient's bedside; the ultimate objective of basic research in the health sciences. Concerns have recently been raised about the decreasing workforce of clinician-scientists in both the United States of America and in Canada; however, little is known about clinician-scientists elsewhere around the globe. The purpose of this article is two-fold: 1) to feature clinician-scientist training in Germany; and 2) to provide a comparison with the Canadian system. In a question/answer interview, Rory E. Morty, director of a leading clinician-scientist training program in Germany, and Katrin Milger, a physician and graduate from that program, draw a picture of clinician-scientist training and career opportunities in Germany, outlining the place of clinician-scientists in the German medical system, the advantages and drawbacks of this training, and government initiatives to promote training and career development of clinician-scientists. The interview is followed by a discussion comparing the German and Canadian clinician-scientist development programs, focusing on barriers to trainee recruitment and career progress, and efforts to eliminate the barriers encountered along this very demanding but also very rewarding career path.

  18. Teaching of anterior cruciate ligament function in osteopathic medical education.

    PubMed

    Surek, Christopher Chase; Lorimer, Shannon D; Dougherty, John J; Stephens, Robert E

    2011-04-01

    The anterior cruciate ligament (ACL) of the knee and the function of its anteromedial (AM) and posterolateral (PL) bundles are a focus of orthopedic research. Because of the probability that third-year and fourth-year osteopathic medical students will encounter ACL injuries during clinical rotations, it is of paramount importance that students fully understand the functions of the AM and PL bundles as 2 distinct functional components of the ACL. The authors assess the degree to which the AM and PL bundles are discussed within basic science curricula at colleges of osteopathic medicine (COMs). In September 2008, a 6-question survey addressing various aspects of ACL education was mailed to instructors of lower-extremity anatomy at all 28 COMs that existed at that time. Nine of the 21 responding institutions (42.9%) indicated that both the AM and PL bundles of the ACL are discussed within their basic science curricula. Four of these 9 COMs indicated that their instruction mentions that the bundles are parallel in extension and crossed in flexion. Nine of the 21 responding COMs (42.9%) indicated that they instruct students that the AM bundle is a major anterior-posterior restrictor, and 12 (57.1%) indicated that they instruct students that the PL bundle is the major rotational stabilizer of the ACL. In 7 of the 21 responding COMs (33.3%), the AM and PL bundles are identified via direct visualization during anatomic dissection of the ACL. The authors conclude that their findings suggest the need for enhanced presentation of the AM and PL bundles within the basic science curricula at COMs to provide osteopathic medical students with a more comprehensive education in anatomy.

  19. Evaluating Scientific Misconceptions and Scientific Literacy in a General Science Course

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Scott, T. J.

    2009-12-01

    The data used in this study were collected as part of the course assignments for General Education Science (GSci) 101: “Physics, Chemistry, and the Human Experience” at James Madison University. The course covers the basic principles of physics, chemistry, and astronomy. The primary goals of this study were to analyze student responses to general scientific questions, to identify scientific misconceptions, and to evaluate scientific literacy by comparing responses collected from different groups of students and from questions given during the course versus at the end of the course. While this project is focused on general scientific concepts, the misconceptions and patterns identified are particularly relevant for improving pedagogy in the geosciences as this field relies on multidisciplinary knowledge of fundamental physics, chemistry, and astronomy. We discuss differences in the results between the disciplines of physics, chemistry, and astronomy and their implications for general geology education and literacy, emphasizing the following questions: (a) What do students typically get wrong? (b) Did the overall scientific literacy of the students increase throughout the semester? Are the concepts discussed in answers provided at the end of class more accurate than those provided during class? (c) How do the before- and after- class responses change with respect to language and terminology? Did the students use more scientific terminology? Did the students use scientific terminology correctly?

  20. Basic Pharmaceutical Sciences Examination as a Predictor of Student Performance during Clinical Training.

    ERIC Educational Resources Information Center

    Fassett, William E.; Campbell, William H.

    1984-01-01

    A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)

  1. PACE team response shows a disregard for the principles of science.

    PubMed

    Edwards, Jonathan

    2017-08-01

    The PACE trial of cognitive behavioural therapy and graded exercise therapy for chronic fatigue syndrome/myalgic encephalomyelitis has raised serious questions about research methodology. An editorial article by Geraghty gives a fair account of the problems involved, if anything understating the case. The response by White et al. fails to address the key design flaw, of an unblinded study with subjective outcome measures, apparently demonstrating a lack of understanding of basic trial design requirements. The failure of the academic community to recognise the weakness of trials of this type suggests that a major overhaul of quality control is needed.

  2. Electrochemical characterization of nanodimensional metal oxide materials

    NASA Astrophysics Data System (ADS)

    Tang, Paul Enle

    Energy storage devices have become a bottleneck in performance improvements for portable electronics. This research seeks to answer basic science questions that may lead to the necessary improvements. First, this work demonstrates that insertion of multivalent ions into vanadium oxide greatly exceeds the storage capacity of materials presently used. Second, this work demonstrates that potassium ferrate exhibits a uniquely large pseudocapacitive effect. This effect can be used to great advantage when high power density and high energy density are required. Lastly, this work proposes a model of pseudocapacitance that has a greater descriptive power than that of previous models.

  3. The Museum of Science and Industry Basic List of Children's Science Books, 1986.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…

  4. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  6. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  7. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    PubMed

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  8. Clinical Correlations as a Tool in Basic Science Medical Education

    PubMed Central

    Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.

    2016-01-01

    Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328

  9. How to design and write a clinical research protocol in Cosmetic Dermatology*

    PubMed Central

    Bagatin, Ediléia; Miot, Helio A.

    2013-01-01

    Cosmetic Dermatology is a growing subspecialty. High-quality basic science studies have been published; however, few double-blind, randomized controlled clinical trials, which are the major instrument for evidence-based medicine, have been conducted in this area. Clinical research is essential for the discovery of new knowledge, improvement of scientific basis, resolution of challenges, and good clinical practice. Some basic principles for a successful researcher include interest, availability, persistence, and honesty. It is essential to learn how to write a protocol research and to know the international and national regulatory rules. A complete clinical trial protocol should include question, background, objectives, methodology (design, variable description, sample size, randomization, inclusion and exclusion criteria, intervention, efficacy and safety measures, and statistical analysis), consent form, clinical research form, and references. Institutional ethical review board approval and financial support disclosure are necessary. Publication of positive or negative results should be an authors' commitment. PMID:23539006

  10. Student- and faculty-reported importance of science prerequisites for osteopathic medical school: a survey-based study.

    PubMed

    Binstock, Judith; Junsanto-Bahri, Tipsuda

    2014-04-01

    The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.

  11. 10 Tips to Reduce Your Chance of Losing Vision from the Most Common Cause of Blindness

    MedlinePlus

    ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology 2018-2019 Basic and ... 2019 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology Print 2018-2019 Basic ...

  12. Integration and timing of basic and clinical sciences education.

    PubMed

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational/applied model may yield benefits in training widely competent future physicians.

  13. Topological Insulators: A New Platform for Fundamental Science and Applications

    NASA Astrophysics Data System (ADS)

    Bansil, Arun

    2013-03-01

    Topological insulators constitute a new phase of quantum matter whose recent discovery has focused world-wide attention on wide-ranging phenomena in materials driven by spin-orbit coupling effects well beyond their traditional role in determining magnetic properties. I will discuss how by exploiting electronic structure techniques we have been able to predict and understand the characteristics of many new classes of binary, ternary and quaternary topologically interesting systems. The flexibility of chemical, structural and magnetic parameters so obtained is the key ingredient for exploring fundamental science questions, including novel spin-textures and exotic superconducting states, as well as for the realization of multi-functional topological devices for thermoelectric, spintronics, information processing and other applications. I will also highlight new insights that have been enabled through our material-specific modeling of angle-resolved photoemission (ARPES) and scanning tunneling (STS) spectroscopies of topological surface states, including effects of the photoemission and tunneling matrix element, which is well-known to be important for a robust interpretation of various highly resolved spectroscopies. Work supported by the Materials Science & Engineering Division, Basic Energy Sciences, U. S. D. O. E.

  14. The Dilemma of Science and Morals

    PubMed Central

    Stent, Gunther S.

    1974-01-01

    The conflicts between science and morals which still continue to arise despite the apparent hegemony of atheistic scientism over traditional Judeo-Christianity in the twentieth century reflect a basic contradiction in the metaphysical foundation of Western lives. As was set forth by Machiavelli, the contradiction inherent in Western ethics is that it is based on the simultaneous belief in both objectively valid moral truths and purely relative values of communal purpose. The achievements of twentieth century science have intensified these contradictions. Modern physics has put in question the validity of its own metaphysical basis, namely the belief in Natural Law, and modern biology has been unable to come to terms with the Cartesian dualism of body and soul. By contrast, Chinese lives are comparatively free of these contradictions, being founded on the philosophies of Confucianism and Taoism, to which the concepts of objectively valid truth or Natural Law are foreign. Recent developments in Western attitudes regarding science and morals can be interpreted as a movement away from the traditional belief in absolute truths towards a Chinese relativism. PMID:4531410

  15. "The NASA Solar System Exploration n Research Vistula Institute: Year 1 with New Teams with New and Old Partners!"

    NASA Astrophysics Data System (ADS)

    Daou, Doris

    2015-08-01

    Recognizing that science enables exploration, and exploration enables science, NASA created the Solar System Exploration Research Virtual Institute (SSERVI) to address basic and applied scientific questions fundamental to understanding the Moon, Near Earth Asteroids, and the moons of Mars. Primarily using virtual tools to communicate has eliminated the need for a traditional bricks and mortar institute, allowing the hundreds of researchers across the U.S. and the eight international partners to easily communicate and collaborate, from wherever they are. The small, central office located at NASA Ames Research Center in the heart of Silicon Valley, coordinates the institute activities. Newly found synergies across the teams, the sharing of data and facilities, and the ease of communication increase the efficiencies of scientific discovery. More importantly, the birth of ideas formed at the intersection of disparate disciplines can readily be pursued by groups that might not otherwise have formed, or even met! SSERVI follows on the heels of the highly successful NASA Lunar Science Institute (NLSI), a virtual institute dedicated solely to studies of the Moon. The creation of SSERVI has not only expanded our knowledge of the Earth’s nearest neighbor to include other stepping-stones to Mars, but also furthered our ability to address the scientific and technological questions we need to know…before we go!

  16. Elite Youth Sports-From Best Pediatric Science Practice To Sports Practice-2016.

    PubMed

    Williams, Craig A

    2017-02-01

    In my 2015 editorial, I selected two research publications with a focus on an applied sports sciences perspective. This year I have chosen to focus on two publications from a methodological viewpoint, highlighting the importance of laboratory procedures and extraction of data through a systematic review respectively. The first publication by Leites and colleagues (J Appl Physiol) addresses questions in relation to thermoregulation and carbohydrate metabolism in young people. This topic is difficult to conduct due to additional ethical and safety concerns due to exercising in the heat. Nonetheless, there are important basic science questions to be answered. Using a range of measurement techniques including rectal thermometry, 13 C-enriched carbohydrate isotopes and procedures to standardize the heat stress equally between a group of men and boys, this project demonstrates an exemplary range of experimental skills. In my second selected paper by Lesinski et al., (Brit J Sports Med), both a systematic review and a meta-analyses were conducted to investigate the dose-response relationships of resistance training on physical performance in youth athletes. As the requirement for more evidence based practice is demanded, the move away from a narrative review to a more methodological and rigorous approach is to be encouraged. It is, in my opinion, a skill that we should be encouraging all our early career pediatric researchers to learn from the outset, the outcome of which can only make our discipline stronger.

  17. The role of government in supporting technological advance

    NASA Astrophysics Data System (ADS)

    Tucker, Christopher K.

    A broad and poorly focused debate has, for quite some time, raged across the range of social science disciplines and policy related professions. This debate has dealt, in different ways, with the question of the proper role of the government in a mixed economy. Current debates over the appropriate role of government in a mixed economy are largely constrained by a basic set of 'market failure' concepts developed in economics. This dissertation interrogates the histories of the automobile, electrical and aircraft industries in the six decades spanning the turn of the 20th century with a theoretical framework that draws on recent theorizing on the co-evolution of technologies, industrial structure, and supporting institutions. In highlighting institutional and technological aspects of industrial development, this dissertation informs a basis for science and technology policy making that moves beyond 'market failure' analysis.

  18. [Environmental Hazards Assessment Program annual report, June 1992--June 1993]. Summer undergraduate research program: Environmental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, J.

    1993-12-01

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. Ten students from throughout the midwestern and eastern areas of the country were accepted into the program. These students selected projects in the areas of marine sciences, biostatistics and epidemiology, and toxicology. The research experience for all these students and their mentors was very positive. The seminars were well attended and the students showed their interest in the presentations and environmentalmore » sciences as a whole by presenting the speakers with thoughtful and intuitive questions. This report contains the research project written presentations prepared by the student interns.« less

  19. The Opinion of Students and Faculty Members about the Effect of the Faculty Performance Evaluation

    PubMed Central

    Ghahrani, Nassim; Siamian, Hasan; Balaghafari, Azita; Aligolbandi, Kobra; Vahedi, Mohammad

    2015-01-01

    Background: One of the most common ways that in most countries and Iran in determining the status of teacher training is the evaluation by students. The most common method of evaluation is the survey questionnaire provided to the study subjects, comprised of questions about educational activities. The researchers plan to evaluate the opinion of students and faculty members about the effect of the faculty performance evaluation at Mazandaran University of Medical Sciences in 2014-15. Methods: In this descriptive cross-sectional survey of attitudes of students and professors base their evaluation on the impact on their academic performance, have been studied. The populations were 3904 students and 149 faculty members of basic sciences Mazandaran University of Medical Sciences. Sample of 350 students and 107 students using Cochran formula faculty members through proportional stratified random sampling was performed. The data of the questionnaire with 28 questions on a Likert Spectrum, respectively. Statistical Analysis Data are descriptive and inferential statistics using Kruskal-Wallis and Mann-Whitney U test is done. Results: Based on the results obtained from total of 350 students, 309 students and from total of 107 faculty members, 76 faculty of basic sciences, participated in this study. The most of the students, 80 (25.9%) of the Faculty of Allied Medical Sciences and most of the faculty of basic sciences, 33 (4.43) of the medicine science faculty. Comments Mazandaran University of Medical Sciences in comparison to the scope of the evaluation should test using Binominal test; we can conclude that in the field of regulatory, scientific, educational, and communications arena, there were no significant differences between the views of students. The greatest supporter of the education of 193 (62%) and most challengers of exam 147 (48%), respectively. Regarding the viewpoints of the faculty members at Mazandaran University of Medical Sciences towards the evaluation domains, using binomial test, it could be concluded that only on the regulation domain with the significance level of 0.000, significant different was observed. So that, 30(23%) and 50(53%) supported of the effect of evaluation on the effect of evaluation of situation. Evaluation to improve the regulatory status of teachers and 70% (53 patients), the effects are positive. Students and faculty evaluations to compare the Mann-Whitney U test was used. The results show, only within the rules, with a significance level of 0.01 considered statistically significant relationship between teachers and students there. Conclusion: considering the viewpoints of students and faculty members about the impact of teacher performance evaluation of the students, most of the students believed that the greatest impact assessment has been on the improve educational performance entitled as responsibility of the faculty member for education, interest in presenting lessons, using audio-visual tools, having lesson plans, faculty members participate interest and enthusiasm in presenting lessons the use of teaching aids, lesson plans, faculty members participation in seminars, creating interest in students to participate in class discussions and expressing the importance of learning lessons perspective of teachers, but the faculty members viewpoints indicate the impact of evaluation on the regular attendance and discipline, the greatest impact assessment in the area of regulatory and compliance with the timely and orderly and thus their activities. PMID:26543421

  20. The Opinion of Students and Faculty Members about the Effect of the Faculty Performance Evaluation.

    PubMed

    Ghahrani, Nassim; Siamian, Hasan; Balaghafari, Azita; Aligolbandi, Kobra; Vahedi, Mohammad

    2015-08-01

    One of the most common ways that in most countries and Iran in determining the status of teacher training is the evaluation by students. The most common method of evaluation is the survey questionnaire provided to the study subjects, comprised of questions about educational activities. The researchers plan to evaluate the opinion of students and faculty members about the effect of the faculty performance evaluation at Mazandaran University of Medical Sciences in 2014-15. In this descriptive cross-sectional survey of attitudes of students and professors base their evaluation on the impact on their academic performance, have been studied. The populations were 3904 students and 149 faculty members of basic sciences Mazandaran University of Medical Sciences. Sample of 350 students and 107 students using Cochran formula faculty members through proportional stratified random sampling was performed. The data of the questionnaire with 28 questions on a Likert Spectrum, respectively. Statistical Analysis Data are descriptive and inferential statistics using Kruskal-Wallis and Mann-Whitney U test is done. Based on the results obtained from total of 350 students, 309 students and from total of 107 faculty members, 76 faculty of basic sciences, participated in this study. The most of the students, 80 (25.9%) of the Faculty of Allied Medical Sciences and most of the faculty of basic sciences, 33 (4.43) of the medicine science faculty. Comments Mazandaran University of Medical Sciences in comparison to the scope of the evaluation should test using Binominal test; we can conclude that in the field of regulatory, scientific, educational, and communications arena, there were no significant differences between the views of students. The greatest supporter of the education of 193 (62%) and most challengers of exam 147 (48%), respectively. Regarding the viewpoints of the faculty members at Mazandaran University of Medical Sciences towards the evaluation domains, using binomial test, it could be concluded that only on the regulation domain with the significance level of 0.000, significant different was observed. So that, 30(23%) and 50(53%) supported of the effect of evaluation on the effect of evaluation of situation. Evaluation to improve the regulatory status of teachers and 70% (53 patients), the effects are positive. Students and faculty evaluations to compare the Mann-Whitney U test was used. The results show, only within the rules, with a significance level of 0.01 considered statistically significant relationship between teachers and students there. considering the viewpoints of students and faculty members about the impact of teacher performance evaluation of the students, most of the students believed that the greatest impact assessment has been on the improve educational performance entitled as responsibility of the faculty member for education, interest in presenting lessons, using audio-visual tools, having lesson plans, faculty members participate interest and enthusiasm in presenting lessons the use of teaching aids, lesson plans, faculty members participation in seminars, creating interest in students to participate in class discussions and expressing the importance of learning lessons perspective of teachers, but the faculty members viewpoints indicate the impact of evaluation on the regular attendance and discipline, the greatest impact assessment in the area of regulatory and compliance with the timely and orderly and thus their activities.

  1. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    PubMed

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  2. Should Creationism be Taught in the Public Schools?

    NASA Astrophysics Data System (ADS)

    Pennock, Robert T.

    This article discusses philosophicalarguments relevant to the question of teachingcreationism, especially with regard to developments inthe debate since the early 1990s.Section 1 reviews the newfactions within the creationist movement, and theoverlapping views from young earth to intelligentdesign creationism, as well as non-Christianvarieties. It also considers what are the relevantdifferences for the policy question for private,public schools, and for home schoolers, as well aspossible differences in what it means to teachcreationism. Sections 2 & 3 discuss the main legal argumentsthat have ruled in the public school case, as well asarguments from academic freedom, fairness, censorship,parental rights and majority rule. Section 4 evaluates theepistemological issues regarding competing claims oftruth, and the contention that excluding whatChristians know (Alvin Plantinga) amounts toviewpoint discrimination (Phillip Johnson). Section 5argues that religious protection arguments actuallyfavor excluding creationism more than including it. Section 6 considers the goals of education, especiallyDewey's views on science education, and what theseimply regarding the teaching of a theistic science. In Section 7, I review a new argument of Alvin Plantingabased upon a purported Rawlsian basic right of aparent not to have her children taught anything thatviolates her comprehensive beliefs, and show whyRawlsian agents would reject it.

  3. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.

  4. Distinguishing science from pseudoscience in school psychology: science and scientific thinking as safeguards against human error.

    PubMed

    Lilienfeld, Scott O; Ammirati, Rachel; David, Michal

    2012-02-01

    Like many domains of professional psychology, school psychology continues to struggle with the problem of distinguishing scientific from pseudoscientific and otherwise questionable clinical practices. We review evidence for the scientist-practitioner gap in school psychology and provide a user-friendly primer on science and scientific thinking for school psychologists. Specifically, we (a) outline basic principles of scientific thinking, (b) delineate widespread cognitive errors that can contribute to belief in pseudoscientific practices within school psychology and allied professions, (c) provide a list of 10 key warning signs of pseudoscience, illustrated by contemporary examples from school psychology and allied disciplines, and (d) offer 10 user-friendly prescriptions designed to encourage scientific thinking among school psychology practitioners and researchers. We argue that scientific thinking, although fallible, is ultimately school psychologists' best safeguard against a host of errors in thinking. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  5. Does Reality Matter? Social and Science Bases of Public Beliefs about Arctic Change

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Schaefer, K. M.; Schaeffer, K. P.; Schaefer, K. M.; Hamilton, L.

    2015-12-01

    Surveys of public perceptions about trends in Arctic sea ice find that over two-thirds are aware of the multi-decade decrease. This awareness differs sharply across ideological and educational subgroups, however. It does not appear to shift in response to scientific and media discussion following a September with unusually low (2012) or somewhat higher (2013) sea ice extent. Other perceptions about Arctic change, such as impacts on mid-latitude weather, follow similar patterns with sharp ideological difference and limited response to external events, including science reports. On the other hand, public accuracy on basic factual questions that do not by themselves imply directional change (such as location of the North Pole) may be very low, and among some subgroups accurate knowledge shows an oddly negative correlation with self-confidence about understanding of climate change. These results from 13 surveys over 2011-2015 suggest that biased assimilation filters the acceptance of information about Arctic change, with implications for science communication.

  6. Two science communities and coastal wetlands policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeVine, J.B.

    1984-01-01

    This study compares the attitudes of academic and government wetlands scientists about wetlands science and policy. Analysis of one thousand seven hundred responses to Delphi-type questions posed to twenty California scientists on a wide range of issues about California coastal wetlands found significant differences between academic and government scientists about wetlands definitions, threats to wetlands, wetlands policies, wetlands health, and wetlands mitigation strategies. These differences were consistent with descriptive models of political sociology developed by D. Price and C.P. Snow and with normative models of the philosophy of science developed in the renaissance by F. Bacon and R. Descartes. Characteristics,more » preferences, and personality attributes consistent with group functions and roles have been described in these models. These findings have serious implications for policy. When academic and government wetlands scientists act as advisors to the major parties in land use conflicts, basic differences in perspective have contributed to costly contention over the future use of wetlands.« less

  7. Foundations of translational ecology

    USGS Publications Warehouse

    Enquist, Carolyn A. F.; Jackson, Stephen T.; Garfin, Gregg M.; Davis, Frank W.; Gerber, Leah R.; Littell, Jeremy; Tank, Jennifer L.; Terando, Adam; Wall, Tamara U.; Halpern, Benjamin S.; Morelli, Toni L.; Hiers, J. Kevin; McNie, Elizabeth; Stephenson, Nathan L.; Williamson, Matthew A.; Woodhouse, Connie A.; Yung, Laurie; Brunson, Mark W.; Hall, Kimberly R.; Hallett, Lauren M.; Lawson, Dawn M.; Moritz, Max A.; Nydick, Koren R.; Pairis, Amber; Ray, Andrea J.; Regan, Claudia M.; Safford, Hugh D.; Schwartz, Mark W.; Shaw, M. Rebecca

    2017-01-01

    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context‐specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use‐driven, actionable science. Moreover, addressing research questions that arise from on‐the‐ground management issues – as opposed to the top‐down or expert‐oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long‐term, sustained engagement between partners.

  8. [Common sense, science and philosophy: the links of knowledge necessary for promoting health care].

    PubMed

    Rios, Ediara Rabello Girão; Franchi, Kristiane Mesquita Barros; da Silva, Raimunda Magalhães; de Amorim, Rosendo Freitas; Costa, Nhandeyjara de Carvalho

    2007-01-01

    In its evolution, humanity has accumulated data which were systematized as knowledge. Philosophy through self examination helps us in its practical and theoretical functions to reach a concept of the universe. Common sense helps science evolve. People's daily difficulties stir up the need for research, for deepening data interpretation and to propose solutions to overcome the population's problems. Science exists to explain difficult aspects of common sense, to support questions, as well as to substantiate knowledge produced as a response to demands. Thus, knowledge involved in this reflection sets out to foster an articulation between basic forms of knowledge and to develop a satisfactory understanding of the health care process, through a shared and critically consciousness view of the changes in the health system's paradigm. We understand that health education is an essential component within this process, provided that it is focused primarily on an individual belonging to a community with its multiple relationships, especially between the community context and the subjective dimension, which can provide citizenship empowerment redemption.

  9. A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy

    ERIC Educational Resources Information Center

    Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf

    2009-01-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…

  10. Integrated Medical Curriculum: Advantages and Disadvantages

    PubMed Central

    Quintero, Gustavo A.; Vergel, John; Arredondo, Martha; Ariza, María-Cristina; Gómez, Paula; Pinzon-Barrios, Ana-Maria

    2016-01-01

    Most curricula for medical education have been integrated horizontally and vertically–-vertically between basic and clinical sciences. The Flexnerian curriculum has disappeared to permit integration between basic sciences and clinical sciences, which are taught throughout the curriculum. We have proposed a different form of integration where the horizontal axis represents the defined learning outcomes and the vertical axis represents the teaching of the sciences throughout the courses. We believe that a mere integration of basic and clinical sciences is not enough because it is necessary to emphasize the importance of humanism as well as health population sciences in medicine. It is necessary to integrate basic and clinical sciences, humanism, and health population in the vertical axis, not only in the early years but also throughout the curriculum, presupposing the use of active teaching methods based on problems or cases in small groups. PMID:29349303

  11. The Museum of Science and Industry Basic List of Children's Science Books, 1987.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…

  12. Introducing Astronomy Related Research into Non-Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Walker, Douglas

    The concern over the insufficient number of students choosing to enter the science and engineering fields has been discussed and documented for years. While historically addressed at the national level, many states are now recognizing that the lack of a highly-skilled technical workforce within their states' borders has a significant effect on their economic health. Astronomy, as a science field, is no exception. Articles appear periodically in the most popular astronomy magazines asking the question, "Where are the young astronomers?" Astronomy courses at the community college level are normally restricted to introductory astronomy I and II level classes that introduce the student to the basics of the night sky and astronomy. The vast majority of these courses is geared toward the non-science major and is considered by many students to be easy and watered down courses in comparison to typical physics and related science courses. A majority of students who enroll in these classes are not considering majors in science or astronomy since they believe that science is "boring and won't produce any type of career for them." Is there any way to attract students? This paper discusses an approach being undertaken at the Estrella Mountain Community College to introduce students in selected mathematics courses to aspects of astronomy related research to demonstrate that science is anything but boring. Basic statistical techniques and understanding of geometry are applied to a large virgin data set containing the magnitudes and phase characteristics of sets of variable stars. The students' work consisted of developing and presenting a project that explored analyzing selected aspects of the variable star data set. The description of the data set, the approach the students took for research projects, and results from a survey conducted at semester's end to determine if student's interest and appreciation of astronomy was affected are presented. Using the data set provided, the students were provided the opportunity for original research and discoveries.

  13. Graduate students teaching elementary earth science through interactive classroom lessons

    NASA Astrophysics Data System (ADS)

    Caswell, T. E.; Goudge, T. A.; Jawin, E. R.; Robinson, F.

    2014-12-01

    Since 2005, graduate students in the Brown University Department of Earth, Environmental, and Planetary Studies have volunteered to teach science to second-grade students at Vartan Gregorian Elementary School in Providence, RI. Initially developed to bring science into classrooms where it was not explicitly included in the curriculum, the graduate student-run program today incorporates the Providence Public Schools Grade 2 science curriculum into weekly, interactive sessions that engage the students in hypothesis-driven science. We will describe the program structure, its integration into the Providence Public Schools curriculum, and 3 example lessons relevant to geology. Lessons are structured to develop the students' ability to share and incorporate others' ideas through written and oral communication. The volunteers explain the basics of the topic and engage the students with introductory questions. The students use this knowledge to develop a hypothesis about the upcoming experiment, recording it in their "Science Notebooks." The students record their observations during the demonstration and discuss the results as a group. The process culminates in the students using their own words to summarize what they learned. Activities of particular interest to educators in geoscience are called "Volcanoes!", "The "Liquid Race," and "Phases of the Moon." The "Volcanoes!" lesson explores explosive vs. effusive volcanism using two simulated volcanoes: one explosive, using Mentos and Diet Coke, and one effusive, using vinegar and baking soda (in model volcanoes that the students construct in teams). In "Liquid Race," which explores viscosity and can be integrated into the "Volcanoes!" lesson, the students connect viscosity to flow speed by racing liquids down a ramp. "Phases of the Moon" teaches the students why the Moon has phases, using ball and stick models, and the terminology of the lunar phases using cream-filled cookies (e.g., Oreos). These lessons, among many others, bring basic science to life in second grade classrooms. We will be happy to share their story and to make our lesson plans available to a broader audience.

  14. Small watershed-scale research and the challenges ahead

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that could not be detected until the recent increased sensitivity of modern techniques; 2) the recognition of changing climate and its effects on already-stressed water resources and ecosystems; 3) more integrated monitoring and modeling of ecosystem processes and quantification of ecosystem services. Historical hydrological and biogeochemical information available at USGS and other watershed-research and -monitoring sites can now be used in conjunction with active monitoring of biota and biological processes (especially those involving plants, invertebrates and microbes). The results will help provide a more nationally consistent framework for evaluating ecosystem health, and assessing ecosystem services, in the face of changing climate and land-use. These, and related science questions and societal issues are complex and require strong collaborations across disciplinary and organizational boundaries. Along with a well-funded national commitment to basic watershed research, the USGS continually seeks to strengthen its small-watershed and ecosystem-science programs through partnerships with NSF, State, and Federal agencies. Given the growing U.S. population, continual development in water-scarce regions, and general water- and soil-resource stress under competing national interests and priorities, the role of basic watershed-scale research and monitoring is essential because of its unique niche in the development of the improved environmental understanding and predictive models needed by resource managers.

  15. The role of questions in the science classroom - how girls and boys respond to teachers' questions

    NASA Astrophysics Data System (ADS)

    Eliasson, Nina; Karlsson, Karl Göran; Sørensen, Helene

    2017-03-01

    The purpose of this study was to explore (a) to what extent male and female science teachers pose different types of questions and (b) if the type of science question posed influences the extent to which boys or girls respond to them. Transcripts of the teacher-student interaction in a whole-class situation were analysed, with attention paid to interactions that involved science questions. Closed and open questions were used. Results revealed that the percentage of closed questions posed corresponded to 87%. Results show that teachers mainly use closed questions, and responses from boys to closed questions are in the majority regardless of if the question is posed by a female teacher (56%) or a male teacher (64%). Both categories of closed questions are mainly considered lower order questions that do not facilitate higher cognitive levels in students. Thus, a direct consequence of an excessive use of this type of questions may be that both boys and girls will be given less opportunities to practise their ability to talk about science. Less access to general classroom interaction may also affect girls' attitudes to science in a negative way which could ultimately hamper the recruitment of girls to higher scientific studies.

  16. Teaching hearing science to undergraduate nonscientists

    NASA Astrophysics Data System (ADS)

    Weiler, Ernest M.; Boyce, Suzanne; Steger, Joseph

    2003-04-01

    For those students interested in potential clinical careers in Speech Pathology, or Audiology, a knowledge of some of the scientific bases is important, but should not create a distaste for science. The authors have addressed themselves to these goals: (1) calculation of period, Hz, summation of two sine waves, phase and dB; (2) anticipating undergraduate Speech Science; (3) simple examples of hearing pathology; and (4) basic psycho-acoustical issues. The classic material of Harry Helson was used to elucidate issues of context in experimental science, and that of S.S. Stevens was used to exemplify psycho-acoustical formulas of common use. Four texts that have been tried on approximately 200 students were evaluated. Surprisingly, the best provided the fewest formulas, short study questions with answers, good examples, and a list of common terms. The next best was aimed at slightly more advanced students, but each chapter contained introductory material, examples, and definitions suitable for naïve undergraduates. The least satisfactory text provided excerpts of technical material with abrupt transitions, no examples, and only part of the definitions needed for the naïve student. Perhaps the most difficult teaching issue is to avoid demanding graduate-level science from those undergraduates with clinical aspirations.

  17. The relationship between immediate relevant basic science knowledge and clinical knowledge: physiology knowledge and transthoracic echocardiography image interpretation.

    PubMed

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-10-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.

  18. [Modeling the academic performance of medical students in basic sciences and pre-clinical courses: a longitudinal study].

    PubMed

    Zúñiga, Denisse; Mena, Beltrán; Oliva, Rose; Pedrals, Nuria; Padilla, Oslando; Bitran, Marcela

    2009-10-01

    The study of predictors of academic performance is relevant for medical education. Most studies of academic performance use global ratings as outcome measure, and do not evaluate the influence of the assessment methods. To model by multivariate analysis, the academic performance of medical considering, besides academic and demographic variables, the methods used to assess students' learning and their preferred modes of information processing. Two hundred seventy two students admitted to the medical school of the Pontificia Universidad Católica de Chile from 2000 to 2003. Six groups of variables were studied to model the students' performance in five basic science courses (Anatomy, Biology, Calculus, Chemistry and Physics) and two pre-clinical courses (Integrated Medical Clinic I and IT). The assessment methods examined were multiple choice question tests, Objective Structured Clinical Examination and tutor appraisal. The results of the university admission tests (high school grades, mathematics and biology tests), the assessment methods used, the curricular year and previous application to medical school, were predictors of academic performance. The information processing modes influenced academic performance, but only in interaction with other variables. Perception (abstract or concrete) interacted with the assessment methods, and information use (active or reflexive), with sex. The correlation between the real and predicted grades was 0.7. In addition to the academic results obtained prior to university entrance, the methods of assessment used in the university and the information processing modes influence the academic performance of medical students in basic and preclinical courses.

  19. From "does it work?" to "what is 'it'?": implications for voodoo, psychotherapy, pop-psychology, regular, and alternative medicine.

    PubMed

    Mommaerts, Jean-Luc; Devroey, Dirk

    2013-01-01

    In this article, a "healing method" (HM) is defined as any method intended to improve health through non-somatic means. For many healing methods, especially within the realm of complementary and alternative medicine (CAM), there is mounting debate over the question "Does it work?" Indeed, this seems to be the primary question for most stakeholders. Yet in light of the well-documented effects of nonspecific factors, particularly empathy and placebo (EP), we contend that the basic question is: "What is 'it'?" Without answering this question, scientific progress is impossible, and research costs will spiral upwards without producing tangible results. Furthermore, it is impossible to characterize the potential side effects of healing methods without a full understanding of the underlying mechanisms through which they act. It is generally acknowledged that many healing methods are sociohistorical artifacts, based on underlying theoretical models that are divorced from established science. There is a need for healing method research that is accommodating of such methods' fluid nature while being congruent with accepted scientific practices. "It works" is no longer an adequate justification for any healing method, as "it" often turns out to be a combination of nonspecific factors.

  20. The Scientific Approach Learning: How prospective science teachers understand about questioning

    NASA Astrophysics Data System (ADS)

    Wiyanto; Nugroho, S. E.; Hartono

    2017-04-01

    In the new curriculum, questioning is one of theaspects of scientific approach learning. It means teachers should facilitate students to ask their questions during science learning. The purpose of this research was to reveal the prospective science teachers’ understanding about questioning and how the science teachers implement of that in the scientific approach learning. Data of the prospective science teachers’ understanding was explored from their teaching plan that produced during microteaching. The microteaching is an activity that should be followed by students before they conduct partnership program in school. Data about theimplementation of questioning that conducted by theteacher was be collected by video-assisted observation in junior school science class. The results showed that majority of the prospective science teachers had difficulty to write down in their teaching plan about how to facilitate students to ask their questions, even majority of them understood that questioning is not students’ activity, but it is an activity that should be done by teachers. Based on the observation showed that majority of teachers did not yet implement a learning that facilitates students to ask their questions.

  1. Strengthening capacity building in space science research: A developing country perspective on IHY activities

    NASA Astrophysics Data System (ADS)

    Munyeme, G.

    The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be

  2. Styles and Style-Stretching: How are They Related to Successful Learning?

    PubMed

    Griffiths, Carol; İnceçay, Görsev

    2016-06-01

    Although the learning style construct has aroused much interest over the years, questions remain regarding basic issues such as definition, the validity and/or reliability of various measurement instruments, and the relationship between learning style and successful learning. Furthermore, although maintaining stylistic flexibility is recommended by many authors, few studies have attempted to relate the style-stretching concept to successful learning. This study therefore attempted to address these questions. According to results, conducted among 106 Turkish university students, using an original instrument constructed using elements from established questionnaires, a small group of styles was significantly correlated with exam results, accounting for about a quarter of the variance (considered a large effect size in social science). In addition, higher-scoring students reported a more eclectic range of styles, suggesting more willingness to style-stretch, while lower-scoring students reported a more limited range. Pedagogical implications as well as areas for ongoing research are suggested.

  3. [The gender debate from the pedagogic perspective].

    PubMed

    Forster, Johanna

    2004-09-01

    The question of form and extent of biological and/or cultural influences on female and male behaviour and performance is marking a major focus in present scientific research. Accordingly, a broad spectrum of approaches in research and interpretations of results is available. The recent debate on sex and gender is offering two basic objectives for research in education science: First, the critical review of the data and results on sex specifics presented in respect to the articulation of educational aims, topics and methods. Second, the intensified research focus on the developmental consequences of gender and gender roles for boys and girls, women and men. The pedagogical focus is discussed regarding the following three objectives: 1. developmental conditions in early ontogeny, 2. the question of sex specific differences in cognitive abilities in respect to school performance of adolescents, and 3. teaching knowledge on "sex" and "gender" in schools.

  4. Assessing the impact of the Graduate Certificate in Anatomical Sciences Instruction: A post-degree survey.

    PubMed

    Richardson-Hatcher, April; MacPherson, Brian; Gould, Douglas; Brueckner-Collins, Jennifer

    2018-03-26

    There are few graduate programs available for pursuing a doctorate in anatomy where students gain specific training in gross anatomy dissection and the responsibilities of a medical educator. In light of this fact, the University of Kentucky created a Graduate Certificate in Anatomical Sciences Instruction in 2006. This 12-credit hour curriculum includes detailed training in gross anatomy and/or neuroscience courses, practicum experiences, a seminar class in pedagogical literature, and a course in educational strategies for the anatomical sciences. The award of certificate completion affirms that the candidate has demonstrated faculty-supervised proficiency in anatomy dissection, instruction in anatomy topics, and teaching strategies for anatomy. Seventeen graduate students have earned the certificate since its inception; nine students accepted teaching positions in anatomy following their graduate training and currently nine certificate graduates have assistant (six) or associate (three) professor positions in academia. In 2016, an anonymous survey including Likert-style and open-ended questions was emailed to all certificate graduates. Graduates favorably responded (each question averaged 4.4 or greater out of 5) that the certificate increased their awareness of teaching-faculty responsibilities, adequately prepared them for teaching-related duties, and positively contributed toward their first employment. Graduates indicated that the lecturing and dissection experience, awareness of faculty responsibilities, and job preparation (e.g., teaching philosophy development) were the most helpful aspects of the certificate. These results indicate that the Graduate Certificate in Anatomical Sciences Instruction is viewed by its graduates and their employers as a valuable teaching credential that can be attained alongside a basic science degree. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  5. Australian Item Bank Program: Science Item Bank. Book 3: Biology.

    ERIC Educational Resources Information Center

    Australian Council for Educational Research, Hawthorn.

    The Australian Science Item Bank consists of three volumes of multiple-choice questions. Book 3 contains questions on the biological sciences. The questions are designed to be suitable for high school students (year 8 to year 12 in Australian schools). The questions are classified by the subject content of the question, the cognitive skills…

  6. Coming to grips with autism: Parents engaging with science

    NASA Astrophysics Data System (ADS)

    Feinstein, Noah Robert

    When and how does science matter to people in their everyday lives? In this dissertation, I explore the importance of science to parents of young children recently diagnosed with autism. I examine the questions parents ask and the resources they use as they attempt to understand and advocate for their children, and use this data to develop a new conceptual model of engagement with science: the intrapersonal and interpersonal process through which people connect science with their lived experience. I recruited a socio-economically diverse sample of ten parents, each with at least one young child (18 months--7 years) who had been diagnosed with autism 6--24 months prior to recruitment. Each parent completed a series of 8--12 semi-structured interviews over a period of approximately six months. These interviews were analyzed using both grounded theory and conceptually driven coding strategies. Two findings stand out. First, only a small fraction of parents' questions (15%) and resources (11%) were directly related to science. A much larger fraction (41% and 42%) fell into the broader categories of near-science questions and resources. Second, half of the parents demonstrated an iterative pattern of activity that I referred to as progressive engagement with science. In each case, a science or near-science question led the parent to a science or near-science resource, which transformed the question. The new question led to different science or near-science resources, which led to new questions and so forth. Parents who did not undertake progressive engagement with science were also less interested in autism as an organizing construct for understanding their children. Drawing on the work of Peter Galison, I propose that the idea of autism helps create a "trading zone" between the distinct social systems of family life and medical science. Parents who ask near-science questions must find near-science resources to help them direct their questions appropriately. They must also re-articulate the answers in terms that are personally meaningful. Even when parents and doctors disagree on the meaning and significance of an autism diagnosis, their mutual investment in the idea of autism fosters conceptual "trading" and enables future engagement with science.

  7. Short-Term Research Experiences with Teachers in Earth and Planetary Sciences and a Model for Integrating Research into Classroom Inquiry

    NASA Astrophysics Data System (ADS)

    Morgan, P.; Bloom, J. W.

    2006-12-01

    For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their research experiences and overall expressed a new understanding of science and research.

  8. Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.; Weerts, H.; Brock, R.

    2012-06-05

    Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantummore » mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there new sources of CP violation? Is there CP violation in the leptonic sector? Are neutrinos their own antiparticles? Do the forces unify? Is there a weakly coupled hidden sector that is related to dark matter? Do new symmetries exist at very high energy scales? To identify the most compelling science opportunities in this area, the workshop Fundamental Physics at the Intensity Frontier was held in December 2011, sponsored by the Office of High Energy Physics in the US Department of Energy Office of Science. Participants investigated the most promising experiments to exploit these opportunities and described the knowledge that can be gained from such a program. The workshop generated much interest in the community, as witnessed by the large and energetic participation by a broad spectrum of scientists. This document chronicles the activities of the workshop, with contributions by more than 450 authors. The workshop organized the intensity frontier science program along six topics that formed the basis for working groups: experiments that probe (i) heavy quarks, (ii) charged leptons, (iii) neutrinos, (iv) proton decay, (v) light, weakly interacting particles, and (vi) nucleons, nuclei, and atoms. The conveners for each working group included an experimenter and a theorist working in the field and an observer from the community at large. The working groups began their efforts well in advance of the workshop, holding regular meetings and soliciting written contributions. Specific avenues of exploration were identified by each working group. Experiments that study rare strange, charm, and bottom meson decays provide a broad program of measurements that are sensitive to new interactions. Charged leptons, particularly muons and taus, provide a precise probe for new physics because the Standard Model predictions for their properties are very accurate. Research at the intensity frontier can reveal CP violation in the lepton sector, and elucidate whether neutrinos are their own antiparticles. A very weakly coupled hidden-sector that may comprise the dark matter in the universe could be discovered. The search for proton decay can probe the unification of the forces with unprecedented reach and test sacrosanct symmetries to very high scales. Detecting an electric dipole moment for the neutron, or neutral atoms, could establish a clear signal for new physics, while limits on such a measurement would place severe constraints on many new theories. This workshop marked the first instance where discussion of these diverse programs was held under one roof. As a result, it was realized that this broad effort has many connections; a large degree of synergy exists between the different areas and they address similar questions. Results from one area were found to be pertinent to experiments in another domain.« less

  9. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    PubMed

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-11-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  10. Academic Pre-Orientation Program for Dental Students: Beginning and End of Program Evaluations, 1998-2016.

    PubMed

    D'Silva, Evan R; Woolfolk, Marilyn W; Duff, Renee E; Inglehart, Marita R

    2018-04-01

    Admitting students from non-traditional or disadvantaged backgrounds can increase the diversity of dental school classes. The aims of this study were to analyze how interested non-traditional incoming dental students were at the beginning of an academic pre-orientation program in learning about basic science, dentistry-related topics, and academic skills; how confident they were in doing well in basic science and dentistry-related courses; and how they evaluated the program at the end. The relationships between personal (interest/confidence) and structural factors (program year, number of participants) and program evaluations were also explored. All 360 students in this program at the University of Michigan from 1998 to 2016 were invited to participate in surveys at the beginning and end of the educational intervention. A total of 353 students responded at the beginning (response rate 98%), and 338 responded at the end (response rate 94%). At the beginning, students were more interested in learning about basic science and dentistry-related topics than about academic skills, and they were more confident in their dentistry- related than basic science-related abilities. At the end, students valued basic science and dentistry-related education more positively than academic skills training. Confidence in doing well and interest in basic science and dentistry-related topics were correlated. The more recent the program was, the less confident the students were in their basic science abilities and the more worthwhile they considered the program to be. The more participants the program had, the more confident the students were, and the better they evaluated their basic science and dentistry-related education. Overall, this academic pre-orientation program was positively evaluated by the participants.

  11. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    PubMed

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  12. A Unscientific Physics: Hegel and Whitehead on the Philosophy of Nature

    NASA Astrophysics Data System (ADS)

    Kite, David Knight

    The thesis of this dissertation is that nature is not merely the province of the natural sciences, and that contemporary philosophy could greatly benefit from a recovery of the Philosophy of Nature. Although philosophy has traditionally developed its own concept of nature, philosophers have recently come to dispute the ability of philosophy to contribute to natural knowledge, and to deny that there is any knowledge of nature beyond that offered by the empirical sciences. This dissertation is an attempt to isolate the particular problems and questions which form a philosophical idea of nature. This study investigates the work of G. W. F. Hegel and Alfred North Whitehead in this field. These two philosophers are especially relevant to this task because they took up these questions during an age after natural science had become separate and distinct from philosophy. The relationship between empirical science and philosophy is therefore a central concern in their work in this area. This investigation concludes that the natural sciences present an abstract and partial account of nature while Philosophy of Nature is largely an attempt to describe the rationality of the individual. Both Hegel and Whitehead feel the central problem of philosophy of nature is to explain how nature itself is the agent of its own rationality, and how notions such as subjectivity, value and rationality are part of all forms and levels of physical existence. The Philosophy of Nature is therefore central to many current fields of philosophical interest, such as the Philosophy of Science and Natural Knowledge, the Philosophy of Mind, Ethics and the Metaphysics of Morals, and offers an important response to the division between the sciences and the humanities. The first three chapters examine Whitehead's and Hegel's critiques of scientific understanding and the limitations of such an approach to nature. The latter three chapters then present the basic features of Hegel's and Whitehead's own work in this field, and conclude with some reflections upon the relevance of this type of philosophy to contemporary problems.

  13. Long-Term Environmental Research Programs - Evolving Capacity for Discovery

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.

    2008-12-01

    Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.

  14. Investigating Turkish Primary School Students' Interest in Science by Using Their Self-Generated Questions

    NASA Astrophysics Data System (ADS)

    Cakmakci, Gultekin; Sevindik, Hatice; Pektas, Meryem; Uysal, Asli; Kole, Fatma; Kavak, Gamze

    2012-06-01

    This paper reports on an attempt to investigate Turkish primary school students' interest in science by using their self-generated questions. We investigated students' interest in science by analyzing 1704 self-generated science-related questions. Among them, 826 questions were submitted to a popular science magazine called Science and Children. Such a self-selected sample may represent a group of students who have a higher level of motivation to seek sources of information outside their formal education and have more access to resources than the students of low social classes. To overcome this problem, 739 students were asked to write a question that they wanted to learn from a scientist and as a result 878 questions were gathered. Those students were selected from 13 different schools at 9 cities in Turkey. These schools were selected to represent a mixture of socioeconomic areas and also to cover different students' profile. Students' questions were classified into two main categories: the field of interest and the cognitive level of the question. The results point to the popularity of biology, astrophysics, nature of scientific inquiry, technology and physics over other science areas, as well as indicating a difference in interest according to gender, grade level and the setting in which the questions were asked. However, our study suggests that only considering questions submitted to informal learning environments, such as popular science magazines or Ask-A-Scientist Internet sites has limitations and deficiencies. Other methodologies of data collection also need to be considered in designing teaching and school science curriculum to meet students' needs and interest. The findings from our study tend to challenge existing thinking from other studies. Our results show that self-generated questions asked in an informal and a formal setting have different patterns. Some aspects of students' self-generated questions and their implications for policy, science curriculum reform and teaching are discussed in this paper.

  15. Learning across the curriculum: connecting the pharmaceutical sciences to practice in the first professional year.

    PubMed

    Brown, Bethanne; Skau, Kenneth; Wall, Andrea

    2009-04-07

    To facilitate the student's ability to make the connection of the core foundational basic science courses to the practice of pharmacy. In 2000, 10 faculty members from basic science and practice courses created and implemented an integrated Patient Care Project for which students chose a volunteer patient and completed 15 different assignments Evidence of student learning, such as grades and reflective comments along with collected evaluative data, indicated an enhancement in students' perceived understanding of the connection between basic science and patient care. The Patient Care Project provided students an opportunity to use knowledge gained in their first-year foundational courses to the care of a patient, solidifying their understanding of the connection between basic science and patient care.

  16. There was less self-critique among basic than in clinical science articles in three rheumatology journals.

    PubMed

    Yazici, Hasan; Gogus, Feride; Esen, Fehim; Yazici, Yusuf

    2014-06-01

    There is concern that self-critique with authors acknowledging limitations of their work is not given due importance in scientific articles. We had the impression that this was more true for articles in basic compared with clinical science. We thus surveyed for the presence of self-critique in the discussion sections of the original articles in three rheumatology journals with attention to differences between the basic and the clinical science articles. The discussion sections of the original articles in January, May, and September 2012 issues of Annals of the Rheumatic Diseases, Arthritis and Rheumatism, and Rheumatology (Oxford) were surveyed (n = 223) after classifying each article as mainly related to clinical or basic science. The discussion sections were electronically scanned by two observers for the presence of the root word "limit" or its derivatives who also read each discussion section for the presence of any limitations otherwise voiced. A limitation discussion in any form was present in only 19 (20.2%) or 29 (30.1%) of 94 basic science vs. 95 (73.6%) or 107 (82.3%) of 129 clinical science articles (P < 0.0001 for either observer). Self-critique, especially lacking in basic science articles, should be given due attention. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  18. Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions Across the Inquiry Continuum

    NASA Astrophysics Data System (ADS)

    Biggers, Mandy

    2018-02-01

    Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in this study. A dataset of 120 elementary science classroom videos and associated lesson plans from 40 elementary teachers (K-5) across 21 elementary school campuses were scored on an instrument measuring the amount of teacher-direction or student-direction of the lessons' investigation questions. Results indicated that the investigation questions were overwhelmingly teacher directed in nature, with no opportunities for students to develop their own questions for investigation. This study has implications for researchers and practitioners alike, calling attention to the teacher-directed nature of investigation questions in existing science curriculum materials, and the need for teacher training in instructional strategies to adapt their existing curriculum materials across the continuum of teacher-directed and student-directed investigation questions. Teachers need strategies for adapting the teacher-directed questions provided in their existing curriculum materials in order to allow students the opportunity to engage in this essential scientific practice.

  19. Redesigning a General Education Science Course to Promote Critical Thinking.

    PubMed

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Using process drama to enhance pre-service teachers' understanding of science and religion

    NASA Astrophysics Data System (ADS)

    Pongsophon, Pongprapan

    2010-03-01

    I report an action research study that aimed at improving Thai pre-service teachers' understanding of the relationship between science and religion and at assisting them to respond to this issue in a science classroom. The participants were twelve post-grad students pursuing Master of Art in Teaching Science at Kasetsart University. They took a course, Philosophy of Science, taught by the researcher in Semester A, academic year 2007. Process drama is the teaching strategy employed. The students were fully engaged in the process drama; doing research, producing, distributing, and criticizing the drama. Focus group, student journal, and observation were used to gather the data and the data was analyzed using qualitative analysis techniques. The focus groups revealed that the drama could help students reflect on the complexity and sensitivity of the issue. They found there was no inherent conflict between science and religion since they answered different questions and used different methods to achieve their results. However, the conflicts occurred when people were not aware of the basic differences between the two so they justified one on the basis of purpose and method of one another. The pre-service teachers also found consistency between science and Buddhism. They thought that the teachers of science should respond to the conflicts in a respectful, compromising, and neutral manner.[InlineMediaObject not available: see fulltext.

  1. Identifying Student Difficulties with Control of Variables Reasoning

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2005-03-01

    Emerging standards for the science learning of precollege students can be regarded as a statement of what constitutes science literacy.^1 These standards emphasize basic concepts such as mass, volume and density, and fundamental process skills such as proportional reasoning, the interpretation of graphs and other representations, and the control of variables in the design of experiments. At Western Washington University, the liberal arts physics course is a general university requirement and for many students one of the only physical science course taken between high school and college graduation. Thus the pre-course understandings of these students can be taken as a measure of the level of science literacy attained in precollege education. An effort is underway at Western Washington University to examine what students know and are able to do both before and after course instruction. Preliminary results indicate that in many cases students have serious conceptual and reasoning difficulties with the material. An example that involves the interpretation of experimental results in deciding whether a particular variable influences (i.e., affects) or determines (i.e., predicts) a given result will be discussed. Evidence from written questions will be presented to identify specific student difficulties.^1See, for example, Project 2061, American Association for the Advancement of Science. 1990. Science for All Americans.New York, NY: Oxford University Press.

  2. Sputnik's Impact on Science Education in America

    NASA Astrophysics Data System (ADS)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  3. Unifying theory for terrestrial research infrastructures

    NASA Astrophysics Data System (ADS)

    Mirtl, Michael

    2016-04-01

    The presentation will elaborate on basic steps needed for building a common theoretical base between Research Infrastructures focusing on terrestrial ecosystems. This theoretical base is needed for developing a better cooperation and integrating in the near future. An overview of different theories will be given and ways to a unifying approach explored. In the second step more practical implications of a theory-guided integration will be developed alongside the following guiding questions: • How do the existing and planned European environmental RIs map on a possible unifying theory on terrestrial ecosystems (covered structures and functions, scale; overlaps and gaps) • Can a unifying theory improve the consistent definition of RÍs scientific scope and focal science questions? • How could a division of tasks between RIs be organized in order to minimize parallel efforts? • Where concretely do existing and planned European environmental RIs need to interact to respond to overarching questions (top down component)? • What practical fora and mechanisms (across RIs) would be needed to bridge the gap between PI driven (bottom up) efforts and the centralistic RI design and operations?

  4. Symbolic Interaction and Applied Social Research: A FOCUS ON TRANSLATIONAL SCIENCE RESEARCH1.

    PubMed

    Kotarba, Joseph A

    2014-08-01

    In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism's overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This component has also contributed to the basic social scientific literature on complex organizations and the self.

  5. Basic life support: knowledge and attitude of medical/paramedical professionals.

    PubMed

    Roshana, Shrestha; Kh, Batajoo; Rm, Piryani; Mw, Sharma

    2012-01-01

    Basic life support (BLS), a key component of the chain of survival decreases the arrest - cardiopulmonary resuscitation interval and increases the rate of hospital discharge. The study aimed to explore the knowledge of and attitude towards basic life support (BLS) among medical/paramedical professionals. An observational study was conducted by assessing response to self prepared questionnaire consisting of the demographic information of the medical/paramedical staff, their personnel experience/attitude and knowledge of BLS based on the 2005 BLS Guidelines of European Resuscitation Council. After excluding incomplete questionnaires, the data from 121 responders (27 clinical faculty members, 21 dental and basic sciences faculty members, 29 house officers and 44 nurses and health assistants) were analyzed. Only 9 (7.4%) of the 121 responders answered ≥11, 53 (43%) answered 7-10, and 58 (48%) answered <7 of 15 questions correctly. The clinical faculty members, house officers and nurses/HA had a mean score of 7.4±3.15, 7.37±2.02 and 6.63±2.16 respectively, while dental/basic sciences faculty members attained a least mean score of 4.52 ±2.13 (P<0.001). Those who had received cardiopulmonary resuscitation (CPR) training within 5 years obtained a highest mean score of 8.62±2.49, whereas those who had the training more than 5 years back or no training obtained a mean score of 5.54±2.38 and 6.1±2.29 respectively (P=0.001). Those who were involved in resuscitation frequently had a higher median score of 8 in comparison to those who were seldom involved or not involved at all (P<0.001). The average health personnel in our hospital lack adequate knowledge in CPR/BLS. Training and experience can enhance knowledge of CPR of these personnel. Thus standard of CPR/BLS training and assessment are recommended at our hospital.

  6. Two approaches to physics tutoring

    NASA Astrophysics Data System (ADS)

    Solomaniuck, Tania

    One in two first-year students at science or biomedical faculties fail in basic subjects such as mathematics, chemistry or physics. Course-specific tutoring is one of the available means for improving their performance. In the present research, two tutoring models are developed. Both incorporate independent learning, but from different perspectives and priorities. A pragmatic tutoring approach. The first part of the thesis describes the search process for an optimal course-specific tutoring strategy for a standard first-year physics course in life sciences curricula. After a number of empirical research rounds, a pragmatic compromise emerged as the most suitable form of tutoring. The approach is characterised by: (1) priority to questions from students; (2) a high degree of interactivity with the tutor and among students; (3) due consideration to the number of questions to be dealt with and the depth in which they should be discussed. Most students participating in the tutoring sessions expressed their satisfaction and performed sufficiently well in their exams. However, there was still a problem: the students' insight into the course material was restricted to first-order processing of the syllabus. While this would be satisfactory in non-scientific study programmes, it is deemed insufficient in programmes where deeper insight is required in order that students be able to deal adequately with new conceptual questions or problems. In-depth tutoring. In science programmes, the core objective is for students to acquire in-depth knowledge. Therefore, science educators are designing and studying teaching methods that are geared not only to the acquisition of in-depth knowledge as such, but also to the motivation of students to take a more in-depth approach to learning. Some of the crucial notions in their research are: the extent to which the course content ties in with students' prior knowledge, problem-setting strategies and concept-context linking. 'In-depth tutoring' integrates these crucial notions into a didactical structure that deviates from the classical course structure proposed in reference works. Chapters and learning activities begin with key questions in an area of application that ties in with the interests of the students. In the case of biology students, they are invited to answer biomechanical questions on the basis of their ready knowledge of dynamics, to compare their answers with those from their fellow-students, and to evaluate. However, the questions are formulated in such a way that the students will encounter a problem: lack of knowledge, contradictions, ... This problem creates a need for new information and thus provides a motivation for the knowledge expansion foreseen in the curriculum. Through carefully designed assignments, the students acquire the knowledge and skills they need in order to be able to reach consensus on a scientifically substantiated answer to the initial question.

  7. The use of self-determination theory to foster environmental motivation in an environmental biology course

    NASA Astrophysics Data System (ADS)

    Darner, Rebekka

    A scientifically literate person is one who understands the nature of science, its processes, products, and their appropriate application to decision-making contexts. The impetus to make informed decisions about environmental issues is environmental motivation. I examined students' environmental motivation, its relationship to scientific knowledge, and how environmental motivation can be fostered in a science classroom. This study took place in a college-level environmental biology course in which the instructor attempted to support students' basic psychological needs, as defined by self-determination theory (SDT). The first question was to what extent does an SDT-guided environmental biology course differ from a non-SDT-guided course in the degree to which it fostered self-determined motivation toward the environment. The administration of a well-validated scale to two sections before, after, and six months following the end of the course indicated that SDT-guided instruction is a plausible way to foster environmental motivation in the classroom. The second question was what are the multiple influences on fostering self-determined motivation toward the environment in an SDT-guided course. Path analysis indicated that environmental motivation can be partially accomplished in an environmental biology course by conveying to students that they are cared for, are connected to others, and can trust others while solving environmental problems. The third question sought to characterize students' scientific conceptualizations as they solve environmental problems and the extent to which their conceptualizations relate to the satisfaction of their need for competence. Students were videotaped during in-class problem-solving, after which stimulated-recall interviews were conducted. Grounded theory and an established coding scheme were combined to analyze these data, which resulted in three grounded hypotheses about what characterizes students' scientific knowledge when they feel highly competent about solving environmental problems. The final research question sought to identify which classroom features students cite when they indicate that their basic psychological needs are being fulfilled or undermined. Grounded analysis resulted in seven features of the instructional environment. This dissertation marks the first application of SDT to a formal environmental education setting in which a goal was to foster environmental motivation. Several research prospects and a learning cycle based on findings are proposed.

  8. Profile of middle school students on scientific literacy achievements by using scientific literacy assessments (SLA)

    NASA Astrophysics Data System (ADS)

    Rachmatullah, Arif; Diana, Sariwulan; Rustaman, Nuryani Y.

    2016-02-01

    Along with the development of science and technology, the basic ability to read, write and count is not enough just to be able to survive in the modern era that surrounded by the products of science and technology. Scientific literacy is an ability that might be added as basic ability for human in the modern era. Recently, Fives et al. developed a new scientific literacy assessment for students, named as SLA (Scientific Literacy Assessment). A pilot study on the achievements of scientific literacy of middle school students in Sumedang using SLA was conducted to investigate the profile scientific literacy achievement of 223 middle school students in Sumedang, and compare the outcomes between genders (159 girls and 64 boys) and school accreditation (A and B) using a quantitative method with descriptive research-school survey. Based on the results, the average achievement of scientific literacy Sumedang middle school students is 45.21 and classified as the low category. The five components of scientific literacy, which is only one component in the medium category, namely science motivation and beliefs, and the four other components are in the low and very low category. Boys have higher scientific literacy, but the differences not statistically significant. Student's scientific literacy in an accredited school is higher than B, and the differences are statistically significant. Recommendation for further are: involve more research subjects, add more number of questions for each indicator, and conduct an independent research for each component.

  9. Advice to young behavioral and cognitive scientists.

    PubMed

    Weisman, Ronald G

    2008-02-01

    Modeled on Medawar's Advice to a Young Scientist [Medawar, P.B., 1979. Advice to a Young Scientist. Basic Books, New York], this article provides advice to behavioral and cognitive scientists. An important guiding principle is that the study of comparative cognition and behavior are natural sciences tasked with explaining nature. The author advises young scientists to begin with a natural phenomenon and then bring it into the laboratory, rather than beginning in the laboratory and hoping for an application in nature. He suggests collaboration as a way to include research outside the scientist's normal competence. He then discusses several guides to good science. These guides include Tinbergen's [Tinbergen, N., 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433. This journal was renamed Ethology in 1986. Also reprinted in Anim. Biol. 55, 297-321, 2005] four "why" questions, Platt's [Platt, J.R., 1964. Strong inference. Science 146, 347-353, (http://weber.ucsd.edu/~jmoore/courses/Platt1964.pdf)] notion of strong inference using multiple alternative hypotheses, and the idea that positive controls help scientists to follow Popper's [Popper, K.R., 1959. The Logic of Scientific Discovery. Basic Books, New York, p. 41] advice about disproving hypotheses. The author also recommends Strunk and White's [Strunk, W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York] rules for sound writing, and he provides his personal advice on how to use the anticipation of peer review to improve research and how to decode editors' and reviewers' comments about submitted articles.

  10. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Wald, Robert M.

    There is no question that the formulation of general relativity was one of the most remarkable episodes in the history of science. As a physicist and researcher in general relativity, the story of the formulation of general relativity that I have heard (and repeated) many times goes basically as follows: In 1907, Einstein obtained his fundamental insight-the "equivalence principle"-that gravitation and inertia are intimately connected; a freely falling observer does not "feel" gravitational force. It then took the genius of Einstein many years of "struggle"-during which he mastered the elements of differential geometry-to formulate a theory that properly incorporated this idea. In November, 1915, he finally succeeded in formulating general relativity.

  11. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    NASA Astrophysics Data System (ADS)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  12. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  13. Hermann the Dalmatian as Astronomer

    NASA Astrophysics Data System (ADS)

    Dadic, Z.

    Hermann the Dalmatian was the subject of great controversy for philosophers, and here his work and translations are considered. As far as Hermann's work are concerned his prime interest for astronomy and astrology is stressed. Astrological "predictions" interested him primarely as predictions of events which are related to global questions, i.e. predicting the future course of events in the universe or destiny of nation as a whole, rather then the destiny of indivinduals. On the other hand it is also evident that Hremann with his knowledge of the Eastern, Arabic scientific tradition and the European spiritual tradition, become one of the most important scientists of his times. Hermann archieved a fruitful syntesis between the two traditions and opened new concepts in science. So he stands as a basic figure at the turning point of European science and the scientific endeavours from the 12th to the 15th century.

  14. Some Behaviorial Science Measurement Concerns and Proposals.

    PubMed

    Nesselroade, John R; Molenaar, Peter C M

    2016-01-01

    Primarily from a measurement standpoint, we question some basic beliefs and procedures characterizing the scientific study of human behavior. The relations between observed and unobserved variables are key to an empirical approach to building explanatory theories and we are especially concerned about how the former are used as proxies for the latter. We believe that behavioral science can profitably reconsider the prevailing version of this arrangement because of its vulnerability to limiting idiosyncratic aspects of observed/unobserved variable relations. We describe a general measurement approach that takes into account idiosyncrasies that should be irrelevant to the measurement process but can intrude and may invalidate it in ways that distort and weaken relations among theoretically important variables. To clarify further our major concerns, we briefly describe one version of the measurement approach that fundamentally supports the individual as the primary unit of analysis orientation that we believe should be preeminent in the scientific study of human behavior.

  15. Research, science and technology parks: A global comparison of best practices

    NASA Astrophysics Data System (ADS)

    Ruiz Villacres, Hugo D.

    The purpose of this study was to determine if significant differences exist in the evaluation of effectiveness and efficiency between North American, European, and Asian research parks (RPs). Park directors and staff responded to 25 questions from the Survey for Research, Science and Technology Parks. Effectiveness was measured by director's perception of the RP's contribution to economic growth and job creation. Efficiency was evaluated by the interactions between local universities and research parks, assessment of the ecosystem's basic characteristics, and the culture of innovation in the ecosystem. A stratified sampling procedure from a population of 793 parks was used; analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) were used to test for significance. 130 RPs from three continents participated in this study. No significant differences were found in the evaluation of RPs' directors on effectiveness and efficiency of RPs.

  16. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  17. Intellectual wellness in medical university teachers: Gender based comparison.

    PubMed

    Syed, Sadiqa; Rehman, Rehana; Hussain, Mehwish; Shaikh, Saifullah

    2017-05-01

    A cross section, questionnaire based study was carried out from January 2012 till December 2014 to compare intellectual wellness (IW) awareness on the basis of gender in teachers of basic sciences at medical universities of Karachi, Pakistan. Data was collected from 3 public and 5 private medical universities of Karachi, Pakistan. Questionnaire was tailored from "Wellness Wheel" and responses were aggregated for eight questions in the dimension of IW to obtain aggregate IW score. Reliability of the questionnaire was measured using Cronbach's alpha. The average intellectual score was 24.99 ± 3.93 with a minimum score of 8 and maximum 32.The frequency of keeping informed about research updates was significantly higher in males (p = 0.043) that emphasized significantly better IW awareness of male medical teachers involved in teaching of medical sciences in both public and private medical universities of Pakistan.

  18. The Science and technology Behind Galileo - Europes GPS

    NASA Astrophysics Data System (ADS)

    Saaj, C.; Underwood, C. I.; Noakes, C.; Park, D. W. G.; Moore, T.

    Over recent years, the public has become increasingly aware of the existence of global satellite positioning systems, such as the American Global Positioning System (GPS), for which the generic term is Global Navigation Satellite System (GNSS). This is primarily due to high-profile use in various military conflicts, the acceptance of the technology by the leisure market (hill walking, yachting, etc) and the rapid development of mass-market applications (such as in-vehicle navigation). However, the public is still largely unaware of how GNSS is currently being utilized by researchers across a wide range of scientific applications. The aim of this paper is to provide answers to public's basic questions on GNSS and thereby raise public awareness on the science and technology behind the nascent Galileo project; a European initiative to design, build and deploy a global satellite positioning system similar to the GPS.

  19. Sexual Violence and HIV Transmission: Summary Proceedings of a Scientific Research Planning Meeting

    PubMed Central

    Klot, Jennifer F.; Auerbach, Judith D.; Berry, Miranda R.

    2013-01-01

    This summarizes proceedings of a Scientific Research Planning Meeting on Sexual Violence and HIV transmission, convened by the Social Science Research Council on 19–20 March 2012 at the Greentree Foundation in New York. The Meeting brought together an interdisciplinary group of basic, clinical, epidemiological and social science researchers and policy makers with the aim of: (1) examining what is known about the physiology of sexual violence and its role in HIV transmission, acquisition and pathogenesis; (2) specifying factors that distinguish risks throughout the maturation of the female genital tract, the reproductive cycle and among post-menopausal women; and (3) developing a research agenda to explore unanswered questions. The Meeting resulted in a consensus Research Agenda and White Paper that identify priorities for HIV research, policy and practice as it pertains to the role of sexual violence and genital injury in HIV transmission, acquisition and pathogenesis, particularly among women and girls. PMID:23157400

  20. The unification of physics: the quest for a theory of everything.

    PubMed

    Paulson, Steve; Gleiser, Marcelo; Freese, Katherine; Tegmark, Max

    2015-12-01

    The holy grail of physics has been to merge each of its fundamental branches into a unified "theory of everything" that would explain the functioning and existence of the universe. The last step toward this goal is to reconcile general relativity with the principles of quantum mechanics, a quest that has thus far eluded physicists. Will physics ever be able to develop an all-encompassing theory, or should we simply acknowledge that science will always have inherent limitations as to what can be known? Should new theories be validated solely on the basis of calculations that can never be empirically tested? Can we ever truly grasp the implications of modern physics when the basic laws of nature do not always operate according to our standard paradigms? These and other questions are discussed in this paper. © 2015 New York Academy of Sciences.

  1. Neuroart: picturing the neuroscience of intentional actions in art and science.

    PubMed

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979-82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics.

  2. Neuroart: picturing the neuroscience of intentional actions in art and science

    PubMed Central

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979–82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics. PMID:26257629

  3. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice, Executive Summary and Final Report, October 1, 1978 - March 15, 1980.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…

  4. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  5. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  6. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  7. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  8. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  9. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  10. Can Basic Research on Children and Families Be Useful for the Policy Process?

    ERIC Educational Resources Information Center

    Moore, Kristin A.

    Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…

  11. Misconceptions and Integration.

    PubMed

    Mortaz Hejri, Sara; Mirzazadeh, Azim; Jalili, Mohammad

    2015-10-01

    Pervasive beliefs regarding curricular reform and integration have flourished among medical students, faculty members and medical school administrators. These concepts have extensively impacted the reform process, sometimes by resisting the reforms and sometimes by diverting the curriculum from its planned objectives. In the current paper, we have tried to address the challenges of integration in MD program by looking at the existing literature and the experience of the international universities. We collected the questions frequently asked during the curricular reform process. We, then, evaluated them, and selected 5 main ideas. In order to find their answers, we searched the literature using these keywords: integration, reform, and undergraduate medical curriculum. The findings are discussed in five sections: 1) Reform is not equivalent to integration, 2) Integration can be implemented in both high school and graduate programs, 3) Organ-system based integration is not the only method available for integration, 4) Integration of two phases (basic sciences and physiopathology) can be considered but it is not mandatory, 5) Integration does not fade basic sciences in favor of clinical courses. It seems that medical education literature and prior experience of the leading universities do not support most of the usual concepts about integration. Therefore, it is important to consider informed decision making based on best evidence rather than personal opinions during the curricular reform process.

  12. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  13. Encouraging Competence in Basic Mathematics in Hydrology using The Math You Need

    NASA Astrophysics Data System (ADS)

    Fredrick, K. C.

    2011-12-01

    California University of Pennsylvania has experienced significant growth in interest of its Earth Science programs over the last few years. With the burgeoning shale gas exploration and drilling, along with continued environmental problems, students and parents recognize the potential for jobs in the region in the Geosciences. With this increase in student interest has come an increase in the number of majors including a greater number of first-year students entering the major right from high school. Hydrology, is an important course within the Earth Science department curriculum. It is required by all Geology, Meteorology, and Earth and Space Science Education majors. It also serves majors from the Biology program, but is not required. This mix of students based on major expectations, grade level, and background leads to a varied distribution of math competencies. Many students enter unprepared for the rigors of a physics-based Hydrology course. The pre-requisites for the course are Introduction to Geology, a mostly non-quantitative survey course, and College Algebra. However, some students are more confident in their math skills because they have completed some level of Calculus. Regardless of the students' perceived abilities, nearly all struggle early on in the course because they have never used math within the context of Hydrology (or Science for that matter) , including continuity, conservation, and fluid dynamics. In order to make sure students have the basic skills to understand the science, it has been necessary to dedicate significant class time to such topics as Unit Conversions, Scientific Notation, Significant Figures, and basic Graphing. The Math You Need (TMYN) is an online tool, which requires students to complete instructor-selected questions to assess student competence in fundamental math topics. Using Geology as the context for the questions in the database, TMYN is ideal for introductory-level courses, but can also be effective as a review tool in higher-level courses. For our Hydrology course, we employ a strategy to integrate TMYN assessments throughout the course, to continually encourage students to practice math skills and introduce others that might be unfamiliar. The course begins with a pass/fail pre-assessment to gauge math competencies across the class, to prepare students for the rigors of the course, and to make sure they are technically able to access the website. Beginning the first week, and continuing through the first twelve weeks of the semester, additional assessments are assigned and graded on a pass/fail basis. The assessments include a guided module, followed by a brief quiz. The modules are aligned with the course materials as much as possible. At the end of the course, a post-assessment is assigned to measure student improvement. Most of the students will continue on to courses within Geology or Meteorology, depending on major, for which Hydrology is a pre-requisite. For the students, TMYN will serve to lay the groundwork for improved math competencies throughout their college career. For the faculty, this model allows for more class time to concentrate on science content, lab activities, and data analysis.

  14. The American Indian Digest.

    ERIC Educational Resources Information Center

    Russell, George

    This guide provides a basic source of historical and contemporary Indian information from an American Indian perspective and includes study questions at the end of each section. The primary function of this guide is to be a quick-study reference handbook. Basic questions essential to understanding current problems and issues of American Indians…

  15. Using Art to Teach Students Science Outdoors: How Creative Science Instruction Influences Observation, Question Formation, and Involvement

    NASA Astrophysics Data System (ADS)

    Cone, Christina Schull

    Elementary education has become increasingly divided into subjects and focused on the demand for high math and reading scores. Consequently, teachers spend less time devoted to science and art instruction. However, teaching art and science is crucial to developing creative and rational thinking, especially for observation and questioning skills. In this study, third grade students attending an urban school in Portland, Oregon received instruction of an art strategy using observational and quantifying drawing techniques. This study examines, "Will an art strategy observing the local environment help students make observations and ask questions?" and "In what ways are student learning and perspectives of science affected by the art strategy?" The independent variable is the art strategy developed for this study. There are three dependent variables: quality of student observations, quality of questions, and themes on student learning and perspectives of science. I predicted students would develop strong observation and questioning skills and that students would find the strategy useful or have an increased interest in science. The art scores were high for relevance and detail, but not for text. There were significant correlations between art scores and questions. Interviews revealed three themes: observations create questions, drawing is helpful and challenging, and students connected to science. By examining science through art, students were engaged and created strong observations and questions. Teachers need to balance unstructured drawing time with scaffolding for optimal results. This study provides an integrated science and art strategy that teachers can use outdoors or adapt for the classroom.

  16. Use of the National Board of Medical Examiners® Comprehensive Basic Science Exam: survey results of US medical schools

    PubMed Central

    Wright, William S; Baston, Kirk

    2017-01-01

    Purpose The National Board of Medical Examiners® (NBME) Comprehensive Basic Science Exam (CBSE) is a subject exam offered to US medical schools, where it has been used for external validation of student preparedness for the United States Medical Licensing Examination® (USMLE) Step 1 in new schools and schools undergoing curricular reform. Information regarding the actual use of the NBME CBSE is limited. Therefore, the aim of the survey was to determine the scope and utilization of the NBME CBSE by US medical schools. Methods A survey was sent in May 2016 to curriculum leadership of the 139 US medical schools listed on the Liaison Committee on Medical Education (LCME®) website with provisional or full accreditation as of February 29, 2016. Responses were received from 53 schools (38% response rate). A series of different follow-up questions were asked if respondents stated “yes” or “no” to the initial question “Does your institution administer the NBME CBSE prior to the USMLE Step 1?”. Results A total of 37 schools (70%) administered the NBME CBSE. In all, 36 of the 37 schools responded to follow-up questions. Of 36 schools, 13 schools (36%) used the NBME CBSE for curriculum modification. Six schools (17%) used the NBME CBSE for formative assessment for a course, and five schools (14%) used the NBME CBSE for summative assessment for a course. A total of 28 schools (78%) used the NBME CBSE for identifying students performing below expectations and providing targeted intervention strategies. In all, 24 schools (67%) of the 36 responding schools administering the NBME CBSE administered the test once prior to the administration of the USMLE Step 1, whereas 10 (28%) schools administered the NBME CBSE two or more times prior to the administration of the USMLE Step 1. Conclusion Our data suggest that the NBME CBSE is administered by many US medical schools. However, the objective, timing, and number of exams administered vary greatly among schools. PMID:28670149

  17. Materials Science and Technology Teachers Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry,more » physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.« less

  18. Abortion politics and the production of knowledge.

    PubMed

    Harris, Lisa H

    2013-08-01

    It is common to think of scientific research and the knowledge it generates as neutral and value free. Indeed, the scientific method is designed to produce "objective" data. However, there are always values built into science, as historians of science and technology have shown over and over. The relevant question is not how to rid science of values but, instead, to ask which values and whose values belong? Currently, antiabortion values consistently determine US research policy. Abortion research is declared illegitimate in covert and overt ways, at the level of individual researchers and research policy broadly. Most importantly, federal policy impedes conduct of both basic and clinical research in abortion. However, it is not just research in abortion that is deemed "illegitimate;" research in infertility and in vitro fertilization is as well. Federal funding of any reproductive health research agenda that would pose more than minimal risk to a fetus or embryo is banned. This leaves unanswered scientific questions about abortion, infertility, miscarriage and contraception among other areas. Since moral ground is occupied not just by abortion opponents but also by people who support abortion rights, there is at the very least a competing moral claim to consider changing federal research funding policy. Women and families deserve access to knowledge across the spectrum of reproductive health issues, whether they seek to end or start a pregnancy. Thus, research funding is an issue of reproductive justice. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Basic Research in the Mission Agencies: Agency Perspectives on the Conduct and Support of Basic Research. Report of the National Science Board, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…

  20. New Developments in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    NASA Technical Reports Server (NTRS)

    Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives.

  1. Examining the effect of self-explanation on cognitive integration of basic and clinical sciences in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2017-12-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.

  2. The Priority of the Question: Focus Questions for Sustained Reasoning in Science

    NASA Astrophysics Data System (ADS)

    Lustick, David

    2010-08-01

    Science education standards place a high priority on promoting the skills and dispositions associated with inquiry at all levels of learning. Yet, the questions teachers employ to foster sustained reasoning are most likely borrowed from a textbook, lab manual, or worksheet. Such generic questions generated for a mass audience, lack authenticity and contextual cues that allow learners to immediately appreciate a question’s relevance. Teacher queries intended to motivate, guide, and foster learning through inquiry are known as focus questions. This theoretical article draws upon science education research to present a typology and conceptual framework intended to support science teacher educators as they identify, develop, and evaluate focus questions with their students.

  3. Gender, Science, & the Undergraduate Curriculum. Building Two-Way Streets.

    ERIC Educational Resources Information Center

    Musil, Caryn McTighe, Ed.

    In the essays in this book interdisciplinary groups of scholars and teachers explore ways to integrate the feminist science studies scholarship into the teaching of basic science and how to insert more basic science into the teaching of women's studies. The essays of part 1, New Courses and New Intellectual Frameworks: Transforming Courses in…

  4. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  5. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reif, R.J.; Lock, C.R.

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers.more » In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.« less

  6. Key Questions Related To Building Collaborative and Inclusive Schools.

    ERIC Educational Resources Information Center

    Idol, Lorna

    1997-01-01

    Provides 15 key questions that educators should consider in developing collaborative and inclusive schools. The questions are organized into three categories: general and philosophical questions pertaining to inclusion, questions about the basic mechanics of developing inclusion programs, and questions about the practical implementation of…

  7. Learning science and science education in a new era.

    PubMed

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  8. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  9. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  10. NASA Earth Science Partnerships - The Role and Value of Commercial and Non-Profit Partnerships with Government in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Favors, J.; Cauffman, S.; Ianson, E.; Kaye, J. A.; Friedl, L.; Green, D. S.; Lee, T. J.; Murphy, K. J.; Turner, W.

    2017-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, and technology development. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations with technical and non-technical expertise. This presentation will focus on a new commercial and non-profit partnership effort being undertaken by ESD to integrate expertise unique to these sectors with expertise at NASA to jointly achieve what neither group could alone. Highlights will include case study examples of joint work with perspectives from both NASA and the partner, building interdisciplinary teams with diverse backgrounds but common goals (e.g., economics and Earth observations for valuing natural capital), partnership successes and challenges in the co-production of science and applications, utilizing partner networks to amplify project outcomes, and how involving partners in defining the project scope drives novel and unique scientific and decision-making questions to arise.

  11. Using a high-fidelity patient simulator with first-year medical students to facilitate learning of cardiovascular function curves.

    PubMed

    Harris, David M; Ryan, Kathleen; Rabuck, Cynthia

    2012-09-01

    Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.

  12. [Memorandum IV: Theoretical and Normative Grounding of Health Services Research].

    PubMed

    Baumann, W; Farin, E; Menzel-Begemann, A; Meyer, T

    2016-05-01

    With Memoranda and other initiatives, the German Network for Health Service Research [Deutsches Netzwerk Versorgungsforschung e.V. (DNVF)] is fostering the methodological quality of care research studies for years. Compared to the standards of empirical research, questions concerning the role and function of theories, theoretical approaches and scientific principles have not been taken up on its own. Therefore, the DNVF e.V. has set up a working group in 2013, which was commissioned to prepare a memorandum on "theories in health care research". This now presented memorandum will primarily challenge scholars in health care services research to pay more attention to questions concerning the theoretical arsenal and the background assumptions in the research process. The foundation in the philosophy of science, the reference to normative principles and the theory-bases of the research process are addressed. Moreover, the memorandum will call on to advance the theorizing in health services research and to strengthen not empirical approaches, research on basic principles or studies with regard to normative sciences and to incorporate these relevant disciplines in health services research. Research structures and funding of health services research needs more open space for theoretical reflection and for self-observation of their own, multidisciplinary research processes. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Conceptual versus Algorithmic Learning in High School Chemistry: The Case of Basic Quantum Chemical Concepts--Part 2. Students' Common Errors, Misconceptions and Difficulties in Understanding

    ERIC Educational Resources Information Center

    Papaphotis, Georgios; Tsaparlis, Georgios

    2008-01-01

    Part 2 of the findings are presented of a quantitative study (n = 125) on basic quantum chemical concepts taught at twelfth grade (age 17-18 years) in Greece. A paper-and-pencil test of fourteen questions was used that were of two kinds: five questions that tested recall of knowledge or application of algorithmic procedures (type-A questions);…

  14. Information-seeking behavior of basic science researchers: implications for library services.

    PubMed

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  15. Information-seeking behavior of basic science researchers: implications for library services

    PubMed Central

    Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.

    2010-01-01

    Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658

  16. Speaking of food: connecting basic and applied plant science.

    PubMed

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. © 2014 Botanical Society of America, Inc.

  17. Is Soliciting Important in Science? an Investigation of Science Teacher-Student Questioning Interactions

    ERIC Educational Resources Information Center

    Patrick, Ajaja O.; Urhievwejire, Eravwoke Ochuko

    2012-01-01

    The major purpose of this study was to determine the questioning patterns of teachers in science classes. The design employed for the study was a case study. To guide this study, five research questions were asked and answered. The samples of the study consisted of 20 senior secondary schools and 60 science teachers. The instruments used for data…

  18. In defense of basic science funding: today's scientific discovery is tomorrow's medical advance.

    PubMed

    Tessier-Lavigne, Marc

    2013-06-01

    In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science.

  19. Basic science in a predoctoral family practice curriculum.

    PubMed

    Davies, T C; Barnett, B L

    1978-02-01

    A course in applied basic science was designed with topic material organized according to anatomic body regions. Details of the diagnostic method were explained early in the course, and clinical procedures for data gathering and problem analyzing were followed while the significance of basic science knowledge in dealing with clinical situations was described. A collection of 35mm slides constituted the focal point of the course. The authors conducted the course together and an atmosphere of intellectual honesty was developed through open discussion between faculty and students. Student curiosity was respected and rewarded. Summaries of the discussions were prepared retrospectively by the faculty instructors for review gy the students. This experience proved that family physicians can demonstrate effectively the relevance of basic science to clinical medicine.

  20. Levels of line graph question interpretation with intermediate elementary students of varying scientific and mathematical knowledge and ability: A think aloud study

    NASA Astrophysics Data System (ADS)

    Keller, Stacy Kathryn

    This study examined how intermediate elementary students' mathematics and science background knowledge affected their interpretation of line graphs and how their interpretations were affected by graph question levels. A purposive sample of 14 6th-grade students engaged in think aloud interviews (Ericsson & Simon, 1993) while completing an excerpted Test of Graphing in Science (TOGS) (McKenzie & Padilla, 1986). Hand gestures were video recorded. Student performance on the TOGS was assessed using an assessment rubric created from previously cited factors affecting students' graphing ability. Factors were categorized using Bertin's (1983) three graph question levels. The assessment rubric was validated by Padilla and a veteran mathematics and science teacher. Observational notes were also collected. Data were analyzed using Roth and Bowen's semiotic process of reading graphs (2001). Key findings from this analysis included differences in the use of heuristics, self-generated questions, science knowledge, and self-motivation. Students with higher prior achievement used a greater number and variety of heuristics and more often chose appropriate heuristics. They also monitored their understanding of the question and the adequacy of their strategy and answer by asking themselves questions. Most used their science knowledge spontaneously to check their understanding of the question and the adequacy of their answers. Students with lower and moderate prior achievement favored one heuristic even when it was not useful for answering the question and rarely asked their own questions. In some cases, if students with lower prior achievement had thought about their answers in the context of their science knowledge, they would have been able to recognize their errors. One student with lower prior achievement motivated herself when she thought the questions were too difficult. In addition, students answered the TOGS in one of three ways: as if they were mathematics word problems, science data to be analyzed, or they were confused and had to guess. A second set of findings corroborated how science background knowledge affected graph interpretation: correct science knowledge supported students' reasoning, but it was not necessary to answer any question correctly; correct science knowledge could not compensate for incomplete mathematics knowledge; and incorrect science knowledge often distracted students when they tried to use it while answering a question. Finally, using Roth and Bowen's (2001) two-stage semiotic model of reading graphs, representative vignettes showed emerging patterns from the study. This study added to our understanding of the role of science content knowledge during line graph interpretation, highlighted the importance of heuristics and mathematics procedural knowledge, and documented the importance of perception attentions, motivation, and students' self-generated questions. Recommendations were made for future research in line graph interpretation in mathematics and science education and for improving instruction in this area.

  1. A writing-intensive course improves biology undergraduates' perception and confidence of their abilities to read scientific literature and communicate science.

    PubMed

    Brownell, Sara E; Price, Jordan V; Steinman, Lawrence

    2013-03-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.

  2. Applying a laser-induced incandescence (LII) diagnostic to monitor nanoparticle synthesis in an atmospheric plasma, in situ

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Mitrani, James; Yeh, Yao-Wen; Shneider, Mikhail; Stratton, Brentley; Raitses, Yevgeny

    2016-09-01

    A DC arc discharge with a consumed graphite anode is commonly used for synthesis of carbon nanoparticles, including carbon nanotubes (CNTs) and graphene flakes. The graphite electrode is physically vaporized by high currents (20-60 A) in a buffer gas at 100-600 torr, leading to nanoparticle synthesis in a low temperature (>1 eV), plasma. Utilizing arc plasma synthesis technique has resulted in the synthesis of higher quality nanomaterials. However, the formation of nanoparticles in arc discharge plasmas is poorly understood. A particularly interesting question is where in the arc the nanoparticles nucleate and grow. In our current work we show the results of studying the formation of carbon nanotubes in an arc discharge, in situ, using laser-induced incandescence (LII). The results of LII are discussed in combination with ex situ measurements of the synthesized nanoparticles and modeling, to provide an insight into the physics behind nanoparticle synthesis in plasma. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  4. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  5. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  6. Florence Goodenough and child study: The question of mothers as researchers.

    PubMed

    Johnson, Ann

    2015-05-01

    This article examines the views of early developmental psychologist Florence Goodenough, summarizing her contributions to the field, her complex viewpoints on science and gender issues, and her arguments for maternal record-keeping as a valuable scientific strategy, as drawn from her writings in textbooks, popular magazine articles, and private correspondence. During the 1920s, 1930s, and 1940s, when Goodenough enjoyed a high professional profile as a research scientist, the field of child psychology shifted from focus on producing applied knowledge to benefit parents and educators to a preference for laboratory-controlled basic science approaches to understanding development. Goodenough championed observation and other descriptive methods, including use of mothers as data collectors in the home, even while these approaches were increasingly discredited by prominent peers in the United States. I argue that Goodenough's allegiance to maternal record-keeping highlights a forgotten strand of context-sensitive, descriptive work that survived despite its general disparagement among proponents of a narrower version of strictly experimental developmental science emerging in the 1920s. (c) 2015 APA, all rights reserved).

  7. Primary pre-service teachers' skills in planning a guided scientific inquiry

    NASA Astrophysics Data System (ADS)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-10-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  8. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  9. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    ERIC Educational Resources Information Center

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  10. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  11. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  12. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  13. The Role of Questions in the Science Classroom--How Girls and Boys Respond to Teachers' Questions

    ERIC Educational Resources Information Center

    Eliasson, Nina; Karlsson, Karl Göran; Sørensen, Helene

    2017-01-01

    The purpose of this study was to explore (a) to what extent male and female science teachers pose different types of questions and (b) if the type of science question posed influences the extent to which boys or girls respond to them. Transcripts of the teacher-student interaction in a whole-class situation were analysed, with attention paid to…

  14. Driving research in infant and children's nutrition: a perspective on industry.

    PubMed

    Rai, Deshanie; Larson, Brian

    2009-05-01

    As part of the workshop entitled "Early Risk Determinants and Later Health Outcomes: Implications for Research Prioritization and the Food Supply" (8-9 July 2008, Washington, DC), which was cosponsored by the International Life Sciences Institute of North America and the International Life Sciences Institute Research Foundation, representatives of the food industry discussed the practical application of nutrition science. Nutrition plays a key role in guiding health outcomes throughout the life cycle. In particular, the prenatal, postnatal, and early childhood periods are extremely sensitive to the presence of appropriate nutrition. A growing body of evidence shows that early nutrition may program the unborn and the infant's key physiologic systems, including the endocrine, cardiovascular, and central nervous systems, to influence later life outcomes. While scientists in academia continue to explore the multifactorial nature of early risk determinants and later life outcomes at a mechanistic and basic science level, it is important to understand the potential of the infant and child food industries to address questions such as what factors have been noted to drive research in these sectors of the food industry. How can scientists in these industries work alongside the scientists in academia and in government to set priorities, make decisions around these health issues, and translate academic insights into innovative nutritional solutions for the benefit of public health? Given the commitment of the infant and child food industries to deliver scientifically supported early life nutrition, it is easy to understand why this industry would work in partnership with both the scientists in academia and the government to identify a means of addressing the fundamental questions of this workshop.

  15. Who's Asking?

    ERIC Educational Resources Information Center

    Kohn, Alfie

    2015-01-01

    In this article, Alfie Kohn discusses four questions about questioning--starting with questions that are more basic, and progressing to some that are "deeper and potentially more subversive of traditional schooling." He begins by considering what questions we should ask students, and encourages teachers to keep questions with…

  16. The importance of defining technical issues in interagency environmental negotiations

    USGS Publications Warehouse

    Lamb, B.L.; Burkardt, N.; Taylor, J.G.

    2001-01-01

    The role of technical clarity in successful multiparty negotiations was studied. Investigations involved in-depth interviews with the principal participants in six consultations conducted under the U.S. Federal Energy Regulatory Commission’s hydroelectric power project licensing procedures. Technical clarity was especially important in these cases because they concerned science-based questions. The principal issues in the six cases were fish passage, instream flow for fish habitat, and entrainment of fish in hydropower turbines. It was concluded that technical clarity was one of the most critical elements in resolving these conflicts. In the least successful negotiations, parties failed to address the basic values of the dispute before plunging into technical studies. The results of those studies usually highlighted the potential for negative outcomes and increased polarization between the participants. In the most successful negotiations, the various parties shared an understanding of each of their basic values. These shared understandings led to technical studies that cast the negotiation in a positive light and illuminated possible solutions.

  17. Basic Principles of Animal Science. Reprinted.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  18. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  19. Spinal cord injury: promising interventions and realistic goals.

    PubMed

    McDonald, John W; Becker, Daniel

    2003-10-01

    Long regarded as impossible, spinal cord repair is approaching the realm of reality as efforts to bridge the gap between bench and bedside point to novel approaches to treatment. It is important to recognize that the research playing field is rapidly changing and that new mechanisms of resource development are required to effectively make the transition from basic science discoveries to effective clinical treatments. This article reviews recent laboratory studies and phase 1 clinical trials in neural and nonneural cell transplantation, stressing that the transition from basic science to clinical applications requires a parallel rather than serial approach, with continuous, two-way feedback to most efficiently translate basic science findings, through evaluation and optimization, to clinical treatments. An example of mobilizing endogenous stem cells for repair is reviewed, with emphasis on the rapid application of basic science to clinical therapy. Successful and efficient transition from basic science to clinical applications requires (1) a parallel rather than a serial approach; (2) development of centers that integrate three spheres of science, translational, transitional, and clinical trials; and (3) development of novel resources to fund the most critically limited step of transitional to clinical trials.

  20. 75 FR 27547 - Notice of Reestablishment of the Secretary of Energy Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... management, basic science, research, development and technology activities; energy and national security... basis of their broad competence in areas relating to quality management, basic science, renewable energy, energy policy, environmental science, economics, and broad public policy interests. Membership of the...

  1. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    PubMed

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  2. Integration of medicine and basic science in dentistry: the role of oral and maxillofacial surgery in the pre-doctoral dental curriculum.

    PubMed

    Dennis, Matthew J

    2010-05-01

    It is the premise of this paper that the need for medical and basic science instruction in dentistry will increase over time. However, student and faculty appreciation of the relevance and significance of medicine and basic science to clinical dentistry has been elusive, largely due to difficulties linking biomedical science instruction and clinical dental instruction. The scope of traditional procedure based oral surgery instruction can be expanded in an attempt to bridge the medical science-clinical gap. Topics such as health status evaluation, medical risk assessment, and a variety of other biomedical issues can be presented to students in a way which imparts specific dental meaning to basic medical science in real-life clinical situations. Using didactic and chair side instruction in an oral surgery clinical environment, students are confronted with the need to understand these issues and how they relate to the patients they encounter who present for dental care.

  3. Human Salivary Alpha-Amylase (EC.3.2.1.1) Activity and Periodic Acid and Schiff Reactive (PAS) Staining: A Useful Tool to Study Polysaccharides at an Undergraduate Level

    ERIC Educational Resources Information Center

    Fernandes, Ruben; Correia, Rossana; Fonte, Rosalia; Prudencio, Cristina

    2006-01-01

    Health science education is presently in discussion throughout Europe due to the Bologna Declaration. Teaching basic sciences such as biochemistry in a health sciences context, namely in allied heath education, can be a challenging task since the students of preclinical health sciences are not often convinced that basic sciences are clinically…

  4. Results of Studying Astronomy Students’ Science Literacy, Quantitative Literacy, and Information Literacy

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.

    2017-01-01

    Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.

  5. Assessing the Effectiveness of Inquiry-based Learning Techniques Implemented in Large Classroom Settings

    NASA Astrophysics Data System (ADS)

    Steer, D. N.; McConnell, D. A.; Owens, K.

    2001-12-01

    Geoscience and education faculty at The University of Akron jointly developed a series of inquiry-based learning modules aimed at both non-major and major student populations enrolled in introductory geology courses. These courses typically serve 2500 students per year in four to six classes of 40-160 students each per section. Twelve modules were developed that contained common topics and assessments appropriate to Earth Science, Environmental Geology and Physical Geology classes. All modules were designed to meet four primary learning objectives agreed upon by Department of Geology faculty. These major objectives include: 1) Improvement of student understanding of the scientific method; 2) Incorporation of problem solving strategies involving analysis, synthesis, and interpretation; 3) Development of the ability to distinguish between inferences, data and observations; and 4) Obtaining an understanding of basic processes that operate on Earth. Additional objectives that may be addressed by selected modules include: 1) The societal relevance of science; 2) Use and interpretation of quantitative data to better understand the Earth; 3) Development of the students' ability to communicate scientific results; 4) Distinguishing differences between science, religion and pseudo-science; 5) Evaluation of scientific information found in the mass media; and 6) Building interpersonal relationships through in-class group work. Student pre- and post-instruction progress was evaluated by administering a test of logical thinking, an attitude toward science survey, and formative evaluations. Scores from the logical thinking instrument were used to form balanced four-person working groups based on the students' incoming cognitive level. Groups were required to complete a series of activities and/or exercises that targeted different cognitive domains based upon Bloom's taxonomy (knowledge, comprehension, application, analysis, synthesis and evaluation of information). Daily assessments of knowledge-level learning included evaluations of student responses to pre- and post-instruction conceptual test questions, short group exercises and content-oriented exam questions. Higher level thinking skills were assessed when students completed exercises that required the completion of Venn diagrams, concept maps and/or evaluation rubrics both during class periods and on exams. Initial results indicate that these techniques improved student attendance significantly and improved overall retention in the course by 8-14% over traditional lecture formats. Student scores on multiple choice exam questions were slightly higher (1-3%) for students taught in the active learning environment and short answer questions showed larger gains (7%) over students' scores in a more traditional class structure.

  6. Review of Research: Teacher Questioning Behavior in Science Classrooms.

    ERIC Educational Resources Information Center

    Blosser, Patricia E.

    Selected for this review are dissertations and other research reports related to science teacher questioning behavior, with particular emphasis on those studies designed to help teachers change their questioning behavior. Summarizing the section on observational studies (N=11), the author concludes that science teachers appear to function…

  7. Comparing the use of open and closed questions for Web-based measures of the continued-influence effect.

    PubMed

    Connor Desai, Saoirse; Reimers, Stian

    2018-06-25

    Open-ended questions, in which participants write or type their responses, are used in many areas of the behavioral sciences. Although effective in the lab, they are relatively untested in online experiments, and the quality of responses is largely unexplored. Closed-ended questions are easier to use online because they generally require only single key- or mouse-press responses and are less cognitively demanding, but they can bias the responses. We compared the data quality obtained using open and closed response formats using the continued-influence effect (CIE), in which participants read a series of statements about an unfolding event, one of which is unambiguously corrected later. Participants typically continue to refer to the corrected misinformation when making inferential statements about the event. We implemented this basic procedure online (Exp. 1A, n = 78), comparing standard open-ended responses to an alternative procedure using closed-ended responses (Exp. 1B, n = 75). Finally, we replicated these findings in a larger preregistered study (Exps. 2A and 2B, n = 323). We observed the CIE in all conditions: Participants continued to refer to the misinformation following a correction, and their references to the target misinformation were broadly similar in number across open- and closed-ended questions. We found that participants' open-ended responses were relatively detailed (including an average of 75 characters for inference questions), and almost all responses attempted to address the question. The responses were faster, however, for closed-ended questions. Overall, we suggest that with caution it may be possible to use either method for gathering CIE data.

  8. Mechanistic systems modeling to guide drug discovery and development

    PubMed Central

    Schmidt, Brian J.; Papin, Jason A.; Musante, Cynthia J.

    2013-01-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. PMID:22999913

  9. Mechanistic systems modeling to guide drug discovery and development.

    PubMed

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice.

    PubMed

    Milan, David J; Lubitz, Steven A; Kääb, Stefan; Ellinor, Patrick T

    2010-08-01

    Genome-wide association studies have been increasingly used to study the genetics of complex human diseases. Within the field of cardiac electrophysiology, this technique has been applied to conditions such as atrial fibrillation, and several electrocardiographic parameters including the QT interval. While these studies have identified multiple genomic regions associated with each trait, questions remain, including the best way to explore the pathophysiology of each association and the potential for clinical utility. This review will summarize recent genome-wide association study results within cardiac electrophysiology and discuss their broader implications in basic science and clinical medicine. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  11. The evolving role of health care organizations in research.

    PubMed

    Tuttle, W C; Piland, N F; Smith, H L

    1988-01-01

    Many hospitals and health care organizations are contending with fierce financial and competitive pressures. Consequently, programs that do not make an immediate contribution to master strategy are often overlooked in the strategic management process. Research programs are a case in point. Basic science, clinical, and health services research programs may help to create a comprehensive and fundamentally sound master strategy. This article discusses the evolving role of health care organizations in research relative to strategy formulation. The primary costs and benefits from participating in research programs are examined. An agenda of questions is presented to help health care organizations determine whether they should incorporate health-related research as a key element in their strategy.

  12. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  13. The Achilles tendon: fundamental properties and mechanisms governing healing

    PubMed Central

    Freedman, Benjamin R.; Gordon, Joshua A.; Soslowsky, Louis J.

    2014-01-01

    Summary This review highlights recent research on Achilles tendon healing, and comments on the current clinical controversy surrounding the diagnosis and treatment of injury. The processes of Achilles tendon healing, as demonstrated through changes in its structure, composition, and biomechanics, are reviewed. Finally, a review of tendon developmental biology and mechano transductive pathways is completed to recognize recent efforts to augment injured Achilles tendons, and to suggest potential future strategies for therapeutic intervention and functional tissue engineering. Despite an abundance of clinical evidence suggesting that current treatments and rehabilitation strategies for Achilles tendon ruptures are equivocal, significant questions remain to fully elucidate the basic science mechanisms governing Achilles tendon injury, healing, treatment, and rehabilitation. PMID:25332943

  14. Explanation, argumentation and dialogic interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Aguiar, Orlando G.

    2016-12-01

    As a responsive article to Miranda Rocksén's paper "The many roles of `explanation' in science education: a case study", this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts of dialogue and dialogism in science classrooms contexts. Dialogism is discussed as the basic tenet from which Rocksén developed her research design and methods. In turn, dialogues in science classrooms may be considered as a particular type of discourse that allows the students' culture, mostly based on everyday knowledge, and the science school culture, related to scientific knowledge and language to be interwoven. I argue that in school, science teachers are always committed to the resolution of differences according to a scientific position for the knowledge to be constructed. Thus, the institution of schooling constrains the ways in which dialogue can be conducted in the classrooms, as the scientific perspective will be always, beforehand, the reference for the conclusions to be reached. The second theme developed here, in dialogue with Rocksén, is about explanations in science classrooms. Based on Jean Paul Bronckart (Atividade de linguagem, textos e discursos: por um interacionismo sócio-discursivo, Educ, São Paulo, 1999), the differences and relationship between explanation and argumentation as communicative acts are re-discussed as well its practical consequences to science teaching. Finally, some epistemological questions are raised about the status of scientific explanations in relation to non-scientific ones.

  15. Querying Provenance Information: Basic Notions and an Example from Paleoclimate Reconstruction

    NASA Astrophysics Data System (ADS)

    Stodden, V.; Ludaescher, B.; Bocinsky, K.; Kintigh, K.; Kohler, T.; McPhillips, T.; Rush, J.

    2016-12-01

    Computational models are used to reconstruct and explain past environments and to predict likely future environments. For example, Bocinsky and Kohler have performed a 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest. The resulting academic publications not only contain traditional method descriptions, figures, etc. but also links to code and data for basic transparency and reproducibility. Examples include ResearchCompendia.org and the new project "Merging Science and Cyberinfrastructure Pathways: The Whole Tale." Provenance information provides a further critical element to understand a published study and to possibly extend or challenge the findings of the original authors. We present different notions and uses of provenance information using a computational archaeology example, e.g., the common use of "provenance for others" (for transparency and reproducibility), but also the more elusive but equally important use of "provenance for self". To this end, we distinguish prospective provenance (a.k.a. workflow) from retrospective provenance (a.k.a. data lineage) and show how combinations of both forms of provenance can be used to answer different kinds of important questions about a workflow and its execution. Since many workflows are developed using scripting or special purpose languages such as Python and R, we employ an approach and toolkit called YesWorkflow that brings provenance modeling, capture, and querying into the realm of scripting. YesWorkflow employs the basic W3C PROV standard, as well as the ProvONE extension for sharing and exchanging retrospective and prospective provenance information, respectively. Finally, we argue that the utility of provenance information should be maximized by developing different kinds provenance questions and queries during the early phases of computational workflow design and implementation.

  16. The Emerging Microbe Project: Developing Clinical Care Plans Based on Pathogen Identification and Clinical Case Studies †

    PubMed Central

    O’Donnell, Lauren A.; Perry, Michael W.; Doup, Dane’t R.

    2015-01-01

    For many students in the health sciences, including doctor of pharmacy (PharmD) students, basic and clinical sciences often appear detached from each other. In the infectious disease field, PharmD students additionally struggle with mastering the diversity of microorganisms and the corresponding therapies. The objective of this study was to design an interdisciplinary project that integrates fundamental microbiology with clinical research and decision-making skills. The Emerging Microbe Project guided students through the identification of a microorganism via genetic sequence analysis. The unknown microbe provided the basis for a patient case that asked the student to design a therapeutic treatment strategy for an infected patient. Outside of lecture, students had two weeks to identify the pathogen using nucleotide sequences, compose a microbiology report on the pathogen, and recommend an appropriate therapeutic treatment plan for the corresponding clinical case. We hypothesized that the students would develop a better understanding of the interplay between basic microbiology and infectious disease clinical practice, and that they would gain confidence and skill in independently selecting appropriate antimicrobial therapies for a new disease state. The exercise was conducted with PharmD students in their second professional year of pharmacy school in a required infectious disease course. Here, we demonstrate that the Emerging Microbe Project significantly improved student learning through two assessment strategies (assignment grades and exam questions), and increased student confidence in clinical infectious disease practice. This exercise could be modified for other health sciences students or undergraduates depending upon the level of clinical focus required of the course. PMID:26753029

  17. The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman

    2008-01-01

    Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…

  18. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    ERIC Educational Resources Information Center

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  19. The uses of myth for scientific education: The case of cosmology and mythology

    NASA Astrophysics Data System (ADS)

    Dillingham, Theodore Cooke

    The questions that cosmology seeks to answer are those same questions about the mysteries of the universe that myths have spoken about since antiquity. The basic desire to understand the origin of the universe is equally fundamental in the earliest astronomical, philosophical, and mythic narratives. This work shows how mythic stories can be used as a tool for educating nontechnical audiences. By means of a re-mythologizing of the relationship between Western science and myth, the shared philosophical legacy of both becomes apparent. This review of the history of science, philosophy, and mythology thereby presents a perspective that is pro-myth and pro-science at the same time. By differentiating the mythic perspective and the scientific perspective, the reality of the non-oppositional intimate relationship one has with the other is clarified. Cosmologists have long known that 96% of the universe is invisible to human sensing apparatus. They call this unseen visible element, the stuff that holds the universe together, "dark matter." Coining the phrase "the speed of dark," this dissertation metaphorically illustrates the power of myth, like the power of dark matter, to inform and direct human inquiry into the origins and destiny of the universe. Myth is imagined psychologically to operate at the speed of dark, faster than the speed of light. The unseen visible aspect of myth is shown as the desire of humans to know the origins of creation and the ultimate destiny of the universe. This work examines the rich legacy inherited by contemporary scientists from ancient mythic philosophical traditions. Traces of Aristotle and Thales are seen clearly in the questions that current cosmologists explore today. The variety of answers to these questions displays the equal influence of myth on ancient inquiry and contemporary scientific theoretical development. By examining what myth does, rather than what myth is, the work weaves together a story of mystery and discovery that is currently the realm of cosmologists. Myth itself is distinguished from the multitude of myths or mythic narratives. Myth is shown to fuel human desire to glimpse the known, the not known and the unknowable.

  20. Basic Curriculum Guide--Science. Grades K-6.

    ERIC Educational Resources Information Center

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…

  1. Inventory of Data Sources in Science and Technology. A Preliminary Survey.

    ERIC Educational Resources Information Center

    International Council of Scientific Unions, Paris (France).

    Provided in this inventory are sources of numerical or factual data in selected fields of basic science and applied science/technology. The objective of the inventory is to provide organizations and individuals (scientists, engineers, and information specialists), particularly those in developing countries, with basic data sources relevant to…

  2. Exploring the value and role of integrated supportive science courses in the reformed medical curriculum iMED: a mixed methods study.

    PubMed

    Eisenbarth, Sophie; Tilling, Thomas; Lueerss, Eva; Meyer, Jelka; Sehner, Susanne; Guse, Andreas H; Guse Nee Kurré, Jennifer

    2016-04-29

    Heterogeneous basic science knowledge of medical students is an important challenge for medical education. In this study, the authors aimed at exploring the value and role of integrated supportive science (ISS) courses as a novel approach to address this challenge and to promote learning basic science concepts in medical education. ISS courses were embedded in a reformed medical curriculum. The authors used a mixed methods approach including four focus groups involving ISS course lecturers and students (two each), and five surveys of one student cohort covering the results of regular student evaluations including the ISS courses across one study year. They conducted their study at the University Medical Center Hamburg-Eppendorf between December 2013 and July 2014. Fourteen first-year medical students and thirteen ISS course lecturers participated in the focus groups. The authors identified several themes focused on the temporal integration of ISS courses into the medical curriculum, the integration of ISS course contents into core curriculum contents, the value and role of ISS courses, and the courses' setting and atmosphere. The integrated course concept was positively accepted by both groups, with participants suggesting that it promotes retention of basic science knowledge. Values and roles identified by focus group participants included promotion of basic understanding of science concepts, integration of foundational and applied learning, and maximization of students' engagement and motivation. Building close links between ISS course contents and the core curriculum appeared to be crucial. Survey results confirmed qualitative findings regarding students' satisfaction, with some courses still requiring optimization. Integration of supportive basic science courses, traditionally rather part of premedical education, into the medical curriculum appears to be a feasible strategy to improve medical students' understanding of basic science concepts and to increase their motivation and engagement.

  3. New and Emerging Strategies in Platelet-Rich Plasma Application in Musculoskeletal Regenerative Procedures: General Overview on Still Open Questions and Outlook

    PubMed Central

    Veronesi, Francesca; Maglio, Melania; Sartori, Maria; Fini, Milena

    2015-01-01

    Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions. PMID:26075269

  4. A pharmacy practice laboratory exercise to apply biochemistry concepts.

    PubMed

    Harrold, Marc W; McFalls, Marsha A

    2010-10-11

    To develop exercises that allow pharmacy students to apply foundational knowledge discussed in a first-professional year (P1) biochemistry course to specific disease states and patient scenarios. A pharmacy practice laboratory exercise was developed to accompany a lecture sequence pertaining to purine biosynthesis and degradation. The assignment required students to fill a prescription, provide patient counseling tips, and answer questions pertaining to the disease state, the underlying biochemical problem, and the prescribed medication. Students were graded on the accuracy with which they filled the prescription, provided patient counseling, and answered the questions provided. Overall, students displayed mastery in all of these areas. Additionally, students completed a course survey on which they rated this exercise favorably, noting that it helped them to integrate basic science concepts and pharmacy practice. A laboratory exercise provided an opportunity for P1 students to apply foundational pharmacy knowledge to a patient case and can serve as a template for the design of additional exercises.

  5. Tossing on a Rotating Space Station

    NASA Astrophysics Data System (ADS)

    Paetkau, Mark

    2004-10-01

    The following analysis was inspired by a question posed by a listener of a radio science show. The listener asked the question: "If an astronaut in a space station that was rotating to simulate gravity threw a ball up, where would the ball go?" The physicist answered, "The ball would travel straight across the space station (assuming an open structure). "The main point is that to an outside observer the ball would not "fall" back down as on Earth. As I pondered this it occurred to me that while the answer is correct, it is a special case with a more general solution. Below is an analysis of the motions a thrown object can undergo on a rotating space station. The first part of the discussion is aimed at lower-level undergraduates who have a basic understanding of vectors and circular motion, and the motion is described from the point of view of an external reference frame. Further analysis of the motion by an observer on the space station is appropriate for upper-level students.

  6. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  7. Guidelines and Capabilities for Designing Human Missions

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  8. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    PubMed

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  9. Performance on large-scale science tests: Item attributes that may impact achievement scores

    NASA Astrophysics Data System (ADS)

    Gordon, Janet Victoria

    Significant differences in achievement among ethnic groups persist on the eighth-grade science Washington Assessment of Student Learning (WASL). The WASL measures academic performance in science using both scenario and stand-alone question types. Previous research suggests that presenting target items connected to an authentic context, like scenario question types, can increase science achievement scores especially in underrepresented groups and thus help to close the achievement gap. The purpose of this study was to identify significant differences in performance between gender and ethnic subgroups by question type on the 2005 eighth-grade science WASL. MANOVA and ANOVA were used to examine relationships between gender and ethnic subgroups as independent variables with achievement scores on scenario and stand-alone question types as dependent variables. MANOVA revealed no significant effects for gender, suggesting that the 2005 eighth-grade science WASL was gender neutral. However, there were significant effects for ethnicity. ANOVA revealed significant effects for ethnicity and ethnicity by gender interaction in both question types. Effect sizes were negligible for the ethnicity by gender interaction. Large effect sizes between ethnicities on scenario question types became moderate to small effect sizes on stand-alone question types. This indicates the score advantage the higher performing subgroups had over the lower performing subgroups was not as large on stand-alone question types compared to scenario question types. A further comparison examined performance on multiple-choice items only within both question types. Similar achievement patterns between ethnicities emerged; however, achievement patterns between genders changed in boys' favor. Scenario question types appeared to register differences between ethnic groups to a greater degree than stand-alone question types. These differences may be attributable to individual differences in cognition, characteristics of test items themselves and/or opportunities to learn. Suggestions for future research are made.

  10. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status.

    PubMed

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.

  11. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  12. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  13. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  14. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  15. Medical Microbiology: Deficits and Remedies

    ERIC Educational Resources Information Center

    Gabridge, Michael G.

    1974-01-01

    Microbiology is a typical medical science in which basic information can have direct application. Yet, surveys and questionnaires of recent medical school graduates indicate a serious lack of retentiion in regard to basic biological science. (Author)

  16. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  17. MUSE - Mission to the Uranian system: Unveiling the evolution and formation of ice giants

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, Tatiana; Bracken, Colm; Costa Sitjà, Marc; Dirkx, Dominic; Gerth, Ingo; Konstantinidis, Kostas; Labrianidis, Christos; Laneuville, Matthieu; Luntzer, Armin; MacArthur, Jane L.; Maier, Andrea; Morschhauser, Achim; Nordheim, Tom A.; Sallantin, Renaud; Tlustos, Reinhard

    2015-05-01

    The planet Uranus, one of the two ice giants in the Solar System, has only been visited once by the Voyager 2 spacecraft in 1986. Ice giants represent a fundamental class of planets, and many known exoplanets fall within this category. Therefore, a dedicated mission to an ice giant is crucial to improve the understanding of the formation, evolution and current characteristics of such planets in order to extend the knowledge of both the Solar System and exoplanetary systems. In the study at hand, the rationale, selection, and conceptual design for a mission to investigate the Uranian system, as an archetype for ice giants, is presented. A structured analysis of science questions relating to the Uranian system is performed, categorized by the themes atmosphere, interior, moons and rings, and magnetosphere. In each theme, science questions are defined, with their relative importance in the theme quantified. Additionally, top-level weights for each theme are defined, with atmosphere and interior weighted the strongest, as they are more related to both exoplanetary systems and the Uranian system, than the other two themes (which are more specific for the planet itself). Several top level mission architecture aspects have been defined, from which the most promising concepts were generated using heuristic methods. A trade-off analysis of these concepts is presented, separately, for engineering aspects, such as cost, complexity, and risk, and for science aspects. The science score for each mission is generated from the capability of each mission concept to answer the science questions. The trade-off results in terms of relative science and engineering weight are presented, and competitive mission concepts are analyzed based on the preferred mission type. A mission design point for a typical flagship science mission is selected from the trade space. It consists of a Uranus orbiter with a dry mass of 2073 kg including 402 kg of payload and a Uranus entry probe, which is to perform measurements down 100 bar atmospheric pressure. The orbiter science phase will consist of a Uranus orbit phase of approximately 2 years in a highly elliptical orbit, during which 36 Uranus orbits are performed. Subsequently, a moon phase is performed, during which the periapsis will be raised in five steps, facilitating 9 flybys of each of Uranus' major moons. A preliminary vehicle design is presented, seeking the best compromise between the design drivers, which basically derive from the large distance between Uranus and the Earth (e.g., high thermal load during Venus flyby, low thermal load during Uranus science phase, low data-rate during Uranus science phase, the need of radioisotope power source, etc). This paper is the result of a study carried out during the Alpbach Summer School 2012 "Exploration of the icy planets and their systems" and a one-week follow-up meeting in Graz, Austria. The results of this study show that a flagship ESA L-class mission - consisting of an orbiter with a single atmospheric entry probe and flybys of the main satellites - would be able to address the set of science questions which are identified in the study at hand as the most essential for the understanding of Uranus and its system. The spacecraft, as currently designed, could be launched with an Ariane 5, in 2026, arriving at Uranus in 2044, and operating until 2050. The development of a radioactive power source is the main requirement for feasibility for this mission.

  18. Evolution of a Teacher Professional Development Program that Promotes Teacher and Student Research

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Croft, S. K.; Garmany, C. D.; Walker, C. E.

    2005-12-01

    The Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory have been evolving for nearly ten years. Our current program is actually a team of programs aiding teachers in doing research with small telescopes, large research-grade telescopes, astronomical data archives, and the Spitzer Space Telescope. Along the way, as these programs evolved, a number of basic questions were continuously discussed by the very talented program team. These questions included: 1) What is real research and why should we encourage it? 2) How can it be successfully brought to the classroom? 3) What is the relative importance of teacher content knowledge versus science process knowledge? 4) How frustrating should an authentic research experience be? 5) How do we measure the success of our professional development program? 6) How should be evaluate and publish student work? 7) How can teachers work together on a team to pursue research? 8) What is the model for interaction of teachers and researchers - equal partners versus the graduate student/apprentice model? 9) What is the ideal mix of skills for a professional development team at NOAO? 10) What role can distance learning play in professional preparation? 11) What tools are needed for data analysis? 12) How can we stay funded? Our evolving program has also been used as a test bed to examine new models of teacher's professional development that may aid our outreach efforts in the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  19. Cognition before curriculum: rethinking the integration of basic science and clinical learning.

    PubMed

    Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N

    2013-10-01

    Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.

  20. Questions That Science Teachers Find Difficult (II).

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2003-01-01

    Presents some questions that science teachers find difficult. Focuses on three further questions relating to "simple" everyday situations that are normally explained in terms of the kinetic theory of matter. Identifies looking at the difference between chemical and physical changes as the most problematic question. (Author/YDS)

  1. Using Mobile Devices to Facilitate Student Questioning in a Large Undergraduate Science Class

    ERIC Educational Resources Information Center

    Crompton, Helen; Burgin, Stephen R.; De Paor, Declan G.; Gregory, Kristen

    2018-01-01

    Asking scientific questions is the first practice of science and engineering listed in the Next Generation Science Standards. However, getting students to ask unsolicited questions in a large class can be difficult. In this qualitative study, undergraduate students sent SMS text messages to the instructor who received them on his mobile phone and…

  2. What's in a domain: Understanding how students approach questioning in history and science

    NASA Astrophysics Data System (ADS)

    Portnoy, Lindsay Blau

    During their education, students are presented with information across a variety of academic domains. How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of age and prior knowledge on the ways students approach questioning across history and science content. In two studies, students read history and science passages and then generated questions they would ask to make sense of the content. Nine categories of questions were identified to discern patterns of inquiry across both domains. Results indicate that while age and prior knowledge may play a role in the way students ask questions by domain there are persistent main effects of domain across both studies. Specifically, across both studies students ask questions regarding the purpose or function of ideas in science passages, whereas history passage are more regularly met with questions for supplemental information to complete a student's understanding. In contrast to extant research on developmental status or experience within a content area, current work suggests that domains themselves hold unique properties, which may influence how students approach questioning across domains.

  3. Improving Learning in Science and Basic Skills among Diverse Student Populations.

    ERIC Educational Resources Information Center

    Sutman, Francis X.; Guzman, Ana

    This monograph is a rich resource of information designed to strengthen science and basic skills teaching, and improve learning for limited English proficient (LEP) minority student populations. It proposes the use of hands-on science investigations as the driving force for mathematics and English language development. The materials included in…

  4. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  5. Deciphering the morphology of ice films on metal surfaces

    NASA Astrophysics Data System (ADS)

    Thürmer, Konrad

    2011-03-01

    Although extensive research has been aimed at the structure of ice films, questions regarding basic processes that govern film evolution remain. Recently we discovered how ice films as many as 30 molecular layers thick can be imaged with STM. The observed morphology yields new insights about water-solid interactions and how they affect the structure of ice films. This talk gives an overview of this progress for crystalline ice films on Pt(111) [2-5]. STM reveals a first molecular water layer very different from bulk ice: besides the usual hexagons it also contains pentagons and heptagons. Slightly thicker films (~ 1 nm, at T> 120 K) arecomprisedof ~ 3 nm - highcrystallites , surroundedbytheone - molecule - thickwettinglayer . Thesecrystalsdewetbynucleatinglayersontheirtopfacets [ 4 ] . Measurementsofthenucleationrateasafunctionofcrystalheightprovideestimatesoftheenergyoftheice - Ptinterface . ForT > 115 Ksurfacediffusionisfastenoughthatsurfacesmoothingand 2 D - islandripeningisobservable [ 5 ] . ByquantifyingtheT - dependentripeningofislandarrayswedeterminedtheactivationenergyforsurfaceself - diffusion . Theshapeofthese 2 Dislandsvariesstronglywithfilmthickness . Weattributethistoatransitionfrompolarizediceatthesubstratetowardsprotondisorderatlargerfilmthicknesses . Despitefastsurfacediffusionicemultilayersareoftenfarfromequilibrium . Forexample , icegrowsbetween ~ 120 and ~ 160 K in its cubic variant rather than in its equilibrium hexagonal form. We found this to be a consequence of the mismatch in the atomic Pt-step height and the ice-bilayer separation and propose a mechanism of cubic-ice formation via growth spirals around screw dislocations. Joint work with N.C. Bartelt and S. Nie, Sandia Natl. Labs, CA. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. DOE under Contracts No. DEAC04-94AL85000.

  6. NASA 2014 The Hyperspectral Infrared Imager (HyspIRI) - Science Impact of Deploying Instruments on Separate Platforms

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin; Veraverbeke, Sander; Wright, Robert; Anderson, Martha; Prakash, Anupma; Quattrochi, Dale

    2014-01-01

    The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was minimal, e.g. if the instruments were on separate platforms that followed each other in a train. The impact of a separation of <1 week was strongly dependent on the question that was being addressed with no impact for some questions and a severe impact for others. The impact of a time separation of several months was severe and in many cases it was no longer possible to answer the sub-question. The impact of deploying the instruments on the ISS which is in a precessive (non-sun synchronous) orbit was also very question dependent, in some cases it was possible to go beyond the original question, e.g. to examine the impact of the diurnal cycle, whereas in other cases the question could not be addressed for example if the question required observations from the polar regions. As part of the study, the participants were asked to estimate, as a percentage, how completely a given sub-question could be answered with 100% indicating the question could be completely answered. These estimations should be treated with caution but nonetheless can be useful in assessing the impact. Averaging the estimates for each of the combined questions the results indicate that 97% of the questions could be answered with a separation of < 3 minutes. With a separation of < 1 week, 67% of the questions could be answered and with a separation of several months only 21% of the questions could be answered.

  7. Revisiting the Authoritative-Dialogic Tension in Inquiry-Based Elementary Science Teacher Questioning

    NASA Astrophysics Data System (ADS)

    Van Booven, Christopher D.

    2015-05-01

    Building on the 'questioning-based discourse analytical' framework developed by Singapore-based science educator and discourse analyst, Christine Chin, this study investigated the extent to which fifth-grade science teachers' use of questions with either an authoritative or dialogic orientation differentially restricted or expanded the quality and complexity of student responses in the USA. The author analyzed approximately 10 hours of classroom discourse from elementary science classrooms organized around inquiry-based science curricula and texts. Teacher questions and feedback were classified according to their dialogic orientation and contextually inferred structural purpose, while student understanding was operationalized as a dynamic interaction between cognitive process, syntacto-semantic complexity, and science knowledge type. The results of this study closely mirror Chin's and other scholars' findings that the fixed nature of authoritatively oriented questioning can dramatically limit students' opportunities to demonstrate higher order scientific understanding, while dialogically oriented questions, by contrast, often grant students the discursive space to demonstrate a greater breadth and depth of both canonical and self-generated knowledge. However, certain teacher questioning sequences occupying the 'middle ground' between maximal authoritativeness and dialogicity revealed patterns of meaningful, if isolated, instances of higher order thinking. Implications for classroom practice are discussed along with recommendations for future research.

  8. Science under Siege (Invited)

    NASA Astrophysics Data System (ADS)

    Gagosian, R. B.; Wheeler, K. R.

    2013-12-01

    Our planet has changed significantly over the past few decades - physically, chemically, and biologically. The political landscape has also transformed - almost as dramatically - over this same time period. Although recently, it seems that legislative action has slowed to a geological pace. Recent tragedies stemming from natural disasters (tsunamis, oil spills, hurricanes, tornadoes, etc.) have raised the public's awareness of their tenuous relationship with nature. However, the political debate over climate change has raised questions about the integrity of the scientific endeavor and lowered the public's perception of research and trust in scientists. This politicization of science is particularly unfortunate at a time when science is needed to address the threats from rising seas, acidified waters, and intensified storms. The scientific process relies on critical analysis from colleagues, which ensures that theories are well founded, research can be replicated, and the entire process is overseen by scientific peers. It is much easier to disprove something than to definitively prove just about anything. Unfortunately, this truth has been exploited for political purposes. Policy decisions need to be informed by science and not the reverse. However, increasingly when science does not support a policy maker's agenda, they tend to impugn the scientist, the funding agency or even the peer-review system. This is new and hostile territory for science, and we must find a way to rise above the political fray. To do so, we need to improve how and when we communicate information to the public, to whom policy makers are accountable. We need to find new, clearer, and better methods to convey uncertainty and risk in terms meaningful to the public and policy makers. And finally, we need to defend the academic peer review process, which is the gold standard and envy of the world. During these times of fiscal constraints, the scientific community needs to explore new models for doing business. Failure to do so will result in less brain power addressing critical national needs, and ultimately the nation will lose its competitive edge as the world leader in innovation. Not every institution can be the world leader in every discipline and not every institution can afford to have all of the newest scientific instrumentation and infrastructure. We need to find new ways to collaborate within the academic research community as well as finding new partners internationally. We also need to develop new models to partner with industry to help fund the basic and applied research they need to transfer into products and services. Finally, we need to communicate the importance of supporting basic research and avoid the mounting movement to focus on solutions to our current problems. Far too often, the political process is demanding an immediate return on investment for research and the result is the lack of long-term commitment to basic research. This is a short-sighted and alarming trend, which threatens our ability to acquire the knowledge needed to apply to challenges and questions not yet envisioned, but which nonetheless, may be critical to our society in the coming decades. While it is tempting to sell the seed corn in tough times, we must protect it so that the next generation of scientists will have the tools, knowledge, and ability to meet the grand challenges of their generation.

  9. Questioning Profiles in Secondary Science Classrooms

    ERIC Educational Resources Information Center

    Almeida, Patricia; de Souza, Francisle Neri

    2010-01-01

    In this paper, we are concerned with the role of both teachers and students' questioning in classroom interaction. Bearing in mind that the current guidelines point out to student centred teaching, our aim is to analyse and characterise the questioning patterns of contemporary secondary science classes and compare them to the questioning profiles…

  10. Educational Outreach: The Space Science Road Show

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with community thought. The difficulty with a show this elaborate and intricate is communicating on a level understandable for teenagers, whilst not treating them like children. Professional space scientists know how easy it is to lose oneself in technical specifics. This would, of course, only confuse young people. The author would like to discuss the ideas for this show with a knowledgeable audience and hopefully get some (constructive) feedback.

  11. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    ERIC Educational Resources Information Center

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  12. A Novel Multiple Choice Question Generation Strategy: Alternative Uses for Controlled Vocabulary Thesauri in Biomedical-Sciences Education.

    PubMed

    Lopetegui, Marcelo A; Lara, Barbara A; Yen, Po-Yin; Çatalyürek, Ümit V; Payne, Philip R O

    2015-01-01

    Multiple choice questions play an important role in training and evaluating biomedical science students. However, the resource intensive nature of question generation limits their open availability, reducing their contribution to evaluation purposes mainly. Although applied-knowledge questions require a complex formulation process, the creation of concrete-knowledge questions (i.e., definitions, associations) could be assisted by the use of informatics methods. We envisioned a novel and simple algorithm that exploits validated knowledge repositories and generates concrete-knowledge questions by leveraging concepts' relationships. In this manuscript we present the development and validation of a prototype which successfully produced meaningful concrete-knowledge questions, opening new applications for existing knowledge repositories, potentially benefiting students of all biomedical sciences disciplines.

  13. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  14. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Summary charts of the following topics are presented: the Percentage of Critical Questions in Constrained and Robust Programs; the Executive Committee and AMAC Disposition of Critical Questions for Constrained and Robust Programs; and the Requirements for Ground-based Research and Flight Platforms for Constrained and Robust Programs. Data Tables are also presented and cover the following: critical questions from all Life Sciences Division Discipline Science Plans; critical questions listed by category and criticality; all critical questions which require ground-based research; critical questions that would utilize spacelabs listed by category and criticality; critical questions that would utilize Space Station Freedom (SSF) listed by category and criticality; critical questions that would utilize the SSF Centrifuge; facility listed by category and criticality; critical questions that would utilize a Moon base listed by category and criticality; critical questions that would utilize robotic missions listed by category and criticality; critical questions that would utilize free flyers listed by category and criticality; and critical questions by deliverables.

  15. Translating orthopaedic basic science into clinical relevance.

    PubMed

    Madry, Henning

    2014-12-01

    In orthopaedic and trauma surgery, the rapid evolution of biomedical research has fundamentally changed the perception of the musculoskeletal system. Here, the rigor of basic science and the art of musculoskeletal surgery have come together to create a new discipline -experimental orthopaedics- that holds great promise for the causative cure of many orthopaedic conditions. The Journal of Experimental Orthopaedics intends to bridge the gap between orthopaedic basic science and clinical relevance, to allow for a fruitful clinical translation of excellent and important investigations in the field of the entire musculoskeletal system.

  16. Comparing Two Inquiry Professional Development Interventions in Science on Primary Students' Questioning and Other Inquiry Behaviours

    NASA Astrophysics Data System (ADS)

    Nichols, Kim; Burgh, Gilbert; Kennedy, Callie

    2017-02-01

    Developing students' skills to pose and respond to questions and actively engage in inquiry behaviours enables students to problem solve and critically engage with learning and society. The aim of this study was to analyse the impact of providing teachers with an intervention in inquiry pedagogy alongside inquiry science curriculum in comparison to an intervention in non-inquiry pedagogy alongside inquiry science curriculum on student questioning and other inquiry behaviours. Teacher participants in the comparison condition received training in four inquiry-based science units and in collaborative strategic reading. The experimental group, the community of inquiry (COI) condition, received training in facilitating a COI in addition to training in the same four inquiry-based science units. This study involved 227 students and 18 teachers in 9 primary schools across Brisbane, Australia. The teachers were randomly allocated by school to one of the two conditions. The study followed the students across years 6 and 7 and students' discourse during small group activities was recorded, transcribed and coded for verbal inquiry behaviours. In the second year of the study, students in the COI condition demonstrated a significantly higher frequency of procedural and substantive higher-order thinking questions and other inquiry behaviours than those in the comparison condition. Implementing a COI within an inquiry science curriculum develops students' questioning and science inquiry behaviours and allows teachers to foster inquiry skills predicated by the Australian Science Curriculum. Provision of inquiry science curriculum resources alone is not sufficient to promote the questioning and other verbal inquiry behaviours predicated by the Australian Science Curriculum.

  17. A Comparison of the Quality and Sequence of Television and Classroom Science Questions With a Proposed Strategy of Science Instruction

    ERIC Educational Resources Information Center

    Beisenherz, Paul C.

    1973-01-01

    Studied the utilization and effectiveness of a televised science series in 54 first through fourth-grade classrooms, using multiple category systems to analyze the questioning behavior of studio and classroom teachers. Concluded that questioning behaviors of teachers with or without the teachers' manual was influenced by the TV broadcast. (CC)

  18. Using questions sent to an Ask-A-Scientist site to identify children's interests in science

    NASA Astrophysics Data System (ADS)

    Baram-Tsabari, Ayelet; Sethi, Ricky J.; Bry, Lynn; Yarden, Anat

    2006-11-01

    Interest is a powerful motivator; nonetheless, science educators often lack the necessary information to make use of the power of student-specific interests in the reform process of science curricula. This study suggests a novel methodology, which might be helpful in identifying such interests - using children's self-generated questions as an indication of their scientific interests. In this research, children's interests were measured by analyzing 1555 science-related questions submitted to an international Ask-A-Scientist Internet site. The analysis indicated that the popularity of certain topics varies with age and gender. Significant differences were found between children's spontaneous (intrinsically motivated) and school-related (extrinsically motivated) interests. Surprisingly, girls contributed most of the questions to the sample; however, the number of American girls dropped upon entering senior high school. We also found significant differences between girls' and boys' interests, with girls generally preferring biological topics. The two genders kept to their stereotypic fields of interest, in both their school-related and spontaneous questions. Children's science interests, as inferred from questions to Web sites, could ultimately inform classroom science teaching. This methodology extends the context in which children's interests can be investigated.

  19. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status

    PubMed Central

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Background: Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. Materials and Methods: The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. Results: The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students’ academic performance in the comprehensive basic sciences examination. Conclusion: According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination. PMID:26430693

  20. Translating human biology (introduction to special issue).

    PubMed

    Brewis, Alexandra A; Mckenna, James J

    2015-01-01

    Introducing a special issue on "Translating Human Biology," we pose two basic questions: Is human biology addressing the most critical challenges facing our species? How can the processes of translating our science be improved and innovated? We analyze articles published in American Journal of Human Biology from 2004-2013, and find there is very little human biological consideration of issues related to most of the core human challenges such as water, energy, environmental degradation, or conflict. There is some focus on disease, and considerable focus on food/nutrition. We then introduce this special volume with reference to the following articles that provide exemplars for the process of how translation and concern for broader context and impacts can be integrated into research. Human biology has significant unmet potential to engage more fully in translation for the public good, through consideration of the topics we focus on, the processes of doing our science, and the way we present our domain expertise. © 2014 Wiley Periodicals, Inc.

Top