Sample records for basic sciences branch

  1. Opportunities for Computational Discovery in Basic Energy Sciences

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2011-03-01

    An overview of the broad-ranging support of computational physics and computational science within the Department of Energy Office of Science will be provided. Computation as the third branch of physics is supported by all six offices (Advanced Scientific Computing, Basic Energy, Biological and Environmental, Fusion Energy, High-Energy Physics, and Nuclear Physics). Support focuses on hardware, software and applications. Most opportunities within the fields of~condensed-matter physics, chemical-physics and materials sciences are supported by the Officeof Basic Energy Science (BES) or through partnerships between BES and the Office for Advanced Scientific Computing. Activities include radiation sciences, catalysis, combustion, materials in extreme environments, energy-storage materials, light-harvesting and photovoltaics, solid-state lighting and superconductivity.~ A summary of two recent reports by the computational materials and chemical communities on the role of computation during the next decade will be provided. ~In addition to materials and chemistry challenges specific to energy sciences, issues identified~include a focus on the role of the domain scientist in integrating, expanding and sustaining applications-oriented capabilities on evolving high-performance computing platforms and on the role of computation in accelerating the development of innovative technologies. ~~

  2. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    PubMed Central

    Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non–research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise. PMID:21885820

  3. Improving graduate education to support a branching career pipeline: recommendations based on a survey of doctoral students in the basic biomedical sciences.

    PubMed

    Fuhrmann, C N; Halme, D G; O'Sullivan, P S; Lindstaedt, B

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students are already considering a broad range of career options, with one-third intending to pursue a non-research career path. To better support this branching career pipeline, we recommend that national standards for training and mentoring include emphasis on career planning and professional skills development to ensure the success of PhD-level scientists as they contribute to a broadly defined global scientific enterprise.

  4. Basic Research in the Mission Agencies: Agency Perspectives on the Conduct and Support of Basic Research. Report of the National Science Board, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…

  5. Basic science right, not basic science lite: medical education at a crossroad.

    PubMed

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  6. [Basic science and applied science].

    PubMed

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  7. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  8. Code 672 observational science branch computer networks

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  9. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  10. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  11. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  12. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  13. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance

  14. Social and Economic Analysis Branch: integrating policy, social, economic, and natural science

    USGS Publications Warehouse

    Schuster, Rudy; Walters, Katie D.

    2015-01-01

    The Fort Collins Science Center's Social and Economic Analysis Branch provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and natural science in the context of human–natural resource interactions. Our research provides scientific understanding and support for the management and conservation of our natural resources in support of multiple agency missions. We focus on meeting the scientific needs of the Department of the Interior natural resource management bureaus in addition to fostering partnerships with other Federal and State managers to protect, restore, and enhance our environment. The Social and Economic Analysis Branch has an interdisciplinary group of scientists whose primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to support the development of skills in natural resource management activities. Management and research issues associated with human-resource interactions typically occur in a unique context and require knowledge of both natural and social sciences, along with the skill to integrate multiple science disciplines. In response to these challenging contexts, Social and Economic Analysis Branch researchers apply a wide variety of social science concepts and methods which complement our rangeland/agricultural, wildlife, ecology, and biology capabilities. The goal of the Social and Economic Analysis Branch's research is to enhance natural-resource management, agency functions, policies, and decisionmaking.

  15. Characteristics of physicians engaged in basic science: a questionnaire survey of physicians in basic science departments of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2012-09-01

    The number of physicians engaged in basic science and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study aimed to determine the characteristics of physicians who are engaged in basic science in efforts to recruit talent. A questionnaire was distributed to all 30 physicians in the basic science departments of Juntendo University School of Medicine. Question items inquired about sex, years since graduation, years between graduation and time entering basic science, clinical experience, recommending the career to medical students, expected obstacles to students entering basic science, efforts to inspire students in research, increased number of lectures and practical training sessions on research, and career choice satisfaction. Correlations between the variables were examined using χ(2) tests. Overall, 26 physicians, including 7 female physicians, returned the questionnaire (response rate 86.7%). Most physicians were satisfied with their career choice. Medical students were deemed not to choose basic science as their future career, because they aimed to become clinicians and because they were concerned about salary. Women physicians in basic science departments were younger than men. Women physicians also considered themselves to make more efforts in inspiring medical students to be interested in research. Moreover, physicians who became basic scientists earlier in their career wanted more research-related lectures in medical education. Improving physicians' salaries in basic science is important to securing talent. In addition, basic science may be a good career path for women physicians to follow.

  16. Basic sciences agonize in Turkey!

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  17. Basic science conferences in residency training: a national survey.

    PubMed

    Cruz, P D; Charley, M R; Bergstresser, P R

    1987-02-01

    Basic science teaching is an important component of dermatology residency training, and the basic science conference is the major tool utilized by departments of dermatology for its implementation. To characterize the role of basic science conferences in dermatology training, a national survey of chief residents was conducted. Although the survey confirmed that a high value is placed on basic science conferences, a surprising finding was a significant level of dissatisfaction among chief residents, particularly those from university-based programs. Results of the survey have been used to redefine our own objectives in basic science teaching and to propose elements of methodology and curriculum.

  18. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  19. Basic Sciences Fertilizing Clinical Microbiology and Infection Management

    PubMed Central

    2017-01-01

    Abstract Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of “practice deconstruction” might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. PMID:28859345

  20. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown Building...

  1. The relevance of basic sciences in undergraduate medical education.

    PubMed

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  2. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy; Germantown...

  3. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  4. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  5. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  6. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  7. The use of simulation in teaching the basic sciences.

    PubMed

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  8. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    PubMed

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  9. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a...

  10. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    PubMed

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    PubMed

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (p<0.05). The results of this study support the critical role of integrating biomedical knowledge in diagnostic radiology and shows that teaching basic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  12. Fort Collins Science Center Ecosystem Dynamics Branch

    USGS Publications Warehouse

    Wilson, Jim; Melcher, C.; Bowen, Z.

    2009-01-01

    Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.

  13. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  14. TÜV - Zertifizierungen in der Life Science Branche

    NASA Astrophysics Data System (ADS)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  15. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  16. Clinical Competencies and the Basic Sciences: An Online Case Tutorial Paradigm for Delivery of Integrated Clinical and Basic Science Content

    ERIC Educational Resources Information Center

    DiLullo, Camille; Morris, Harry J.; Kriebel, Richard M.

    2009-01-01

    Understanding the relevance of basic science knowledge in the determination of patient assessment, diagnosis, and treatment is critical to good medical practice. One method often used to direct students in the fundamental process of integrating basic science and clinical information is problem-based learning (PBL). The faculty facilitated small…

  17. Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.

    ERIC Educational Resources Information Center

    Lall, Bernard M.

    The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…

  18. Integration and timing of basic and clinical sciences education.

    PubMed

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  19. Basic Principles of Animal Science. Reprinted.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  20. Horizontal integration of the basic sciences in the chiropractic curriculum.

    PubMed

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  1. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    PubMed Central

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  2. Basic science in a predoctoral family practice curriculum.

    PubMed

    Davies, T C; Barnett, B L

    1978-02-01

    A course in applied basic science was designed with topic material organized according to anatomic body regions. Details of the diagnostic method were explained early in the course, and clinical procedures for data gathering and problem analyzing were followed while the significance of basic science knowledge in dealing with clinical situations was described. A collection of 35mm slides constituted the focal point of the course. The authors conducted the course together and an atmosphere of intellectual honesty was developed through open discussion between faculty and students. Student curiosity was respected and rewarded. Summaries of the discussions were prepared retrospectively by the faculty instructors for review gy the students. This experience proved that family physicians can demonstrate effectively the relevance of basic science to clinical medicine.

  3. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    PubMed

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  4. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    PubMed

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  5. Clinical Correlations as a Tool in Basic Science Medical Education

    PubMed Central

    Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.

    2016-01-01

    Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328

  6. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  7. Translating orthopaedic basic science into clinical relevance.

    PubMed

    Madry, Henning

    2014-12-01

    In orthopaedic and trauma surgery, the rapid evolution of biomedical research has fundamentally changed the perception of the musculoskeletal system. Here, the rigor of basic science and the art of musculoskeletal surgery have come together to create a new discipline -experimental orthopaedics- that holds great promise for the causative cure of many orthopaedic conditions. The Journal of Experimental Orthopaedics intends to bridge the gap between orthopaedic basic science and clinical relevance, to allow for a fruitful clinical translation of excellent and important investigations in the field of the entire musculoskeletal system.

  8. Basic Energy Sciences FY 2011 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  9. Science Advising in the Legislative and Executive Branches

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter D.

    2002-04-01

    Almost every action of modern government has some scientific and technical component. However, most senior officials who must set policy and make decisions have little or no scientific training. As a result a small, but growing, number of professional scientists have left their research careers for new ones providing the needed technical advice. Interestingly enough, the job of "science adviser" is very different in the Executive Branch than it is in Congress. The major part of that difference comes from the responsibilities of the parent organization: the Executive actually sets the policies, proposes budgets, and then must perform. As science adviser to the Arms Control and Disarmament Agency and, after its merger with the State Department, I felt that I had a direct effect on how some issues were resolved. Congress, on the other hand, has the responsibility for authorizing and appropriating funds and setting the terms for their use. It exerts much of its power through holding hearings to make points to the public and the administration, but the adviser is usually placed bureaucratically much closer to the Senator or Congressman being advised than to a principal within the Executive Branch and may have more opportunities to communicate with his boss A science adviser is paid to advise on science, not policy, and must do his or her best not to shape the science to fit a desired outcome, the adviser's or the boss's. There are never enough scientists on staff to cover the territory; in all likelihood, there never will be. That makes it incumbent upon the adviser to reach out to his colleagues in ever-widening circles and across boundaries of disciplines. It certainly means learning new science along the way -- when I joined the SFRC staff last summer, I never dreamed that I would have to learn so much biology and medicine in a matter of days. The science community also has an obligation if it wants to see good science advising in Washington: be available; provide

  10. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  11. Seeing believes: Watching entangled sculpted branched DNA in real time

    NASA Astrophysics Data System (ADS)

    Jee, Ah-Young; Guan, Juan; Chen, Kejia; Granick, Steve

    2015-03-01

    The importance of branching in polymer physics is universally accepted but the details are disputed. We have sculpted DNA to various degrees of branching and used single-molecule tracking to image its diffusion in real time when entangled. By ligating three identical or varying length DNA segments, we construct symmetric and asymmetric ?Y? branches from elements of lambda-DNA with 16 um contour length, allowing for single-molecule visualization of equilibrium dynamics. Using home-written software, a full statistical distribution based on at least hundreds of trajectories is quantified with focus on discriminating arm-retraction from branch point motion. Some part of our observations is consistent with the anticipated ?relaxation through arm retraction? mechanism but other observations do not appear to be anticipated theoretically. Currently working as a researcher in Institute for Basic Science.

  12. Basic Energy Sciences FY 2012 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  13. Basic Energy Sciences FY 2014 Research Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  14. The New Millennium and an Education That Captures the Basic Spirit of Science.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  15. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  16. The Museum of Science and Industry Basic List of Children's Science Books, 1986.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…

  17. Speaking of food: connecting basic and applied plant science.

    PubMed

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. © 2014 Botanical Society of America, Inc.

  18. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...

  19. The Effect of Home Related Science Activities on Students' Performance in Basic Science

    ERIC Educational Resources Information Center

    Obomanu, B. J.; Akporehwe, J. N.

    2012-01-01

    Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…

  20. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    PubMed

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  1. Basic Curriculum Guide--Science. Grades K-6.

    ERIC Educational Resources Information Center

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…

  2. Branched-Chain Amino and Keto Acid Biochemistry and Cellular Biology in Central Nervous System Diseases

    DTIC Science & Technology

    2009-05-21

    pyruvate dehydrogenase complex (PDC) and 2-oxo- glutarate dehydrogenase complex. These dehydrogenase complexes share the same basic structure, perform the...Science 312 (2006) 927-930. [20] J. Dancis, M. Levitz, R.G. Westall, Maple syrup urine disease: branched- chain keto- aciduria , Pediatrics 25 (1960...2127 2128 Dancis J, Levitz M, Westall RG. 1960. Maple syrup urine disease: branched-chain keto- aciduria . Pediatrics 25:72-9. Danner DJ, Lemmon

  3. The Museum of Science and Industry Basic List of Children's Science Books, 1987.

    ERIC Educational Resources Information Center

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…

  4. Training of physicians for the twenty-first century: role of the basic sciences.

    PubMed

    Grande, Joseph P

    2009-09-01

    Rapid changes in the healthcare environment and public dissatisfaction with the cost and quality of medical care have prompted a critical analysis of how physicians are trained in the United States. Accrediting agencies have catalyzed a transformation from a process based to a competency-based curriculum, both at the undergraduate and the graduate levels. The objective of this overview is to determine how these changes are likely to alter the role of basic science in medical education. Policy statements related to basic science education from the National Board of Medical Examiners (NBME), the Accreditation Council for Graduate Medical Education (ACGME), American Board of Medical Specialties (ABMS), and the Federation of State Medical Boards (FSMB) were reviewed and assessed for common themes. Three primary roles for the basic sciences in medical education are proposed: (1) basic science to support the development of clinical reasoning skills; (2) basic science to support a critical analysis of medical and surgical interventions ("evidence-based medicine"); and (3) basic and translational science to support analysis of processes to improve healthcare ("science of healthcare delivery"). With these roles in mind, several methods to incorporate basic sciences into the curriculum are suggested.

  5. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  6. Radiological Dispersion Devices and Basic Radiation Science

    NASA Astrophysics Data System (ADS)

    Bevelacqua, Joseph John

    2010-05-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.

  7. Connecting Science and Society: Basic Research in the Service of Social Objectives

    NASA Astrophysics Data System (ADS)

    Sonnert, Gerhard

    2007-03-01

    A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.

  8. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  9. Optometry Basic Science Curricula: Current Status.

    ERIC Educational Resources Information Center

    Berman, Morris S.

    1991-01-01

    A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)

  10. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  11. A critical narrative review of transfer of basic science knowledge in health professions education.

    PubMed

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-06-01

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that

  12. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  13. Information-seeking behavior of basic science researchers: implications for library services.

    PubMed

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  14. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  15. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    USGS Publications Warehouse

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  16. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    PubMed

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  17. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  18. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  19. Information-seeking behavior of basic science researchers: implications for library services

    PubMed Central

    Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.

    2010-01-01

    Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658

  20. Preparing medical students for future learning using basic science instruction.

    PubMed

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  1. Japanese medical students' interest in basic sciences: a questionnaire survey of a medical school in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Shimizu, Haruhiko; Miyahira, Akira; Sakai, Tatsuo; Marui, Eiji

    2013-02-01

    The number of physicians engaged in basic sciences and teaching is sharply decreasing in Japan. To alleviate this shortage, central government has increased the quota of medical students entering the field. This study investigated medical students' interest in basic sciences in efforts to recruit talent. A questionnaire distributed to 501 medical students in years 2 to 6 of Juntendo University School of Medicine inquired about sex, grade, interest in basic sciences, interest in research, career path as a basic science physician, faculties' efforts to encourage students to conduct research, increases in the number of lectures, and practical training sessions on research. Associations between interest in basic sciences and other variables were examined using χ(2) tests. From among the 269 medical students (171 female) who returned the questionnaire (response rate 53.7%), 24.5% of respondents were interested in basic sciences and half of them considered basic sciences as their future career. Obstacles to this career were their original aim to become a clinician and concerns about salary. Medical students who were likely to be interested in basic sciences were fifth- and sixth-year students, were interested in research, considered basic sciences as their future career, considered faculties were making efforts to encourage medical students to conduct research, and wanted more research-related lectures. Improving physicians' salaries in basic sciences is important for securing talent. Moreover, offering continuous opportunities for medical students to experience research and encouraging advanced-year students during and after bedside learning to engage in basic sciences are important for recruiting talent.

  2. Basic science research in urology training.

    PubMed

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  3. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515) and the intervention group received lecture plus a simulation exercise (n l+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  4. The Reorganization of Basic Science Departments in U.S. Medical Schools, 1980-1999.

    ERIC Educational Resources Information Center

    Mallon, William T.; Biebuyck, Julien F.; Jones, Robert F.

    2003-01-01

    Constructed a longitudinal database to examine how basic science departments have been reorganized at U.S. medical schools. Found that there were fewer basic science departments in the traditional disciplines of anatomy, biochemistry, microbiology, pharmacology, and physiology in 1999 than in 1980. But as biomedical science has developed in an…

  5. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  6. A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy

    ERIC Educational Resources Information Center

    Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf

    2009-01-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…

  7. Vaccine Basics (Smallpox)

    MedlinePlus

    ... Smallpox Website NIH Smallpox Research CDC Poxvirus and Rabies Branch Poxvirus Diseases Vaccine Basics Recommend on Facebook ... Smallpox Website NIH Smallpox Research CDC Poxvirus and Rabies Branch Poxvirus Diseases File Formats Help: How do ...

  8. Editorial Commentary: A Model for Shoulder Rotator Cuff Repair and for Basic Science Investigations.

    PubMed

    Brand, Jefferson C

    2018-04-01

    "Breaking the fourth wall" is a theater convention where the narrator or character speaks directly to the audience. As an Assistant Editor-in-Chief, as I comment on a recent basic science study investigating rotator cuff repair, I break the fourth wall and articulate areas of basic science research excellence that align with the vision that we hold for our journal. Inclusion of a powerful video strengthens the submission. We prefer to publish clinical videos in our companion journal, Arthroscopy Techniques, and encourage basic science video submissions to Arthroscopy. Basic science research requires step-by-tedious-step analogous to climbing a mountain. Establishment of a murine rotator cuff repair model was rigorous and research intensive, biomechanically, radiographically, histologically, and genetically documented, a huge step toward the bone-to-tendon healing research summit. This research results in a model for both rotator cuff repair and the pinnacle of quality, basic science research. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. Fundamentals of neurogastroenterology: basic science.

    PubMed

    Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D

    2006-04-01

    The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.

  10. A brief simulation intervention increasing basic science and clinical knowledge.

    PubMed

    Sheakley, Maria L; Gilbert, Gregory E; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l =515) and the intervention group received lecture plus a simulation exercise (n l+s =1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  11. Integration of Basic Sciences in Health's Courses

    ERIC Educational Resources Information Center

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  12. Teaching Toxicology as a Basic Medical Science

    ERIC Educational Resources Information Center

    Gralla, Edward J.

    1976-01-01

    A 4-year effort at Yale University School of Medicine to teach toxicology as an elective basic science from the standpoint of organ-specific toxic effects is described. The objective of the successful multidisciplinary program is to prepare physicians to understand, recognize, and manage adverse effects from drugs and other environmental…

  13. Basic Pharmaceutical Sciences Examination as a Predictor of Student Performance during Clinical Training.

    ERIC Educational Resources Information Center

    Fassett, William E.; Campbell, William H.

    1984-01-01

    A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)

  14. Physician perceptions of the role and value of basic science knowledge in daily clinical practice.

    PubMed

    Fischer, Jennifer A; Muller-Weeks, Susan

    2012-01-01

    The role of basic science education in a clinical setting remains unclear. Research to understand how academic clinicians perceive and use this part of their education can aid curricular development. To assess physician's attitudes toward the value of science knowledge in their clinical practice. Academic physicians from three medical schools completed a questionnaire about the utility of basic science education in core clinical tasks and in practice-based learning and improvement. A total of 109 clinical faculty returned the survey. Overall, 89% of the respondents indicated that basic science education is valuable to their clinical practice. When asked about the utility of basic science information in relation to direct patient care, greater than 50% of the doctors felt they use this when diagnosing and communicating with patients. This rose to greater than 60% when asked about choosing treatment options for their patients. Individuals also responded that basic science knowledge is valuable when developing evidence-based best practices. Specifically, 89% felt that they draw upon this information when training students/residents and 84% use this information when reading journal articles. This study shows that basic science education is perceived by responding academic physicians to be important to their clinical work.

  15. Comparison of Basic Science Knowledge Between DO and MD Students.

    PubMed

    Davis, Glenn E; Gayer, Gregory G

    2017-02-01

    With the coming single accreditation system for graduate medical education, medical educators may wonder whether knowledge in basic sciences is equivalent for osteopathic and allopathic medical students. To examine whether medical students' basic science knowledge is the same among osteopathic and allopathic medical students. A dataset of the Touro University College of Osteopathic Medicine-CA student records from the classes of 2013, 2014, and 2015 and the national cohort of National Board of Medical Examiners Comprehensive Basic Science Examination (NBME-CBSE) parameters for MD students were used. Models of the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 scores were fit using linear and logistic regression. The models included variables used in both osteopathic and allopathic medical professions to predict COMLEX-USA outcomes, such as Medical College Admission Test biology scores, preclinical grade point average, number of undergraduate science units, and scores on the NBME-CBSE. Regression statistics were studied to compare the effectiveness of models that included or excluded NBME-CBSE scores at predicting COMLEX-USA Level 1 scores. Variance inflation factor was used to investigate multicollinearity. Receiver operating characteristic curves were used to show the effectiveness of NBME-CBSE scores at predicting COMLEX-USA Level 1 pass/fail outcomes. A t test at 99% level was used to compare mean NBME-CBSE scores with the national cohort. A total of 390 student records were analyzed. Scores on the NBME-CBSE were found to be an effective predictor of COMLEX-USA Level 1 scores (P<.001). The pass/fail outcome on COMLEX-USA Level 1 was also well predicted by NBME-CBSE scores (P<.001). No significant difference was found in performance on the NBME-CBSE between osteopathic and allopathic medical students (P=.322). As an examination constructed to assess the basic science knowledge of allopathic medical students, the NBME-CBSE is

  16. Combining living anionic polymerization with branching reactions in an iterative fashion to design branched polymers.

    PubMed

    Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira

    2010-06-16

    This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cognition before curriculum: rethinking the integration of basic science and clinical learning.

    PubMed

    Kulasegaram, Kulamakan Mahan; Martimianakis, Maria Athina; Mylopoulos, Maria; Whitehead, Cynthia R; Woods, Nicole N

    2013-10-01

    Integrating basic science and clinical concepts in the undergraduate medical curriculum is an important challenge for medical education. The health professions education literature includes a variety of educational strategies for integrating basic science and clinical concepts at multiple levels of the curriculum. To date, assessment of this literature has been limited. In this critical narrative review, the authors analyzed literature published in the last 30 years (1982-2012) using a previously published integration framework. They included studies that documented approaches to integration at the level of programs, courses, or teaching sessions and that aimed to improve learning outcomes. The authors evaluated these studies for evidence of successful integration and to identify factors that contribute to integration. Several strategies at the program and course level are well described but poorly evaluated. Multiple factors contribute to successful learning, so identifying how interventions at these levels result in successful integration is difficult. Evidence from session-level interventions and experimental studies suggests that integration can be achieved if learning interventions attempt to link basic and clinical science in a causal relationship. These interventions attend to how learners connect different domains of knowledge and suggest that successful integration requires learners to build cognitive associations between basic and clinical science. One way of understanding the integration of basic and clinical science is as a cognitive activity occurring within learners. This perspective suggests that learner-centered, content-focused, and session-level-oriented strategies can achieve cognitive integration.

  18. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  19. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm

  20. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    ERIC Educational Resources Information Center

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  1. Cause and Effect: Testing a Mechanism and Method for the Cognitive Integration of Basic Science.

    PubMed

    Kulasegaram, Kulamakan; Manzone, Julian C; Ku, Cheryl; Skye, Aimee; Wadey, Veronica; Woods, Nicole N

    2015-11-01

    Methods of integrating basic science with clinical knowledge are still debated in medical training. One possibility is increasing the spatial and temporal proximity of clinical content to basic science. An alternative model argues that teaching must purposefully expose relationships between the domains. The authors compared different methods of integrating basic science: causal explanations linking basic science to clinical features, presenting both domains separately but in proximity, and simply presenting clinical features First-year undergraduate health professions students were randomized to four conditions: (1) science-causal explanations (SC), (2) basic science before clinical concepts (BC), (3) clinical concepts before basic science (CB), and (4) clinical features list only (FL). Based on assigned conditions, participants were given explanations for four disorders in neurology or rheumatology followed by a memory quiz and diagnostic test consisting of 12 cases which were repeated after one week. Ninety-four participants completed the study. No difference was found on memory test performance, but on the diagnostic test, a condition by time interaction was found (F[3,88] = 3.05, P < .03, ηp = 0.10). Although all groups had similar immediate performance, the SC group had a minimal decrease in performance on delayed testing; the CB and FL groups had the greatest decreases. These results suggest that creating proximity between basic science and clinical concepts may not guarantee cognitive integration. Although cause-and-effect explanations may not be possible for all domains, making explicit and specific connections between domains will likely facilitate the benefits of integration for learners.

  2. The Future of Basic Science in Academic Surgery

    PubMed Central

    Keswani, Sundeep G.; Moles, Chad M.; Morowitz, Michael; Zeh, Herbert; Kuo, John S.; Levine, Matthew H.; Cheng, Lily S.; Hackam, David J.; Ahuja, Nita; Goldstein, Allan M.

    2017-01-01

    Objective The aim of this study was to examine the challenges confronting surgeons performing basic science research in today’s academic surgery environment. Summary of Background Data Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. Methods An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). Results NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today’s environment, including departmental leadership. Conclusions We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists. PMID:27643928

  3. Welding As Science: Applying Basic Engineering Principles to the Discipline

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  4. Contexts, concepts and cognition: principles for the transfer of basic science knowledge.

    PubMed

    Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey

    2017-02-01

    Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise

  5. Tendon basic science: Development, repair, regeneration, and healing.

    PubMed

    Andarawis-Puri, Nelly; Flatow, Evan L; Soslowsky, Louis J

    2015-06-01

    Tendinopathy and tendon rupture are common and disabling musculoskeletal conditions. Despite the prevalence of these injuries, a limited number of investigators are conducting fundamental, basic science studies focused on understanding processes governing tendinopathies and tendon healing. Development of effective therapeutics is hindered by the lack of fundamental guiding data on the biology of tendon development, signal transduction, mechanotransduction, and basic mechanisms underlying tendon pathogenesis and healing. To propel much needed progress, the New Frontiers in Tendon Research Conference, co-sponsored by NIAMS/NIH, the Orthopaedic Research Society, and the Icahn School of Medicine at Mount Sinai, was held to promote exchange of ideas between tendon researchers and basic science experts from outside the tendon field. Discussed research areas that are underdeveloped and represent major hurdles to the progress of the field will be presented in this review. To address some of these outstanding questions, conference discussions and breakout sessions focused on six topic areas (Cell Biology and Mechanics, Functional Extracellular Matrix, Development, Mechano-biology, Scarless Healing, and Mechanisms of Injury and Repair), which are reviewed in this special issue and briefly presented in this review. Review articles in this special issue summarize the progress in the field and identify essential new research directions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Basic science research and education: a priority for training and capacity building in developing countries.

    PubMed

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  8. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  9. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  10. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  11. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    PubMed

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-11-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  12. BRIDGES: Evolution of basic and applied linkages in benthic science

    USGS Publications Warehouse

    Aumen, Nicholas G.; Gurtz, Martin E.; Barbour, Michael T.; Moerke, Ashley

    2010-01-01

    Growing awareness of environmental degradation resulted in stricter environmental regulations and laws for aquatic ecosystems. These regulations were followed by an increase in applied research and monitoring beginning in the early 1970s. The number of applied scientists who were members of the North American Benthological Society grew at a commensurate rate. The editors of J-NABS recognized that, despite these increases, submitted manuscripts mostly addressed basic science. In response, the BRIDGES section of J-NABS was created in 1994 to provide a forum for linking basic ecological principles to applied science problems and issues. We examined the emergence of applied science topics in J-NABS and its predecessor, Freshwater Invertebrate Biology, from their beginning in 1982 to 2009. We classified papers among 11 categories that included a basic/applied science linkage. In the 1980s, applied papers were predominantly on effects of eutrophication/pollution and landuse changes. When BRIDGES was established in 1994, papers were solicited by editors and BRIDGES sections usually included >1 paper on a common theme to express complementary or alternate viewpoints. Forty-two papers appeared in BRIDGES between 1994 and 2009, but the number per issue declined after 2001. The total number of applied science papers in J-NABS has increased since ∼1994. Citation analysis of BRIDGES papers illustrates how information is being cited, but applied papers often are used in ways that might not lead to citations. BRIDGES transitioned to a new format in September 2009 to address new types of complex, multifaceted linkages. All new BRIDGES articles will be open access, and authors will be encouraged to produce lay-language fact sheets and to post them on the web.

  13. Interprofessional education and the basic sciences: Rationale and outcomes.

    PubMed

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  14. Teaching basic science to optimize transfer.

    PubMed

    Norman, Geoff

    2009-09-01

    Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.

  15. Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    PubMed Central

    Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif

    2010-01-01

    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240

  16. Basic Science for a Secure Energy Future

    NASA Astrophysics Data System (ADS)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  17. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    ERIC Educational Resources Information Center

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  18. Branched Hamiltonians and supersymmetry

    DOE PAGES

    Curtright, Thomas L.; Zachos, Cosmas K.

    2014-03-21

    Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.

  19. Mechanical Components Branch Test Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2004-01-01

    The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.

  20. Applying Student Team Achievement Divisions (STAD) Model on Material of Basic Programme Branch Control Structure to Increase Activity and Student Result

    NASA Astrophysics Data System (ADS)

    Akhrian Syahidi, Aulia; Asyikin, Arifin Noor; Asy’ari

    2018-04-01

    Based on my experience of teaching the material of branch control structure, it is found that the condition of the students is less active causing the low activity of the students on the attitude assessment during the learning process on the material of the branch control structure i.e. 2 students 6.45% percentage of good activity and 29 students percentage 93.55% enough and less activity. Then from the low activity resulted in low student learning outcomes based on a daily re-examination of branch control material, only 8 students 26% percentage reached KKM and 23 students 74% percent did not reach KKM. The purpose of this research is to increase the activity and learning outcomes of students of class X TKJ B SMK Muhammadiyah 1 Banjarmasin after applying STAD type cooperative learning model on the material of branch control structure. The research method used is Classroom Action Research. The study was conducted two cycles with six meetings. The subjects of this study were students of class X TKJ B with a total of 31 students consisting of 23 men and 8 women. The object of this study is the activity and student learning outcomes. Data collection techniques used are test and observation techniques. Data analysis technique used is a percentage and mean. The results of this study indicate that: an increase in activity and learning outcomes of students on the basic programming learning material branch control structure after applying STAD type cooperative learning model.

  1. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy

    ERIC Educational Resources Information Center

    Okulu, Hasan Zuhtu; Oguz-Unver, Ayse

    2015-01-01

    From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…

  2. Improving Learning in Science and Basic Skills among Diverse Student Populations.

    ERIC Educational Resources Information Center

    Sutman, Francis X.; Guzman, Ana

    This monograph is a rich resource of information designed to strengthen science and basic skills teaching, and improve learning for limited English proficient (LEP) minority student populations. It proposes the use of hands-on science investigations as the driving force for mathematics and English language development. The materials included in…

  3. A simulation for teaching the basic and clinical science of fluid therapy.

    PubMed

    Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf

    2009-09-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.

  4. There was less self-critique among basic than in clinical science articles in three rheumatology journals.

    PubMed

    Yazici, Hasan; Gogus, Feride; Esen, Fehim; Yazici, Yusuf

    2014-06-01

    There is concern that self-critique with authors acknowledging limitations of their work is not given due importance in scientific articles. We had the impression that this was more true for articles in basic compared with clinical science. We thus surveyed for the presence of self-critique in the discussion sections of the original articles in three rheumatology journals with attention to differences between the basic and the clinical science articles. The discussion sections of the original articles in January, May, and September 2012 issues of Annals of the Rheumatic Diseases, Arthritis and Rheumatism, and Rheumatology (Oxford) were surveyed (n = 223) after classifying each article as mainly related to clinical or basic science. The discussion sections were electronically scanned by two observers for the presence of the root word "limit" or its derivatives who also read each discussion section for the presence of any limitations otherwise voiced. A limitation discussion in any form was present in only 19 (20.2%) or 29 (30.1%) of 94 basic science vs. 95 (73.6%) or 107 (82.3%) of 129 clinical science articles (P < 0.0001 for either observer). Self-critique, especially lacking in basic science articles, should be given due attention. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Limitations on diversity in basic science departments.

    PubMed

    Leboy, Phoebe S; Madden, Janice F

    2012-08-01

    It has been over 30 years since the beginning of efforts to improve diversity in academia. We can identify four major stages: (1) early and continuing efforts to diversify the pipeline by increasing numbers of women and minorities getting advanced degrees, particularly in science, technology, engineering, and math (STEM); (2) requiring academic institutions to develop their own "affirmative action plans" for hiring and promotion; (3) introducing mentoring programs and coping strategies to help women and minorities deal with faculty practices from an earlier era; (4) asking academic institutions to rethink their practices and policies with an eye toward enabling more faculty diversity, a process known as institutional transformation. The thesis of this article is that research-intensive basic science departments of highly ranked U.S. medical schools are stuck at stage 3, resulting in a less diverse tenured and tenure-track faculty than seen in well-funded science departments of major universities. A review of Web-based records of research-intensive departments in universities with both medical school and nonmedical school departments indicates that the proportion of women and Black faculty in science departments of medical schools is lower than the proportion in similarly research-intensive university science departments. Expectations for faculty productivity in research-intensive medical school departments versus university-based departments may lead to these differences in faculty diversity.

  6. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    ERIC Educational Resources Information Center

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  7. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelder, J.; Kawano, T.; Kelley, J.

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less

  8. Dental sciences related articles data published in a Basic Medical Sciences Journal from Iran.

    PubMed

    Shamim, Thorakkal

    2018-04-01

    This data aimed to audit the dental sciences related articles published in Iranian Journal of Basic Medical Sciences (IJBMS) from 2007 to 2015 over a 9 year period performed using web-based search. The data were analyzed for topic of dental sciences, type of article, international collaborations, source of funding, number of authors and authorship trends. Out of the total 18 data related to dental sciences, original articles (12), review articles (4) and short communications (2) contribute the major share. Regarding the relationship with dental sciences, the maximum number of data were related to oral pathology and microbiology (16) followed by oral medicine and radiology (7) and periodontics (7). Among the data related to dental sciences, oral cancer (3) and gingival and periodontal diseases (3) followed by dental plaque and caries (2) and orthodontic tooth movement (2) form the major attraction of the contributors. The largest numbers of data related to dental sciences were received from Mashhad University of Medical Sciences, Mashhad (4) and Tehran University of Medical Sciences,Tehran (2).The present data were compared with previous bibliometric studies done related to dental sciences (Shamim et al., 2017a, 2017b).

  9. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  10. Paired basic science and clinical problem-based learning faculty teaching side by side: do students evaluate them differently?

    PubMed

    Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G

    2005-02-01

    Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.

  11. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    NASA Astrophysics Data System (ADS)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  12. Examining the effect of self-explanation on cognitive integration of basic and clinical sciences in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2017-12-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of self-explanation during learning has the potential to promote and support the development of integrated knowledge by encouraging novices to elaborate on the causal relationship between clinical features and basic science mechanisms. To explore the effect of this strategy, we compared diagnostic efficacy of teaching students (n = 71) the clinical features of four musculoskeletal pathologies using either (1) integrated causal basic science descriptions (BaSci group); (2) integrated causal basic science descriptions combined with self-explanation prompts (SE group); (3) basic science mechanisms segregated from the clinical features (SG group). All participants completed a diagnostic accuracy test immediately after learning and 1-week later. The results showed that the BaSci group performed significantly better compared to the SE (p = 0.019) and SG groups (p = 0.004); however, no difference was observed between the SE and SG groups (p = 0.91). We hypothesize that the structure of the self-explanation task may not have supported the development of a holistic conceptual understanding of each disease. These findings suggest that integration strategies need to be carefully structured and applied in ways that support the holistic story created by integrated basic science instruction in order to foster conceptual coherence and to capitalize on the benefits of cognition integration.

  13. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies

    PubMed Central

    2016-01-01

    Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy. PMID:27610386

  14. In defense of basic science funding: today's scientific discovery is tomorrow's medical advance.

    PubMed

    Tessier-Lavigne, Marc

    2013-06-01

    In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science.

  15. Very long-term retention of basic science knowledge in doctors after graduation.

    PubMed

    Custers, Eugène J F M; Ten Cate, Olle T J

    2011-04-01

    Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.

  16. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and

  17. Validating concepts of mental disorder: precedents from the history of science.

    PubMed

    Miller, Robert

    2014-10-01

    A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.

  18. Integrating basic science in academic cardiology training: two international perspectives on a common challenge.

    PubMed

    Bode, Michael F; Hilgendorf, Ingo

    2018-06-09

    Political bodies and professional societies acknowledge that translational research benefits from researchers trained in both, clinical medicine and basic science. Yet, few physicians undergoing clinical training in cardiology seek this dual career (Milewicz et al. J Clin Invest 125:3742-3747, 2015). The reasons are likely manifold, but with cardiology having become increasingly interventional and facing economic pressure, how much attention, credit, and encouragement is given to physicians interested in basic cardiovascular science? Having studied and worked in hospitals and laboratories, in both Germany and the USA, we aim to compare in this article how basic science education is currently integrated into cardiology training at German and US university hospitals, from medical school to more advanced career stages. By doing so, we hope to provide some outside perspectives to young physicians and decision makers alike, that may inspire changes to curricula in the respective countries and around the world.

  19. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    PubMed

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  20. The relationship between immediate relevant basic science knowledge and clinical knowledge: physiology knowledge and transthoracic echocardiography image interpretation.

    PubMed

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-10-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent research has implied that a more complex relationship between the two knowledge bases exists. In this study, we explore the relationship between immediate relevant basic science (physiology) and clinical knowledge within a specific domain of medicine (echocardiography). Twenty eight medical students in their 3rd year and 45 physicians (15 interns, 15 cardiology residents and 15 cardiology consultants) took a multiple-choice test of physiology knowledge. The physicians also viewed images of a transthoracic echocardiography (TTE) examination and completed a checklist of possible pathologies found. A total score for each participant was calculated for the physiology test, and for all physicians also for the TTE checklist. Consultants scored significantly higher on the physiology test than did medical students and interns. A significant correlation between physiology test scores and TTE checklist scores was found for the cardiology residents only. Basic science knowledge of immediate relevance for daily clinical work expands with increased work experience within a specific domain. Consultants showed no relationship between physiology knowledge and TTE interpretation indicating that experts do not use basic science knowledge in routine daily practice, but knowledge of immediate relevance remains ready for use.

  1. How do scientists respond to anomalies? Different strategies used in basic and applied science.

    PubMed

    Trickett, Susan Bell; Trafton, J Gregory; Schunn, Christian D

    2009-10-01

    We conducted two in vivo studies to explore how scientists respond to anomalies. Based on prior research, we identify three candidate strategies: mental simulation, mental manipulation of an image, and comparison between images. In Study 1, we compared experts in basic and applied domains (physics and meteorology). We found that the basic scientists used mental simulation to resolve an anomaly, whereas applied science practitioners mentally manipulated the image. In Study 2, we compared novice and expert meteorologists. We found that unlike experts, novices used comparison to address anomalies. We discuss the nature of expertise in the two kinds of science, the relationship between the type of science and the task performed, and the relationship of the strategies investigated to scientific creativity. Copyright © 2009 Cognitive Science Society, Inc.

  2. A review of second law techniques applicable to basic thermal science research

    NASA Astrophysics Data System (ADS)

    Drost, M. Kevin; Zamorski, Joseph R.

    1988-11-01

    This paper reports the results of a review of second law analysis techniques which can contribute to basic research in the thermal sciences. The review demonstrated that second law analysis has a role in basic thermal science research. Unlike traditional techniques, second law analysis accurately identifies the sources and location of thermodynamic losses. This allows the development of innovative solutions to thermal science problems by directing research to the key technical issues. Two classes of second law techniques were identified as being particularly useful. First, system and component investigations can provide information of the source and nature of irreversibilities on a macroscopic scale. This information will help to identify new research topics and will support the evaluation of current research efforts. Second, the differential approach can provide information on the causes and spatial and temporal distribution of local irreversibilities. This information enhances the understanding of fluid mechanics, thermodynamics, and heat and mass transfer, and may suggest innovative methods for reducing irreversibilities.

  3. Pima College Students' Knowledge of Selected Basic Physical Science Concepts.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…

  4. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    ERIC Educational Resources Information Center

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  5. Improved knowledge gain and retention for third-year medical students during surgical journal club using basic science review: A pilot study.

    PubMed

    Williams, Austin D; Mann, Barry D

    2017-02-01

    As they enter the clinical years, medical students face large adjustments in the acquisition of medical knowledge. We hypothesized that basic science review related to the topic of journal club papers would increase the educational benefit for third-year medical students. Students were randomized either to participation in a review session about basic science related to the journal club paper, or to no review. After one day, and after three months, students were given a 10-question quiz encompassing the basic science and the clinical implications of the paper. Twenty-six of 50 students were randomized to basic science review. These students scored better on both sections of the quiz one day after journal club, but only on basic science questions after three months. Students who participated in basic science review had better knowledge gain and retention. Educational activities building upon foundational knowledge improves learning on clinical rotations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development and Validation of a Project Package for Junior Secondary School Basic Science

    ERIC Educational Resources Information Center

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  7. Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research

    PubMed Central

    2017-01-01

    Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research. PMID:29214158

  8. Integrating Basic Science and Clinical Teaching for Third-Year Medical Students.

    ERIC Educational Resources Information Center

    Croen, Lila G.; And Others

    1986-01-01

    A 2-month program for third-year students at Yeshiva's Albert Einstein College of Medicine that provides a model for integrating basic sciences and clinical training is described. It demonstrates the importance of lifelong learning in a field that constantly changes. (Author/MLW)

  9. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    PubMed

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    Context: In medical and veterinary medical education the use of problem-based and cased-based learning has steadily increased over time. At veterinary faculties, this development has mainly been evident in the clinical phase of the veterinary education. Therefore, a consortium of teachers of biochemistry and physiology together with technical and didactical experts launched the EU-funded project "vetVIP", to create and implement veterinary virtual patients and problems for basic science instruction. In this study the implementation and utilization of virtual patients occurred at the veterinary faculties in Budapest, Hannover and Lublin. Methods: This report describes the investigation of the utilization and acceptance of students studying veterinary basic sciences using optional online learning material concurrently to regular biochemistry and physiology didactic instruction. The reaction of students towards this offer of clinical case-based learning in basic sciences was analysed using quantitative and qualitative data. Quantitative data were collected automatically within the chosen software-system CASUS as user-log-files. Responses regarding the quality of the virtual patients were obtained using an online questionnaire. Furthermore, subjective evaluation by authors was performed using a focus group discussion and an online questionnaire. Results: Implementation as well as usage and acceptance varied between the three participating locations. High approval was documented in Hannover and Lublin based upon the high proportion of voluntary students (>70%) using optional virtual patients. However, in Budapest the participation rate was below 1%. Due to utilization, students seem to prefer virtual patients and problems created in their native language and developed at their own university. In addition, the statement that assessment drives learning was supported by the observation that peak utilization was just prior to summative examinations. Conclusion: Veterinary

  10. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    NASA Astrophysics Data System (ADS)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  11. Vertical integration of basic science in final year of medical education.

    PubMed

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  12. Vertical integration of basic science in final year of medical education

    PubMed Central

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Background: Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. Aim: To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. Materials and Methods: After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Results: Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P < 0.01). Students felt that it reinforced, motivated self-directed learning, enabled correlations, improved understanding, put things in perspective, gave confidence, aided application, and enabled them to follow discussions during clinical teaching. Conclusion: Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students. PMID:27563584

  13. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    ERIC Educational Resources Information Center

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  14. Long-Term Retention of Basic Science Knowledge: A Review Study

    ERIC Educational Resources Information Center

    Custers, Eugene J. F. M.

    2010-01-01

    In this paper, a review of long-term retention of basic science knowledge is presented. First, it is argued that retention of this knowledge has been a long-standing problem in medical education. Next, three types of studies are described that are employed in the literature to investigate long-term retention of knowledge in general. Subsequently,…

  15. The Challenge of the Humanities and Social Science Education Through the Basic Seminar (Science of Snow Sports)

    NASA Astrophysics Data System (ADS)

    Taniai, Tetsuyuki; Sugimoto, Taku; Sato, Ken-Ichi; Ikota, Masaru

    The Education Center of Chiba Institute of Technology is taking a new approach to the introduction of liberal arts subjects commonly included in the curriculum of all departments through a newly established basic seminar, the Science of Snow Sports. Each faculty member has been working on setting up classes that cross the conventional boundaries of fields and disciplines and which are targeted at students of all faculties and departments. This paper describes the potential for teaching liberal arts and social science subjects to engineering students through the medium of sports science, based on actual experience gained via this new approach.

  16. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  17. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    ERIC Educational Resources Information Center

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  18. Research program of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor); Boccucci, B. S. (Editor)

    1986-01-01

    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.

  19. Pair Comparison Study of the Relevance of Nine Basic Science Courses

    ERIC Educational Resources Information Center

    Spilman, Edra L.; Spilman, Helen W.

    1975-01-01

    Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…

  20. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.

    PubMed

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.

  1. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  2. DENBRAN: A basic program for a significance test for multivariate normality of clusters from branching patterns in dendrograms

    NASA Astrophysics Data System (ADS)

    Sneath, P. H. A.

    A BASIC program is presented for significance tests to determine whether a dendrogram is derived from clustering of points that belong to a single multivariate normal distribution. The significance tests are based on statistics of the Kolmogorov—Smirnov type, obtained by comparing the observed cumulative graph of branch levels with a graph for the hypothesis of multivariate normality. The program also permits testing whether the dendrogram could be from a cluster of lower dimensionality due to character correlations. The program makes provision for three similarity coefficients, (1) Euclidean distances, (2) squared Euclidean distances, and (3) Simple Matching Coefficients, and for five cluster methods (1) WPGMA, (2) UPGMA, (3) Single Linkage (or Minimum Spanning Trees), (4) Complete Linkage, and (5) Ward's Increase in Sums of Squares. The program is entitled DENBRAN.

  3. Improving College Faculty Instruction in the Basic and Allied Health Sciences.

    ERIC Educational Resources Information Center

    Washton, Nathan S.

    A project to improve college instruction in the basic and allied health sciences at New York Chiropractic College and the New York Institute of Technology is described. Attention was directed to: the kinds of resources colleges and professional schools provide to improve instruction; motivation of faculty to explore innovative or strategic…

  4. Medical Student Use of Objectives in Basic Science and Clinical Instruction.

    ERIC Educational Resources Information Center

    And Others; Mast, Terrill A.

    1980-01-01

    A study that investigated the long-term use of instructional objectives by medical students taking basic science and clinical courses is reported. Focus is on the extent and manner in which the objectives were used and factors that influenced their use. Students reported heavier usage earlier in the curriculum. (Author/JMD)

  5. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction

    PubMed Central

    Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.

    2016-01-01

    Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025

  6. The Basic Science Curriculum in the 21st Century: What Needs to Be Changed?

    ERIC Educational Resources Information Center

    Garant, Philias R.

    1986-01-01

    The basic science curriculum in dental education could be improved by adopting a curriculum containing only two integrated required science courses about (1) the structure and function of the human body and (2) disease and reaction to disease in the human body. Elective graduate-level predoctoral courses would allow specialization. (MSE)

  7. Critical branching neural networks.

    PubMed

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  8. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    PubMed

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  9. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    PubMed

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  10. Application of basic science to clinical problems: traditional vs. hybrid problem-based learning.

    PubMed

    Callis, Amber N; McCann, Ann L; Schneiderman, Emet D; Babler, William J; Lacy, Ernestine S; Hale, David Sidney

    2010-10-01

    It is widely acknowledged that clinical problem-solving is a key skill for dental practitioners. The aim of this study was to determine if students in a hybrid problem-based learning curriculum (h-PBL) were better at integrating basic science knowledge with clinical cases than students in a traditional, lecture-based curriculum (TC). The performance of TC students (n=40) was compared to that of h-PBL students (n=31). Participants read two clinical scenarios and answered a series of questions regarding each. To control for differences in ability, Dental Admission Test (DAT) Academic Average scores and predental grade point averages (GPAs) were compared, and an ANCOVA was used to adjust for the significant differences in DAT (t-test, p=0.002). Results showed that h-PBL students were better at applying basic science knowledge to a clinical case (ANCOVA, p=0.022) based on overall scores on one case. TC students' overall scores were better than h-PBL students on a separate case; however, it was not statistically significant (p=0.107). The h-PBL students also demonstrated greater skills in the areas of hypothesis generation (Mann-Whitney U, p=0.016) and communication (p=0.006). Basic science comprehension (p=0.01) and neurology (p<0.001) were two areas in which the TC students did score significantly higher than h-PBL students.

  11. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  12. The science of consciousness - Basics, models, and visions.

    PubMed

    Hinterberger, Thilo

    2015-12-01

    This article presents a few models and aspects of the phenomenon consciousness that are emerging from modern neuroscience and might serve as a basis for scientific discourse in the field of Applied Consciousness Sciences. A first model describes the dynamics of information processing in the brain. The evoked electric brain potentials represent a hierarchical sequence of functions playing an important role in conscious perception. These range from primary processing, attention, pattern recognition, categorization, associations to judgments, and complex thoughts. Most functions seem to be implemented in the brain's neural network operating as a neurobiological computer. Another model treats conscious perception as a process of internalisation leading to the "self" as conscious observer. As a consequence, every conscious perception can be seen as a reduced and already interpreted observation of an inner representation of an outer or imagined "world." Subjective experience thus offers properties which can only be experienced from the inside and cannot be made objective. Basic values of humanity such as responsibility, love, compassion, freedom, and dignity can be derived from these subjective qualities. Therefore, in contrast to the Natural Sciences, the Science of Consciousness additionally is challenged to deal with those subjective qualities, emphasizing the resulting influence on health, social interactions, and the whole society. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Conducting correlation seminars in basic sciences at KIST Medical College, Nepal

    PubMed Central

    2011-01-01

    KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators) considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools. PMID:22066033

  14. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    PubMed Central

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160

  15. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  16. Aligning library instruction with the needs of basic sciences graduate students: a case study.

    PubMed

    O'Malley, Donna; Delwiche, Frances A

    2012-10-01

    How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Modifying the program's content and structure resulted in a program that appealed to the target audience.

  17. Basic science curriculums in nuclear cardiology and cardiovascular imaging: evolving and emerging concepts.

    PubMed

    Van Decker, William A; Villafana, Theodore

    2008-01-01

    The teaching of basic science with regard to physics, instrumentation, and radiation safety has been part of nuclear cardiology training since its inception. Although there are clear educational and quality rationale for such, regulations associated with the Nuclear Regulatory Commission Subpart J of old 10 CFR section 35 (Title 10, Code of Federal Regulations, Part 35) from the 1960s mandated such prescriptive instruction. Cardiovascular fellowship training programs now have a new opportunity to rethink their basic science imaging curriculums with the era of "revised 10 CFR section 35" and the growing implementation of multimodality imaging training and expertise. This review focuses on the history and the why, what, and how of such a curriculum arising in one city and suggests examples of future implementation in other locations.

  18. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    PubMed

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

  19. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    PubMed

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  20. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  1. Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.

  2. What does the American Board of Surgery In-Training/Surgical Basic Science Examination tell us about graduate surgical education?

    PubMed

    DaRosa, D A; Shuck, J M; Biester, T W; Folse, R

    1993-01-01

    This research sought to identify the strengths and weakness in residents' basic science knowledge and, second, to determine whether they progressively improve in their abilities to recall basic science information and clinical management facts, to analyze cause-effect relationships, and to solve clinical problems. Basic science knowledge was assessed by means of the results of the January 1990 American Board of Surgery's In-Training/Surgical Basic Science Exam (IT/SBSE). Postgraduate year (PGY) 1 residents' scores were compared with those of PGY5 residents. Content related to a question was considered "known" if 67% or more of the residents in each of the two groups answered it correctly. Findings showed 44% of the content tested by the basic science questions were unknown by new and graduating residents. The second research question required the 250 IT/SBSE questions to be classified into one of three levels of thinking abilities: recall, analysis, and inferential thinking. Profile analysis (split-plot analysis of variance) for each pair of resident levels indicated significant (P < 0.001) differences in performance on questions requiring factual recall, analysis, and inference between all levels except for PGY3s and PGY4s. The results of this research enable program directors to evaluate strengths and weaknesses in residency training curricula and the cognitive development of residents.

  3. Aligning library instruction with the needs of basic sciences graduate students: a case study

    PubMed Central

    O'Malley, Donna; Delwiche, Frances A.

    2012-01-01

    Question: How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? Setting: The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. Methods: The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Results: Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Conclusion: Modifying the program's content and structure resulted in a program that appealed to the target audience. PMID:23133328

  4. Summaries of FY 1982 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less

  5. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  6. Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.

    2016-01-01

    The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…

  7. Building 5 Manufacturing Branch. Explore@NASAGoddard celebrates

    NASA Image and Video Library

    2015-09-26

    Building 5 Manufacturing Branch. Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.

  8. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    PubMed

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pharmaceutical applications of cyclodextrins: basic science and product development.

    PubMed

    Loftsson, Thorsteinn; Brewster, Marcus E

    2010-11-01

    Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  10. Evolving the future: Toward a science of intentional change

    PubMed Central

    Wilson, David Sloan; Hayes, Steven C.; Biglan, Anthony; Embry, Dennis D.

    2015-01-01

    Humans possess great capacity for behavioral and cultural change, but our ability to manage change is still limited. This article has two major objectives: first, to sketch a basic science of intentional change centered on evolution; second, to provide examples of intentional behavioral and cultural change from the applied behavioral sciences, which are largely unknown to the basic sciences community. All species have evolved mechanisms of phenotypic plasticity that enable them to respond adaptively to their environments. Some mechanisms of phenotypic plasticity count as evolutionary processes in their own right. The human capacity for symbolic thought provides an inheritance system having the same kind of combinatorial diversity as does genetic recombination and antibody formation. Taking these propositions seriously allows an integration of major traditions within the basic behavioral sciences, such as behaviorism, social constructivism, social psychology, cognitive psychology, and evolutionary psychology, which are often isolated and even conceptualized as opposed to one another. The applied behavioral sciences include well-validated examples of successfully managing behavioral and cultural change at scales ranging from individuals to small groups to large populations. However, these examples are largely unknown beyond their disciplinary boundaries, for lack of a unifying theoretical framework. Viewed from an evolutionary perspective, they are examples of managing evolved mechanisms of phenotypic plasticity, including open-ended processes of variation and selection. Once the many branches of the basic and applied behavioral sciences become conceptually unified, we are closer to a science of intentional change than one might think. PMID:24826907

  11. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  12. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    ERIC Educational Resources Information Center

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  13. Integration of Basic and Clinical Science Courses in US PharmD Programs.

    PubMed

    Islam, Mohammed A; Talukder, Rahmat M; Taheri, Reza; Blanchard, Nicholas

    2016-12-25

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration.

  14. Integration of Basic and Clinical Science Courses in US PharmD Programs

    PubMed Central

    Talukder, Rahmat M.; Taheri, Reza; Blanchard, Nicholas

    2016-01-01

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration. PMID:28179715

  15. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna

    2017-02-01

    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.

  16. Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum.

    PubMed

    Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M

    2017-01-01

    There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.

  17. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    ERIC Educational Resources Information Center

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  18. Summaries of FY 1979 research in the chemical sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less

  19. Integration of medicine and basic science in dentistry: the role of oral and maxillofacial surgery in the pre-doctoral dental curriculum.

    PubMed

    Dennis, Matthew J

    2010-05-01

    It is the premise of this paper that the need for medical and basic science instruction in dentistry will increase over time. However, student and faculty appreciation of the relevance and significance of medicine and basic science to clinical dentistry has been elusive, largely due to difficulties linking biomedical science instruction and clinical dental instruction. The scope of traditional procedure based oral surgery instruction can be expanded in an attempt to bridge the medical science-clinical gap. Topics such as health status evaluation, medical risk assessment, and a variety of other biomedical issues can be presented to students in a way which imparts specific dental meaning to basic medical science in real-life clinical situations. Using didactic and chair side instruction in an oral surgery clinical environment, students are confronted with the need to understand these issues and how they relate to the patients they encounter who present for dental care.

  20. ORD’s Urban Watershed Management Branch

    EPA Science Inventory

    This is a poster for the Edison Science Day, tentatively scheduled for June 10, 2009. This poster presentation summarizes key elements of the EPA Office of Research and Development’s (ORD) Urban Watershed Management Branch (UWMB). An overview of the national problems posed by w...

  1. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach.

  2. Using "Basic Principles" to Understand Complex Science: Nicotine Smoke Chemistry and Literature Analogies

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.

    2005-01-01

    The chemical and physical properties of nicotine and its carboxylic acid salts found in tobacco provided as an interesting example to understand basic principles of complex science. The result showed that the experimental data used were inconsistent to the conclusion made, and the transfer of nicotine smoke from tobacco to smoke cannot be…

  3. Engaging Oral Health Students in Learning Basic Science Through Assessment That Weaves in Personal Experience.

    PubMed

    Leadbeatter, Delyse; Gao, Jinlong

    2018-04-01

    Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek

  4. Research in the chemical sciences. Summaries of FY 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposalsmore » that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.« less

  5. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    PubMed

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  6. Nanoscience and nanotechnology in the Siberian Branch of the Russian Academy of Sciences: bibliometric analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Lavrik, Olga L.; Busygina, Tatyana V.; Shaburova, Natalya N.; Zibareva, Inna V.

    2015-02-01

    The multidimensional bibliometric analysis of publications on nanoscience and nanotechnology (NS&NT) produced by the researchers of the Siberian Branch of the Russian Academy of Sciences (SB RAS) in 2007-2012 has shown their growing publication activity and international visibility in the field and the main objects of research such as nanoparticles, nanostructures (nanostructured materials), nanotubes (especially carbon ones), nanocomposites, nanocrystals, nanotechnology, and nanoelectronics and identified the most productive authors and institutes, as well as the most cited publications. It was made using the data from multidisciplinary (Web of Science, Scopus, and Russian Index of Scientific Citation) and specialized (Chemical Abstracts Plus and Inspec) information resources, that is from international (WoS, Scopus, CAPlus, and Inspec) and national (RISC) data bases. The analysis has shown that most of the SB RAS research works on NS&NT are concentrated in Novosibirsk Scientific Centre.

  7. Branching habit and the allocation of reproductive resources in conifers.

    PubMed

    Leslie, Andrew B

    2012-09-01

    Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit.

  8. Branching habit and the allocation of reproductive resources in conifers

    PubMed Central

    Leslie, Andrew B.

    2012-01-01

    Background and Aims Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Methods Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. Key Results The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conclusions Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit. PMID:22782240

  9. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    PubMed

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  10. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    NASA Astrophysics Data System (ADS)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  11. Basic science breaks through: New therapeutic advances in Parkinson's disease.

    PubMed

    Brundin, Patrik; Atkin, Graham; Lamberts, Jennifer T

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease. © 2015 International Parkinson and Movement Disorder Society.

  12. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    PubMed

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Peer-assisted learning: filling the gaps in basic science education for preclinical medical students.

    PubMed

    Sammaraiee, Yezen; Mistry, Ravi D; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-09-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United Kingdom medical school. Twenty tutorials were delivered by senior students throughout the year to first- and second-year students. A baseline questionnaire was delivered to inform the development of the program followed by an end-point questionnaire the next year (n = 122). Quizzes were administered before and after five separate tutorials to assess changes in mean student scores. Additionally, each tutorial was evaluated via a questionnaire for participants (n = 949). All five posttutorial quizzes showed a significant improvement in mean student score (P < 0.05). Questionnaires showed students found the program to be relevant and useful for revision purposes and appreciated how tutorials contextualized basic science to clinical medicine. Students appreciated the interactive nature of the sessions and found receiving personalized feedback about their learning and consolidating information with someone familiar with the material to be useful. With the inclusion of the program, students felt there were now an adequate number of tutorials during the year. In conclusion, this study shows that senior medical students can design and deliver a program that adds value to the mostly lecture-based formal preclinical curriculum. We hope that our study can prompt further work to explore the effect of PAL on the teaching of basic sciences during preclinical studies. Copyright © 2016 The American Physiological Society.

  14. Riparian forest and instream large wood characteristics, West Branch Sheepscot River, Maine, USA

    Treesearch

    Melissa Laser; James Jordan; Keith Nislow

    2009-01-01

    This study examined riparian forest and instream large wood characteristics in a 2.7 km reach of the West Branch of the Sheepscot River in Maine in order to increase our basic knowledge of these components in a system that is known to have undergone multiple land conversion. The West Branch is approximately 40 km long, drains a 132 km2...

  15. [Discussion on several basic issues of acupuncture-moxibustion science].

    PubMed

    Wang, Guangjun

    2016-10-12

    Nine basic issues on acupuncture-moxibustion science are discussed in this paper. The author believes those include the universal property of acupoints,the placebo effect of acupuncture and moxibustion,the continuous transmission of acupuncture information,the factors of the effects such as growth as well as acquired shape and properties,the classification evidence of acupoint function,the compatibility of acupoints,the change of functional state of acupoint and deqi . The universal property of acupoints means whether there is identical position of acupoint among different ethnic groups. The continuous transmission of acupuncture information is seen as whether the delivery which mainly shows as diffusion maintains active in special region and situation. The classification evidence of acupoint function refers to if there exists universal biological basis.

  16. Retention of knowledge and perceived relevance of basic sciences in an integrated case-based learning (CBL) curriculum

    PubMed Central

    2013-01-01

    Background Knowledge and understanding of basic biomedical sciences remain essential to medical practice, particularly when faced with the continual advancement of diagnostic and therapeutic modalities. Evidence suggests, however, that retention tends to atrophy across the span of an average medical course and into the early postgraduate years, as preoccupation with clinical medicine predominates. We postulated that perceived relevance demonstrated through applicability to clinical situations may assist in retention of basic science knowledge. Methods To test this hypothesis in our own medical student cohort, we administered a paper-based 50 MCQ assessment to a sample of students from Years 2 through 5. Covariates pertaining to demographics, prior educational experience, and the perceived clinical relevance of each question were also collected. Results A total of 232 students (Years 2–5, response rate 50%) undertook the assessment task. This sample had comparable demographic and performance characteristics to the whole medical school cohort. In general, discipline-specific and overall scores were better for students in the latter years of the course compared to those in Year 2; male students and domestic students tended to perform better than their respective counterparts in certain disciplines. In the clinical years, perceived clinical relevance was significantly and positively correlated with item performance. Conclusions This study suggests that perceived clinical relevance is a contributing factor to the retention of basic science knowledge and behoves curriculum planners to make clinical relevance a more explicit component of applied science teaching throughout the medical course. PMID:24099045

  17. Peer-Assisted Learning: Filling the Gaps in Basic Science Education for Preclinical Medical Students

    ERIC Educational Resources Information Center

    Sammaraiee, Yezen; Mistry, Ravi D.; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-01-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United…

  18. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    PubMed

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  19. On the Teaching of Science, Technology and International Affairs.

    PubMed

    Weiss, Charles

    2012-03-01

    Despite the ubiquity and critical importance of science and technology in international affairs, their role receives insufficient attention in traditional international relations curricula. There is little literature on how the relations between science, technology, economics, politics, law and culture should be taught in an international context. Since it is impossible even for scientists to master all the branches of natural science and engineering that affect public policy, the learning goals of students whose primary training is in the social sciences should be to get some grounding in the natural sciences or engineering, to master basic policy skills, to understand the basic concepts that link science and technology to their broader context, and to gain a respect for the scientific and technological dimensions of the broader issues they are addressing. They also need to cultivate a fearless determination to master what they need to know in order to address policy issues, an open-minded but skeptical attitude towards the views of dueling experts, regardless of whether they agree with their politics, and (for American students) a world-view that goes beyond a strictly U.S. perspective on international events. The Georgetown University program in Science, Technology and International Affairs (STIA) is a unique, multi-disciplinary undergraduate liberal arts program that embodies this approach and could be an example that other institutions of higher learning might adapt to their own requirements.

  20. Space astrophysics - Science operations

    NASA Technical Reports Server (NTRS)

    Kutter, G. S.; Riegler, G. R.

    1990-01-01

    Science Operations in the Astrophysics Division of NASA Headquarters are the responsibility of the Science Operations Branch. The goals of Science Operations are to encourage multimission, panchromatic research in astrophysics and to foster coordination and cooperation among all mission operations and data analysis efforts. To meet these goals, the Branch is structured into four areas of responsibility. The paper describes these responsibilities.

  1. Aquatics Systems Branch: transdisciplinary research to address water-related environmental problems

    USGS Publications Warehouse

    Dong, Quan; Walters, Katie D.

    2015-01-01

    The Aquatic Systems Branch at the Fort Collins Science Center is a group of scientists dedicated to advancing interdisciplinary science and providing science support to solve water-related environmental issues. Natural resource managers have an increasing need for scientific information and stakeholders face enormous challenges of increasing and competing demands for water. Our scientists are leaders in ecological flows, riparian ecology, hydroscape ecology, ecosystem management, and contaminant biology. The Aquatic Systems Branch employs and develops state-of-the-science approaches in field investigations, laboratory experiments, remote sensing, simulation and predictive modeling, and decision support tools. We use the aquatic experimental laboratory, the greenhouse, the botanical garden and other advanced facilities to conduct unique research. Our scientists pursue research on the ground, in the rivers, and in the skies, generating and testing hypotheses and collecting quantitative information to support planning and design in natural resource management and aquatic restoration.

  2. An elective course on the basic and clinical sciences aspects of vitamins and minerals.

    PubMed

    Islam, Mohammed A

    2013-02-12

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students' knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products.

  3. An Elective Course on the Basic and Clinical Sciences Aspects of Vitamins and Minerals

    PubMed Central

    2013-01-01

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students’ knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products. PMID:23463149

  4. International cooperation in basic space science, Western Asian countries and the world

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    The world will never better develop and attain a global peace state, if it does not exist a world-wide cooperation, union of interests among all countries on planet Earth, respecting and understanding each other culture differences. So, if the countries interested in space science want to create or better develop this field, they need to firstly construct peace states and social cooperation, while scientific and technological cooperation will develop -among them. Here in this paper, under the principles in the United Nations (UN)' Agenda 21 (UN UNCED, 1992), I propose four points that can lead to a practical and solid international cooperation in basic aerospace science and technology, based on ground studies, with sustainable space programs in countries with social necessities, and to the construction of an avenue of peace states in those areas and in the world, 1) The creation of LINKS among the "developing" countries, among the "developed" ones and between them -with scientists, engineers, educators and administrative personnel. This can catalyze a self-sustainable scientific and technological production in the "developing" countries. Financial matters could be done through the World Bank in coopera-tion with UNESCO. 2) The administration of this difficult enterprise of international coopera-tion. With the increasing complexity of relationships among the aerospace-interested countries, it will be necessary the creation of a center capable to serve as an INTERNATIONAL CO-ORDINATOR CENTER FOR AEROSPACE ACTIVITIES. 3) CULTURE: in Western Asian countries there is a cultural habit that when somebody gives something valuable to a person, this person should give something back. Thus, the Western Asian countries receiving infor-mation on basic aerospace science and technology from the "developed" ones, those countries would probably feel they should give something in return. Western Asian countries could trans-mit their costumes, thinking ways, habits, persons' worries

  5. Branch classification: A new mechanism for improving branch predictor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, P.Y.; Hao, E.; Patt, Y.

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less

  6. Basic Science and Public Policy: Informed Regulation for Nicotine and Tobacco Products.

    PubMed

    Fowler, Christie D; Gipson, Cassandra D; Kleykamp, Bethea A; Rupprecht, Laura E; Harrell, Paul T; Rees, Vaughan W; Gould, Thomas J; Oliver, Jason; Bagdas, Deniz; Damaj, M Imad; Schmidt, Heath D; Duncan, Alexander; De Biasi, Mariella

    2018-06-07

    Scientific discoveries over the past few decades have provided significant insight into the abuse liability and negative health consequences associated with tobacco and nicotine-containing products. While many of these advances have led to the development of policies and laws that regulate access to and formulations of these products, further research is critical to guide future regulatory efforts, especially as novel nicotine-containing products are introduced and selectively marketed to vulnerable populations. In this narrative review, we provide an overview of the scientific findings that have impacted regulatory policy and discuss considerations for further translation of science into policy decisions. We propose that open, bidirectional communication between scientists and policy makers is essential to develop transformative preventive- and intervention-focused policies and programs to reduce appeal, abuse liability, and toxicity of the products. Through these types of interactions, collaborative efforts to inform and modify policy have the potential to significantly decrease the use of tobacco and alternative nicotine products and thus enhance health outcomes for individuals. This work addresses current topics in the nicotine and tobacco research field to emphasize the importance of basic science research and provide examples of how it can be utilized to inform public policy. In addition to relaying current thoughts on the topic from experts in the field, the article encourages continued efforts and communication between basic scientists and policy officials.

  7. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  8. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    PubMed

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.

  9. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    PubMed

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  10. Professional fulfillment and parenting work-life balance in female physicians in Basic Sciences and medical research: a nationwide cross-sectional survey of all 80 medical schools in Japan.

    PubMed

    Yamazaki, Yuka; Uka, Takanori; Marui, Eiji

    2017-09-15

    In Japan, the field of Basic Sciences encompasses clinical, academic, and translational research, as well as the teaching of medical sciences, with both an MD and PhD typically required. In this study, it was hypothesized that the characteristics of a Basic Sciences career path could offer the professional advancement and personal fulfillment that many female medical doctors would find advantageous. Moreover, encouraging interest in Basic Sciences could help stem shortages that Japan is experiencing in medical fields, as noted in the three principal contributing factors: premature resignation of female clinicians, an imbalance of female physicians engaged in research, and a shortage of medical doctors in the Basic Sciences. This study examines the professional and personal fulfillment expressed by Japanese female medical doctors who hold positions in Basic Sciences. Topics include career advancement, interest in medical research, and greater flexibility for parenting. A cross-sectional questionnaire survey was distributed at all 80 medical schools in Japan, directed to 228 female medical doctors whose academic rank was assistant professor or higher in departments of Basic Sciences in 2012. Chi-square tests and the binary logistic regression model were used to investigate the impact of parenthood on career satisfaction, academic rank, salary, etc. The survey response rate of female physicians in Basic Sciences was 54.0%. Regardless of parental status, one in three respondents cited research interest as their rationale for entering Basic Sciences, well over twice other motivations. A majority had clinical experience, with clinical duties maintained part-time by about half of respondents and particularly parents. Only one third expressed afterthoughts about relinquishing full-time clinical practice, with physicians who were parents expressing stronger regrets. Parental status had little effect on academic rank and income within the Basic Sciences, CONCLUSION

  11. Teaching population health as a basic science at Harvard Medical School.

    PubMed

    Finkelstein, Jonathan A; McMahon, Graham T; Peters, Antoinette; Cadigan, Rebecca; Biddinger, Paul; Simon, Steven R

    2008-04-01

    In 2006-2007, Harvard Medical School implemented a new, required course for first-year medical and dental students entitled Clinical Epidemiology and Population Health. Conceived of as a "basic science" course, its primary goal is to allow students to develop an understanding of caring for individuals and promoting the health of populations as a continuum of strategies, all requiring the engagement of physicians. In the course's first iteration, topical content accessible to first-year students was selected to exemplify physicians' roles in addressing current threats to population health. Methodological areas included domains of clinical epidemiology, decision sciences, population-level prevention and health promotion, physicians' roles in the public health system, and population-level surveillance and intervention strategies. Large-group settings were selectively used to frame the relevance of each topic, and conceptual learning of statistical and epidemiologic methods occurred in conference groups of 24 students. Finally, tutorials of eight students and one or two faculty were used for critical reading of published studies, review of problem sets, and group discussion of population health issues. To help students appreciate the structure and function of the public health system and physicians' role in public health emergencies, the course included a role-playing exercise simulating response to an influenza pandemic. The first iteration of the course was well received, and assessment of students suggested mastery of basic skills. Preclinical courses represent a progressive step in developing a workforce of physicians who embrace their responsibility to improve the health of the population as a whole, as well as the health of the patient in front of them.

  12. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice, Executive Summary and Final Report, October 1, 1978 - March 15, 1980.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…

  13. The HelCat basic plasma science device

    NASA Astrophysics Data System (ADS)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  14. Fibrillatory conduction in branching atrial tissue--Insight from volumetric and monolayer computer models.

    PubMed

    Wieser, L; Fischer, G; Nowak, C N; Tilg, B

    2007-05-01

    Increased local load in branching atrial tissue (muscle fibers and bundle insertions) influences wave propagation during atrial fibrillation (AF). This computer model study reveals two principal phenomena: if the branching is distant from the driving rotor (>19 mm), the load causes local slowing of conduction or wavebreaks. If the driving rotor is close to the branching, the increased load causes first a slow drift of the rotor towards the branching. Finally, the rotor anchors, and a stable, repeatable pattern of activation can be observed. Variation of the bundle geometry from a cylindrical, volumetric structure to a flat strip of a comparable load in a monolayer model changed the local activation sequence in the proximity of the bundle. However, the global behavior and the basic effects are similar in all models. Wavebreaks in branching tissue contribute to the chaotic nature of AF (fibrillatory conduction). The stabilization (anchoring) of driving rotors by branching tissue might contribute to maintain sustained AF.

  15. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    PubMed

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  16. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    ERIC Educational Resources Information Center

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  17. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    NASA Astrophysics Data System (ADS)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  18. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    PubMed

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  19. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    ERIC Educational Resources Information Center

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  20. Effect of Self Regulated Learning Approach on Junior Secondary School Students' Achievement in Basic Science

    ERIC Educational Resources Information Center

    Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel

    2015-01-01

    This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…

  1. Cystic fibrosis research topics featured at the 14th ECFS Basic Science Conference: Chairman's summary.

    PubMed

    Mall, Marcus A; Hwang, Tzyh-Chang; Braakman, Ineke

    2018-03-01

    In recent years, tremendous progress has been made in the development of novel drugs targeting the basic defect in patients with cystic fibrosis (CF). This breakthrough is based on a solid foundation of knowledge on CFTR's function in health and how mutations in CFTR cause CF multi-organ disease. This knowledge has been collected and continuously expanded by an active and persistent CF research community and has paved the way for precision medicine for CF. Since 2004, the European Cystic Fibrosis Society (ECFS) has held an annual Basic Science Conference that has evolved as an international forum for interdisciplinary discussion of hot topics and unsolved questions related to CF research. This Special Issue reviews CF research topics featured at the 14th ECFS Basic Science Conference and provides an up-to-date overview of recent progress in our understanding of CFTR structure and function, disease mechanisms implicated in airway mucus plugging, inflammation and abnormal host-pathogen interactions, and advancements with enhanced cell and animal model systems and breakthrough therapies directed at mutant CFTR or alternative targets. In addition, this Special Issue also identifies a number of fundamental questions and hurdles that still have to be overcome to realize the full potential of precision medicine and develop transformative therapies for all patients with CF. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  2. Teaching Basic Science Environmentally, Concept: Water that Comes Down as Rain Is Used Over and Over Again.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Provides directions for basic science experiments which demonstrate the rain cycle, fundamentals of cloud formation, and testing for the presence of acidity in local rainwater. Describes materials required, step-by-step instructions, and discussion topics. (NEC)

  3. Acoustic-optical phonon branch crossings and lattice thermal transport in La3Cu3X4 (X = P, As, Sb, and Bi) systems

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.

    Thermoelectric properties of La3Cu3X4 (X = P, As, Sb, and Bi) compounds are examined using first-principles density functional theory and Boltzmann transport calculations. It is well known that the lattice thermal conductivity (κl) of bulk materials typically decreases with increasing atomic masses of the constituent elements. In this study, however, we observe contrary behavior: lighter mass, larger sound velocity La3Cu3P4 and La3Cu3As4 systems have lower κl than heavier mass, smaller sound velocity La3Cu3Sb4 and La3Cu3Bi4 systems. Analysis of three phonon scattering rates and other phonon properties demonstrate that the trend in κl behavior is governed by Grüneisen parameters, a measure of phonon anharmonicity. The Grüneisen parameters and lower κl of the P and As compounds are closely related to an avoided crossing between the lowest optical branches and the longitudinal acoustic branch, which results in abrupt changes in Grüneisen parameters. Additionally, electronic structure calculations show heavy and light bands near the band edges, which lead to large power factors important for good thermoelectric performance. T. P, C. A. P, L. L. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  4. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  5. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  6. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide andmore » the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  7. What is Basic Research? Insights from Historical Semantics.

    PubMed

    Schauz, Désirée

    2014-01-01

    For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.

  8. A Challenge for International Cooperation in Astronomy and Basic Space Science

    NASA Astrophysics Data System (ADS)

    Haubold, Hans

    In 1990, the United Nations in cooperation with the European Space Agency initiated the organization of a series of annual Workshops on Basic Space Science for the benefit of astronomers and space scientists in (i) Asia and the Pacific, (ii) Latin America and the Caribbean, (iii) Africa, (iv) Western Asia, and (v) Europe. This article provides an update on accomplishments of three cycles of these workshops and their follow-up projects held for the five regions in (i) India (1991), Sri Lanka (1995), (ii) Costa Rica and Colombia (1992), Honduras (1997), (iii) Nigeria (1993), (iv) Egypt (1994), Jordan (1999), and (v) Germany (1996), France (2000). The workshop series is being considered unique and a model for the world-wide development of astronomy and space science. It has been organized based on the notion that astronomy has deep roots in virtually every human culture, that it helps to understand humanity's place in the vast scale of the Universe, and that it increases the knowledge of humanity about its origins and evolution.

  9. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    ERIC Educational Resources Information Center

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  10. Examining the Effect of Self-Explanation on Cognitive Integration of Basic and Clinical Sciences in Novices

    ERIC Educational Resources Information Center

    Lisk, Kristina; Agur, Anne M. R.; Woods, Nicole N.

    2017-01-01

    Several studies have shown that cognitive integration of basic and clinical sciences supports diagnostic reasoning in novices; however, there has been limited exploration of the ways in which educators can translate this model of mental activity into sound instructional strategies. The use of "self-explanation" during learning has the…

  11. Report of the joint ESOT and TTS basic science meeting 2013: current concepts and discoveries in translational transplantation.

    PubMed

    Ebner, Susanne; Fabritius, Cornelia; Ritschl, Paul; Oberhuber, Rupert; Günther, Julia; Kotsch, Katja

    2014-10-01

    A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research. © 2014 Steunstichting ESOT.

  12. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    ERIC Educational Resources Information Center

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  13. Primary Science Curriculum Guide, C. Branching Out.

    ERIC Educational Resources Information Center

    Victoria Education Dept. (Australia).

    Examples of reports from children in grades 4-6 of Education Department of Victoria schools are used to illustrate the suggestions made for teaching the topics included in the science course. Emphasis is given to methods of inter-relating science and other activities, including social studies, mathematics, writing and history. Teachers are…

  14. Fragrance release from the surface of branched poly (amide)s.

    PubMed

    Aulenta, Francesca; Drew, Michael G B; Foster, Alison; Hayes, Wayne; Rannard, Steven; Thornthwaite, David W; Youngs, Tristan G A

    2005-01-31

    Enzymes are powerful tools in organic synthesis that are able to catalyse a wide variety of selective chemical transformations under mild and environmentally friendly conditions. Enzymes such as the lipases have also found applications in the synthesis and degradation of polymeric materials. However, the use of these natural catalysts in the synthesis and the post-synthetic modification of dendrimers and hyperbranched molecules is an application of chemistry yet to be explored extensively. In this study the use of two hydrolytic enzymes, a lipase from Candida cylindracea and a cutinase from Fusarium solani pisii, were investigated in the selective cleavage of ester groups situated on the peripheral layer of two families of branched polyamides. These branched polyamides were conjugated to simple fragrances citronellol and L-menthol via ester linkages. Hydrolysis of the ester linkage between the fragrances and the branched polyamide support was carried out in aqueous buffered systems at slightly basic pH values under the optimum operative conditions for the enzymes used. These preliminary qualitative investigations revealed that partial cleavage of the ester functionalities from the branched polyamide support had occurred. However, the ability of the enzymes to interact with the substrates decreased considerably as the branching density, the rigidity of the structure and the bulkiness of the polyamide-fragrance conjugates increased.

  15. Applying Metacognition Through Patient Encounters and Illness Scripts to Create a Conceptual Framework for Basic Science Integration, Storage, and Retrieval.

    PubMed

    Hennrikus, Eileen F; Skolka, Michael P; Hennrikus, Nicholas

    2018-01-01

    Medical school curriculum continues to search for methods to develop a conceptual educational framework that promotes the storage, retrieval, transfer, and application of basic science to the human experience. To achieve this goal, we propose a metacognitive approach that integrates basic science with the humanistic and health system aspects of medical education. During the week, via problem-based learning and lectures, first-year medical students were taught the basic science underlying a disease. Each Friday, a patient with the disease spoke to the class. Students then wrote illness scripts, which required them to metacognitively reflect not only on disease pathophysiology, complications, and treatments but also on the humanistic and health system issues revealed during the patient encounter. Evaluation of the intervention was conducted by measuring results on course exams and national board exams and analyzing free responses on the illness scripts and student course feedback. The course exams and National Board of Medical Examiners questions were divided into 3 categories: content covered in lecture, problem-based learning, or patient + illness script. Comparisons were made using Student t -test. Free responses were inductively analyzed using grounded theory methodology. This curricular intervention was implemented during the first 13-week basic science course of medical school. The main objective of the course, Scientific Principles of Medicine, is to lay the scientific foundation for subsequent organ system courses. A total of 150 students were enrolled each year. We evaluated this intervention over 2 years, totaling 300 students. Students scored significantly higher on illness script content compared to lecture content on the course exams (mean difference = 11.1, P  = .006) and national board exams given in December (mean difference = 21.8, P  = .0002) and June (mean difference = 12.7, P  = .016). Themes extracted from students' free

  16. Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2.

    PubMed

    Suetsugu, S; Miki, H; Yamaguchi, H; Obinata, T; Takenawa, T

    2001-12-01

    The actin-related protein (Arp) 2/3 complex is an essential regulator of de novo actin filament formation. Arp2/3 nucleates the polymerization of actin and creates branched actin filaments when activated by Arp2/3-complex activating domain (VCA) of Wiskott-Aldrich syndrome proteins (WASP family proteins). We found that the branching of actin filaments on pre-existing ADP filaments mediated by the Arp2/3 complex is twice as efficient when Arp2/3 was activated by wild-type neural WASP (N-WASP) or WASP-family verprolin-homologous protein (WAVE) 2 than when activated by the VCA domain alone. By contrast, there was no difference between wild-type N-WASP or WAVE2 and VCA in the branching efficiency on de novo filaments, which are thought to consist mainly of ADP-phosphate filaments. This increased branching efficiency on ADP filaments is due to the basic region located in the center of N-WASP and WAVE2, which was found to associate with ADP actin filaments. Actin filaments and phosphatidylinositol bisphosphate (PIP2) associate with N-WASP at different sites. This association of N-WASP and WAVE2 with actin filaments enhanced recruitment of Arp2/3 to the pre-existing filaments, presumably leading to efficient nucleation and branch formation on pre-existing filaments. These data together suggest that the actin filament binding activity of N-WASP and WAVE2 in the basic region increases the number of barbed ends created on pre-existing filaments. Efficient branching on ADP filaments may be important for initiation of actin-based motility.

  17. Basic Process Skills and Attitude toward Science: Inputs to an Enhanced Students' Cognitive Performance

    ERIC Educational Resources Information Center

    Maranan, Veronique M.

    2017-01-01

    This study focused on the correlation of mastery in basic process skills and attitude toward Science to grade 7 students' performance. From the 200 respondents 74% or most of the students are normally in the age bracket for Grade 7 students which is 11 to 12. One hundred one (101) respondents or 50.5 % of the total respondents are male while 99…

  18. Existing branches correlatively inhibit further branching in Trifolium repens: possible mechanisms

    PubMed Central

    Thomas, R. G.; Hay, M. J. M.

    2011-01-01

    In Trifolium repens removal of any number of existing branches distal to a nodal root stimulates development of axillary buds further along the stem such that the complement of branches distal to a nodal root remains constant. This study aimed to assess possible mechanisms by which existing branches correlatively inhibit the outgrowth of axillary buds distal to them. Treatments were applied to basal branches to evaluate the roles of three postulated inhibitory mechanisms: (I) the transport of a phloem-mobile inhibitory feedback signal from branches into the main stem; (II) the polar flow of auxin from branches into the main stem acting to limit further branch development; or (III) the basal branches functioning as sinks for a net root-derived stimulatory signal (NRS). Results showed that transport of auxin, or of a non-auxin phloem-mobile signal, from basal branches did not influence regulation of correlative inhibition and were consistent with the possibility that the intra-plant distribution of NRS could be involved in the correlative inhibition of distal buds by basal branches. This study supports existing evidence that regulation of branching in T. repens is dominated by a root-derived stimulatory signal, initially distributed via the xylem, the characterization of which will progress the generic understanding of branching regulation. PMID:21071681

  19. Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.

    ERIC Educational Resources Information Center

    Wagner-Dobler, Roland

    1997-01-01

    In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)

  20. Are the interarytenoid muscles supplied by branches of both the recurrent and superior laryngeal nerves?

    PubMed

    Pascual-Font, Arán; Cubillos, Luis; Vázquez, Teresa; McHanwell, Steve; Sañudo, José R; Maranillo, Eva

    2016-05-01

    It has been generally accepted that the branches of the internal branch of the superior laryngeal nerve to the interarytenoid muscle are exclusively sensory. However, some experimental studies have suggested that these branches may contain motor axons, and therefore that the interarytenoid muscle is supplied by both the superior and recurrent laryngeal nerves. The aim of this work was to determine whether motor axons to the interarytenoid muscles are present in both laryngeal nerves. Basic research. Twelve human internal branches of the superior laryngeal nerve were dissected, and its branches to the interarytenoid muscle were removed and processed for choline-acetyltransferase immunohistochemistry, a method not used previously in studying the nerve fiber composition of the laryngeal nerves. The internal branch of the superior laryngeal nerve divided into two to five branches to the interarytenoid muscle. All branches contained motor axons, with the proportion of motor axons varying from 6% to 31%. The present study confirms that the internal branch of the superior laryngeal nerve provides a motor innervation to the interarytenoid muscles. N/A. Laryngoscope, 126:1117-1122, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Linking Introductory Astronomy Students' Basic Science Knowledge, Beliefs, Attitudes, Sources of Information, and Information Literacy

    ERIC Educational Resources Information Center

    Buxner, Sanlyn R.; Impey, Chris D.; Romine, James; Nieberding, Megan

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] We report on a study of almost 13 000 undergraduate students enrolled in introductory astronomy courses at the University of Arizona. From 1989 to 2016, students completed a basic science knowledge, beliefs, and attitudes survey. From 2014 to 2016, a subset of the…

  2. Lessons learned: the switch from VMS to UNIX operations for the STScI's Science and Mission Scheduling Branch

    NASA Astrophysics Data System (ADS)

    Adler, David S.; Workman, William M., III; Chance, Don

    2004-09-01

    The Science and Mission Scheduling Branch (SMSB) of the Space Telescope Science Institute (STScI) historically operated exclusively under VMS. Due to diminished support for VMS-based platforms at STScI, SMSB recently transitioned to Unix operations. No additional resources were available to the group; the project was SMSB's to design, develop, and implement. Early decisions included the choice of Python as the primary scripting language; adoption of Object-Oriented Design in the development of base utilities; and the development of a Python utility to interact directly with the Sybase database. The project was completed in January 2004 with the implementation of a GUI to generate the Command Loads that are uplinked to HST. The current tool suite consists of 31 utilities and 271 tools comprising over 60,000 lines of code. In this paper, we summarize the decision-making process used to determine the primary scripting language, database interface, and code management library. We also describe the finished product and summarize lessons learned along the way to completing the project.

  3. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status.

    PubMed

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.

  4. Changes in Study Strategies of Medical Students between Basic Science Courses and Clerkships Are Associated with Performance

    ERIC Educational Resources Information Center

    Ensminger, David C.; Hoyt, Amy E.; Chandrasekhar, Arcot J.; McNulty, John A.

    2013-01-01

    We tested the hypothesis that medical students change their study strategies when transitioning from basic science courses to clerkships, and that their study practices are associated with performance scores. Factor scores for three approaches to studying (construction, rote, and review) generated from student (n = 150) responses to a…

  5. 5 CFR 2635.101 - Basic obligation of public service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....101 Section 2635.101 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH General Provisions § 2635.101 Basic... United States Government and its citizens to place loyalty to the Constitution, laws and ethical...

  6. 5 CFR 2635.101 - Basic obligation of public service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....101 Section 2635.101 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH General Provisions § 2635.101 Basic... United States Government and its citizens to place loyalty to the Constitution, laws and ethical...

  7. 5 CFR 2635.101 - Basic obligation of public service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....101 Section 2635.101 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH General Provisions § 2635.101 Basic... United States Government and its citizens to place loyalty to the Constitution, laws and ethical...

  8. 5 CFR 2635.101 - Basic obligation of public service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....101 Section 2635.101 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH General Provisions § 2635.101 Basic... United States Government and its citizens to place loyalty to the Constitution, laws and ethical...

  9. 5 CFR 2635.101 - Basic obligation of public service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....101 Section 2635.101 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS STANDARDS OF ETHICAL CONDUCT FOR EMPLOYEES OF THE EXECUTIVE BRANCH General Provisions § 2635.101 Basic... United States Government and its citizens to place loyalty to the Constitution, laws and ethical...

  10. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  11. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Theresa; Banda, Michael; Devereaux, Thomas

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. Wemore » could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic

  12. Web portal on environmental sciences "ATMOS''

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Lykosov, V. N.; Fazliev, A. Z.

    2006-06-01

    The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  13. What's hot, what's new in basic science: report from the American Transplant Congress 2015.

    PubMed

    Heeger, P S

    2015-11-01

    Research reports presented at the American Transplant Congress 2015 provided an array of basic science findings of relevance to the transplant community. Among key themes is the concept that ischemia-reperfusion injury and early posttransplantation inflammation is linked to adaptive alloimmunity and transplant injury. Molecular and cellular mechanisms contributing to these interactions were highlighted. The relevance of understanding how blocking costimulation, including CD40/CD154 interactions, affects various aspects of the alloimmune response was enhanced by the description of preclinical studies demonstrating efficacy of a unique, blocking anti-CD40 monoclonal antibody that could potentially be used in humans. The identification of mechanisms underlying interactions among T cell subsets and B cells, including follicular helper T cells, regulatory T cells, effector B cells, and regulatory B cells, provides multiple previously unrecognized targets for future therapeutic interventions. Additional reports of interest include novel insights into effects of the gut microbiome on graft survival and the ability to differentiate insulin-secreting, islet-like cells from induced pluripotent stem cells. Overall, the reported basic science findings from American Transplant Congress 2015 add to the fundamental understanding of innate and adaptive alloimmunity and provide novel and testable hypotheses that have the potential to be translated into improved clinical care of transplant patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  15. Program evaluation of an Integrated Basic Science Medical Curriculum in Shiraz Medical School, Using CIPP Evaluation Model

    PubMed Central

    ROOHOLAMINI, AZADEH; AMINI, MITRA; BAZRAFKAN, LEILA; DEHGHANI, MOHAMMAD REZA; ESMAEILZADEH, ZOHREH; NABEIEI, PARISA; REZAEE, RITA; KOJURI, JAVAD

    2017-01-01

    Introduction: In recent years curriculum reform and integration was done in many medical schools. The integrated curriculum is a popular concept all over the world. In Shiraz medical school, the reform was initiated by stablishing the horizontal basic science integration model and Early Clinical Exposure (ECE) for undergraduate medical education. The purpose of this study was to provide the required data for the program evaluation of this curriculum for undergraduate medical students, using CIPP program evaluation model. Methods: This study is an analytic descriptive and triangulation mixed method study which was carried out in Shiraz Medical School in 2012, based on the views of professors of basic sciences courses and first and second year medical students. The study evaluated the quality of the relationship between basic sciences and clinical courses and the method of presenting such courses based on the Context, Input, Process and Product (CIPP) model. The tools for collecting data, both quantitatively and qualitatively, were some questionnaires, content analysis of portfolios, semi- structured interview and brain storming sessions. For quantitative data analysis, SPSS software, version 14, was used. Results: In the context evaluation by modified DREEM questionnaire, 77.75%of the students believed that this educational system encourages them to actively participate in classes. Course schedule and atmosphere of class were reported suitable by 87.81% and 83.86% of students. In input domain that was measured by a researcher made questionnaire, the facilities for education were acceptable except for shortage of cadavers. In process evaluation, the quality of integrated modules presentation and Early Clinical Exposure (ECE) was good from the students’ viewpoint. In product evaluation, students’ brain storming, students’ portfolio and semi-structured interview with faculties were done, showing some positive aspects of integration and some areas that need

  16. Branching Search

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-12-01

    Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.

  17. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status

    PubMed Central

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Background: Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. Materials and Methods: The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. Results: The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students’ academic performance in the comprehensive basic sciences examination. Conclusion: According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination. PMID:26430693

  18. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  19. How much basic science content do second-year medical students remember from their first year?

    PubMed

    Schneid, Stephen D; Pashler, Hal; Armour, Chris

    2018-01-23

    While most medical students generally perform well on examinations and pass their courses during the first year, we do not know how much basic science content they retain at the start of their second year and how that relates to minimal competency set by the faculty. In the fall of 2014, before starting their second-year courses, 27 medical students volunteered to participate in a study of long-term retention of the basic sciences by taking a "retention exam" after a delay of 5-11 months. The overall mean performance when the students initially answered the 60 multiple choice questions (MCQs) was 82.8% [standard deviation (SD) = 7.4%], which fell to 50.1% (SD = 12.1%) on the retention exam. This gave a mean retention of 60.4% (SD = 12.8%) with the retention for individual students ranging from 37 to 81%. The majority of students (23/27; 85%) fell below the minimal level of competency to start their second year. Medical educators should be more aware of the significant amount of forgetting that occurs during training and make better use of instructional strategies that promote long-term learning such as retrieval practice, interleaving, and spacing.

  20. Exploration of an E-Learning Model to Foster Critical Thinking on Basic Science Concepts during Work Placements

    ERIC Educational Resources Information Center

    de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.

    2009-01-01

    We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…

  1. Tapping into Basic 7-9 Science and Technology Teachers' Conceptions of Indigenous Knowledge in Imo State, Nigeria

    ERIC Educational Resources Information Center

    Singh-Pillay, Asheena; Alant, Busisiwe P.; Nwokocha, Godson

    2017-01-01

    The discussion on how to integrate African indigenous knowledge (IK) into mainstream Science and Technology schooling prevails. Nigeria's colonised school curriculum is antithetical to its rich IK heritage. Guided by postcolonial theory, and the need for a culturally relevant and decolonised curriculum, this paper sought to explore seven basic 7-9…

  2. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities.

    PubMed

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Kaitin, Kenneth I; DiMasi, Joseph A; Ledley, Fred D

    2017-07-01

    This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  3. A Case Based-Shared Teaching Approach in Undergraduate Medical Curriculum: A Way for Integration in Basic and Clinical Sciences.

    PubMed

    Peiman, Soheil; Mirzazadeh, Azim; Alizadeh, Maryam; Mortaz Hejri, Sara; Najafi, Mohammad-Taghi; Tafakhori, Abbas; Larti, Farnoosh; Rahimi, Besharat; Geraiely, Babak; Pasbakhsh, Parichehr; Hassanzadeh, Gholamreza; Nabavizadeh Rafsanjani, Fatemeh; Ansari, Mohammad; Allameh, Seyed Farshad

    2017-04-01

    To present a multiple-instructor, active-learning strategy in the undergraduate medical curriculum. This educational research is a descriptive one. Shared teaching sessions, were designed for undergraduate medical students in six organ-system based courses. Sessions that involved in-class discussions of integrated clinical cases were designed implemented and moderated by at least 3 faculties (clinicians and basic scientists). The participants in this study include the basic sciences medical students of The Tehran University of Medical Sciences. Students' reactions were assessed using an immediate post-session evaluation form on a 5-point Likert scale. Six two-hour sessions for 2 cohorts of students, 2013 and 2014 medical students during their two first years of study were implemented from April 2014 to March 2015. 17 faculty members participated in the program, 21 cases were designed, and participation average was 60 % at 6 sessions. Students were highly appreciative of this strategy. The majority of students in each course strongly agreed that this learning practice positively contributed to their learning (78%) and provided better understanding and application of the material learned in an integrated classroom course (74%). They believed that the sessions affected their view about medicine (73%), and should be continued in future courses (80%). The percentage demonstrates the average of all courses. The program helped the students learn how to apply basic sciences concepts to clinical medicine. Evaluation of the program indicated that students found the sessions beneficial to their learning.

  4. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    ERIC Educational Resources Information Center

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  5. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication

    PubMed Central

    2017-01-01

    Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277

  6. E-Basics: Online Basic Training in Program Evaluation

    ERIC Educational Resources Information Center

    Silliman, Ben

    2016-01-01

    E-Basics is an online training in program evaluation concepts and skills designed for youth development professionals, especially those working in nonformal science education. Ten hours of online training in seven modules is designed to prepare participants for mentoring and applied practice, mastery, and/or team leadership in program evaluation.…

  7. Improving Medical Students' Application of Knowledge and Clinical Decision-Making Through a Porcine-Based Integrated Cardiac Basic Science Program.

    PubMed

    Stott, Martyn Charles; Gooseman, Michael Richard; Briffa, Norman Paul

    2016-01-01

    Despite the concerted effort of modern undergraduate curriculum designers, the ability to integrate basic sciences in clinical rotations is an ongoing problem in medical education. Students and newly qualified doctors themselves report worry about the effect this has on their clinical performance. There are examples in the literature to support development of attempts at integrating such aspects, but this "vertical integration" has proven to be difficult. We designed an expert-led integrated program using dissection of porcine hearts to improve the use of cardiac basic sciences in clinical medical students' decision-making processes. To our knowledge, this is the first time in the United Kingdom that an animal model has been used to teach undergraduate clinical anatomy to medical students to direct wider application of knowledge. Action research methodology was used to evaluate the local curriculum and assess learners needs, and the agreed teaching outcomes, methods, and delivery outline were established. A total of 18 students in the clinical years of their degree program attended, completing precourse and postcourse multichoice questions examinations and questionnaires to assess learners' development. Student's knowledge scores improved by 17.5% (p = 0.01; students t-test). Students also felt more confident at applying underlying knowledge to decision-making and diagnosis in clinical medicine. An expert teacher (consultant surgeon) was seen as beneficial to students' understanding and appreciation. This study outlines how the development of a teaching intervention using porcine-based methods successfully improved both student's knowledge and application of cardiac basic sciences. We recommend that clinicians fully engage with integrating previously learnt underlying sciences to aid students in developing decision-making and diagnostic skills as well as a deeper approach to learning. Copyright © 2016 Association of Program Directors in Surgery. Published by

  8. Pharmacy students' use and perceptions of Apple mobile devices incorporated into a basic health science laboratory.

    PubMed

    Bryant, Jennifer E; Richard, Craig A H

    To describe pharmacy students' use of mobile devices in a basic health science laboratory and to report the students' perceptions on how solving cases with their mobile devices influenced their attitudes, abilities, and view on the use of mobile devices as tools for pharmacists. First-year pharmacy students utilized mobile devices to solve clinical case studies in a basic health sciences laboratory. A pre-survey and two post-surveys were administered to assess the students' comfort, awareness, use, and perceptions on the use of their mobile devices and apps. The pre-survey and first post-survey each had a response rate of 99%, and the second post-survey had a response rate of 100%. In comparing the pre-survey and first post-survey data, there was a statistically significant increase in the number of students that agreed or strongly agreed that they were more comfortable utilizing their mobile device (p = 0.025), they were more aware of apps for pharmacists (p < 0.005), and they have used more apps that can be useful for pharmacists (p < 0.005). The second post-survey demonstrated that over 78% of students agreed or strongly agreed that completing the case studies influenced them to be more comfortable with their mobile devices, to be more aware of apps that can be useful for pharmacists, and to be more agreeable with mobile device utilization by pharmacists in improving patient care. In addition, the second post-survey also demonstrated that 84% of students responded that using their mobile devices to solve the cases influenced them to either use their mobile device in a clinical setting for a clinical and/or pharmacy-related purpose for the first time or to use it more frequently for this purpose. The use of mobile devices to solve clinical cases in a first-year basic health science laboratory course was perceived as beneficial by students and influenced them to utilize their mobile device even more in a pharmacy practice setting. Copyright © 2016 Elsevier Inc

  9. Branches of the Facial Artery.

    PubMed

    Hwang, Kun; Lee, Geun In; Park, Hye Jin

    2015-06-01

    The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.

  10. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  11. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus.

    PubMed

    Toris, Carol B; Gelfman, Claire; Whitlock, Andy; Sponsel, William E; Rowe-Rendleman, Cheryl L

    2017-09-01

    Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.

  12. The Impact of Emotion on Learners' Application of Basic Science Principles to Novel Problems.

    PubMed

    McConnell, Meghan M; Monteiro, Sandra; Pottruff, Molly M; Neville, Alan; Norman, Geoff R; Eva, Kevin W; Kulasegaram, Kulamakan

    2016-11-01

    Training to become a physician is an emotionally laden experience. Research in cognitive psychology indicates that emotions can influence learning and performance, but the materials used in such research (e.g., word lists) rarely reflect the complexity of material presented in medical school. The present study examined whether emotions influence learning of basic science principles. Fifty-five undergraduate psychology students were randomly assigned to write about positive, negative, or neutral life events for nine minutes. Participants were then taught three physiological concepts, each in the context of a single organ system. Testing consisted of 13 clinical cases, 7 presented with the same concept/organ system pairing used during training ("near transfer") and 6 with novel pairings ("far transfer"). Testing was repeated after one week with 13 additional cases. Forty-nine students provided complete data. Higher test scores were found when the concept/organ system pairing was held constant (near transfer = 51% correct vs. far = 33%; P < .001). Emotion condition influenced participants' overall performance, with individuals in the neutral condition (50.1%) performing better than those in the positive (38.2%, P < .05) and negative (37.7%, P < .001) emotion conditions. These data suggest that regardless of whether the emotion is positive or negative, mild affective states can impair learning of basic science concepts by novices. Demands on working memory and subsequent cognitive load provide a potential explanation. Future work will examine the extent to which these findings generalize to medical trainees.

  13. The role of a science story, activities, and dialogue modeled on Philosophy for Children in teaching basic science process skills to fifth graders

    NASA Astrophysics Data System (ADS)

    Ferreira, Louise Brandes Moura

    This study was an application of Philosophy for Children pedagogy to science education. It was designed to answer the question, What roles do a science story (Harry Discovers Science), multi-sensorial activities designed to accompany the story, and classroom dialogue associated with the story---all modeled on the Philosophy for Children curriculum---play in the learning processes of a class of fifth graders with regard to the basic science process skills of classification, observation, and inference? To answer the question, I collected qualitative data as I carried out a participatory study in which I taught science to fifth graders at an international, bilingual private religious school in Brasilia, Brazil for a period of one semester. Twenty-one (n = 21) children participated in the study, 10 females and 11 males, who came from a predominantly middle and upper class social background. Data were collected through student interviews, student class reflection sheets, written learning assessments, audiotapes of all class sessions, including whole-class and small-class group discussions, and a videotape of one class session. Some of the key findings were that the story, activities and dialogue facilitated the children's learning in a number of ways. The story modeled the performance of classification, observation and inference skills for the children as well as reflection on the meaning of inference. The majority of the students identified with the fictional characters, particularly regarding traits such as cleverness and inquisitiveness, and with the learning context of the story. The multi-sensorial activities helped children learn observation and inference skills as well as dialogue. Dialogue also helped children self-correct and build upon each other's ideas. Some students developed theories about how ideal dialogue should work. In spite of the inherent limitations of qualitative and teacher research studies, as well as the limitations of this particular study

  14. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  15. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    PubMed Central

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations. PMID:27486351

  16. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    PubMed

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  17. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    PubMed

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  18. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Douglas; Solom, Matthew

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  19. Environments. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide to an elementary science unit designed for use with fourth grade, or higher, students in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaption or edition of…

  20. Populations. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of…

  1. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  2. Basic Operating Mode | Materials Science | NREL

    Science.gov Websites

    indium diselenide thin film, showing elemental maps of copper (left) and indium (right). CuInSe2 thin film. Cu and In elemental maps obtained by EDS. In its basic operating mode, scanning electron

  3. Strengthening Faculty Recruitment for Health Professions Training in Basic Sciences in Zambia

    PubMed Central

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-01-01

    Zambia is facing a crisis in its human resources for health (HRH), with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools—two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master’s programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region. PMID:25072591

  4. Strengthening faculty recruitment for health professions training in basic sciences in Zambia.

    PubMed

    Simuyemba, Moses; Talib, Zohray; Michelo, Charles; Mutale, Wilbroad; Zulu, Joseph; Andrews, Ben; Nzala, Selestine; Katubulushi, Max; Njelesani, Evariste; Bowa, Kasonde; Maimbolwa, Margaret; Mudenda, John; Mulla, Yakub

    2014-08-01

    Zambia is facing a crisis in its human resources for health, with deficits in the number and skill mix of health workers. The University of Zambia School of Medicine (UNZA SOM) was the only medical school in the country for decades, but recently it was joined by three new medical schools--two private and one public. In addition to expanding medical education, the government has also approved several allied health programs, including pharmacy, physiotherapy, biomedical sciences, and environmental health. This expansion has been constrained by insufficient numbers of faculty. Through a grant from the Medical Education Partnership Initiative (MEPI), UNZA SOM has been investing in ways to address faculty recruitment, training, and retention. The MEPI-funded strategy involves directly sponsoring a cohort of faculty at UNZA SOM during the five-year grant, as well as establishing more than a dozen new master's programs, with the goal that all sponsored faculty are locally trained and retained. Because the issue of limited basic science faculty plagues medical schools throughout Sub-Saharan Africa, this strategy of using seed funding to build sustainable local capacity to recruit, train, and retain faculty could be a model for the region.

  5. Precision Gamma-Ray Branching Ratios for Long-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonchev, Anton

    Many properties of the high-energy-density environments in nuclear weapons tests, advanced laser-fusion experiments, the interior of stars, and other astrophysical bodies must be inferred from the resulting long-lived radioactive nuclei that are produced. These radioactive nuclei are most easily and sensitively identified by studying the characteristic gamma rays emitted during decay. Measuring a number of decays via detection of the characteristic gamma-rays emitted during the gamma-decay (the gamma-ray branching ratio) of the long-lived fission products is one of the most straightforward and reliable ways to determine the number of fissions that occurred in a nuclear weapon test. The fission productsmore » 147Nd, 144Ce, 156Eu, and certain other long-lived isotopes play a crucial role in science-based stockpile stewardship, however, the large uncertainties (about 8%) on the branching ratios measured for these isotopes are currently limiting the usefulness of the existing data [1,2]. We performed highly accurate gamma-ray branching-ratio measurements for a group of high-atomic-number rare earth isotopes to greatly improve the precision and reliability with which the fission yield and reaction products in high-energy-density environments can be determined. We have developed techniques that take advantage of new radioactive-beam facilities, such as DOE's CARIBU located at Argonne National Laboratory, to produce radioactive samples and perform decay spectroscopy measurements. The absolute gamma-ray branching ratios for 147Nd and 144Ce are reduced <2% precision. In addition, high-energy monoenergetic neutron beams from the FN Tandem accelerator in TUNL at Duke University was used to produce 167Tm using the 169Tm(n,3n) reaction. Fourtime improved branching ratio of 167Tm is used now to measure reaction-in-flight (RIF) neutrons from a burning DT capsule at NIF [10]. This represents the first measurement of RIF neutrons in any laboratory fusion system, and the magnitude

  6. Pharmacology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  7. Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions.

    PubMed

    Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Lorenz, H Peter; Longaker, Michael T

    2018-02-01

    Significance: Scarring of the skin from burns, surgery, and injury constitutes a major burden on the healthcare system. Patients affected by major scars, particularly children, suffer from long-term functional and psychological problems. Recent Advances: Scarring in humans is the end result of the wound healing process, which has evolved to rapidly repair injuries. Wound healing and scar formation are well described on the cellular and molecular levels, but truly effective molecular or cell-based antiscarring treatments still do not exist. Recent discoveries have clarified the role of skin stem cells and fibroblasts in the regeneration of injuries and formation of scar. Critical Issues: It will be important to show that new advances in the stem cell and fibroblast biology of scarring can be translated into therapies that prevent and reduce scarring in humans without major side effects. Future Directions: Novel therapies involving the use of purified human cells as well as agents that target specific cells and modulate the immune response to injury are currently undergoing testing. In the basic science realm, researchers continue to refine our understanding of the role that particular cell types play in the development of scar.

  8. Outline of Basic Concepts in Anthropology. Publication No. 1.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Anthropology Curriculum Project.

    This teaching aid outlines basic anthropological concepts described in the various units of the Anthropology Curriculum Project. The outline of important concepts to be learned is intended to be used by the teacher in conjunction with the other instructional materials in each unit. The introduction defines anthropology, its branches and purposes.…

  9. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  10. Branching morphogenesis in the fetal mouse submandibular gland is codependent on growth factors and extracellular matrix.

    PubMed

    Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori

    2009-01-01

    Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).

  11. OHD/HL/HSMB - Hydrologic Science & Modeling Branch

    Science.gov Websites

    apply these sciences to application software and data products developed within the HL and as a hydrologic services program. HSMB applies its scientific expertise to training material developed

  12. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  13. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    PubMed Central

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2016-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP)1. The TSTP is an intensive 2–3 day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. PMID:27231204

  14. Assessment of knowledge and perceptions toward generic medicines among basic science undergraduate medical students at Aruba.

    PubMed

    Shankar, P Ravi; Herz, Burton L; Dubey, Arun K; Hassali, Mohamed A

    2016-10-01

    Use of generic medicines is important to reduce rising health-care costs. Proper knowledge and perception of medical students and doctors toward generic medicines are important. Xavier University School of Medicine in Aruba admits students from the United States, Canada, and other countries to the undergraduate medical (MD) program. The present study was conducted to study the knowledge and perception about generic medicines among basic science MD students. The cross-sectional study was conducted among first to fifth semester students during February 2015. A previously developed instrument was used. Basic demographic information was collected. Respondent's agreement with a set of statements was noted using a Likert-type scale. The calculated total score was compared among subgroups of respondents. One sample Kolmogorov-Smirnov test was used to study the normality of distribution, Independent samples t -test to compare the total score for dichotomous variables, and analysis of variance for others were used for statistical analysis. Fifty-six of the 85 students (65.8%) participated. Around 55% of respondents were between 20 and 25 years of age and of American nationality. Only three respondents (5.3%) provided the correct value of the regulatory bioequivalence limits. The mean total score was 43.41 (maximum 60). There was no significant difference in scores among subgroups. There was a significant knowledge gap with regard to the regulatory bioequivalence limits for generic medicines. Respondents' level of knowledge about other aspects of generic medicines was good but could be improved. Studies among clinical students in the institution and in other Caribbean medical schools are required. Deficiencies were noted and we have strengthened learning about generic medicines during the basic science years.

  15. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    ERIC Educational Resources Information Center

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  16. Online Learning Tools as Supplements for Basic and Clinical Science Education.

    PubMed

    Ellman, Matthew S; Schwartz, Michael L

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  17. Online Learning Tools as Supplements for Basic and Clinical Science Education

    PubMed Central

    Ellman, Matthew S.; Schwartz, Michael L.

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered. PMID:29349323

  18. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  19. [MD PhD programs: Providing basic science education for ophthalmologists].

    PubMed

    Spaniol, K; Geerling, G

    2015-06-01

    Enrollment in MD PhD programs offers the opportunity of a basic science education for medical students and doctors. These programs originated in the USA where structured programs have been offered for many years, but now German universities also run MD PhD programs. The MD PhD programs provided by German universities were investigated regarding entrance requirements, structure and financing modalities. An internet and telephone-based search was carried out. Out of 34 German universities 22 offered MD PhD programs. At 15 of the 22 universities a successfully completed course of studies in medicine was required for enrollment, 7 programs admitted medical students in training and 7 programs required a medical doctoral thesis, which had to be completed with at least a grade of magna cum laude in 3 cases. Financing required scholarships in many cases. Several German universities currently offer MD PhD programs; however, these differ considerably regarding entrance requirements, structure and financing. A detailed analysis investigating the success rates of these programs (e.g. successful completion and career paths of graduates) would be of benefit.

  20. BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.

    ERIC Educational Resources Information Center

    WHITNEY, FRANK L.

    PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…

  1. Basic science and clinical management of painful and non-painful chemotherapy-related neuropathy

    PubMed Central

    Kim, Joyce H.; Dougherty, Patrick M.; Abdi, Salahadin

    2017-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting toxicity of several chemotherapeutics used in the treatment of all the most common malignancies. There are several defined mechanisms of nerve damage that take place along different areas of the peripheral and the central nervous system. Treatment is based on symptom management and there are several classes of medications found to be efficacious in the treatment of neuropathic pain. Neuropathic pain that persists despite appropriate pharmacotherapy may respond to interventional procedures that span a range of invasiveness. The purpose of this review article is to examine the basic science of neuropathy and currently available treatment options in the context of chemotherapy induced peripheral neuropathy. PMID:25584767

  2. Entanglement branching operator

    NASA Astrophysics Data System (ADS)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  3. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solom, Matthew; Ross, Kyle; Cardoni, Jeffrey N.

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  4. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    PubMed

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  5. Basic Skills Applications in Occupational Investigation.

    ERIC Educational Resources Information Center

    Hendrix, Mary

    This guide contains 50 lesson plans for learning activities that incorporate basic skills into content areas of career education, mathematics, science, social studies, communications, and productive work habits. Each lesson consists of a purpose, basic skills applications, approximate time required, materials needed, things for the teacher to do…

  6. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less

  7. Genomic Sciences for Developmentalists: A Merge of Science and Practice

    ERIC Educational Resources Information Center

    Grigorenko, Elena L.

    2015-01-01

    The etiological forces of development have been a central question for the developmental sciences (however defined) since their crystallization as a distinct branch of scientific inquiry. Although the history of these sciences contains examples of extreme positions capitalizing on either the predominance of the genome (i.e., the accumulation of…

  8. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    PubMed

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Perceptions of D.M.D. student readiness for basic science courses in the United States: can online review modules help?

    PubMed

    Miller, C J; Aiken, S A; Metz, M J

    2015-02-01

    There can be a disconnect between the level of content covered in undergraduate coursework and the expectations of professional-level faculty of their incoming students. Some basic science faculty members may assume that students have a good knowledge base in the material and neglect to appropriately review, whilst others may spend too much class time reviewing basic material. It was hypothesised that the replacement of introductory didactic physiology lectures with interactive online modules could improve student preparedness prior to lectures. These modules would also allow faculty members to analyse incoming student abilities and save valuable face-to-face class time for alternative teaching strategies. Results indicated that the performance levels of incoming U.S. students were poor (57% average on a pre-test), and students often under-predicted their abilities (by 13% on average). Faculty expectations varied greatly between the different content areas and did not appear to correlate with the actual student performance. Three review modules were created which produced a statistically significant increase in post-test scores (46% increase, P < 0.0001, n = 114-115). The positive results of this study suggest a need to incorporate online review units in the basic science dental school courses and revise introductory material tailored to students' strengths and needs.

  10. How neuroscience is taught to North American dental students: results of the Basic Science Survey Series.

    PubMed

    Gould, Douglas J; Clarkson, Mackenzie J; Hutchins, Bob; Lambert, H Wayne

    2014-03-01

    The purpose of this study was to determine how North American dental students are taught neuroscience during their preclinical dental education. This survey represents one part of a larger research project, the Basic Science Survey Series for Dentistry, which covers all of the biomedical science coursework required of preclinical students in North American dental schools. Members of the Section on Anatomical Sciences of the American Dental Education Association assembled, distributed, and analyzed the neuroscience survey, which had a 98.5 percent response from course directors of the sixty-seven North American dental schools. The eighteen-item instrument collected demographic data on the course directors, information on the content in each course, and information on how neuroscience content is presented. Findings indicate that 1) most neuroscience instruction is conducted by non-dental school faculty members; 2) large content variability exists between programs; and 3) an increase in didactic instruction, integrated curricula, and use of computer-aided instruction is occurring. It is anticipated that the information derived from the survey will help guide neuroscience curricula in dental schools and aid in identifying appropriate content.

  11. Regenerative dentistry: translating advancements in basic science research to the dental practice.

    PubMed

    Garcia-Godoy, Franklin; Murray, Peter

    2010-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. This review provides an assessment of how tissue engineering, stem cell, genetic transfer, biomaterial and growth factor therapies can be integrated into clinical dental therapies to restore and regenerate oral tissues. In parallel to the creation of a new field in general medicine called "regenerative medicine," we call this field "regenerative dentistry." While the problems of introducing regenerative therapies are substantial, the potential benefits to patients and the profession are equally ground-breaking. In this review, we outline a few areas of interest for the future of oral and dental medicine in which advancements in basic science have already been adapted to fit the goals of 21st century dentistry.

  12. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  13. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  14. Basic Research in Information Science in France.

    ERIC Educational Resources Information Center

    Chambaud, S.; Le Coadic, Y. F.

    1987-01-01

    Discusses the goals of French academic research policy in the field of information science, emphasizing the interdisciplinary nature of the field. Areas of research highlighted include communication, telecommunications, co-word analysis in scientific and technical documents, media, and statistical methods for the study of social sciences. (LRW)

  15. Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis.

    PubMed

    Poza-Carrión, César; Aguilar-Martínez, José Antonio; Cubas, Pilar

    2007-11-01

    Branching patterns are major determinants of plant architecture. They depend both on leaf phillotaxy (branch primordia are formed in the axils of leaves) and on the decision of buds to grow out to give a branch or to remain dormant. In Arabidopsis, several genes involved in the long-distance signalling of the control of branch outgrowth have been identified. However, the genes acting inside the buds to cause growth arrest remained unknown until now. In the February issue of Plant Cell we have described the function of BRANCHED1 (BRC1), an Arabidopsis gene coding for a plant-specific transcription factor of the TCP family that is expressed in the buds and prevents their development. Loss of BRC1 function leads to accelerated AM initiation, precocious progression of bud development and excess of shoot branching. BRC1 transcription is affected by endogenous and environmental signals controlling branching and we have shown that BRC1 function mediates the response to these stimuli. Therefore we have proposed that BRC1 function represents the point at which signals controlling branching are integrated within axillary buds.

  16. Measurement of the absolute branching fraction of D+ → K̅0 e+νe via K̅0 → π 0 π 0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lü, H. J.; Lü, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lü, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-11-01

    By analyzing 2.93 fb-1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ → K̅0 e+νe to be ℬ(D + → K̅0 e+νe) = (8.59 ± 0.14 ± 0.21)% using , where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.. Supported by National Key Basic Research Program of China (2009CB825204, 2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11125525, 11235011, 11305180, 11322544, 11335008, 11425524, 11475123), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201, U1532101), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11405046, U1332103), Russian Foundation for Basic Research (14-07-91152), Swedish Resarch Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  17. Tribology. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Havas, George D., Comp.

    Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…

  18. Can Clinical Scenario Videos Improve Dental Students' Perceptions of the Basic Sciences and Ability to Apply Content Knowledge?

    PubMed

    Miller, Cynthia Jayne; Metz, Michael James

    2015-12-01

    Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to

  19. Beginning to Teach Chemistry: How personal and academic characteristics of pre-service science teachers compare with their understandings of basic chemical ideas

    NASA Astrophysics Data System (ADS)

    Kind, Vanessa; Morten Kind, Per

    2011-10-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by questionnaire, indicate that despite all PSTs being regarded technically as 'academically well-qualified' for science teaching, biology and physics specialists have more extensive misconceptions than chemists. Two personal characteristics, PSTs' preferences for teaching as a subject 'specialist' or as a 'generalist' teaching all sciences and their self-confidence for working in these two domains, were assessed by responses to Likert-scale statements. Proportionately more biologists tend to be 'super-confident' generalists, while more physicists were specialists anxious about outside specialism teaching. No statistically significant relationships between personal characteristics and misconceptions were found, suggesting that chemistry may be being taught by confident PSTs with poor understandings of basic ideas. Furthermore, these data suggest that attending to PSTs' personal characteristics alongside other components of a teacher's professional knowledge base may contribute to creating more effective science teachers. The paper presents a novel way of considering PSTs' qualities for teaching that offers potential for further research and initial teacher training course development.

  20. Bundle Branch Block

    MedlinePlus

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  1. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    ERIC Educational Resources Information Center

    Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…

  2. Combustion Branch Website Development

    NASA Technical Reports Server (NTRS)

    Bishop, Eric

    2004-01-01

    The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.

  3. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-12-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥ 6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼ 20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-05-15

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Material Objects. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    Presented is a teacher's guide for an elementary science unit designed for use with first grade students in the Trust Territory of Micronesia. Although there is a degree of similarity to the curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation or edition of the SCIS…

  7. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    ERIC Educational Resources Information Center

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  8. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  9. NCO Production Management Branch

    Science.gov Websites

    Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library Management Branch Production Management Branch About the Production Management Branch NCO REQUEST FOR CHANGE (RFC) DATABASE ACCESS NCO Request For Change (RFC) Archive [For INTERNAL Use Only] NCO Request For

  10. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploitmore » this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.« less

  11. Researchers warn of neglect to basic science

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-03-01

    Russia is losing its standing as a scientific powerhouse and its science is in a state of decline, according to a new report by the information-services provider Thomson Reuters. Entitled "The New Geography of Science: Research and Collaboration in Russia", the report warns that the country's research base "has a problem, and it shows little sign of a solution".

  12. Can Basic Research on Children and Families Be Useful for the Policy Process?

    ERIC Educational Resources Information Center

    Moore, Kristin A.

    Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…

  13. Attitudes toward English among Al-Quds Open University Students in Tulkarm Branch

    ERIC Educational Resources Information Center

    Tanni, Ziyad Ahmed Ibraheem

    2015-01-01

    The aim of this study is to identify the attitudes toward English among AL-Quds Open University students in Tulkarm Branch, Palestine. To achieve this purpose, the researcher used a questionnaire composed of 30 items distributed to 70 male and 110 female students in four faculties: Education, Social Development, Administrative Sciences and…

  14. Universal poroelastic mechanism for hydraulic signals in biomimetic and natural branches

    PubMed Central

    Louf, J.-F.; Guéna, G.; Badel, E.; Forterre, Y.

    2017-01-01

    Plants constantly undergo external mechanical loads such as wind or touch and respond to these stimuli by acclimating their growth processes. A fascinating feature of this mechanical-induced growth response is that it can occur rapidly and at long distance from the initial site of stimulation, suggesting the existence of a fast signal that propagates across the whole plant. The nature and origin of the signal is still not understood, but it has been recently suggested that it could be purely mechanical and originate from the coupling between the local deformation of the tissues (bending) and the water pressure in the plant vascular system. Here, we address the physical origin of this hydromechanical coupling using a biomimetic strategy. We designed soft artificial branches perforated with longitudinal liquid-filled channels that mimic the basic features of natural stems and branches. In response to bending, a strong overpressure is generated in the channels that varies quadratically with the bending curvature. A model based on a mechanism analogous to the ovalization of hollow tubes enables us to predict quantitatively this nonlinear poroelastic response and identify the key physical parameters that control the generation of the pressure pulse. Further experiments conducted on natural tree branches reveal the same phenomenology. Once rescaled by the model prediction, both the biomimetic and natural branches fall on the same master curve, enlightening the universality of our poroelastic mechanism for the generation of hydraulic signals in plants. PMID:28973910

  15. Back to the Basics: Kansas City, Missouri

    ERIC Educational Resources Information Center

    Handley, Lawrence R.; Lockwood, Catherine M.; Handley, Nathan

    2004-01-01

    "Back to the Basics" is an innovation of the WETMAAP Program (Wetland Education Through Maps and Aerial Photography) which offers a series of workshops that provide training in basics ecological concepts, technological skills, and methods of interpretation necessary for assessing geography and earth science topics. The precept of the…

  16. Voices long silent were invited to speak: A study of science anxiety in female biology students at a two-year branch campus

    NASA Astrophysics Data System (ADS)

    Phillips, Deborah J.

    This qualitative study of six female biology students at a two-year branch campus of a major Midwestern university was undertaken to study science anxiety. The study was grounded in feminist theory and addressed the questions of how the students described their science anxiety, what were the possible causes of their science anxiety, what gender issues had impinged upon their lives and education, and what factors had helped them to succeed, despite their science anxiety. Focus group meetings, private interviews, and web-based discussions provided data that described this problem. Data were analyzed for descriptions of science anxiety, possible causes of science anxiety, gender issues, and factors that have encouraged student success. Among the students' varied stories and backgrounds, four commonalities emerged: exposure to some type of significant trauma or obstacles, a lack of rescue for the students as they experienced trauma, a loss of confidence and resulting loss of voice in the students, and elucidation of classroom strategies and other factors that have helped them succeed, despite their science anxiety. Implications arising from this study include the need for a much better understanding of female students attending two-year institutions of higher education, and what measures help them learn. This requires more student-teacher interaction and the use of feminist pedagogy that prioritizes not only best practices, but also justice in the classroom, and opportunities for students to network and share their stories. Other implications include the need for curricular adjustments that would enable the changes in classroom strategies that students need to facilitate learning. Educators and counselors in K--12 also need to be more attentive to student needs and fears, directing them to resources that may smooth their transition to college courses. Implications for future research include the need for a new assessment tool that would test for the kind of data found

  17. Hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch, Columbia, Tennessee

    USGS Publications Warehouse

    Outlaw, George S.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the City of Columbia, Tennessee, conducted hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch in the Little Bigby Creek watershed, Columbia, Tennessee, from 1990 through 1991. Results of the analyses can be used by city planners in the development of plans to replace several deteriorating and inadequate drainage structures. Akin Branch and Cayce Valley Branch drain small watersheds of 1.69 and 1.04 square miles, respectively. Flood discharges for 5-, lo-, and 25-year recurrence-interval storm events were calculated at the stream mouths using flood-frequency relations developed for use at small urban streams in Tennessee. For each stream, flood discharges at locations upstream from the mouth were calculated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Flood profiles for the selected recurrence-interval flood discharges were simulated for Akin Branch and Cayce Valley Branch for existing conditions and conditions that might exist if drainage improvements such as larger culverts and bridges and channel improvements are constructed. The results of the simulations were used to predict changes in flood elevations that might result from such drainage improvements. Analyses indicate that reductions in existing flood elevations of as much as 2.1 feet for the 5-year flood at some sites on Akin Branch and as much as 3.8 feet for the 5-year flood at some sites on Cayce Valley Branch might be expected with the drainage improvements.

  18. Fine-Branched Ridges

    NASA Image and Video Library

    2015-10-14

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows numerous branching ridges with various degrees of sinuosity. These branching forms resemble tributaries funneling and draining into larger channel trunks towards the upper portion of the scene. The raised relief of these branching ridges suggests that these are ancient channels are inverted due to lithification and cementation of the riverbed sediment, which made it more resistant to erosion than the surrounding material. Wind-blown bedforms are abundant and resemble small ridges that are aligned in an approximately north-south direction. http://photojournal.jpl.nasa.gov/catalog/PIA20006

  19. Translating basic behavioral and social science research to clinical application: the EVOLVE mixed methods approach.

    PubMed

    Peterson, Janey C; Czajkowski, Susan; Charlson, Mary E; Link, Alissa R; Wells, Martin T; Isen, Alice M; Mancuso, Carol A; Allegrante, John P; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B

    2013-04-01

    To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease populations. We employed a sequential mixed methods model (EVOLVE) to design and test the PA/SA intervention in order to increase physical activity in people with coronary artery disease (post-percutaneous coronary intervention [PCI]) or asthma (ASM) and to improve medication adherence in African Americans with hypertension (HTN). In an initial qualitative phase, we explored participant values and beliefs. We next pilot tested and refined the intervention and then conducted 3 randomized controlled trials with parallel study design. Participants were randomized to combined PA/SA versus an informational control and were followed bimonthly for 12 months, assessing for health behaviors and interval medical events. Over 4.5 years, we enrolled 1,056 participants. Changes were sequentially made to the intervention during the qualitative and pilot phases. The 3 randomized controlled trials enrolled 242 participants who had undergone PCI, 258 with ASM, and 256 with HTN (n = 756). Overall, 45.1% of PA/SA participants versus 33.6% of informational control participants achieved successful behavior change (p = .001). In multivariate analysis, PA/SA intervention remained a significant predictor of achieving behavior change (p < .002, odds ratio = 1.66), 95% CI [1.22, 2.27], controlling for baseline negative affect, comorbidity, gender, race/ethnicity, medical events, smoking, and age. The EVOLVE method is a means by which basic behavioral science research can be translated into efficacious interventions for chronic disease populations.

  20. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    PubMed Central

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2012-01-01

    Objective To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in three high-risk clinical populations. Our theoretically-derived intervention comprised a combination of positive affect and self-affirmation (PA/SA) which we applied to three clinical chronic disease populations. Methods We employed a sequential mixed methods model (EVOLVE) to design and test the PA/SA intervention in order to increase physical activity in people with coronary artery disease (post-percutaneous coronary intervention [PCI]) or asthma (ASM), and to improve medication adherence in African Americans with hypertension (HTN). In an initial qualitative phase, we explored participant values and beliefs. We next pilot tested and refined the intervention, and then conducted three randomized controlled trials (RCTs) with parallel study design. Participants were randomized to combined PA/SA vs. an informational control (IC) and followed bimonthly for 12 months, assessing for health behaviors and interval medical events. Results Over 4.5 years, we enrolled 1,056 participants. Changes were sequentially made to the intervention during the qualitative and pilot phases. The three RCTs enrolled 242 PCI, 258 ASM and 256 HTN participants (n=756). Overall, 45.1% of PA/SA participants versus 33.6% of IC participants achieved successful behavior change (p=0.001). In multivariate analysis PA/SA intervention remained a significant predictor of achieving behavior change (p<0.002, OR=1.66, 95% CI 1.22–2.27), controlling for baseline negative affect, comorbidity, gender, race/ethnicity, medical events, smoking and age. Conclusions The EVOLVE method is a means by which basic behavioral science research can be translated into efficacious interventions for chronic disease populations. PMID:22963594

  1. Resources for Teachers. "Turning Ideas Into Reality: The Executive Branch Fosters Engineering Excellence." An Institute for Pre-College Science and Social Studies Teachers (West Hartford, Connecticut, February 18-19, 24-26, 1989). Revised.

    ERIC Educational Resources Information Center

    Pierce, Preston E., Comp.

    A compilation of resources is provided for those interested in examining action taken by the executive branch of the federal government to foster scientific and engineering excellence in the United States in the nineteenth century. The resources are intended for use by pre-college secondary science and social studies teachers. Each of the…

  2. An Anatomical Assessment of Branch Abscission and Branch-base Hydraulic Architecture in the Endangered Wollemia nobilis

    PubMed Central

    Burrows, G. E.; Meagher, P. F.; Heady, R. D.

    2007-01-01

    Background and Aims The branch-base xylem structure of the endangered Wollemia nobilis was anatomically investigated. Wollemia nobilis is probably the only extant tree species that produces only first-order branches and where all branches are cleanly abscised. An investigation was carried out to see if these unusual features might influence branch-base xylem structure and water supply to the foliage. Methods The xylem was sectioned at various distances along the branch bases of 6-year-old saplings. Huber values and relative theoretical hydraulic conductivities were calculated for various regions of the branch base. Key Results The most proximal branch base featured a pronounced xylem constriction. The constriction had only 14–31 % (average 21 %) of the cross-sectional area and 20–42 % (average 28 %) of the theoretical hydraulic conductivity of the more distal branch xylem. Wollemia nobilis had extremely low Huber values for a conifer. Conclusions The branch-base xylem constriction would appear to facilitate branch abscission, while the associated Huber values show that W. nobilis supplies a relatively large leaf area through a relatively small diameter ‘pipe’. It is tempting to suggest that the pronounced decline of W. nobilis in the Tertiary is related to its unusual branch-base structure but physiological studies of whole plant conductance are still needed. PMID:17272303

  3. Philosophy of Science, with Special Consideration Given to Behaviorism as the Philosophy of the Science of Behavior

    ERIC Educational Resources Information Center

    Moore, J.

    2010-01-01

    The philosophy of science is the branch of philosophy that critically examines the foundations, assumptions, methods, products, and implications of the activity called science. The present sketch reviews the historical development of the philosophy of science, representative individuals in the field, and topics of long-standing interest. The…

  4. Experience of the creative Space-Astrophysics Education in Israeli Science-Educational Center "Blossoms of Science" - creative activity from mini-projects in basic school to ASTROTOP-projects for graduates

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, L.; Pundak, D.

    We present 12 year experience of educational project in Space Astrophysics Environment field realized on the base of National Science-Educational Center Blossoms of Science of the Jordan Valley College Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state This approach shift center of the weight in educational process from direct lectures sermons explanation from teacher to children on own attempts of children to investigate problem what is interesting for them by themselves individually or in group Our approach includes four levels of the projects nano-projects for children garden and basic school up to 10-12 years micro-projects for intermediate school 12-16 years mini-projects for high school 16-18 years and macro-projects for the best graduates high schools and students of colleges 17-22 years These levels and projects are interconnected one with another and sometimes participants started on the micro-projects level in intermediate school continue their activity up to macro-projects of the graduate s diploma level For each level we organize courses for preparation of the teachers and instructors interested in the using of our receipts and published books and brochures for them The content of our activity for different levels a Level of kinder gardens-basic schools -- special software with interactive movie - - nano-projects b Level of intermediate school Days of Science in tens schools of Israel--

  5. Analysis of interface crack branching

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Mukai, D. J.; Miller, G. R.

    1989-01-01

    A solution is presented for the problem of a finite length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.

  6. Use of the NBME Comprehensive Basic Science Examination as a Progress Test in the Preclerkship Curriculum of a New Medical School

    ERIC Educational Resources Information Center

    Johnson, Teresa R.; Khalil, Mohammed K.; Peppler, Richard D.; Davey, Diane D.; Kibble, Jonathan D.

    2014-01-01

    In the present study, we describe the innovative use of the National Board of Medical Examiners (NBME) Comprehensive Basic Science Examination (CBSE) as a progress test during the preclerkship medical curriculum. The main aim of this study was to provide external validation of internally developed multiple-choice assessments in a new medical…

  7. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    ERIC Educational Resources Information Center

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  8. Evidence Suggesting that the Buccal and Zygomatic Branches of the Facial Nerve May Contain Parasympathetic Secretomotor Fibers to the Parotid Gland by Means of Communications from the Auriculotemporal Nerve.

    PubMed

    Tansatit, Tanvaa; Apinuntrum, Prawit; Phetudom, Thavorn

    2015-12-01

    , supplying the branches of the parotid duct within the loop of the two main divisions of the parotid gland. A single cutaneous zygomatic branch arising from the auriculotemporal nerve in some specimens, the intraparotid communications with the zygomatic and the buccal trunks of the facial nerve, the retromandibular communications with the superficial temporal-maxillary periarterial plexuses, and the periductal autonomic plexus between the loop of the two main facial divisions lead to the suggestion that these communications of the auriculotemporal nerve convey the secretomotor to the zygomatic and buccal branches of the facial nerve. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  9. [Croatian Medical Association--Branch Zagreb].

    PubMed

    Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko

    2014-01-01

    The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is

  10. Pediatric Oncology Branch - Psychosocial Support and Research Program-Science | Center for Cancer Research

    Cancer.gov

    Psychosocial Support & Research Program Research is another critical component of the psychosocial program. Our research studies are designed to learn how to best help patients and their families prepare for, adjust to, and cope with the effects of cancer and other related medical conditions while enrolled on research protocols in several NCI Branches and NIH Institutes.  

  11. "Eureka, Eureka!" Discoveries in Science

    ERIC Educational Resources Information Center

    Agarwal, Pankaj

    2011-01-01

    Accidental discoveries have been of significant value in the progress of science. Although accidental discoveries are more common in pharmacology and chemistry, other branches of science have also benefited from such discoveries. While most discoveries are the result of persistent research, famous accidental discoveries provide a fascinating…

  12. Controls on stream network branching angles, tested using landscape evolution models

    NASA Astrophysics Data System (ADS)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  13. Randomized branch sampling

    Treesearch

    Harry T. Valentine

    2002-01-01

    Randomized branch sampling (RBS) is a special application of multistage probability sampling (see Sampling, environmental), which was developed originally by Jessen [3] to estimate fruit counts on individual orchard trees. In general, the method can be used to obtain estimates of many different attributes of trees or other branched plants. The usual objective of RBS is...

  14. Basic Research Needs for Countering Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, W.; Michalske, T.; Trewhella, J.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  15. Know Your Discipline: Teaching the Philosophy of Computer Science

    ERIC Educational Resources Information Center

    Tedre, Matti

    2007-01-01

    The diversity and interdisciplinarity of computer science and the multiplicity of its uses in other sciences make it hard to define computer science and to prescribe how computer science should be carried out. The diversity of computer science also causes friction between computer scientists from different branches. Computer science curricula, as…

  16. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    NASA Astrophysics Data System (ADS)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  17. Beginning to Teach Chemistry: How Personal and Academic Characteristics of Pre-Service Science Teachers Compare with Their Understandings of Basic Chemical Ideas

    ERIC Educational Resources Information Center

    Kind, Vanessa; Kind, Per Morten

    2011-01-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…

  18. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    PubMed

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    PubMed

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  20. NASA's ultraviolet astrophysics branch - The next decade

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Kaplan, Michael

    1992-01-01

    We review some of the mission concepts currently being considered by NASA's Astrophysics Division to carry out future observations in the 100-3000 Angstrom region. Examples of possible future missions include UV and visible interferometric experiments, a next generation Space Telescope and lunar-based UV instrumentation. In order to match the science objectives of these future missions with new observational techniques, critical technology needs in the ultraviolet regime have been identified. Here we describe how NASA's Astrophysics Division Advanced Programs Branch is attempting to formulate an integrated technology plan called the 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century.

  1. Examination of the relationship between preservice science teachers' scientific reasoning and problem solving skills on basic mechanics

    NASA Astrophysics Data System (ADS)

    Yuksel, Ibrahim; Ates, Salih

    2018-02-01

    The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.

  2. An international basic science and clinical research summer program for medical students.

    PubMed

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  3. Experimental soft-matter science

    NASA Astrophysics Data System (ADS)

    Nagel, Sidney R.

    2017-04-01

    Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label "soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far from equilibrium, nonlinear, thermal and entropic, slow, observable, gravity affected, patterned, nonlocal, interfacially elastic, memory forming, and active. This is only a partial list of how matter created from large component particles is distinct from "hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium behavior is confronted in biology, chemistry, geophysics, astrophysics, and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on 30-31 January 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research.

  4. 2017 Science and Technology Jamboree

    NASA Image and Video Library

    2017-12-08

    NASA Marshall Space Flight Center’s Science and Technology Office held its 11th annual Science and Technology Jamboree Dec. 8 at Marshall Activities Building 4316. A poster session with around 60 poster presentations highlighted current science and technology topics and the innovative projects underway across the center. Here, Debra Needham, right, talks with coworker Sabrina Savage about one of the presentations. Both Needham and Savage are scientists in the Heliophysics & Planetary Science Branch of the Science Research and Projects Division.

  5. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    NASA Astrophysics Data System (ADS)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  6. Evaluation of popliteal artery branching patterns and a new subclassification of the 'usual' branching pattern.

    PubMed

    Celtikci, Pinar; Ergun, Onur; Durmaz, Hasan Ali; Conkbayir, Isik; Hekimoglu, Baki

    2017-09-01

    To determine the frequency of popliteal artery branching variations in a wide study cohort and to investigate the relationship between these variations and infrapopliteal peripheral arterial disease (PAD). A subclassification was proposed for the most encountered type I-A, utilizing tibio-fibular trunk (TFT) length. A total number of 1184 lower extremity digital subtraction angiography (DSA) studies of 669 patients were evaluated. Following exclusion, 863 lower extremity DSA studies (431 right, 432 left) of 545 patients were enrolled. Popliteal artery branching type, patency of anterior tibial artery (ATA), fibular artery (FA) and posterior tibial artery (PTA) in each extremity and TFT length for type I-A extremities were recorded. Percentages of branching patterns, mean length and cut-off value of TFT and incidence of PAD in different types of branching were calculated. Type I-A was the most common type of branching (81.3%). Frequency of branching pattern variation was 18.7%, the most common variation category was category III (12.2%) and the most common variation type was type III-A (5.6%). ATA and PTA had higher percentages of PAD in extremities with variant branching types. Cut-off value of 3 cm for TFT length was proposed in order to subclassify type I-A. Our study cohort presents a higher incidence of popliteal artery branching variations. Some branching variations might have effect on the involvement pattern of the infrapopliteal arteries by PAD. We propose a subclassification for type I-A; type I-A-S (TFT < 3 cm) and type I-A-L (TFT ≥ 3 cm) which might have impact on interventional procedures.

  7. Basic Aerodynamics of Combustion Chambers,

    DTIC Science & Technology

    1981-05-20

    engineering circles, the trend in the design of new tyres of combustion chambers is to combine the use of aerodynamics , ;he science of heat transfer and...7. FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AF8 ON F/6 21/2 BASIC AERODYNAMICS OF COMBUSTION CHAMBERS,(U) MAY 81 N HUANG UNCLASSIFIED FTD-ID(RS)T...160󈨔 NL so EEEEEE 0hEEEEEEmollllmmlllll mEImmmmmEEE mEEEEEmmEEmmmE IilillilillEEE FTD-1D(RS)T-1684-80 FOREIGN TECHNOLOGY DIVISION BASIC AERODYNAMICS CF

  8. Growth in Turkish Positive Basic Sciences, 1933-1966.

    ERIC Educational Resources Information Center

    Ozinonu, A. Kemal

    This study collected data on the measurable qualities of Turkish science in terms of high level scientific manpower, scientific productivity, and scientific fertility from 1933 to 1966 and analyzed the data collected with the goal of providing a deeper understanding of the nature of Turkish science. Scientific personnel, including Turkish…

  9. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Peter E.; Simonson, J. Michael

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues inmore » the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and

  10. Perception of Classroom and Branch Teachers Working in Primary Schools towards In-Service Education

    ERIC Educational Resources Information Center

    Demir, Mehmet Kaan

    2012-01-01

    The need for in-service education for teachers is recognized by all who are concerned with improvement of school practice. A successful in-service education involves many different kinds of activities. This study aims to determine the perceptions of classroom and branch (social studies, science and technology, foreign language, physical education…

  11. Systems and Variables. Basic Edition. Science for Micronesia.

    ERIC Educational Resources Information Center

    Trust Territory of the Pacific Islands Dept. of Education, Saipan.

    This teacher's guide is for an elementary school science unit designed for use with third grade (or older) children in the schools of the Trust Territory of Micronesia. Although there is a degree of similarity to curriculum materials developed for the Science Curriculum Improvement Study, this Micronesian unit does not purport to be an adaptation…

  12. The control of branching morphogenesis

    PubMed Central

    Iber, Dagmar; Menshykau, Denis

    2013-01-01

    Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663

  13. Open Science: a first step towards Science Communication

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  14. Parsesciencing: A Basic Science Mode of Inquiry.

    PubMed

    Parse, Rosemarie Rizzo

    2016-10-01

    The purpose of this article is to introduce the language for the mode of inquiry, now known as Parsesciencing. The language for the Humanbecoming Hermeneutic Sciencing was introduced in an earlier volume of Nursing Science Quarterly. Language both reflects and cocreates meaning. The language of sciencing is everchanging; it is an evolutionary emergent, shifting as new ideas cocreate horizons beyond. The language set forth here is to articulate more explicitly meanings of the modes of inquiry consistent with the humanbecoming paradigm and distinct from modes of inquiry in other disciplines. In dwelling with the findings of published and unpublished studies that were guided by humanbecoming, new insights arose, and with creative conceptualizing these new insights gave birth to new meanings, thus different language. The language introduced here includes the following: Parsesciencing as coming to know the meanings of universal humanuniverse living experiences, horizon of inquiry, foreknowings, inquiry stance, mode of inquiry, historians, dialoging-engaging, scholar, distilling-fusing, discerning extant moment, transmogrifying, transsubstantiating, and newknowings. Note: an example of the new language with a Parsesciencing inquiry on the universal humanuniverse living experience of feeling unsure by Sandra Bunkers appears later in this issue. © The Author(s) 2016.

  15. Artificial Intelligence Research Branch future plans

    NASA Technical Reports Server (NTRS)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  16. Model-based branching point detection in single-cell data by K-branches clustering

    PubMed Central

    Chlis, Nikolaos K.; Wolf, F. Alexander; Theis, Fabian J.

    2017-01-01

    Abstract Motivation The identification of heterogeneities in cell populations by utilizing single-cell technologies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees. Several methods have been proposed for such inference from high-dimensional single-cell data. They typically assign each cell to a branch in a differentiation trajectory. However, they commonly assume specific geometries such as tree-like developmental hierarchies and lack statistically sound methods to decide on the number of branching events. Results We present K-Branches, a solution to the above problem by locally fitting half-lines to single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies for branches in the differentiation trajectory of cells. We propose a modified version of the GAP statistic for model selection, in order to decide on the number of lines that best describe the data locally. In this manner, we identify the location and number of subgroups of cells that are associated with branching events and full differentiation, respectively. We evaluate the performance of our method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during hematopoiesis, single-cell qPCR data of mouse blastocyst development, single-cell qPCR data of human myeloid monocytic leukemia and artificial data. Availability and implementation An R implementation of K-Branches is freely available at https://github.com/theislab/kbranches. Contact fabian.theis@helmholtz-muenchen.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28582478

  17. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  18. NASA's Ultraviolet Astrophysics Branch: Present and future detector program

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1992-01-01

    The various concepts in ultraviolet detector technology currently being funded by NASA's Astrophysics Division to carry out observations in the 100 to 3000 A region are reviewed. In order to match the science objectives of future space missions with new observational techniques, critical detector technology needs in the ultraviolet regime have been identified. The attempt by NASA's Astrophysics Division Advanced Programs Branch to formulate an integrated detector technology plan as part of the ongoing 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century is described.

  19. Student Failures on First-Year Medical Basic Science Courses and the USMLE Step 1: A Retrospective Study over a 20-Year Period

    ERIC Educational Resources Information Center

    Burns, E. Robert; Garrett, Judy

    2015-01-01

    Correlates of achievement in the basic science years in medical school and on the Step 1 of the United States Medical Licensing Examination® (USMLE®), (Step 1) in relation to preadmission variables have been the subject of considerable study. Preadmissions variables such as the undergraduate grade point average (uGPA) and Medical College Admission…

  20. Assessment of Department of Defense Basic Research

    DTIC Science & Technology

    2005-01-01

    Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF...with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information... downloaded from: http://www.nap.edu/catalog/11177.html Assessment of Department of Defense Basic Research Committee on Department of Defense Basic

  1. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  2. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  3. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    ERIC Educational Resources Information Center

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  4. Teaching the Teachers: Physical Science for the Non-Scientific

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.

    2004-12-01

    The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.

  5. Science Community Interface

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.

    1991-01-01

    The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.

  6. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  7. Science.gov: gateway to government science information.

    PubMed

    Fitzpatrick, Roberta Bronson

    2010-01-01

    Science.gov is a portal to more than 40 scientific databases and 200 million pages of science information via a single query. It connects users to science information and research results from the U.S. government. This column will provide readers with an overview of the resource, as well as basic search hints.

  8. Integrating the dimensions of sex and gender into basic life sciences research: methodologic and ethical issues.

    PubMed

    Holdcroft, Anita

    2007-01-01

    The research process -- from study design and selecting a species and its husbandry, through the experiment, analysis, peer review, and publication -- is rarely subject to questions about sex or gender differences in mainstream life sciences research. However, the impact of sex and gender on these processes is important in explaining biological variations and presentation of symptoms and diseases. This review aims to challenge assumptions and to develop opportunities to mainstream sex and gender in basic scientific research. Questions about the mechanisms of sex and gender effects were reviewed in relation to biological, environmental, social, and psychological interactions. Gender variations, in respect to aging, socializing, and reproduction, that are present in human populations but are rarely featured in laboratory research were considered to more effectively translate animal research into clinical health care. Methodologic approaches to address the present lack of a gender dimension in research include actively reducing variations through attention to physical factors, biological rhythms, and experimental design. In addition, through genomic and acute nongenomic activity, hormones may compound effects through multiple small sex differences that occur during the course of an acute pathologic event. Furthermore, the many exogenous sex steroid hormones and their congeners used in medicine (eg, in contraception and cancer therapies) may add to these effects. The studies reviewed provide evidence that sex and gender are determinants of many outcomes in life science research. To embed the gender dimension into basic scientific research, a broad approach -- gender mainstreaming -- is warranted. One example is the use of review boards (eg, animal ethical review boards and journal peer-review boards) in which gender-related standardized questions can be asked about study design and analysis. A more fundamental approach is to question the relevance of present

  9. Human Amniotic Membrane-Derived Products in Sports Medicine: Basic Science, Early Results, and Potential Clinical Applications.

    PubMed

    Riboh, Jonathan C; Saltzman, Bryan M; Yanke, Adam B; Cole, Brian J

    2016-09-01

    Amniotic membrane (AM)-derived products have been successfully used in ophthalmology, plastic surgery, and wound care, but little is known about their potential applications in orthopaedic sports medicine. To provide an updated review of the basic science and preclinical and clinical data supporting the use of AM-derived products and to review their current applications in sports medicine. Systematic review. A systematic search of the literature was conducted using the Medline, EMBASE, and Cochrane databases. The search term amniotic membrane was used alone and in conjunction with stem cell, orthopaedic, tissue engineering, scaffold, and sports medicine. The search identified 6870 articles, 80 of which, after screening of the titles and abstracts, were considered relevant to this study. Fifty-five articles described the anatomy, basic science, and nonorthopaedic applications of AM-derived products. Twenty-five articles described preclinical and clinical trials of AM-derived products for orthopaedic sports medicine. Because the level of evidence obtained from this search was not adequate for systematic review or meta-analysis, a current concepts review on the anatomy, physiology, and clinical uses of AM-derived products is presented. Amniotic membranes have many promising applications in sports medicine. They are a source of pluripotent cells, highly organized collagen, antifibrotic and anti-inflammatory cytokines, immunomodulators, and matrix proteins. These properties may make it beneficial when applied as tissue engineering scaffolds, improving tissue organization in healing, and treatment of the arthritic joint. The current body of evidence in sports medicine is heavily biased toward in vitro and animal studies, with little to no human clinical data. Nonetheless, 14 companies or distributors offer commercial AM products. The preparation and formulation of these products alter their biological and mechanical properties, and a thorough understanding of these

  10. The Basic/Essential Skills Taxonomy. Second Edition--Revised.

    ERIC Educational Resources Information Center

    Snyder, Lester M., Jr.

    This revision of the "Basic/Essential Skills Taxonomy" exhibits changes based on use of the original taxonomy in the field. It features more precise definitions of the levels of key words and phrases, the deletion of some science items that ranged above basic skills, the combination of the language arts sections from the original two parts, and…

  11. Assessing allometric models to predict vegetative growth of mango (Mangifera indica; Anacardiaceae) at the current-year branch scale.

    PubMed

    Normand, Frédéric; Lauri, Pierre-Éric

    2012-03-01

    Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.

  12. Looking forward in geriatric anxiety and depression: implications of basic science for the future.

    PubMed

    Gershenfeld, Howard K; Philibert, Robert A; Boehm, Gary W

    2005-12-01

    Major depression and anxiety are common psychiatric illnesses whose etiology remains incompletely understood. This review highlights progress in understanding the etiology of these illnesses through genetic strategies and looks forward to their impact on geriatric psychiatry. We briefly address three broad domains of progress, namely 1) genetic approaches to etiology, including linkage and association studies, pharmacogenetics ("personalized medicine"), and gene x environment interactions; 2) mechanisms of thyroid and testosterone action via nuclear receptors, given these hormones' status as possible augmenters of antidepressants; and 3) the role of the neuroimmune system as a contributor to the stress response. Genetic strategies offer one path for converting correlational findings into causal pathways while complementing studies of a gene's function at the molecular, cellular, network, and whole-organismal levels. Neuroendocrine supplementation (thyroid and testosterone) has a long history and tradition. A molecular understanding of nuclear receptor pathways and their coactivators, the mediator complex proteins, provides a rationale for improved targeting of hormonal action in a tissue-selective manner, yielding drugs with improved safety and efficacy. Neural-immune interactions in psychiatric illness remain tantalizing topics. Research suggests that cytokine pathways may contribute to the maintenance or susceptibility to stress, anxiety, and depressive disorders. The reciprocal and recursive interactions among basic science, drug discovery, and clinical science will continue to provide hopeful themes for improving the lives of patients with treatment-refractive psychiatric illness.

  13. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  14. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  15. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  16. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  17. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  18. 26 CFR 1.41-5A - Basic research for taxable years beginning before January 1, 1987.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was for basic research performed in the United States). (2) Research in the social sciences or humanities. Basic research does not include research in the social sciences or humanities, within the meaning...

  19. Nanotechnology: The Stuff of Science Fiction or Science Fact?

    ERIC Educational Resources Information Center

    Aston, Diane

    2011-01-01

    This article discusses nanotechnology as a route to the production of new materials and provides a brief history of the evolution of this branch of materials science. Properties on the nanoscale are compared with those on the macroscale. The practical application of nanomaterials in industries such as communications, construction, cosmetics,…

  20. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  1. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  2. [Branches of the National Institute of Hygiene].

    PubMed

    Gromulska, Marta

    2008-01-01

    National Epidemiological Institute (National Institute of Hygiene, from 7th September 1923) was established in 1918 in Warsaw and acted at national level. Its actions in the field of diseases combat were supported by bacteriological stations and vaccine production in voivodeship cities, which were taken charge of by the state, and names "National Epidemiological Institutes". According to the ministers resolution from 6th July 1921,Epidemiological Institutes were merged to National Central Epidemiological Institutes (PZH), the epidemiological institutes outside Warsaw were named branches, which were to be located in every voivodeship city, according to the initial organizational resolutions. There were country branches of NCEI in: Cracow, Lwów, Lódź, Toruń, Lublin, and Wilno in the period 1919-1923. New branches in Poznań (1925), Gdynia(1934), Katowice (Voivodeship Institute of Hygiene (1936), Luck (1937), Stanisławów (1937), Kielce(1938), and Brześć/Bug (Municipal Station acting as branch of National Central Epidemiological Institute. Branches were subordinated to NCEI-PZH) in Warsaw where action plans and unified research and diagnostic method were established and annual meeting of the country branches managers took place. All branches cooperated with hospitals, national health services, district general practitioners and administration structure in control of infectious diseases. In 1938, the post of branch inspector was established, the first of whom was Feliks Przesmycki PhD. Branches cooperated also with University of Cracow, University of Lwów and University of Wilno. In 1935, National Institutes of Food Research was incorporated in PZH, Water Department was established, and these areas of activity began to develop in the branches accordingly. In 1938 there were 13 branches of PZH, and each had three divisions: bacteriological, food research and water research. Three branches in Cracow, Kielce and Lublin worked during World War II under German

  3. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403...

  4. 17 CFR 166.4 - Branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Branch offices. 166.4 Section 166.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION CUSTOMER PROTECTION RULES § 166.4 Branch offices. Each branch office of each Commission registrant must use the name of the...

  5. Branch Input Resistance and Steady Attenuation for Input to One Branch of a Dendritic Neuron Model

    PubMed Central

    Rall, Wilfrid; Rinzel, John

    1973-01-01

    Mathematical solutions and numerical illustrations are presented for the steady-state distribution of membrane potential in an extensively branched neuron model, when steady electric current is injected into only one dendritic branch. Explicit expressions are obtained for input resistance at the branch input site and for voltage attenuation from the input site to the soma; expressions for AC steady-state input impedance and attenuation are also presented. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. Numerical examples illustrate how branch input resistance and steady attenuation depend upon the following: the number of dendritic trees, the orders of dendritic branching, the electrotonic length of the dendritic trees, the location of the dendritic input site, and the input resistance at the soma. The application to cat spinal motoneurons, and to other neuron types, is discussed. The effect of a large dendritic input resistance upon the amount of local membrane depolarization at the synaptic site, and upon the amount of depolarization reaching the soma, is illustrated and discussed; simple proportionality with input resistance does not hold, in general. Also, branch input resistance is shown to exceed the input resistance at the soma by an amount that is always less than the sum of core resistances along the path from the input site to the soma. PMID:4715583

  6. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  7. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  8. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2012-07-01 2012-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  9. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2013-07-01 2013-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  10. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2014-07-01 2014-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  11. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2011-07-01 2011-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  12. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2010-07-01 2010-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  13. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  14. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  15. The Next Great Science

    NASA Astrophysics Data System (ADS)

    Hodges, K. V.

    2007-12-01

    Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the

  16. An integrated course in pain management and palliative care bridging the basic sciences and pharmacy practice.

    PubMed

    Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric

    2013-08-12

    To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.

  17. An Integrated Course in Pain Management and Palliative Care Bridging the Basic Sciences and Pharmacy Practice

    PubMed Central

    Kullgren, Justin; Unni, Elizabeth; Hanson, Eric

    2013-01-01

    Objective. To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students’ advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Design. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Assessment. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Conclusions. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy. PMID:23966724

  18. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  19. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  20. 12 CFR 545.92 - Branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Branch offices. 545.92 Section 545.92 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 545.92 Branch offices. (a) Definition. A branch office of a Federal savings association (“you”) is any...

  1. Nerve-sparing abdominal radical trachelectomy: a novel concept to preserve uterine branches of pelvic nerves.

    PubMed

    Kyo, Satoru; Mizumoto, Yasunari; Takakura, Masahiro; Nakamura, Mitsuhiro; Sato, Emi; Katagiri, Hiroshi; Ishikawa, Masako; Nakayama, Kentaro; Fujiwara, Hiroshi

    2015-10-01

    Nerve-sparing techniques to avoid bladder dysfunction in abdominal radical hysterectomy have been established during the past two decades, and they have been applied to radical trachelectomy. Although trachelectomy retains the uterine corpus, no report mentions the preservation of uterine branches of pelvic nerves. The aim of the present study was to introduce and discuss our unique concept for preserving them. Four cases with FIGO stage Ia2-Ib1 cervical cancer, in which preservation of uterine branches of the pelvic nerves was attempted, are presented. Operative procedures basically followed the previously reported standard approaches for nerve-sparing radical hysterectomy or trachelectomy, except for some points. Before resection of the sacrouterine ligament, the hypogastric nerve was first identified and translocated laterally. Subsequently, the uterine branches of the pelvic nerve were identified as a continuation of the hypogastric nerve and could be scooped with forceps by detachment of the surrounding connective tissues. Further detachment toward the uterine corpus enabled them to be completely separated from the cervix. This separation was extended up to the level of the junction of the upper and lower branches of the uterine artery. Thereafter, standard resection of the parametrium and paracolpium was performed, followed by cervical resection when it was confirmed that the isolated uterine branches of the pelvic nerves were safely translocated and preserved. There were no recurrences of cancer in these patients. Uterine branches of autonomic nerves can be safely preserved, and the procedure may be considered one of the nerve-sparing techniques for radical abdominal trachelectomy, which may hopefully improve the reproductive outcomes of this operation, although it needs to be evaluated with more patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Directed branch growth in aligned nanowire arrays.

    PubMed

    Beaudry, Allan L; LaForge, Joshua M; Tucker, Ryan T; Sorge, Jason B; Adamski, Nicholas L; Li, Peng; Taschuk, Michael T; Brett, Michael J

    2014-01-01

    Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.

  3. Turing mechanism underlying a branching model for lung morphogenesis.

    PubMed

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  4. Myocardial Infarction and Exercise Training: Evidence from Basic Science.

    PubMed

    Moraes-Silva, Ivana C; Rodrigues, Bruno; Coelho-Junior, Hélio J; Feriani, Daniele Jardim; Irigoyen, Maria-Claudia

    2017-01-01

    In 2016, cardiovascular disease remains the first cause of mortality worldwide [1]. Coronary artery disease, which is the most important precursor of myocardial infarction (MI), is the main component of total cardiovascular mortality, being responsible for approximately seven million of deaths [1]. In approximately 20% of infarcted patients, MI is recurrent in the first year after the event [2]. Moreover, among cardiovascular disease, coronary artery disease accounts for the most increased index of life years lost due to morbidity and/or mortality [1]. Sedentarism highly contributes to cardiovascular disease burden, especially for coronary artery disease, and is also one of the MI risk factors [3]. For many years, it was recommended to avoid physical activity after a cardiovascular event; nowadays, it is a consensus that exercise training (ET) should be part of cardiac rehabilitation programs. There is increasing evidence confirming that, when adequately prescribed and supervised, ET after MI can prevent future complications and increase the quality of life and longevity of infarcted patients [4, 5]. ET after MI follows international specialized guidelines; however, there are different protocols adopted by several societies worldwide in cardiac rehabilitation [6], and there is still lack of information on which type and regimen of exercise may be the ideal after MI, as well as how these exercises act to promote beneficial effects to cardiovascular and other organic systems. Thus, experimental studies are important contributors to elicit mechanisms behind clinical results, and to test and compare different ET protocols. Therefore, exercise prescription can be optimized, individualized, and safely practiced by patients. In this chapter, we present a brief review of MI pathophysiology followed by an updated discussion of the most relevant discoveries regarding ET and MI in basic science.

  5. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal

  6. [Hi-tech center of outpatient care (To the 40th anniversary of the Branch N 6 of the Vishnevsky Central military clinical hospital N 3)].

    PubMed

    Popov, A P

    2015-10-01

    The authors present the history of the branch N 6 of the Federal States Organization "the Vishnevsky Central Military Clinical Hospital N 3" of the Ministry of Defense of the Russian Federation, which dates back to November 1, 1974. Over the past years, organizational and staff structure; and the name of the clinic (45th central polyclinic, 45th central consultative-diagnostic polyclinic, 52nd Advisory Diagnostic Center of Defense) has repeatedly changed, but the core the work stays unchangeable--to continually improve patient care technology, to be the leader in the outpatient care for soldiers, reserve officers (retired), members of their families. The. branch consists of 58 medical and 19 specialized diagnostic departments, including 4 hospital departments, 1845 employee work at the branch. Among them 4 doctors of medical science and 43 candidates of medical sciences, 20 honoured physicians and 10 honoured health workers of republic. 70% of doctors and 93% of nurses have the highest qualification category. To health care in the Branch are more than 110 thousand people.

  7. Basic science and surgical treatment options for articular cartilage injuries of the knee.

    PubMed

    Tetteh, Elizabeth S; Bajaj, Sarvottam; Ghodadra, Neil S

    2012-03-01

    The complex structure of articular cartilage allows for diverse knee function throughout range of motion and weight bearing. However, disruption to the structural integrity of the articular surface can cause significant morbidity. Due to an inherently poor regenerative capacity, articular cartilage defects present a treatment challenge for physicians and therapists. For many patients, a trial of nonsurgical treatment options is paramount prior to surgical intervention. In instances of failed conservative treatment, patients can undergo an array of palliative, restorative, or reparative surgical procedures to treat these lesions. Palliative methods include debridement and lavage, while restorative techniques include marrow stimulation. For larger lesions involving subchondral bone, reparative procedures such as osteochondral grafting or autologous chondrocyte implantation are considered. Clinical success not only depends on the surgical techniques but also requires strict adherence to rehabilitation guidelines. The purpose of this article is to review the basic science of articular cartilage and to provide an overview of the procedures currently performed at our institution for patients presenting with symptomatic cartilage lesions.

  8. Guide to the Seattle Archives Branch.

    ERIC Educational Resources Information Center

    Hobbs, Richard, Comp.

    The guide presents an overview of the textual and microfilmed records located at the Seattle Branch of the National Archives of the United States. Established in 1969, the Seattle Archives Branch is one of 11 branches which preserve and make available for research those U.S. Government records of permanent value created and maintained by Federal…

  9. The Effects of a Branch Campus

    ERIC Educational Resources Information Center

    Lien, Donald; Wang, Yaqin

    2012-01-01

    We examine the effects of a branch campus on the social welfare of the host country and the foreign university. Overall, we find that a branch campus increases both the domestic social welfare (measured by the aggregate student utility) and the tuition revenue of the foreign university. The effect of a branch campus on the brain drain is…

  10. Dynamic Crack Branching - A Photoelastic Evaluation,

    DTIC Science & Technology

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  11. Modified parton branching model for multi-particle production in hadronic collisions: Application to SUSY particle branching

    NASA Astrophysics Data System (ADS)

    Yuanyuan, Zhang

    The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.

  12. Basic science of pain.

    PubMed

    DeLeo, Joyce A

    2006-04-01

    The origin of the theory that the transmission of pain is through a single channel from the skin to the brain can be traced to the philosopher and scientist René Descartes. This simplified scheme of the reflex was the beginning of the development of the modern doctrine of reflexes. Unfortunately, Descartes' reflex theory directed both the study and treatment of pain for more than 330 years. It is still described in physiology and neuroscience textbooks as fact rather than theory. The gate control theory proposed by Melzack and Wall in 1965 rejuvenated the field of pain study and led to further investigation into the phenomena of spinal sensitization and central nervous system plasticity, which are the potential pathophysiologic correlates of chronic pain. The processing of pain takes place in an integrated matrix throughout the neuroaxis and occurs on at least three levels-at peripheral, spinal, and supraspinal sites. Basic strategies of pain control monopolize on this concept of integration by attenuation or blockade of pain through intervention at the periphery, by activation of inhibitory processes that gate pain at the spinal cord and brain, and by interference with the perception of pain. This article discusses each level of pain modulation and reviews the mechanisms of action of opioids and potential new analgesics. A brief description of animal models frames a discussion about recent advances regarding the role of glial cells and central nervous system neuroimmune activation and innate immunity in the etiology of chronic pain states. Future investigation into the discovery and development of novel, nonopioid drug therapy may provide needed options for the millions of patients who suffer from chronic pain syndromes, including syndromes in which the pain originates from peripheral nerve, nerve root, spinal cord, bone, muscle, and disc.

  13. New branched DNA constructs.

    PubMed

    Chandra, Madhavaiah; Keller, Sascha; Gloeckner, Christian; Bornemann, Benjamin; Marx, Andreas

    2007-01-01

    The Watson-Crick base pairing of DNA is an advantageous phenomenon that can be exploited when using DNA as a scaffold for directed self-organization of nanometer-sized objects. Several reports have appeared in the literature that describe the generation of branched DNA (bDNA) with variable numbers of arms that self-assembles into predesigned architectures. These bDNA units are generated by using cleverly designed rigid crossover DNA molecules. Alternatively, bDNA can be generated by using synthetic branch points derived from either nucleoside or non-nucleoside building blocks. Branched DNA has scarcely been explored for use in nanotechnology or from self-assembling perspectives. Herein, we wish to report our results for the synthesis, characterization, and assembling properties of asymmetrical bDNA molecules that are able to generate linear and circular bDNA constructs. Our strategy for the generation of bDNA is based on a branching point that makes use of a novel protecting-group strategy. The bDNA units were generated by means of automated DNA synthesis methods and were used to generate novel objects by employing chemical and biological techniques. The entities generated might be useful building blocks for DNA-based nanobiotechnology.

  14. Anxieties, Preferences, Expectations and Opinions of Pre-Service Teachers Related to Physics Laboratory

    ERIC Educational Resources Information Center

    Berber, Nilufer Cerit

    2013-01-01

    Science anxiety, which is one of the affective dimensions in science learning, is one of the factors affecting success in Science and has been studied for 35 years. The existence of considerable negative attitudes towards Physics courses, which is one of the basic branches of Science, is a fact. This research has been designed to identify the…

  15. Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part I: biology, biomechanics, anatomy and an exercise-based approach.

    PubMed

    Abat, F; Alfredson, H; Cucchiarini, M; Madry, H; Marmotti, A; Mouton, C; Oliveira, J M; Pereira, H; Peretti, G M; Romero-Rodriguez, D; Spang, C; Stephen, J; van Bergen, C J A; de Girolamo, L

    2017-12-01

    Chronic tendinopathies represent a major problem in the clinical practice of sports orthopaedic surgeons, sports doctors and other health professionals involved in the treatment of athletes and patients that perform repetitive actions. The lack of consensus relative to the diagnostic tools and treatment modalities represents a management dilemma for these professionals. With this review, the purpose of the ESSKA Basic Science Committee is to establish guidelines for understanding, diagnosing and treating this complex pathology.

  16. A roadmap for bridging basic and applied research in forensic entomology.

    PubMed

    Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S

    2011-01-01

    The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.

  17. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  18. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  19. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle

  20. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    DOE PAGES

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8H 14O 4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C 8H 16O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8H 16O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8H 14O 4 species are proposed to result from subsequent reactions of C 8H 16O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less

  1. Basic Skills, Basic Writing, Basic Research.

    ERIC Educational Resources Information Center

    Trimmer, Joseph F.

    1987-01-01

    Overviews basic writing instruction and research by briefly discussing the history of remediation, results of a survey of basic writing programs in U.S. colleges and universities, and interviews with developmental textbook editors at major publishing houses. Finds that basic writing instruction continues to focus on sentence grammar. (MM)

  2. Calls for Canada to support basic research

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-08-01

    Canada’s decade-long shift of financial support from fundamental studies towards applied research is dismantling the nation’s funding of basic science, according to a report by the Global Young Academy (GYA) - an international society of young scientists.

  3. Knowledge loss of medical students on first year basic science courses at the university of Saskatchewan

    PubMed Central

    D'Eon, Marcel F

    2006-01-01

    Background Many senior undergraduate students from the University of Saskatchewan indicated informally that they did not remember much from their first year courses and wondered why we were teaching content that did not seem relevant to later clinical work or studies. To determine the extent of the problem a course evaluation study that measured the knowledge loss of medical students on selected first year courses was conducted. This study replicates previous memory decrement studies with three first year medicine basic science courses, something that was not found in the literature. It was expected that some courses would show more and some courses would show less knowledge loss. Methods In the spring of 2004 over 20 students were recruited to retake questions from three first year courses: Immunology, physiology, and neuroanatomy. Student scores on the selected questions at the time of the final examination in May 2003 (the 'test') were compared with their scores on the questions 10 or 11 months later (the 're-test') using paired samples t -tests. A repeated-measures MANOVA was used to compare the test and re-test scores among the three courses. The re-test scores were matched with the overall student ratings of the courses and the student scores on the May 2003 examinations. Results A statistically significant main effect of knowledge loss (F = 297.385; p < .001) and an interaction effect by course (F = 46.081; p < .001) were found. The students' scores in the Immunology course dropped 13.1%, 46.5% in Neuroanatomy, and 16.1% in physiology. Bonferroni post hoc comparisons showed a significant difference between Neuroanatomy and Physiology (mean difference of 10.7, p = .004). Conclusion There was considerable knowledge loss among medical students in the three basic science courses tested and this loss was not uniform across courses. Knowledge loss does not seem to be related to the marks on the final examination or the assessment of course quality by the students

  4. A Network Optimization Solution using SAS/OR Tools for the Department of the Army Branching Problem

    DTIC Science & Technology

    2010-02-18

    OPTMODEL; NETFLOW ;Nodes;Arcs;ROTC; assignments;Basic Branches;Cadet Satisfaction; CLASSIFICATION: Unclassified This paper will demonstrate...implement a solution using the NETFLOW procedure and repeat that network solution using the OPTMODEL procedure. The OPTMODEL implementation will be...96.545599 M 1 AV AV IN EN FA AR 4 96.221521 M 1 IN IN MI EN MP AR 1 Figure 1, Supply: cadet data (5 of 2545) ordered by OMS PROC NETFLOW takes a

  5. Branch Width and Height Influence the Incorporation of Branches into Foraging Trails and Travel Speed in Leafcutter Ants Atta cephalotes (L.) (Hymenoptera: Formicidae).

    PubMed

    Freeman, B M; Chaves-Campos, J

    2016-06-01

    Fallen branches are often incorporated into Atta cephalotes (L.) foraging trails to optimize leaf tissue transport rates and economize trail maintenance. Recent studies in lowlands show laden A. cephalotes travel faster across fallen branches than on ground, but more slowly ascending or descending a branch. The latter is likely because (1) it is difficult to travel up or downhill and (2) bottlenecks occur when branches are narrower than preceding trail. Hence, both branch height and width should determine whether branches decrease net travel times, but no study has evaluated it yet. Laden A. cephalotes were timed in relation to branch width and height across segments preceding, accessing, across, and departing a fallen branch in the highlands of Costa Rica. Ants traveled faster on branches than on cleared segments of trunk-trail, but accelerated when ascending or descending the branch-likely because of the absence of bottlenecks during the day in the highlands. Branch size did not affect ant speed in observed branches; the majority of which (22/24) varied from 11 to 120 mm in both height and width (average 66 mm in both cases). To determine whether ants exclude branches outside this range, ants were offered the choice between branches within this range and branches that were taller/wider than 120 mm. Ants strongly preferred the former. Our results indicate that A. cephalotes can adjust their speed to compensate for the difficulty of traveling on branch slopes. More generally, branch size should be considered when studying ant foraging efficiency.

  6. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  7. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  8. Basic Interpretation of EKG's. N203.

    ERIC Educational Resources Information Center

    Hall, Laura T.

    A description is provided of an associate degree in nursing science course, "Rapid Interpretation of Electrocardiograms (EKG's)," designed to emphasize the nurse's role in the interpretation of the basic EKG and the medical interventions necessary to treat arrythmias. The first section of the course description provides information on…

  9. [Problems of world outlook and methodology of science integration in biological studies].

    PubMed

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  10. Nervous branch passing through an accessory canal in the sphenozygomatic suture: the temporal branch of the zygomatic nerve.

    PubMed

    Akita, K; Shimokawa, T; Tsunoda, A; Sato, T

    2002-05-01

    A nervous branch which passes through a small canal in the sphenozygomatic suture is sometimes observed during dissection. To examine the origin, course and distribution of this nervous branch, 42 head halves of 21 Japanese cadavers (11 males, 10 females) and 142 head halves of 71 human dry skulls were used. The branch was observed in seven sides (16.7%); it originated from the communication between the lacrimal nerve and the zygomaticotemporal branch of the zygomatic nerve or from the trunk of the zygomatic nerve. In two head halves (4.8%), the branch pierced the anterior part of the temporalis muscle during its course to the skin of the anterior part of the temple. The small canal in the suture was observed in 31 head halves (21.8%) of the dry skulls. Although this nervous branch is inconstantly observed, it should be called the temporal branch of the zygomatic nerve according to the constant positional relationship to the sphenoid and zygomatic bones. According to its origin, course and distribution, this nervous branch may be considered to be influential in zygomatic and retro-orbital pain due to entrapment and tension from the temporalis muscle and/or the narrow bony canal. The French version of this article is available in the form of electronic supplementary material and can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00276-002-0027-4.

  11. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.

    2014-03-01

    Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.

  12. [Evolution of the number of authors in clinical and basic science journals in the Spanish language].

    PubMed

    Soteras, F; Blanco, J R; García Pineda, A F; Rupérez, H; Córdova, A; Escanero, J F

    1990-01-01

    The number of signing authors in Revista Clínica Española. Revista Española de Fisiología and Revista Española de Oncología have been analyzed from their first to the last received issue. The results obtained show an increasing number of authors in all journals specially during the 70s. The results also point out a relative decrease in the number of authors in basic sciences in relation to clinical publications. The increase in the number of authors in The Revista Española de Oncología has started somewhat later than the others. The environmental and professional stress as well as the interrelations between different hospital members have been suggested, amongst others, as the possible cause of these events.

  13. Pure F-actin networks are distorted and branched by steps in the critical-point drying method.

    PubMed

    Resch, Guenter P; Goldie, Kenneth N; Hoenger, Andreas; Small, J Victor

    2002-03-01

    Elucidation of the ultrastructural organization of actin networks is crucial for understanding the molecular mechanisms underlying actin-based motility. Results obtained from cytoskeletons and actin comets prepared by the critical-point procedure, followed by rotary shadowing, support recent models incorporating actin filament branching as a main feature of lamellipodia and pathogen propulsion. Since actin branches were not evident in earlier images obtained by negative staining, we explored how these differences arise. Accordingly, we have followed the structural fate of dense networks of pure actin filaments subjected to steps of the critical-point drying protocol. The filament networks have been visualized in parallel by both cryo-electron microscopy and negative staining. Our results demonstrate the selective creation of branches and other artificial structures in pure F-actin networks by the critical-point procedure and challenge the reliability of this method for preserving the detailed organization of actin assemblies that drive motility. (c) 2002 Elsevier Science (USA).

  14. A Branch Meeting in Avon

    ERIC Educational Resources Information Center

    Vaughan, Kathryn; Coles, Alf

    2011-01-01

    The Association of Teachers of Mathematics (ATM) exists for, and is run by, its members. Branch meetings are so much more than the "grass roots" of the association--it can be a powerhouse of inspiration and creativity. In this article, the authors provide commentaries on a recent branch meeting.

  15. Synthesis and macrophage activation of lentinan-mimic branched amino polysaccharides: curdlans having N-Acetyl-d-glucosamine branches.

    PubMed

    Kurita, Keisuke; Matsumura, Yuriko; Takahara, Hiroki; Hatta, Kiyoshige; Shimojoh, Manabu

    2011-06-13

    N-Acetyl-d-glucosamine branches were incorporated at the C-6 position of curdlan, a linear β-1,3-d-glucan, and the resulting nonnatural branched polysaccharides were evaluated in terms of the immunomodulation activities in comparison with lentinan, a β-1,3-d-glucan having d-glucose branches at C-6. To incorporate the amino sugar branches, we conducted a series of regioselective protection-deprotections of curdlan involving triphenylmethylation at C-6, phenylcarbamoylation at C-2 and C-4, and detriphenylmethylation. Subsequent glycosylation with a d-glucosamine-derived oxazoline, followed by deprotection gave rise to the branched curdlans with various substitution degrees. The products exhibited remarkable solubility in both organic solvents and water. Their immunomodulation activities were determined using mouse macrophagelike cells, and the secretions of both the tumor necrosis factor and nitric oxide proved to be significantly higher than those with lentinan. These results conclude that the amino sugar/curdlan hybrid materials are promising as a new type of polysaccharide immunoadjuvants useful for cancer chemotherapy.

  16. Department of Defense Basic Research Program.

    DTIC Science & Technology

    1983-01-01

    25 Environmental Sciences oceanography ........................................................................... 27...budget category and increased emphasis on high- risk , high-payoff, and named Basic Research, most of the effort funded under long-term research was...proximity fue, °.tchooie-o examplsi, radar, theus prxiit fuzenan asrsk purchasing power because of inflation and was risking nuclear weapons, homing

  17. Wind-Induced Reconfigurations in Flexible Branched Trees

    NASA Astrophysics Data System (ADS)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  18. Beyond the data - Topics that resonate with students when communicating basic climate science in a Geoscience course

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.

    2013-12-01

    Instructors will undoubtedly want to cover basic climate change science in undergraduate geosciences courses. When instructors have limited time in a course, they would like to know what topics will not only provide factual climate data, but also resonate with students. Instructors want to bring a variety of information to the classroom, but even if time allows, this can sometimes become too overwhelming and lead to diminishing returns. This study is based on a series of surveys conducted in an upper-division Air Pollution/Atmospheric Chemistry course at Loyola Marymount University to assess students' opinions on climate change, how these opinions change throughout the semester, and what teaching resources/topics were most effective in catalyzing those changes. Data will be presented to show that not only opinions, but also the level of student confidence in this politically-sensitive topic, shifted by the end of the semester. At the end of the semester, students evaluated their level of agreement with how much each specific topic presented significantly contributed to their understanding that 1) the climate is indeed changing, and 2) humans have a large role in climate change. In general, students find the timeline of the link between greenhouse gases and temperature particularly compelling. Lastly, even in this physical science course students clearly gained an appreciation for the role of science in politics and social justice. Not only is this a tenant of liberal arts education, but it seems as if students find this interdisciplinary connection empowering.

  19. Beyond the data - Topics that resonate with students when communicating basic climate science in a Geoscience course

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; McDaniel, S.; Graham, J.; Hoggan, J. C.

    2011-12-01

    Instructors will undoubtedly want to cover basic climate change science in undergraduate geosciences courses. When instructors have limited time in a course, they would like to know what topics will not only provide factual climate data, but also resonate with students. Instructors want to bring a variety of information to the classroom, but even if time allows, this can sometimes become too overwhelming and lead to diminishing returns. This study is based on a series of surveys conducted in an upper-division Air Pollution/Atmospheric Chemistry course at Loyola Marymount University to assess students' opinions on climate change, how these opinions change throughout the semester, and what teaching resources/topics were most effective in catalyzing those changes. Data will be presented to show that not only opinions, but also the level of student confidence in this politically-sensitive topic, shifted by the end of the semester. At the end of the semester, students evaluated their level of agreement with how much each specific topic presented significantly contributed to their understanding that 1) the climate is indeed changing, and 2) humans have a large role in climate change. In general, students find the timeline of the link between greenhouse gases and temperature particularly compelling. Lastly, even in this physical science course students clearly gained an appreciation for the role of science in politics and social justice. Not only is this a tenant of liberal arts education, but it seems as if students find this interdisciplinary connection empowering.

  20. The genesis of craniofacial biology as a health science discipline.

    PubMed

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.

  1. A comparison of basic and state-of-the-arts skills sets of biomedical science technical staff in Lagos public universities.

    PubMed

    John, T A

    2011-12-01

    Biomedical science has advanced drastically in developed countries in the last two decades with many health and economic benefits. In Nigeria, biomedical science has not thrived and the contribution from Nigerian universities, indeed African universities, to publications in global high impact journals is low. The present work was based on the hypothesis that there is a lack of state-of-the-arts experimentation in Nigerian biomedical science experiments. An investigation was carried out on the professional skills of biomedical science technical staff of the two (federal and state) public universities in Lagos, Nigeria using a closed-ended questionnaire survey. The 17 respondents were asked about their training, the frequency of utilization of 99 skills, and their expertise. The respondents were "untrained" more in state-of-the-arts skills (34% for electrophoresis, 28% for genomics, 22% for immunochemistry, and 34% for proteomics skills) than in general professional skills (5%), basic technical equipment skills (16%), or general biomedical science knowledge and skills (16%). Frequencies of responses were higher for general skills than for state-of-the-arts skills in the responses "utilizing frequently" (9.96%-31-61% versus 0.36%-4.2%), and "I'm expert" (9.55%-19.88% versus 5.88%-8.48%). It was projected that with continued investment in modern equipment and infrastructure, there will be increased drive for training and usage of modern bioscience research skills and multidisciplinary approaches and production of high-tech scientific publications.

  2. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  3. 77 FR 66853 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Branch, Division of Extramural Research and Training, Nat. Institute of Environmental Health Sciences, P... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel Career Grants in the Environmental Health Sciences. Date: November...

  4. Branched GAX cycle gas fired heat pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.; Anand, G.; Papar, R.A.

    1996-12-31

    GAX absorption heat pump cycles are characterized by the Generator Absorber Heat eXchange (GAX) between the high temperature end of the absorber and the low temperature end of the generator. The improved thermodynamic performance of the basic GAX cycle coupled with its mechanical simplicity has attracted substantial interest in using this cycle for gas-cooling. However, to be competitive in a cooling dominated market, the cycle has to achieve high cooling performance and also low installed cost. The Branched GAX (BGAX) cycle promises higher cooling performance using similar components as the basic GAX cycle and an additional solution pump. By increasingmore » the solution flow rate at the hot end of the absorber, the BGAX cycle makes more complete use of the temperature overlap. As a result, less external heat is supplied and higher COPs are obtained. A breadboard prototype of the BGAX cycle has been developed and is now operating. A novel thermosyphon cooled absorber eliminates the need for the outdoor hydronic loop, and reduces cost by 10%. Other component improvements yield another 10% cost reduction. The breadboard prototype has operated for more than 200 hours. Gas cooling COP = 0.87 has been consistently achieved at 30.6 C (87 F) ambient conditions. At the 35 C (95 F) ambient capacity rating condition, a cooling load of 4.5 refrigeration tons was achieved at a cycle COP = 0.95.« less

  5. Thermoelectric effects in disordered branched nanowires

    NASA Astrophysics Data System (ADS)

    Roslyak, Oleksiy; Piriatinskiy, Andrei

    2013-03-01

    We shall develop formalism of thermal and electrical transport in Si1 - x Gex and BiTe nanowires. The key feature of those nanowires is the possibility of dendrimer type branching. The branching tree can be of size comparable to the short wavelength of phonons and by far smaller than the long wavelength of conducting electrons. Hence it is expected that the branching may suppress thermal and let alone electrical conductance. We demonstrate that the morphology of branches strongly affects the electronic conductance. The effect is important to the class of materials known as thermoelectrics. The small size of the branching region makes large temperature and electrical gradients. On the other hand the smallness of the region would allow the electrical transport being ballistic. As usual for the mesoscopic systems we have to solve macroscopic (temperature) and microscopic ((electric potential, current)) equations self-consistently. Electronic conductance is studied via NEGF formalism on the irreducible electron transfer graph. We also investigate the figure of merit ZT as a measure of the suppressed electron conductance.

  6. 46 CFR 169.690 - Lighting branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Lighting branch circuits. 169.690 Section 169.690... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.690 Lighting branch circuits. Each lighting branch circuit must meet the requirements of § 111.75-5 of this chapter...

  7. Fort Collins Science Center Ecosystem Dynamics branch--interdisciplinary research for addressing complex natural resource issues across landscapes and time

    USGS Publications Warehouse

    Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.

    2013-01-01

    The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions

  8. Branching, Superdiffusion and Stress Relaxation in Surfactant Micelles

    NASA Astrophysics Data System (ADS)

    Sureshkumar, R.; Dhakal, S.; Syracuse University Team

    2016-11-01

    We investigate the mechanism of branch formation and its effects on the dynamics and rheology of a model cationic micellar fluid using molecular dynamics (MD) simulations. Branched structures are formed upon increasing counter ion density. A sharp decrease in the solution viscosity with increasing salinity has long been attributed to the sliding motion of micellar branches along the main chain. Simulations not only provide firm evidence of branch sliding in real time, but also show enhanced diffusion of surfactants by virtue of such motion. Insights into the mechanism of stress relaxation associated with branch sliding will be discussed. Specifically, an externally imposed stress damps out more quickly in a branched system compared to that in an unbranched one. NSF Grants 1049489, 1049454.

  9. Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky

    USGS Publications Warehouse

    Lyons, Erwin J.

    1957-01-01

    Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.

  10. Advancing the Science of ISRU

    NASA Astrophysics Data System (ADS)

    Gertsch, L. S.; Morris, K. A.

    2017-02-01

    The sustainable exploration of space requires in situ resource utilization (ISRU). Successful ISRU depends on a solid science foundation; consequently, planetary science must include basic and applied science investigations to support ISRU.

  11. Fuzzy branching temporal logic.

    PubMed

    Moon, Seong-ick; Lee, Kwang H; Lee, Doheon

    2004-04-01

    Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.

  12. Science of Food and Cooking: A Non-Science Majors Course

    ERIC Educational Resources Information Center

    Miles, Deon T.; Bachman, Jennifer K.

    2009-01-01

    Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…

  13. A case of recurrence of congenital ocular toxoplasmosis with frosted branch angiitis (ocular toxoplasmosis with frosted branch angiitis).

    PubMed

    Suzuki, Takahiro; Onouchi, Hiromi; Nakagawa, Yoshihiro; Oohashi, Hideki; Kaiken, Han; Kawai, Kenji

    2010-12-20

    To describe a case of recurrence of congenital ocular toxoplasmosis with frosted branch angiitis. A 24-year-old woman presented with hyperemia in her right eye. Medical history included epilepsy at age 14 and mild mental retardation. Iridocyclitis and vitreous opacity were observed in the right eye, and furthermore widespread retinal vessel sheathing due to frosted branch angiitis was seen. Acyclovir was initiated for acute retinal necrosis with frosted branch angiitis. One week later, serologic tests showed elevated toxoplasma antibody level and toxoplasma antibody IgG level, and a white retinal exudative lesion with unclear margins was noted. Therefore, acetylspiramycin and prednisolone were initiated for a recurrence of congenital ocular toxoplasmosis. After treatment, inflammation subsided, the exudative lesion shrank, and the frosted branch angiitis improved. We encountered a case of ocular toxoplasmosis due to recurrence of congenital toxoplasmosis with frosted branch angiitis. The clinical symptoms of ocular toxoplasmosis can be varied and the diagnosis should be kept in mind.

  14. Carter Budget Tilts "Back to Basics" for Research

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1978-01-01

    Reviews the proposed 1979 federal budget for basic research for the National Institutes of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), Environmental Protection Agency (EPA), Department of Defense, and Department of Energy. (SL)

  15. The Customer is Always Right...Girls' and Boys' Reactions to Science Lessons.

    ERIC Educational Resources Information Center

    Kelly, Alison

    1988-01-01

    Explores the reactions of third-year pupils to their science lessons. Discusses the extent to which these boys' and girls' reactions can be used to predict enrollment in the different branches of science in their fourth year. Describes ways to encourage students to continue in science. (CW)

  16. Big Science, Team Science, and Open Science for Neuroscience.

    PubMed

    Koch, Christof; Jones, Allan

    2016-11-02

    The Allen Institute for Brain Science is a non-profit private institution dedicated to basic brain science with an internal organization more commonly found in large physics projects-large teams generating complete, accurate and permanent resources for the mouse and human brain. It can also be viewed as an experiment in the sociology of neuroscience. We here describe some of the singular differences to more academic, PI-focused institutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. [Basic research in traumatology and its contribution to routine operation].

    PubMed

    Hausner, T; Redl, H

    2017-02-01

    Basic research in traumatology supports the clinical outcome of patients in trauma care and tries to find science-based solutions for clinical problems. Furthermore, institutions for basic research in traumatology usually offer training in different skills, such as how to write a scientific paper, or practice in microsurgery or intubation. Two examples of clinically significant research topics are presented.

  18. Coulomb branches with complex singularities

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  19. Language learning impairments: integrating basic science, technology, and remediation.

    PubMed

    Tallal, P; Merzenich, M M; Miller, S; Jenkins, W

    1998-11-01

    One of the fundamental goals of the modern field of neuroscience is to understand how neuronal activity gives rise to higher cortical function. However, to bridge the gap between neurobiology and behavior, we must understand higher cortical functions at the behavioral level at least as well as we have come to understand neurobiological processes at the cellular and molecular levels. This is certainly the case in the study of speech processing, where critical studies of behavioral dysfunction have provided key insights into the basic neurobiological mechanisms relevant to speech perception and production. Much of this progress derives from a detailed analysis of the sensory, perceptual, cognitive, and motor abilities of children who fail to acquire speech, language, and reading skills normally within the context of otherwise normal development. Current research now shows that a dysfunction in normal phonological processing, which is critical to the development of oral and written language, may derive, at least in part, from difficulties in perceiving and producing basic sensory-motor information in rapid succession--within tens of ms (see Tallal et al. 1993a for a review). There is now substantial evidence supporting the hypothesis that basic temporal integration processes play a fundamental role in establishing neural representations for the units of speech (phonemes), which must be segmented from the (continuous) speech stream and combined to form words, in order for the normal development of oral and written language to proceed. Results from magnetic resonance imaging (MRI) and positron emission tomography (PET) studies, as well as studies of behavioral performance in normal and language impaired children and adults, will be reviewed to support the view that the integration of rapidly changing successive acoustic events plays a primary role in phonological development and disorders. Finally, remediation studies based on this research, coupled with neuroplasticity

  20. Disassortativity of random critical branching trees

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Kahng, B.; Kim, D.

    2009-06-01

    Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.