Using Scientific and Industrial Films in Teaching Technical Communication.
ERIC Educational Resources Information Center
Veeder, Gerry
A film course especially designed for technical communication students can illustrate basic film concepts and techniques while showing how film effectively communicates ideas in an industrial and scientific communication system. After a basic introduction to film terms, the study of actual scientific and industrial films demonstrates the following…
Basic College-Level Pharmacology: Therapeutic Drug Range Lesson Plan.
ERIC Educational Resources Information Center
Laipply, Richelle S.
2000-01-01
Investigations of scientific concepts using inquiry can be included in the traditional college lecture. This lesson uses the Learning Cycle to demonstrate therapeutic drug range, a basic concept in pharmaceutical science. Students use graphing to discover patterns as a part of data analysis and interpretation of provided investigation data.…
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
NASA Astrophysics Data System (ADS)
Krall, Rebecca Mcnall; Lott, Kimberly H.; Wymer, Carol L.
2009-02-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers’ conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was utilized to assess 76 inservice elementary and middle school teachers from the central Appalachian region. Outcomes from four tasks assessing photosynthesis and respiration concepts are discussed. Findings revealed similarities between non-scientific conceptions the teachers demonstrated and non-scientific conceptions reported in the research literature on elementary and middle school students’ understanding of the concepts. Findings also informed subsequent inservice teacher professional development efforts in life science and the development of a biology course for preservice elementary teachers.
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
ERIC Educational Resources Information Center
Krall, Rebecca McNall; Lott, Kimberly H.; Wymer, Carol L.
2009-01-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers' conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was…
ERIC Educational Resources Information Center
Ruzhitskaya, Lanika
2011-01-01
The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several…
Learning Genetics through a Scientific Inquiry Game
ERIC Educational Resources Information Center
Casanoves, Marina; Salvadó, Zoel; González, Ángel; Valls, Cristina; Novo, Maria Teresa
2017-01-01
In this paper we discuss an activity through which students learn basic concepts in genetics by taking part in a police investigation game. The activity, which we have called Recal, immerses students in a scientific-based scenario in which they play a role of a scientific assessor. Players have to develop and use scientific reasoning and…
ERIC Educational Resources Information Center
Martins, Isabel P.; Veiga, Luisa
2001-01-01
Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
The Conservation of Energy Concept in Ninth Grade General Science, Final Report.
ERIC Educational Resources Information Center
Shockley, William; And Others
Discussed is an instructional approach, "concept-distillation," which involves experiences, games, and puzzles that have the "distilled essence" of the basic concepts of the physical sciences. This approach is designed to impart a vivid and dramatic meaning and structure of the sciences for transfer in scientific thinking. The…
What is Basic Research? Insights from Historical Semantics.
Schauz, Désirée
2014-01-01
For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.
Using Discrepant Events to Inspire Writing.
ERIC Educational Resources Information Center
Ruck, Carolyn; And Others
1991-01-01
Demonstrations that can be used to lead students to wonder and write about basic scientific principles are presented. Each demonstration includes the concept demonstrated, a list of materials, and procedures. Concepts include density and temperature of liquids, contracting matter with heat, atmospheric pressure, dramatic color changes, fireproof…
Basic Curriculum Guide--Science. Grades K-6.
ERIC Educational Resources Information Center
Starr, John W., 3rd., Ed.
GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…
ERIC Educational Resources Information Center
Polman, Joseph; Newman, Alan; Farrar, Cathy; Saul, E. Wendy
2012-01-01
Much of the National Science Education Standards (NRC 1996), aside from the inquiry and teaching sections, focus on content. The authors' call is instead to build standards that focus on what students need to be scientifically literate in 10 or 15 years. Although a basic understanding of important scientific concepts and an understanding of how…
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides opportunities for engaging students in scientific investigations, offering a hands-on approach that encourages students to understand science concepts, gives them ways to apply the concepts, and introduces and reinforces the skills they need to become independent investigators. The basic outline and objectives of each section of…
Horii, Ikuo
2016-01-01
Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision medicine are to be addressed for the new aspect of efficacy and safety evaluation.
Veritas filia temporis: The origins of the idea of scientific progress.
Špelda, Daniel
2016-10-01
The article provides insight into the epistemological and anthropological aspect of the origination of the idea of scientific progress. It focuses on the relationship between individual's limited lifetime and the immensity of nature. The basic assumption is that the idea of scientific progress offers a solution of the epistemological problem stemming from the finding that there is no (teleological) coincidence between human cognitive abilities and the extent of nature. In order to facilitate the understanding of the origin of the idea of scientific progress, I propose distinction between the descriptive and prescriptive concepts of progress. While the descriptive notion of progress expresses the cumulative character of scientific knowledge and the superiority of the present over preceding generations, the prescriptive concept pertains to progressivist epistemology directing scientific research at the future development of knowledge. This article claims that the prevalent concept in Antiquity was the descriptive concept of scientific progress. The prescriptive notion had developed only in ancient astronomy. Early modern science was faced with similar issues as ancient astronomy - mainly the empirical finding related to the inexhaustible character of nature. Consequently to the introduction of the idea of progress, the progress of sciences became a purpose in itself - hence becoming infinite.
ERIC Educational Resources Information Center
Dogan, Nihal
2017-01-01
In 2016, the Program for International Student Assessment (PISA) showed that approximately 44.4% of students in Turkey obtained very low grades when their scientific knowledge was evaluated. In addition, the vast majority of students were shown to have no knowledge of basic scientific terms or concepts. Science teachers play a significant role in…
Janice VanCleave's the Human Body for Every Kid: Easy Activities That Make Learning Science Fun.
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides fun experiments that teach known concepts about the human body. It is designed to teach facts, concepts, and problem-solving strategies. The scientific concepts presented can be applied to many similar situations, and the exercises and activities were selected for their ability to be explained in basic terms with little…
General Science, Ninth Grade: Theme I and Theme II. Experimental.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This document was designed to assist teachers who are helping ninth grade students in New York City learn scientific concepts. In addition, the guide emphasizes basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide contains lessons on what a scientist does,…
Concept as the Main Research Object of Cognitive Linguistics
ERIC Educational Resources Information Center
Abdikalyk, Kunimzhan Sadirkyzy; Abitzhanova, Zhanar Altynbekovna; Otarbekova, Zhamilya Kerimbaevna; Kaidarova, Gulyaim Kablakatovna; Seidullayeva, Gulzhan Abutalipovna
2016-01-01
This article dwells upon the basic unit of cognitive linguistics, which is a concept. Firstly, we provide an overview of major scientific works written by foreign linguists who pay attention to special aspects and lines of research. Secondly, we analyse conclusions on modern problems in linguistics that are drawn in cognitological studies…
Cunha, Leonardo Rodrigues; Cudischevitch, Cecília de Oliveira; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; Silva-Neto, Mário Alberto Cardoso da
2014-01-01
We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of Trypanosoma cruzi, the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by seven distinguished contemporary Brazilian researchers working with Triatominaes. Students (22) in the seventh grade of a public elementary school received the comic book. The study was then followed up by the use of Concept Maps elaborated by the students. Six Concept Maps elaborated by the students before the introduction of the comic book received an average score of 7. Scores rose to an average of 45 after the introduction of the comic book. This result suggests that a more attractive content can greatly improve the knowledge and conceptual understanding among students not previously exposed to insect biochemistry. In conclusion, this study illustrates an alternative to current strategies of teaching about the transmission of neglected diseases. It also promotes the diffusion of the scientific knowledge produced by Brazilian researchers that may stimulate students to choose a scientific career. © 2014 The International Union of Biochemistry and Molecular Biology.
ERIC Educational Resources Information Center
Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.
2012-01-01
Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…
Nanotechnology Review: Molecular Electronics to Molecular Motors
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Saini, Subhash (Technical Monitor)
1998-01-01
Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.
Modelling students' knowledge organisation: Genealogical conceptual networks
NASA Astrophysics Data System (ADS)
Koponen, Ismo T.; Nousiainen, Maija
2018-04-01
Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.
Conceptual design of the scientific instrument arrangement for the large space telescope
NASA Technical Reports Server (NTRS)
Zurasky, J. L.
1974-01-01
A description of the scientific instrument arrangement for the large space telescope (LST) is given, with some of the rationale for selecting this concept. The first section of this report describes the basic configuration and was designed for an f/20 telescope focal plane. The subsequent LSTWG meeting held in November gave some redirection to the scientific requirements, and these changes are described in the section, Configuration Update.
Ecosystem Services have received increasing scientific focus for a decade, yet the natural and social scientists working on mainstreaming these concepts are still struggling with the task. FEGS (Final Ecosystem Goods and Services) are an informative and useful concept as they emb...
Motivating Students To Read Physics Content.
ERIC Educational Resources Information Center
Sprague, Marsha M.; Cotturone, Jennifer
2003-01-01
Describes effective projects that made students effectively read scientific materials in the physics content area. Suggests using trade books in science to enhance student learning of basic physics concepts and comprehension of technical reading matter. (KHR)
ERIC Educational Resources Information Center
Cunha, Leonardo Rodrigues; de Oliveria Cudischevitch, Cecília; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; da Silva-Neto, Mário Alberto Cardoso
2014-01-01
We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of "Trypanosoma cruzi," the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by…
This web presentation answers basic questions about the relatively new scientific concept, emergy. It dispels some of the confusion surrounding this idea in a PowerPoint presentation. The presentation is written in common language and uses straightforward examples. Emergy indic...
Around the World in Science Class.
ERIC Educational Resources Information Center
Rubino, Ann M; Duerling, Carolyn K.
1991-01-01
Interdisciplinary learning modules called "Maude Visits..." are described. The modules apply basic scientific concepts to current and future problems facing people in various countries such as the Soviet Union. Activities using maps, money, and convection currents are included. (KR)
ERIC Educational Resources Information Center
Gkouskou, Eirini; Tunnicliffe, Sue Dale
2017-01-01
?he nature of scientific research goes beyond the learning of concepts and basic manipulation to the key factors of engaging students in identifying relevant evidence and reflecting on its interpretation. It is argued that young children have the ability to acquire viable, realistic concepts of the living world when involved in relevant activities…
Three Short Films about Water: Presenting Basic Concepts to Students and Stakeholders
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Hooper, R. P.; Michel, A.; Wilde, P.; Lilienfeld, L.
2011-12-01
Three short form (3 - 5 minute) movies were produced for CUAHSI, to convey basic concepts such as a hydrologic budget, stores and fluxes of water, and the flowpaths and residence time of water. The films were originally intended to be used by scientists to explain the concepts behind potential environmental observatories, but evolved into serving a broader purpose. The films combine still photos, satellite images, animation and video clips, and interviews with CUAHSI members explaining hydrologic concepts in simple, accessible terms. In producing these films, we have found the importance of engaging scientists in conversation first, to develop a script around key accessible concepts and relevant information. Film and communication professionals play a critical role in distilling the scientific explanation and concepts into accessible, engaging film material. The films have been widely distributed through CD and online to educators for use in courses. Additionally, they provide a way to engage stakeholders, particularly land owners, by conveying basic concepts that are necessary to understand the hydrologic and earth science foundation of many of today's political and environmental issues. The films can be viewed online at the CUAHSI website, which also contains links to other film related resources and programs.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.
1987-01-01
The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.
Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher
2016-11-01
Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.
"The instincts of motherhood: bringing joy back into newborn care".
Odent, Michel
2009-11-01
Although homo sapiens is equipped with subneocortical neuro-endocrine structures comparable to those of all mammals, there is no scientific curiosity about basic behaviours such as the maternal protective aggressive instinct or basic emotional states such as joy. A study of the fetus ejection reflex is an opportunity to present the rational control of the procreative drives as a by-product of human brain evolution, and to clarify the concepts of neocortical inhibitions and cultural conditioning. After referring to recent spectacular advances, we anticipate that in the near future several developing scientific disciplines will have the power to overcome the effects of thousands of years of socialisation of childbirth.
A roadmap for bridging basic and applied research in forensic entomology.
Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S
2011-01-01
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
ERIC Educational Resources Information Center
Adams, Steve
1990-01-01
The study of aerodynamics using a wind tunnel helps students develop an understanding of the basic scientific concepts of lift, drag, and stability and their applications. Directions for building a wind tunnel in the classroom and activities for using the tunnel are provided. (KR)
ERIC Educational Resources Information Center
Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboglu, Canan
2013-01-01
Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society,…
[Seed geography: its concept and basic scientific issues].
Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu
2010-01-01
In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.
Scientific cousins: the relationship between Charles Darwin and Francis Galton.
Fancher, Raymond E
2009-01-01
This article traces the personal as well as the intellectual and scientific relationship between Charles Darwin and his younger half-cousin Francis Galton. Although they had been on friendly terms as young men, and Darwin had in some ways been a role model for Galton, the two did not share major scientific interests until after the publication of Darwin's On the Origin of Species in 1859. That work precipitated a religious and philosophical crisis in Galton, which he gradually resolved after conceiving and developing the basic ideas of "hereditary genius" and eugenics. More mathematically inclined than Darwin, he subsequently contributed to the Darwinian evolutionary discussion, and to the future science of psychology, by proposing the basic concept of the nature-nurture dichotomy, the conceptual and statistical foundations for behavior genetics, and the idea for intelligence testing. 2009 APA, all rights reserved
Making holograms in middle and high schools
NASA Astrophysics Data System (ADS)
Jeong, Tung H.
2000-06-01
Holography is a worthy topic that should become an integral part of any basic science curriculum. It embodies basic scientific principle that include the direct applications of three Nobel Prize physics concepts; it involves procedures that teaches the scientific method of problem solving; it can be learned by `doing' without previous experience; it is artistically creative; it can be appreciated by students of all ranges of abilities; and it is an open-ended subject so that specially interested students can continue to pursue deeper and more creative projects beyond the scope that fits into the curriculum. Finally, with the availability of high quality and low cost diode lasers, it is an affordable unit for any school.
Installing a Practical Research Project and Interpreting Research Results
Kasten R. Dumroese; David L. Wenny
2003-01-01
The basic concepts of the scientific method and research process are reviewed. An example from a bareroot nursery demonstrates how a practical research project can be done at any type of nursery, meshing sound statistical principles with the limitations of busy nursery managers.
Attitudes, Administrative Styles, and Outcomes.
ERIC Educational Resources Information Center
Laughlin, J. Stanley
1984-01-01
The literature on administrative style is reviewed. Attention is directed to four basic concepts of administrative style: (1) the structured, classical, traditional model; (2) the participatory or employee-involved operation; (3) a more behavioral scientific style; and (4) the situational or environmental style. These ideas are more fully…
Students' Mental Models of Atomic Spectra
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis; Wang, Lu
2016-01-01
Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Sackes, Mesut
2010-01-01
It is important to help young children make connections between events in their lives and science concepts in preschool classrooms, so introducing basic meteorology ideas offer a great opportunity to make weather connections and awaken scientific curiosity (Spiropoulou, Kostopoulos, and Jacovides 1999). Therefore, this article presents a science…
Installing a practical research project and interpreting research results
R. Kasten Dumroese; David L. Weny
2002-01-01
We review the basic concepts of science and research and the scientific process. Using an example from a bareroot nursery, we show how a practical research project can be done at any type of nursery, meshing sound statistical principles with limitations of busy nursery managers.
How do I write a scientific article?-A personal perspective.
Lippi, Giuseppe
2017-10-01
Scientific writing is not an easy task. Although there is no single and universally agreed strategy for assembling a successful scientific article, it is undeniable that some basic notions, gathered after decades of experience, may help increasing the chance of acceptance of a scientific manuscript. Therefore, the purpose of this article is to present a personal and arbitrary perspective on how to write a scientific article, entailing a tentative flowchart and a checklist describing the most important aspects characterizing each section of the manuscript. The final suggestion, which can be summarized in one simple and straightforward concept, is that you should always remember that a scientific article is meant to be read by others (i.e., referees and readers) and not by yourself.
Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.
Thompson, Sean D A
2014-12-01
Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.
Scientific Innovation's Two Valleys of Death: How Blood and Tissue Banks Can Help to Bridge the Gap
Thompson, Sean D.A.
2014-01-01
Abstract Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation’s inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process. PMID:25457967
Public's Knowledge of Science and Technology
ERIC Educational Resources Information Center
Pew Research Center, 2013
2013-01-01
The public's knowledge of science and technology varies widely across a range of questions on current topics and basic scientific concepts, according to a new quiz by the Pew Research Center and "Smithsonian" magazine. About eight-in-ten Americans (83%) identify ultraviolet as the type of radiation that sunscreen protects against. Nearly…
Wilderness and well-being: Complexity, time, and psychological growth
Joar Vitterso
2002-01-01
This paper presents the argument for interdisciplinary wilderness research. The idea of interdisciplinarity is grounded in theories of emotion and psychological growth that are compatible with basic knowledge in other scientific disciplines, and in particular with concepts related to evolution. Considering humans as biological knowledge systems, designed by natural...
What Does Culture Have to Do with Teaching Science?
ERIC Educational Resources Information Center
Madden, Lauren; Joshi, Arti
2013-01-01
In nearly every elementary school, plants are an important part of the science curriculum. Understanding basic ideas about plants prepares children to study more complicated scientific concepts including cell biology, genetics and heredity, complex ecosystem interactions, and evolution. It is especially important that teachers of children at the…
PHARMAVIRTUA: Educational Software for Teaching and Learning Basic Pharmacology
ERIC Educational Resources Information Center
Fidalgo-Neto, Antonio Augusto; Alberto, Anael Viana Pinto; Bonavita, André Gustavo Calvano; Bezerra, Rômulo José Soares; Berçot, Felipe Faria; Lopes, Renato Matos; Alves, Luiz Anastacio
2014-01-01
Information and communication technologies have become important tools for teaching scientific subjects such as anatomy and histology as well as other, nondescriptive subjects like physiology and pharmacology. Software has been used to facilitate the learning of specific concepts at the cellular and molecular levels in the biological and health…
Third Grade Elementary Students' Perception of Science
ERIC Educational Resources Information Center
Demir, Metin
2015-01-01
The current study investigated which dimensions of scientific process are capitalized on by elementary school third graders to explain the concept of science at conceptual level. The study was conducted by using "Basic Qualitative Research", one of the qualitative research approaches with the participation of 225 elementary school third…
Clinical caring science as a scientific discipline.
Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å
2017-09-01
Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.
Radiological Dispersion Devices and Basic Radiation Science
NASA Astrophysics Data System (ADS)
Bevelacqua, Joseph John
2010-05-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous manner. One reason for limited student interest is the failure to link the discussion to topics of current interest. The author has found that presenting this material with a link to radiological dispersion devices (RDDs), or dirty bombs, and their associated health effects provides added motivation for students. The events of Sept. 11, 2001, and periodic media focus on RDDs heighten student interest from both a scientific curiosity as well as a personal protection perspective. This article presents a framework for a more interesting discussion of the basics of radiation science and their associated health effects. The presentation can be integrated with existing radioactivity lectures or added as a supplementary or enrichment activity.
Basic science research in urology training.
Eberli, D; Atala, A
2009-04-01
The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.
NASA Astrophysics Data System (ADS)
Szczęsna, Joanna
2010-01-01
School education is both a starting point for the development of various scientific disciplines (school educates future researchers) and the result of science. The landscape research is conducted within many scientific disciplines and has a long tradition. Lanscape education, which is the result of a scientific dimension, is implemented in primary school under the nature subject. Primary school education is the only level at which the geographical contents are carried out on landscape. The landscape is of interest to many disciplines: geography, architecture, social sciences and the arts. In recent years, there were many studies which contained an overview of the main strands of the science of landscape, presented the differences in the meaning of the concept and objectives of individual research disciplines. These studies have become the ground for the characterization of the concept of landscape education implemented in Polish school and its evaluation in terms of scientific achievements. A review of educational purposes, the basic content of education and achievements of students, demonstrate the influence of multiple scientific disciplines in school landscape education. The most significant share of the course content are achievements of geography disciplines, particularly: physical geography, environmental protection and landscape ecology. Other scientific fields: literature, art, psychology, sociology, and architecture do not have any impact on the school landscape education or their impact remains marginal.
How do I write a scientific article?—A personal perspective
2017-01-01
Scientific writing is not an easy task. Although there is no single and universally agreed strategy for assembling a successful scientific article, it is undeniable that some basic notions, gathered after decades of experience, may help increasing the chance of acceptance of a scientific manuscript. Therefore, the purpose of this article is to present a personal and arbitrary perspective on how to write a scientific article, entailing a tentative flowchart and a checklist describing the most important aspects characterizing each section of the manuscript. The final suggestion, which can be summarized in one simple and straightforward concept, is that you should always remember that a scientific article is meant to be read by others (i.e., referees and readers) and not by yourself. PMID:29152516
Validating concepts of mental disorder: precedents from the history of science.
Miller, Robert
2014-10-01
A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.
The Terrestrial Planets - Edutainment and Science for Grades 7-9
NASA Astrophysics Data System (ADS)
Sornig, Manuela; Sonnabend, Guido; Pietsch-Lindt, Ursula; Stupar, Dusan; Morath, Frank; Bischoff, Sonja; Weiler, Sven
2010-05-01
Over the last years, public outreach has become an integral part of scientific work. In order to motivate the next generation of scientist and in cooperation with the JuniorUniversity program of the University of Cologne and the Cologne Science Adventure "Odysseum" we at the I. Physikalisches Institut developed a concept to introduce our up-to-date scientific work to teenagers between 13 and 15 years of age. The main idea was to motivate adolescents, to provide a cheerful contact with science and the local university, and to have fun. The focus of our scientific work are wind measurements in the upper atmospheres of Mars and Venus by high resolution infrared spectroscopy. The main concept of these observations is quite simple, just involving spectroscopic measurements of light and the well-known Doppler effect. This observational concept as well as general information on the planets were transported during one day consisting of various events. The morning was organized by the Odysseum. Two instructional workshops ("Venus, Earth, Mars", "Mission to Mars") with high "fun-factor" were offered providing an appropriate environment for the children and easy access to the subject. Basic information about the planets Mars and Venus was conveyed as well as some aspects on possible space missions to these planets. Based on that information the children visited our institute in the afternoon where two workshops with hands-on experiments provided deeper inside to the technique of spectroscopy ("Information from the Universe") and the problems of conducting astronomical observations ("Hitch-hiking through the universe"). The latter was also used to introduce the basic methods of how to write a scientific proposal for telescope observing time. Finally, to round up the day and to increase our targeted audience, parents and friends where invited to attend a presentation of the results of the day given by the participants as well as a brief introduction into our scientific work on investigations of dynamical properties on Mars and Venus expanding the knowledge gathered during the day.
Answers to Science Questions from the "Stop Faking It!" Guy
ERIC Educational Resources Information Center
Robertson, William C.
2009-01-01
This valuable and entertaining compendium of Bill Robertson's popular "Science 101" columns, from NSTA member journal "Science and Children," proves you don't have to be a science geek to understand basic scientific concepts. The author of the best-selling "Stop Faking It!" series explains everything from quarks to photosynthesis, telescopes to…
Devising Your Own Investigations Using Common Classroom and Household Materials.
ERIC Educational Resources Information Center
Wentworth, Daniel F.
Many elementary classroom teachers must overcome the following problems in order to teach science effectively: (1) a lack of background in scientific concepts and general information; (2) a scarcity of science equipment and supplies on hand or insufficient funds to purchase them; (3) little basic knowledge of the skills, processes and attitudes…
I Wonder. Science Worksheets for the Primary Grades.
ERIC Educational Resources Information Center
Daniel, Charlie; Daniel, Becky
Designed to use simple materials that can be found in almost any household, this document provides elementary teachers and students with activities and worksheets that deal with basic scientific concepts. The activities are intended to help students form and test their own hypotheses. Each topic in the booklet is addressed through a simple…
The University, Scientific Research and the Ownership of Knowledge.
ERIC Educational Resources Information Center
Boonin, Leonard G.
The concept of owning knowledge is somewhat ethereal and until recently had little relevance to academic institutions. In principle any object that is capable of being controlled is capable of being owned. The most basic control concerns decisions about whether to communicate knowledge. The philosophical foundation which is the basis of the legal…
Streamlining Science: Three New Science Tools Make Data Collection a Snap
ERIC Educational Resources Information Center
Brown, Mike
2006-01-01
Today, collecting, evaluating, and analyzing data--the basic concepts of scientific study--usually involves electronic probeware. Probeware combines sensors that collect data with software that analyzes it once it has been sent to a computer or calculator. Science inquiry has benefited greatly from the use of electronic probeware, providing…
Learning from the Land: Teaching Ecology through Stories and Activities.
ERIC Educational Resources Information Center
Ellis, Brian Fox
This book strives to combine creative writing, the whole language approach, thinking skills, and problem-solving strategies with an introduction to ecological concepts. It aims to bring scientific facts to life by creating empathy for wild creatures and teach basic science skills by using creative writing and storytelling. This book contains nine…
Alternative Conceptions of Plate Tectonics Held by Nonscience Undergraduates
ERIC Educational Resources Information Center
Clark, Scott K.; Libarkin, Julie C.; Kortz, Karen M.; Jordan, Sarah C.
2011-01-01
The theory of plate tectonics is the conceptual model through which most dynamic processes on Earth are understood. A solid understanding of the basic tenets of this theory is crucial in developing a scientifically literate public and future geoscientists. The size of plates and scale of tectonic processes are inherently unobservable,…
Science: A Practical View. Volume I. Teacher Edition. Applied Basic Curriculum Series.
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the first in a series of three, provides the intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) ecology (what marine science…
On Misconceptions about Behavior Analysis among University Students and Teachers
ERIC Educational Resources Information Center
Arntzen, Erik; Lokke, Jon; Lokke, Gunn; Eilertsen, Dag-Erik
2010-01-01
Students frequently show misconceptions regarding scientific psychology in general and basic concepts in behavior analysis in particular. We wanted to replicate the study by Lamal (1995) and to expand the study by including some additional statements. In the current study, the focus was on misconceptions about behavior analysis held by…
Contemporary concepts of dissociation.
Avdibegović, Esmina
2012-10-01
The concept of dissociation was developed in the late 19th century by Pierre Janet for conditions of "double consciousness" in hypnosis, hysteria, spirit possession and mediumship. He defined dissociation as a deficit in the capacity of integration of two or more different "systems of ideas and functions that constitute personality", and suggested that it can be related to a genetic component, to severe illness and fatigue, and particularly to experiencing adverse, potentially traumatizing events. By the late 20th century, various and often contradictory concepts of dissociation were suggested, which were either insufficient or exceedingly including when compared to the original idea. Currently, dissociation is used to describe a wide range of normal and abnormal phenomena as a process in which behaviour, thoughts and emotions can become separated one from another. A complete presentation of mechanisms involved in dissociation is still unknown. Scientific research on basic processes of dissociation is derived mainly from studies of hypnosis and post-traumatic stress disorder. Given the controversies in modern concepts of dissociation, some researchers and theorists suggest return to the original understanding of dissociation as a basic premise for the further development of the concept of dissociation.
Basic Science Considerations in Primary Total Hip Replacement Arthroplasty
Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif
2010-01-01
Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240
Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans
NASA Astrophysics Data System (ADS)
Kendrick, E. O.; Deegan, L.
2011-12-01
Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.
Evaluating Scientific Misconceptions and Scientific Literacy in a General Science Course
NASA Astrophysics Data System (ADS)
Courtier, A. M.; Scott, T. J.
2009-12-01
The data used in this study were collected as part of the course assignments for General Education Science (GSci) 101: “Physics, Chemistry, and the Human Experience” at James Madison University. The course covers the basic principles of physics, chemistry, and astronomy. The primary goals of this study were to analyze student responses to general scientific questions, to identify scientific misconceptions, and to evaluate scientific literacy by comparing responses collected from different groups of students and from questions given during the course versus at the end of the course. While this project is focused on general scientific concepts, the misconceptions and patterns identified are particularly relevant for improving pedagogy in the geosciences as this field relies on multidisciplinary knowledge of fundamental physics, chemistry, and astronomy. We discuss differences in the results between the disciplines of physics, chemistry, and astronomy and their implications for general geology education and literacy, emphasizing the following questions: (a) What do students typically get wrong? (b) Did the overall scientific literacy of the students increase throughout the semester? Are the concepts discussed in answers provided at the end of class more accurate than those provided during class? (c) How do the before- and after- class responses change with respect to language and terminology? Did the students use more scientific terminology? Did the students use scientific terminology correctly?
A Workshop for Developing Learning Modules for Science Classes Based on Biogeochemical Research
ERIC Educational Resources Information Center
Harrington, James M.; Gardner, Terrence G.; Amoozegar, Aziz; Andrews, Megan Y.; Rivera, Nelson A.; Duckworth, Owen W.
2013-01-01
A challenging aspect of educating secondary students is integrating complex scientific concepts related to modern research topics into lesson plans that students can relate to and understand at a basic level. One method of encouraging the achievement of learning outcomes is to use real-world applications and current research to fuel student…
Reading Scientific Papers for Understanding: Revisiting Watson and Crick (1953)
ERIC Educational Resources Information Center
Kinchin, Ian M.
2005-01-01
The ability to use the research literature within a given field is a basic skill that students should acquire as part of their higher education studies. However, undergraduates need support in developing this skill. The use of concept maps as an aid to interrogating the literature is described here. This may help students to highlight key issues…
Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules
ERIC Educational Resources Information Center
Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie
2016-01-01
Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…
ERIC Educational Resources Information Center
Hocking, Colin; And Others
This series of educational activities is intended to help teachers communicate basic scientific concepts related to global warming and the greenhouse effect to students grades 7-10. Seven sessions provide laboratory activities, simulations, and discussions that can be used to improve student understanding of a number of important scientific…
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
ERIC Educational Resources Information Center
Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…
Teaching Emerging Diseases: A Strategy for Succeeding with Nonmajors
FASS, MARION FIELD
2000-01-01
A nonmajors course on emerging diseases served to introduce students to basic concepts in microbiology and to improve scientific literacy. The course used a range of learner-centered approaches to encourage students to take responsibility for their own learning. Evaluations demonstrated both student satisfaction and an increased understanding of important issues in microbiology. PMID:23653535
The Hotel Payload, plans for the period 2003-2006
NASA Astrophysics Data System (ADS)
Hansen, Gudmund; Mikalsen, Per-Arne
2003-08-01
The cost and complexity of scientific experiments, carried by traditional sounding rocket payloads, are increasing. At the same time the scientific environment faces declining funding for this basic research. In order to meet the invitation from the science community, Andøya Rocket Range runs a programme for developing a sounding rocket payload, in order to achieve an inexpensive and cost-effective tool for atmosphere research and educational training. The Hotel Payload is a new technological payload concept in the sounding rocket family. By means of standardized mechanical structures and electronics, flexibility in data collection and transmission, roomy vehicles are affordable to most of the scientific research environments as well as for educational training. A complete vehicle - ready for installation of scientific experiments - is offered to the scientists to a fixed price. The fixed price service also includes launch services. This paper describes the Hotel Payload concept and its technology. In addition the three year plan for the development project is discussed. The opportunity of using the Hotel Payload as a platform for a collaborative triangle between research, education and industry is also discussed.
The evolutionary origin of the vertebrate body plan: the problem of head segmentation.
Onai, Takayuki; Irie, Naoki; Kuratani, Shigeru
2014-01-01
The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).
NASA Astrophysics Data System (ADS)
Bich Ha, Nguyen
2011-12-01
Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the main aims of the textbook. The book consists of 15 chapters. According to their detailed contents they can be divided into three groups. In five chapters forming the first group (Introduction, Structure, Length Scales, Types of Nanostructures, Absorption and Emission Basics) the author presents the notions, definitions and concepts related to nanosystems, as well as the length scales of all their physical parameters. The contents of these chapters have been written for all readers studying any undergraduate academic programme in natural sciences and engineering. The subsequent seven chapters forming the second group (A Quantum Mechanics Review, Model Quantum Mechanics Problems, Additional Model Problems, Density of States, Bands, Time-Dependent Perturbation Theory, Interband Transitions) contain a comprehensive and easily understandable presentation of the theoretical basics of nanoscience. The last three chapters (Synthesis, Characterization, Applications) contain presentations on the fundamental methods in the experimental studies and applications of nanosystems. This book is very useful not only for training beginners in research and engineering in nanoscience and nanotechnology, but also for attracting the interest of specialists in other scientific disciplines to the application of the achievements of this new emerging multidisciplinary scientific field.
ERIC Educational Resources Information Center
Singer, J. David
Offering a new approach to college publishing, the sample module presented here serves as an example of a basic unit from University Programs. Typical modules (each 16 to 64 pages), directed toward graduate and undergraduate students, provide original statements on central concepts, principles, theories, or problems in a particular discipline and…
Smartphones: Powerful Tools for Geoscience Education
NASA Astrophysics Data System (ADS)
Johnson, Zackary I.; Johnston, David W.
2013-11-01
Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.
Laboratory Development and Lecture Renovation for a Science of Food and Cooking Course
ERIC Educational Resources Information Center
Miles, Deon T.; Borchardt, Adrienne C.
2014-01-01
Several years ago, a new nonscience majors course, The Science of Food and Cooking, was developed at our institution. The course covered basic scientific concepts that would normally be discussed in a typical introductory chemistry course, in the context of food and food preparation. Recently, the course has been revamped in three major ways: (1)…
Science of Food and Cooking: A Non-Science Majors Course
ERIC Educational Resources Information Center
Miles, Deon T.; Bachman, Jennifer K.
2009-01-01
Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…
Initiating Young Children into Basic Astronomical Concepts and Phenomena
NASA Astrophysics Data System (ADS)
Kallery, M.
2010-07-01
In the present study we developed and implemented three units of activities aiming at acquainting very young children with basic astronomical concepts and phenomena such as the sphericity of the earth, the earth’s movements and the day/night cycle. The activities were developed by a group composed of a researcher/facilitator and six early-years teachers. In the activities children were presented with appropriate for their age scientific information along with conceptual tools such as a globe and an instructional video. Action research processes were used to optimize classroom practices and to gather useful information for the final shaping of the activities and the instruction materials. In these activities the adopted approach to learning can be characterized as socially constructed. The results indicated awareness of concepts and phenomena that the activities dealt with in high percentages of children, storage of the new knowledge in the long term memory and easy retrieval of it, and children’s enthusiasm for the subject.
Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering
NASA Astrophysics Data System (ADS)
Christiansen, Frederik V.; Rump, Camilla
2008-11-01
Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical engineering and mechanical engineering. Based on a generalization of Kuhn’s theory of disciplinary matrix, and the idea of boundary objects we analyse how basic thermodynamics theory is conceived in the different scientific specialties. The study is based on interviews with teachers and analysis of the different textbook traditions. It is concluded that teachers need to take into account how subject matter is conceived in other related scientific specialties when designing courses. Two examples demonstrating how this may be done are given.
Connecting Science and Society: Basic Research in the Service of Social Objectives
NASA Astrophysics Data System (ADS)
Sonnert, Gerhard
2007-03-01
A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.
iSPHERE - A New Approach to Collaborative Research and Cloud Computing
NASA Astrophysics Data System (ADS)
Al-Ubaidi, T.; Khodachenko, M. L.; Kallio, E. J.; Harry, A.; Alexeev, I. I.; Vázquez-Poletti, J. L.; Enke, H.; Magin, T.; Mair, M.; Scherf, M.; Poedts, S.; De Causmaecker, P.; Heynderickx, D.; Congedo, P.; Manolescu, I.; Esser, B.; Webb, S.; Ruja, C.
2015-10-01
The project iSPHERE (integrated Scientific Platform for HEterogeneous Research and Engineering) that has been proposed for Horizon 2020 (EINFRA-9- 2015, [1]) aims at creating a next generation Virtual Research Environment (VRE) that embraces existing and emerging technologies and standards in order to provide a versatile platform for scientific investigations and collaboration. The presentation will introduce the large project consortium, provide a comprehensive overview of iSPHERE's basic concepts and approaches and outline general user requirements that the VRE will strive to satisfy. An overview of the envisioned architecture will be given, focusing on the adapted Service Bus concept, i.e. the "Scientific Service Bus" as it is called in iSPHERE. The bus will act as a central hub for all communication and user access, and will be implemented in the course of the project. The agile approach [2] that has been chosen for detailed elaboration and documentation of user requirements, as well as for the actual implementation of the system, will be outlined and its motivation and basic structure will be discussed. The presentation will show which user communities will benefit and which concrete problems, scientific investigations are facing today, will be tackled by the system. Another focus of the presentation is iSPHERE's seamless integration of cloud computing resources and how these will benefit scientific modeling teams by providing a reliable and web based environment for cloud based model execution, storage of results, and comparison with measurements, including fully web based tools for data mining, analysis and visualization. Also the envisioned creation of a dedicated data model for experimental plasma physics will be discussed. It will be shown why the Scientific Service Bus provides an ideal basis to integrate a number of data models and communication protocols and to provide mechanisms for data exchange across multiple and even multidisciplinary platforms.
How to Search, Write, Prepare and Publish the Scientific Papers in the Biomedical Journals
Masic, Izet
2011-01-01
This article describes the methodology of preparation, writing and publishing scientific papers in biomedical journals. given is a concise overview of the concept and structure of the System of biomedical scientific and technical information and the way of biomedical literature retreival from worldwide biomedical databases. Described are the scientific and professional medical journals that are currently published in Bosnia and Herzegovina. Also, given is the comparative review on the number and structure of papers published in indexed journals in Bosnia and Herzegovina, which are listed in the Medline database. Analyzed are three B&H journals indexed in MEDLINE database: Medical Archives (Medicinski Arhiv), Bosnian Journal of Basic Medical Sciences and Medical Gazette (Medicinki Glasnik) in 2010. The largest number of original papers was published in the Medical Archives. There is a statistically significant difference in the number of papers published by local authors in relation to international journals in favor of the Medical Archives. True, the Journal Bosnian Journal of Basic Medical Sciences does not categorize the articles and we could not make comparisons. Journal Medical Archives and Bosnian Journal of Basic Medical Sciences by percentage published the largest number of articles by authors from Sarajevo and Tuzla, the two oldest and largest university medical centers in Bosnia and Herzegovina. The author believes that it is necessary to make qualitative changes in the reception and reviewing of papers for publication in biomedical journals published in Bosnia and Herzegovina which should be the responsibility of the separate scientific authority/ committee composed of experts in the field of medicine at the state level. PMID:23572850
A concept of a space hazard counteraction system: Astronomical aspects
NASA Astrophysics Data System (ADS)
Shustov, B. M.; Rykhlova, L. V.; Kuleshov, Yu. P.; Dubov, Yu. N.; Elkin, K. S.; Veniaminov, S. S.; Borovin, G. K.; Molotov, I. E.; Naroenkov, S. A.; Barabanov, S. I.; Emel'yanenko, V. V.; Devyatkin, A. V.; Medvedev, Yu. D.; Shor, V. A.; Kholshevnikov, K. V.
2013-07-01
The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.
NASA Astrophysics Data System (ADS)
Gangui, Alejandro; Iglesias, María; Quinteros, Cynthia
2011-06-01
Recent studies have shown that not only primary school students but also their future teachers reach science courses with pre-constructed and consistent models of the world surrounding them. These ideas include many misconceptions which turn out to be robust and hence make difficult an appropriate teaching-learning process. We have designed some tools (and show here results with a questionnaire) that proved helpful in putting in evidence some of the most frequently used alternative models on a few basic astronomical notions. We have tested this questionnaire with preservice elementary teachers from various normal schools in Buenos Aires and made a first analysis of the results. The collection of data recovered so far shows that some non-scientific conceptions are indeed part of the prospective teachers' (scientific) background and, therefore, that the issue deserves special attention during their formal training.
The Ratu River Expedition - A Case Study in Successful Outreach Using Film and Social Media
NASA Astrophysics Data System (ADS)
Kerlow, Isaac
2016-04-01
The Ratu River Expedition is a 25-minute film about earthquakes in Nepal made for a general audience and for a Nepalese audience in particular. The movie explains basic facts about seismic activity in the Himalaya region and also basic preparedness concepts. It showcases the scientific research of the Structural Geology group at the Earth Observatory of Singapore in collaboration with the Department of Mines and Geology, Nepal. A social media campaign was developed to bring the movie to a large Nepalese audience, and the Nepali-subtitled version of the movie yielded over 79,000 post Likes in a Facebook outreach campaign. This presentation reviews the development, production, and distribution of this highly successful natural hazards documentary with scientific depth but designed for a mainstream audience. The full movie is being shown at EGU's Geo-Cinema 2016. http://raturiver.com/
ERIC Educational Resources Information Center
Taber, Keith S.
2009-01-01
This paper reports evidence that learners commonly develop a notion of chemical stability that, whilst drawing upon ideas taught in the curriculum, is nevertheless inconsistent with basic scientific principles. A series of related small-scale studies show that many college-level students consider a chemical species with an octet structure, or a…
International role of US geoscience
NASA Technical Reports Server (NTRS)
1987-01-01
Geologic processes are global in scope and no country or continent has areas that encompass all the phonomena. Joint participation between U.S. and foreign scientists is indispensable for advancing basic scientific concepts and their application to economic and policy issues in the U.S. Up-to-date knowledge is critical to assure an adequate flow of industrial minerals and to assure an adequate supply of strategic minerals.
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the first in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) ecology (what…
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the second in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. This guide is divided into three components. The first component…
ERIC Educational Resources Information Center
Evaluation, Dissemination and Assessment Center, Dallas.
This guide, the third in a series of three, provides the Spanish-speaking intermediate science student and teacher an opportunity to review selected science concepts and processes through activities which emphasize the applicability of scientific knowledge in the professional world. The three components in this guide deal with (1) the scientific…
ERIC Educational Resources Information Center
Illuminating Engineering Research Inst., New York, NY.
Presented in this report are the Illuminating Engineering Research Institute's fundamental scientific concepts in a new frame of realism while relating them to an up-to-date accounting of the search for new basic knowledge. In addition to being an annual accounting, it is also intended to provide orientation. Its presented in dramatic and…
ERIC Educational Resources Information Center
Menuhin, Yehudi
1987-01-01
To support the statement that intuitive process is as important as the scientific, two axioms are explored by the violinist: no phenomenon discovered or created by science is possible unless its equivalent has already existed in nature; and the basic revelations of science can be formulated by intuition through meditation. (Author/KM)
Companies Claim to Fame and their scientific challenges in vaccine development.
Boon, Louis
2009-02-21
Although basic scientific immunological knowledge is the foundation for the development of novel vaccination approaches, beyond proof of concept in animal models, translational scientific immunological efforts are obligatory for successful development of a vaccine for use in humans. Translational technology is developed/used by biotechnology companies to generate better, safer or cheaper vaccines. Their proprietary position and/or proprietary technology are the basis of services that they offer to other companies or for products that they develop themselves. Some of the translational challenges are described in this review. In addition, a number of novel technologies developed by several biotechnology companies in The Netherlands are described. This document however, is far from complete and highlights only a small part of it.
Fundamentals of microfluidic cell culture in controlled microenvironments†
Young, Edmond W. K.; Beebe, David J.
2010-01-01
Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823
[Taxonomic theory for non-classical systematics].
Pavlinov, I Ia
2012-01-01
Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.
Concepts and implications of altruism bias and pathological altruism
Oakley, Barbara A.
2013-01-01
The profound benefits of altruism in modern society are self-evident. However, the potential hurtful aspects of altruism have gone largely unrecognized in scientific inquiry. This is despite the fact that virtually all forms of altruism are associated with tradeoffs—some of enormous importance and sensitivity—and notwithstanding that examples of pathologies of altruism abound. Presented here are the mechanistic bases and potential ramifications of pathological altruism, that is, altruism in which attempts to promote the welfare of others instead result in unanticipated harm. A basic conceptual approach toward the quantification of altruism bias is presented. Guardian systems and their over arching importance in the evolution of cooperation are also discussed. Concepts of pathological altruism, altruism bias, and guardian systems may help open many new, potentially useful lines of inquiry and provide a framework to begin moving toward a more mature, scientifically informed understanding of altruism and cooperative behavior. PMID:23754434
NASA Astrophysics Data System (ADS)
Zuhaida, A.
2018-04-01
Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.
Nuclear science and society: social inclusion through scientific education
NASA Astrophysics Data System (ADS)
Levy, Denise S.
2017-11-01
This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
Araújo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Cláudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Cláudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals. PMID:15257338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, E.A.
1993-01-01
This book systematically covers all aspects of water pollution in marine and freshwater systems. Didactic style, frequent use of case studies and an extensive bibliography facilitate understanding of fundamental concepts. Offers basic, relevant ecological and toxicological information. Straightforward presentation of the scientific aspects of environmental issues. Information updated, particularly the discussion of toxicology and the case studies of water pollution. Three new chapters on acid rain, groundwater pollution and plastics are added.
Basics of the medical use of ayahuasca: physiology of dimethyltryptamine.
Ede, Frecska; Attila, Kovács; Attila, Szabó; Csaba, Ferencz; Csaba, Móré
2016-01-01
Ayahuasca is a brew made of two admixture plants containing dimethyltryptamine (DMT) and b-carbolines (harmine and tetrahydroharmine). The indigenous groups of the Amazonas basin have been using it for centuries as an ethnomedical substance in healing and spiritual-religious rituals. During the last two decades the brew has raised increased scientific and public interest worldwide about its healing effects. Present paper addresses the therapeutic potentials of ayahuasca use and outlines the cellular mechanisms behind - in focus of the Q-1 receptor mediated action of DMT. The scientific investigation of ayahuasca is complicated by methodical problems, legal issues, and sociocultural pre-conceptions.
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
NASA Astrophysics Data System (ADS)
Gonzaga, E. P.
2016-05-01
This work deals with the analysis of scientific and alternative astronomical concepts found in the responses of teachers who teach classes Science, Geography and Physic in Basic Education (BE) of the state of the North Coast of São Paulo and how to address the alternative astronomical concepts with students from students Fundamental Education (FE) and Medium Education (ME). Bringing the legal documents regarding the Astronomy in BE, within the national and the São Paulo regions curriculum level, also with rationed researches to the teacher's formation, conceptual errors in books, knowledge non-formal spaces, alternative concepts, Astronomical studies and content analysis for fundamental theoretical. The task executed with the teachers was done via Technical Orientations (TO), promoted by the Director of Education (DE) from Caraguatatuba and region, with the premise to threat the continuous formation giving moments of discussion, practical activities and using the Digital Mobile Planetarium (DMP) with non-formal spaces of knowledge to the Astronomical studies gathering data via questions. Within the analysis of the answers analysis by the teachers, tables were created with the categories that highlight actual situations on the astronomical studies in the North Coast of São Paulo, and demarked the possible paths where the continuous formation will be followed in the future. Aspects checked in the survey were highlighted; such as teachers understand that they need continuing education; teachers have scientific astronomical views on various aspects know to teach concepts of Astronomy at BE; TO is a viable option as continued training and the use of DMP as no formal teaching and learning.
Comparing Emerging XML Based Formats from a Multi-discipline Perspective
NASA Astrophysics Data System (ADS)
Sawyer, D. M.; Reich, L. I.; Nikhinson, S.
2002-12-01
This paper analyzes the similarity and differences among several examples of an emerging generation of Scientific Data Formats that are based on XML technologies. Some of the factors evaluated include the goals of these efforts, the data models, and XML technologies used, and the maturity of currently available software. This paper then investigates the practicality of developing a single set of structural data objects and basic scientific concepts, such as units, that could be used across discipline boundaries and extended by disciplines and missions to create Scientific Data Formats for their communities. This analysis is partly based on an effort sponsored by the ESDIS office at GSFC to compare the Earth Science Markup Language (ESML) and the eXtensible Data Format( XDF), two members of this new generation of XML based Data Description Languages that have been developed by NASA funded efforts in recent years. This paper adds FITSML and potentially CDFML to the list of XML based Scientific Data Formats discussed. This paper draws heavily a Formats Evolution Process Committee (http://ssdoo.gsfc.nasa.gov/nost/fep/) draft white paper primarily developed by Lou Reich, Mike Folk and Don Sawyer to assist the Space Science community in understanding Scientific Data Formats. One of primary conclusions of that paper is that a scientific data format object model should be examined along two basic axes. The first is the complexity of the computer/mathematical data types supported and the second is the level of scientific domain specialization incorporated. This paper also discusses several of the issues that affect the decision on whether to implement a discipline or project specific Scientific Data Format as a formal extension of a general purpose Scientific Data Format or to implement the APIs independently.
The Cambridge encyclopedia of space (revised edition)
NASA Technical Reports Server (NTRS)
D'Allest, Frederic; Arets, Jean; Baker, Phillip J.; Balmino, Georges; Barth, Hans; Benson, Robert H.
1990-01-01
A comprehensive and intensively illustrated development history is presented for spaceflight, ranging over its basic concepts' speculative and fictional origins, the historical roots of rocket-related technologies, and the scientific accomplishments of earth orbit and interplanetary missions to date. Attention is given to propulsion systems, spaceflight launch centers, satellite systems, and solar system exploration by the U.S. and the Soviet Union. Current space-related activities encompass the meteorology, remote sensing, telecommunications and direct broadcasting, and navigation functions of unmanned satellites, as well as such manned spacecraft roles as medical and materials science research. The military uses of space, and increasingly important space industrialization concepts, are discussed as well.
Are preservice teachers prepared to teach struggling readers?
Washburn, Erin K; Joshi, R Malatesha; Binks Cantrell, Emily
2011-06-01
Reading disabilities such as dyslexia, a specific learning disability that affects an individual's ability to process written language, are estimated to affect 15-20% of the general population. Consequently, elementary school teachers encounter students who struggle with inaccurate or slow reading, poor spelling, poor writing, and other language processing difficulties. However, recent evidence may suggest that teacher preparation programs are not providing preservice teachers with information about basic language constructs and other components related to scientifically based reading instruction. As a consequence preservice teachers have not exhibited explicit knowledge of such concepts in previous studies. Few studies have sought to assess preservice teachers' knowledge about dyslexia in conjunction with knowledge of basic language concepts. The purpose of the present study was to examine elementary school preservice teachers' knowledge of basic language constructs and their perceptions and knowledge about dyslexia. Findings from the present study suggest that preservice teachers, on average, are able to display implicit skills related to certain basic language constructs (i.e., syllable counting), but fail to demonstrate explicit knowledge of others (i.e., phonics principles). Also, preservice teachers seem to hold the common misconception that dyslexia is a visual perception deficit rather than a problem with phonological processing. Implications for future research as well as teacher preparation are discussed.
‘The physics of life,’ an undergraduate general education biophysics course
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2015-05-01
Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses—i.e. courses for students not majoring in the sciences or engineering. Because it encompasses a variety of important scientific concepts, demonstrates connections between basic science and real-world applications and illustrates the creative ways in which scientific insights develop, biophysics is a useful subject with which to promote scientific literacy. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon (Eugene, OR, USA), noting its design, which spans both macroscopic and microscopic topics, and the specific content of a few of its modules. I also describe evidence-based pedagogical approaches adopted in teaching the course and aspects of course enrollment and evaluation.
Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P
2012-01-01
Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.
Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J
2016-03-01
Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.
The Scarcity of Orthopaedic Physician Scientists.
Buckwalter, Joseph A; Elkins, Jacob M
2017-01-01
Breakthrough advances in medicine almost uniformly result from the translation of new basic scientific knowledge into clinical practice, rather than from assessment, modification or refinement of current methods of diagnosis and treatment. However, as is intuitively understood, those most responsible for scientific conception and creation-scientists - are generally not the ones applying these advances at the patient's bedside or the operating room, and vice versa. Recognition of the scarcity of clinicians with a background that prepares them to develop new basic knowledge, and to critically evaluate the underlying scientific basis of methods of diagnosis and treatment, has led to initiatives including federally funded Physician-Scientist programs, whereby young, motivated scholars begin a rigorous training, which encompasses education and mentorship within both medical and scientific fields, culminating in the conferment of both MD and PhD degrees. Graduates have demonstrated success in integrating science into their academic medical careers. However, for unknown reasons, orthopaedic surgery, more than other specialties, has struggled to recruit and retain physician-scientists, who possess a skill set evermore rare in today's increasingly complicated medical and scientific landscape. While the reasons for this shortfall have yet to be completely elucidated, one thing is clear: If orthopaedics is to make significant advances in the diagnosis and treatment of musculoskeletal diseases and injuries, recruitment of the very best and brightest physician-scientists to orthopaedics must become a priority. This commentary explores potential explanations for current low-recruitment success regarding future orthopaedic surgeon-scientists, and discusses avenues for resolution.
Basic statistics with Microsoft Excel: a review.
Divisi, Duilio; Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-06-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel.
Basic statistics with Microsoft Excel: a review
Di Leonardo, Gabriella; Zaccagna, Gino; Crisci, Roberto
2017-01-01
The scientific world is enriched daily with new knowledge, due to new technologies and continuous discoveries. The mathematical functions explain the statistical concepts particularly those of mean, median and mode along with those of frequency and frequency distribution associated to histograms and graphical representations, determining elaborative processes on the basis of the spreadsheet operations. The aim of the study is to highlight the mathematical basis of statistical models that regulate the operation of spreadsheets in Microsoft Excel. PMID:28740690
The On-Line Uv/Vis Spectra Data Base An Example For Interactive Access To Scientific Information
NASA Astrophysics Data System (ADS)
Noelle, A.; Hartmann, G.; Richter, A.
2003-04-01
The basic concept of the on-line "UV/Vis Spectra Data Base" is to provide useful information to the scientific community on a proper basis, especially in times where scientific information becomes more and more a commercial product and is therefore often not within the financial means of those people who actually generated the information. Besides the EGS activities in peer reviewed open access e-publishing (e.g. the journal "Atmopheric Chemistry and Physics", ACP) this concept can help the community to reduce the "digital divide" for scientific and technical information. The on-line data base is maintained by a team consisting of the data base providers, the data producer and its users. The long-term scienctific success depends on the close cooperation of this team. Therefore all scientists are encouraged to join this cooperative effort and support the data base either actively or passively. Active support means the provision of missing or newly measured validated spectral data for inclusion in the data base. Although there is a moderate annual maintenance fee for the data base utilization, those scientists who actively support the data base can use the data base free-of-charge. There is also the possibility to support the data base passively by subscription to the data base. Even those scienctists who do not support the data base can benefit from the "Literature Service" which is free-of-charge. This data base concept differs from other commercial activities on this area and matches the philosophy of Copernicus.
Sobie, Eric A
2011-09-13
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy.
Sobie, Eric A.
2014-01-01
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy. PMID:21934110
Jena, G B; Chavan, Sapana
2017-10-01
The principles of Good Laboratory Practices (GLPs) are mainly intended for the laboratories performing studies for regulatory compliances. However, today GLP can be applied to broad disciplines of science to cater to the needs of the experimental objectives, generation of quality data and assay reproducibility. Considering its significance, it can now be applied in academics; industries as well as government set ups throughout the world. GLP is the best way to promote the reliability, reproducibility of the test data and hence facilitates the international acceptability. Now it is high time to translate and implement the concept of GLP beyond regulatory studies. Thus, it can pave the way for better understanding of scientific problems and help to maintain a good human and environmental health. Through this review, we have made an attempt to explore the uses of GLP principles in different fields of science and its acceptability as well as looking for its future perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
McGhee, Charles N J; Gilhotra, Amardeep K
2005-12-01
Completion of a scientific manuscript for submission to a peer-reviewed journal is a daunting task for clinicians and scientists early in their careers. In an ongoing series, this third article is the first of 2 related articles that deal with the basics of producing a high-quality research manuscript. Although ophthalmology and vision science are the principal focus of this series, the general concepts essential to producing a quality manuscript are applicable to diverse fields of research. This article highlights the exponential growth in the scientific literature over the past 40 years, considers why it is important to publish completed research, and discusses the necessity of identifying the key messages of the research, and their context, in relation to the published literature. The ethics of publishing biomedical research and scientific misconduct, such as duplicate publication or plagiarism, are outlined. To avoid later conflict, there is a critical need for coworkers to carefully address authorship order and inclusion early in the manuscript process. Internationally agreed guidelines are identified to guide this process. The importance of choosing the correct journal for a specific article and the nature of basic citation indices are discussed. The article concludes by elaborating and contrasting different scientific writing styles and emphasizing the considerable importance of developing a representative title and applying clarity and appropriate structure to the abstract.
Lindsey, Merry L; Mayr, Manuel; Gomes, Aldrin V; Delles, Christian; Arrell, D Kent; Murphy, Anne M; Lange, Richard A; Costello, Catherine E; Jin, Yu-Fang; Laskowitz, Daniel T; Sam, Flora; Terzic, Andre; Van Eyk, Jennifer; Srinivas, Pothur R
2015-09-01
The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings. © 2015 American Heart Association, Inc.
Satellite Ocean Biology: Past, Present, Future
NASA Technical Reports Server (NTRS)
McClain, Charles R.
2012-01-01
Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-08-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.
Science and Cooking: Motivating the Study of Freshman Physics
NASA Astrophysics Data System (ADS)
Weitz, David
2011-03-01
This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.
[Reform and practice of teaching methods for culture of medicinal plant].
Si, Jinping; Zhu, Yuqiu; Liu, Jingjing; Bai, Yan; Zhang, Xinfeng
2012-02-01
Culture of pharmaceutical plant is a comprehensive multi-disciplinary theory, which has a long history of application. In order to improve the quality of this course, some reformation schemes have been carried out, including stimulating enthusiasm for learning, refining the basic concepts and theories, promoting the case study, emphasis on latest achievements, enhancing exercise in laboratory and planting base, and guiding students to do scientific and technological innovation. Meanwhile, the authors point out some teaching problems of this course.
Fundamentals of Modeling, Data Assimilation, and High-performance Computing
NASA Technical Reports Server (NTRS)
Rood, Richard B.
2005-01-01
This lecture will introduce the concepts of modeling, data assimilation and high- performance computing as it relates to the study of atmospheric composition. The lecture will work from basic definitions and will strive to provide a framework for thinking about development and application of models and data assimilation systems. It will not provide technical or algorithmic information, leaving that to textbooks, technical reports, and ultimately scientific journals. References to a number of textbooks and papers will be provided as a gateway to the literature.
AVICENNA'S MEDICAL DIDACTIC POEM: URJUZEHTEBBI.
Nimrouzi, Majid; Salehi, Alireza; Kiani, Hossein
2015-01-01
Historical research shows that many physicians experienced in medical sciences are also talented in art, literature and poetry. Avicenna was a sage who was skilled in poetry in addition to philosophy and medicine. He wrote two different types of poetry: those meant to be enjoyed for their literary qualities of novelty and imagination, and his didactic Urjuzeh. Didactic poems are different from poetry evoked by imagination and feeling. In didactic poetry, the poets want to learn science and philosophy, whether spiritual, ethical or practical to the readers. Rhyme and poetry were often used for scientific writing in Avicenna's era, and were considered a method for memorizing scientific information and raising students' interest in difficult scientific concepts. Verse was used to simplify the didactic content, ease memorization and make difficult scientific issues more attractive. In medieval Persia, students of medicine had learned the basics of philosophy before starting medical courses. Poetry could help the students memorize the poem itself in combination with its meaning, in a way that was better and easier than prose. Avicenna's masterpiece, UrjuzehTebbi, comprises a perfect course in traditional Persian medicine in rhyming text written in Arabic. This great work was translated into Persian at the research centre for traditional medicine and history of medicine. We hope that the Persian translation of Urjuzeh Tebbi will allow students and experts to better appreciate the role of didactic poems in compiling and transmitting the concepts of Iranian medicine.
NASA Astrophysics Data System (ADS)
Connolly, Joseph W.
The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature.
Coderre, Raymond W.; Uekermann, Kristen A.; Choi, Youngeun; Anderson, William J.
2016-01-01
Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype. PMID:27047603
Deconstructing and Reconstructing Theory of Mind
Schaafsma, Sara M.; Pfaff, Donald W.; Spunt, Robert P.; Adolphs, Ralph
2014-01-01
Usage of the term Theory of Mind (ToM) has exploded across fields ranging from developmental psychology to social neuroscience and psychiatry research. Yet its meaning is often vague and inconsistent, its biological bases are a subject of debate, and the methods used to study it are highly heterogeneous. Most critically, its original definition does not permit easy downward translation to more basic processes such as those studied by behavioral neuroscience, leaving the interpretation of neuroimaging results opaque. We argue for a reformulation of ToM through a systematic two-stage approach, beginning with a deconstruction of the construct into a comprehensive set of basic component processes, followed by a complementary reconstruction from which a scientifically tractable concept of ToM could be recovered. PMID:25496670
A brain-based account of “basic-level” concepts
Bauer, Andrew James; Just, Marcel Adam
2017-01-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947
A brain-based account of "basic-level" concepts.
Bauer, Andrew James; Just, Marcel Adam
2017-11-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbareschi, Daniele; et al.
We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.
Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark
2012-01-01
We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.
Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters
Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark
2012-01-01
We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed. PMID:22383617
Effect of Modeling Instruction on Concept Knowledge Among Ninth Grade Physics Students
NASA Astrophysics Data System (ADS)
Ditmore, Devin Alan
A basic knowledge of physics concepts is the gateway to success through high-paying careers in science, technology, engineering, and mathematics (STEM). Many students show little understanding of concepts following traditional physics instruction. As an alternative to current lecture-based approaches for high school physics instruction, Piaget's theory of cognitive development supports using real scientific experiences to lead learners from concrete to formal understanding of complex concepts. Modeling instruction (MI) is a pedagogy that guides learners through genuine scientific experiences. This project study analyzed the effects of MI on 9th grade physics students' gains on the test measuring mastery of physics concepts, Force Concept Inventory (FCI). A quasi-experimental design was used to compare the FCI scores of a traditional lecture-taught control group to a treatment group taught using MI. A t test t(-.201) = 180.26, p = .841 comparing the groups and an analysis of variance F(2,181) = 5.20 comparing female to male students indicated MI had no significant positive effect on students. A partial eta squared of the effect size showed that 5.4% of the variance in FCI gains was accounted for by gender, favoring female participants for both groups. The significant relationship between content and gender bears further inquiry. A lesson plan guide was designed to help teachers use computer simulation technology within the MI curriculum. The project promotes positive social change by exploring further ways to help adolescents experience success in physics at the beginning of high school, leading to future success in all STEM areas.
Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.
2017-01-01
Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363
Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A
2017-01-01
Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.
Marine Extremes and Natural Hazards: when the key is variability.
NASA Astrophysics Data System (ADS)
Marone, Eduardo; Camargo, Ricardo; Salcedo Castro, Julio
2014-05-01
At EGU2013 we used the work we are conducting regarding marine extreme events and natural hazards to exploit the distance that separate the scientific community and the non academic society, trying to show where bridges need to be built an how an ethical behavior among the scientists needs to be in place to succeed. We concluded that our actions as scientists have not been the most appropriate in communicating outside the academy our results, particularly when our findings have to do with natural hazards which could contribute to loss of life and the environmental quality that sustains it. Even if one of the barriers that separate the academy from society is the "language", too cryptic even for a well educated (not scientific) citizen in many cases, we scientists complicated even more the problems when we stop worrying about some basic concepts regarding the scientific method once upon a time were teach at basic school levels, particularly concerning differences as accuracy and precision, or the concept of uncertainty and the errors which permeate any observation or scientific "prediction". Science teaching at basic levels was not lost, but changed in the XXth century, concentrating in the so many new advancements and abandoning classical but necessary learning processes just about how sciences is done and why. When studying marine extreme events, we use statistic, stochastic methods, deterministic analysis, logical and numerical modeling, etc. However, our results are still very far away of being accurate, while our precision, however is improving just a little, it is still far away of ideal. That appears to be somehow obvious if we look just the observed vs. the modeled data. Nevertheless, if we look not the absolute values of our results, but the "rhythm" of their variability and compare these cadences with the beats observed in nature, new patterns arose, and clues about how to act regarding natural hazards and extreme events became more clear. We are being able to reproduce the natural variability of the coupled ocean-atmosphere system, simulating its behavior in terms of its variability (beats and cadences) and even their regimes (rhythms), including their changes. Not all is deterministic, but not all is chaos. Some beats we could predict today, some other cadences could not be ever forecasted, but our acknowledge of those pulses and the regime dynamics will be fundamental to help in reducing the damages such marine extreme events could promote. Our ethic responsibility is to get ways of communicate our findings outside the academy under the basic concept that sciences is not about producing certainties, but it is about reducing uncertainties. That is a mandatory ethical behavior we have to follow. In other words, and borrowing some experience from the insurance industry, we have to be clear that we know that in a given road it will be a car accident per month, but we have no way to say whose car will be the one. This work was partially supported by the Lloyd's Register Foundation.
The Influence of Scientific Concepts on the Music and thought of Edgard Varese
NASA Astrophysics Data System (ADS)
Anderson, John Davis
The work of Edgard Varese is generally acknowledged to have played a significant role in the development of electronic media in contemporary composition, and it has been widely suspected that Varese approached music from a fundamentally scientific perspective. It was found that the literature in this area was not extensive, and hence the purpose of this study was to determine the extent and significance of influences from the physical sciences on the aesthetic philosophy and music of Edgard Varese. The method of the study was first to examine writings by and about Varese in an effort to define and clarify his unique aesthetic conceptions. Second, Octandre, one of Varese's compositions, was analyzed. Both standard analytical procedures and Varese's own unique conceptions and terminology were applied to Octandre in order to discover and illustrate the compositional techniques which he created. Finally, Varese's attitudes about and references to the relationship of science and art were examined, and various discoveries and lines of conceptual inquiry from the "new physics," at the beginning of this century, were investigated in order to discover areas of philosophical and practical similarity with Varese's aesthetics and music. This study yielded three areas of conclusions. First, it was shown that Varese regarded all sound, music included, as a primarily physical, acoustic phenomenon. He desired, in his own compositions, to create the illusion of sound operating in an inherently intelligent manner within a three-dimensional, spacial context. Analysis of Octandre disclosed that the underlying compositional procedure was continuous variation on a basic cell of pitch and rhythmic materials and that Varese's unique compositional devices were superimposed on the structure thus derived. In the last section of the study it was shown that Varese possessed a scientific background and that he believed that art should reflect cultural, particularly scientific change. Several of his self-acknowledged scientific influences were studied. Finally, it was shown that atomic theory, radioactive decay, relativity, quantum theory, and the conflict over causality were directly and significantly related to Varese's unique aesthetic conceptions and musical practices.
A generative model for scientific concept hierarchies.
Datta, Srayan; Adar, Eytan
2018-01-01
In many scientific disciplines, each new 'product' of research (method, finding, artifact, etc.) is often built upon previous findings-leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.
A generative model for scientific concept hierarchies
Adar, Eytan
2018-01-01
In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution. PMID:29474409
[The functional sport shoe parameter "torsion" within running shoe research--a literature review].
Michel, F I; Kälin, X; Metzger, A; Westphal, K; Schweizer, F; Campe, S; Segesser, B
2009-12-01
Within the sport shoe area torsion is described as the twisting and decoupling of the rear-, mid- and forefoot along the longitudinal axis of the foot. Studies have shown that running shoes restrict the torsion of the foot and thus they increase the pronation of the foot. Based on the findings, it is recommended to design running shoes, which allow the natural freedom of movement of the foot. The market introduction of the first torsion concept through adidas(R) took place in 1989. Independently of the first market introduction, only one epidemiological study was conducted in the running shoe area. The study should investigate the occurrence of Achilles tendon problems of the athletes running in the new "adidas Torsion(R) shoes". However, further studies quantifying the optimal region of torsionability concerning the reduction of injury incidence are still missing. Newer studies reveal that the criterion torsion only plays a secondary roll regarding the buying decision. Moreover, athletes are not able to perceive torsionability as a discrete functional parameter. It is to register, that several workgroups are dealing intensively with the detailed analysis of the foot movement based on kinematic multi-segment-models. However, scientific as well as popular scientific contributions display that the original idea of the torsion concept is still not completely understood. Hence, the "inverse" characteristic is postulated. The present literature review leads to the deduction that the functional characteristics of the torsion concept are not fully implemented within the running shoe area. This implies the necessity of scientific studies, which investigate the relevance of a functional torsion concept regarding injury prevention based on basic and applied research. Besides, biomechanical studies should analyse systematically the mechanism and the effects of torsion relevant technologies and systems.
de Schipper, Elles; Lundequist, Aiko; Coghill, David; de Vries, Petrus J; Granlund, Mats; Holtmann, Martin; Jonsson, Ulf; Karande, Sunil; Robison, John E; Shulman, Cory; Singhal, Nidhi; Tonge, Bruce; Wong, Virginia C N; Zwaigenbaum, Lonnie; Bölte, Sven
2015-12-01
This study is the first in a series of four empirical investigations to develop International Classification of Functioning, Disability and Health (ICF) Core Sets for Autism Spectrum Disorder (ASD). The objective was to use a systematic review approach to identify, number, and link functional ability and disability concepts used in the scientific ASD literature to the nomenclature of the ICF-CY (Children and Youth version of the ICF, covering the life span). Systematic searches on outcome studies of ASD were carried out in Medline/PubMed, PsycINFO, ERIC and Cinahl, and relevant functional ability and disability concepts extracted from the included studies. These concepts were then linked to the ICF-CY by two independent researchers using a standardized linking procedure. New concepts were extracted from the studies until saturation of identified ICF-CY categories was reached. Seventy-one studies were included in the final analysis and 2475 meaningful concepts contained in these studies were linked to 146 ICF-CY categories. Of these, 99 categories were considered most relevant to ASD (i.e., identified in at least 5% of the studies), of which 63 were related to Activities and Participation, 28 were related to Body functions, and 8 were related to Environmental factors. The five most frequently identified categories were basic interpersonal interactions (51%), emotional functions (49%), complex interpersonal interactions (48%), attention functions (44%), and mental functions of language (44%). The broad variety of ICF-CY categories identified in this study reflects the heterogeneity of functional differences found in ASD--both with respect to disability and exceptionality--and underlines the potential value of the ICF-CY as a framework to capture an individual's functioning in all dimensions of life. The current results in combination with three additional preparatory studies (expert survey, focus groups, and clinical study) will provide the scientific basis for defining the ICF Core Sets for ASD for multipurpose use in basic and applied research and every day clinical practice of ASD. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Metamaterial, plasmonic and nanophotonic devices
NASA Astrophysics Data System (ADS)
Monticone, Francesco; Alù, Andrea
2017-03-01
The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.
Irritable Bowel Syndrome: Yoga as Remedial Therapy
Kavuri, Vijaya; Raghuram, Nagarathna; Malamud, Ariel; Selvan, Senthamil R.
2015-01-01
Irritable bowel syndrome (IBS) is a group of symptoms manifesting as a functional gastrointestinal (GI) disorder in which patients experience abdominal pain, discomfort, and bloating that is often relieved with defecation. IBS is often associated with a host of secondary comorbidities such as anxiety, depression, headaches, and fatigue. In this review, we examined the basic principles of Pancha Kosha (five sheaths of human existence) concept from an Indian scripture Taittiriya Upanishad and the pathophysiology of a disease from the Yoga approach, Yoga Vasistha's Adhi (originated from mind) and Vyadhi (ailment/disease) concept. An analogy between the age old, the most profound concept of Adhi-Vyadhi, and modern scientific stress-induced dysregulation of brain-gut axis, as it relates to IBS that could pave way for impacting IBS, is emphasized. Based on these perspectives, a plausible Yoga module as a remedial therapy is provided to better manage the primary and secondary symptoms of IBS. PMID:26064164
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Shadman, Farhang; Sridhar, K. R.
1992-01-01
The significant advances made recently toward actual hardware realizations of various concepts for the application of in-space materials utilization (ISMU) are demonstrated. The overall plan for taking innovative concepts through technical feasibility, small-scale tests, scale-up, computer modeling, and larger-scale execution is outlined. Two specific fields of endeavor are surveyed: one has direct applications to construction on the moon, while the other has more basic implications, in addition to the practical aspects of lunar colonies. Several fundamental scientific advances made in the characterization of the physical and chemical processes that need to be elucidated for any intelligent application of the ISMU concepts in future space missions are described. A rigorous quantitative technique for the unambiguous evaluation of various components and component technology that form any space (or terrestrial mission) is also described.
Trivedi, J. K.; Goel, Dishanter
2006-01-01
Psychiatry has come up as one of the most dynamic branches of medicine in recent years. There are a lot of controversies regarding concepts, nosology, definitions and treatments in psychiatry, all of which are presently under a strict scanner. Differences are so many that even the meaning of psychiatry varies amongst individual psychiatrists. For us, it is an art to practice psychiatry and give the patient what he needs. Still, it should be practiced with great caution and utmost sincerity towards the patient, based on scientific knowledge and not to be guided by individual conceptions alone. Ethics in psychiatry forms an integral part of its basic concept and meaning, and a tight balance should be maintained between professional advancement and patient benefit. In recent years, the scope of psychiatry has enlarged considerably, with wide ranging influences from Sociology, Anthropology and Philosophy on the one hand, and Neurology and Medicine on the other. PMID:22013340
Towards new understanding of the heart structure and function.
Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio F; Komeda, Masashi; Carreras-Costa, Francesc; Flotats, A; Cosin-Aguillar, Juan; Wen, Han
2005-02-01
Structure and function in any organ are inseparable categories, both in health and disease. Whether we are ready to accept, or not, many questions in cardiovascular medicine are still pending, due to our insufficient insight in the basic science. Even so, any new concept encounters difficulties, mainly arising from our inert attitude, which may result either in unjustified acceptance or denial. The ventricular myocardial band concept, developed over the last 50 years, has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium. After more than five centuries long debate on macroscopic structure of the ventricular myocardium, this concept has provided a promising ground for its final understanding. Recent validations of the ventricular myocardial band, reviewed here, as well as future research directions that are pointed out, should initiate much wider scientific interest, which would, in turn, lead to reconciliation of some exceeded concepts about developmental, electrical, mechanical and energetical events in human heart. The benefit of this, of course, would be the most evident in the clinical arena.
Designing Courses that Encourage Post-College Scientific Literacy in General Education Students
NASA Astrophysics Data System (ADS)
Horodyskyj, L.
2010-12-01
In a time when domestic and foreign policy is becoming increasingly dependent on a robust understanding of scientific concepts (especially in regards to climate science), it is of vital importance that non-specialist students taking geoscience courses gain an understanding not only of Earth system processes, but also of how to discern scientific information from "spin". An experimental introductory level environmental geology course was developed at the Glendale Community College in Glendale, Arizona, in the fall of 2010 that sought to integrate collaborative learning, online resources, and science in the media. The goal of this course was for students to end the semester with not just an understanding of basic Earth systems concepts, but also with a set of tools for evaluating information presented by the media. This was accomplished by integrating several online sites that interface scientific data with popular web tools (ie, Google Maps) and collaborative exercises that required students to generate ideas based on their observations followed by evaluation and refinement of these ideas through interactions with peers and the instructor. The capstone activity included a series of homework assignments that required students to make note of science-related news stories in the media early in the semester, and then gradually begin critically evaluating these news sources, which will become their primary source of post-college geoscience information. This combination of activities will benefit students long after the semester has ended by giving them access to primary sources of scientific information, encouraging them to discuss and evaluate their ideas with their peers, and, most importantly, to critically evaluate the information they receive from the media and their peers so that they can become more scientifically literate citizens.
NASA Astrophysics Data System (ADS)
Boudreaux, Andrew
2006-05-01
Current national and local standards for the science learning of K-12 students emphasize both basic concepts (such as density) and fundamental reasoning skills (such as proportional reasoning, the interpretation of graphs, and the use of control of variables). At Western Washington University (WWU) and the University of Washington (UW), an effort is underway to examine the ability of university students to apply these same concepts and skills. Populations include students in liberal arts physics courses, introductory calculus-based physics courses, and special courses for the preparation of teachers. One focus of the research has been on the idea of control of variables. This topic is studied by students at all levels, from the primary grades, in which the notion of a ``fair test,'' is sometimes used, to university courses. This talk will discuss research tasks in which students are expected to infer from experimental data whether a particular variable influences (i.e., affects) or by itself determines (i.e., predicts) a given result. Student responses will be presented to identify specific difficulties.
Nanoinformatics: developing new computing applications for nanomedicine
Maojo, V.; Fritts, M.; Martin-Sanchez, F.; De la Iglesia, D.; Cachau, R.E.; Garcia-Remesal, M.; Crespo, J.; Mitchell, J.A.; Anguita, A.; Baker, N.; Barreiro, J.M.; Benitez, S. E.; De la Calle, G.; Facelli, J. C.; Ghazal, P.; Geissbuhler, A.; Gonzalez-Nilo, F.; Graf, N.; Grangeat, P.; Hermosilla, I.; Hussein, R.; Kern, J.; Koch, S.; Legre, Y.; Lopez-Alonso, V.; Lopez-Campos, G.; Milanesi, L.; Moustakis, V.; Munteanu, C.; Otero, P.; Pazos, A.; Perez-Rey, D.; Potamias, G.; Sanz, F.; Kulikowski, C.
2012-01-01
Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended “nanotype” to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other –omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others. PMID:22942787
Using Film and Social Media for Successful Earth Science Outreach in Nepal and Indonesia
NASA Astrophysics Data System (ADS)
Kerlow, I.
2016-12-01
We are using social media effectively to bring a documentary film about earthquakes in Nepal to Nepalese audiences that live in tectonically hazardous areas, and a tsunami preparedness movie to the people of Banda Aceh. The one-week online preview of the Nepali-subtitled version of the movie received over 79,000 post Facebook Likes. The movie makes extensive use of animation techniques in addition to live action to explain basic facts about seismic activity in the Himalaya region and also basic preparedness concepts. This presentation reviews the social media campaign designed and implemented to bring preparedness movies to large local audiences, as well as the development, production, and world distribution of natural hazards documentary films with scientific depth but designed for a mainstream audience.
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Stoeffler, R. C.
1972-01-01
Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.
Brownell, Sara E; Price, Jordan V; Steinman, Lawrence
2013-03-01
Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.
Skalny, Anatoly V
2011-01-01
The article presents the proposed concept of bioelements and the basic postulates of bioelementology for assessing and discussing them in the scientific community. It is known that chemical elements exist in the organism not by themselves, but in certain species having close interaction with other components. Such units are proposed to be called bioelements: the elementary functioning units of living matter, which are biologically active complexes of chemical elements as atoms, ions or nanoparticles with organic compounds of exogenous or biogenous origin. The scientific discipline that studies bioelements, is proposed to be called bioelementology. This discipline could lay the foundation for the integration of bioorganic chemistry, bioinorganic chemistry, biophysics, molecular biology and other parts of life sciences. Copyright © 2010 Elsevier GmbH. All rights reserved.
Rockets: Physical science teacher's guide with activities
NASA Astrophysics Data System (ADS)
Vogt, Gregory L.; Rosenberg, Carla R.
1993-07-01
This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.
Rockets: Physical science teacher's guide with activities
NASA Technical Reports Server (NTRS)
Vogt, Gregory L.; Rosenberg, Carla R. (Editor)
1993-01-01
This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.
MODIS: Moderate-resolution imaging spectrometer. Earth observing system, volume 2B
NASA Technical Reports Server (NTRS)
1986-01-01
The Moderate-Resolution Imaging Spectrometer (MODIS), as presently conceived, is a system of two imaging spectroradiometer components designed for the widest possible applicability to research tasks that require long-term (5 to 10 years), low-resolution (52 channels between 0.4 and 12.0 micrometers) data sets. The system described is preliminary and subject to scientific and technological review and modification, and it is anticipated that both will occur prior to selection of a final system configuration; however, the basic concept outlined is likely to remain unchanged.
Research on pre-scientific concept of light in children's cognitive activity
NASA Astrophysics Data System (ADS)
Lan, Zhigao; Yu, Yang; Yan, Dan; Yang, Shulin
2017-08-01
Based on the theory of Ausubel's meaningful learning and cognitive characteristic of childens pre-scientific concept, two students of Huang Gang Middle School have been interviewed continuously about cognition of interaction between light and matter. Comprehension degree of childens pre-scientific concept about interaction between light and matter has been deeply understood, formation of strategy of childens pre-scientific concept has been discussed. Several influence factors related to formation of childens pre-scientific concept have been analyzed, such as sex, family environment, and learning experience of kindergarten and primary school.
Sinatra, Maria
2006-01-01
In 1879 Wundt's laboratory of psychology was opened in Leipzig, and it has been the landmark ever since for the beginning of modern experimental psychology. Its founder, Wilhelm Maximilian Wundt, was the first to successfully demarcate the areas of scientific psychology as being distinct from either physiology or philosophy, thus guaranteeing the survival of psychology, which was regarded as an autonomous discipline set upon a secure institutional framework. This paper attempts to clarify the basic facts and concepts related to the roots of scientific psychology in Germany, i.e., the context in which the "Founding Father" worked, as well as of those predecessors who proposed the topics and apparatus of his laboratory. Attention will be paid in particular to the psychophysical methods of Weber and Fechner, especially in regard to colour perception. In this context, an outline is presented of the history of reaction time experiments in astronomy, physiology, and psychology, and of the role played by the scientific instruments. It is shown how the methodology of physics and physiology contributed to the emancipation of scientific psychology and to the formation of its orientation.
Tengland, Per-Anders
2011-06-01
The concept of "work ability" is central for many sciences, especially for those related to working life and to rehabilitation. It is one of the important concepts in legislation regulating sickness insurance. How the concept is defined therefore has important normative implications. The concept is, however, often not sufficiently well defined. AIM AND METHOD The objective of this paper is to clarify, through conceptual analysis, what the concept can and should mean, and to propose a useful definition for scientific and practical work. RESULTS Several of the defining characteristics found in the literature are critically scrutinized and discussed, namely health, basic standard competence, occupational competence, occupational virtues, and motivation. These characteristics are related to the work tasks and the work environment. One conclusion is that we need two definitions of work ability, one for specific jobs that require special training or education, and one for jobs that most people can manage given a short period of practice. Having work ability, in the first sense, means having the occupational competence, the health required for the competence, and the occupational virtues that are required for managing the work tasks, assuming that the tasks are reasonable and that the work environment is acceptable. In the second sense, having work ability is having the health, the basic standard competence and the relevant occupational virtues required for managing some kind of job, assuming that the work tasks are reasonable and that the work environment is acceptable. CONCLUSION These definitions give us tools for understanding and discussing the complex, holistic and dynamic aspects of work ability, and they can lay the foundations for the creation of instruments for evaluating work ability, as well as help formulate strategies for rehabilitation.
The implantation of life on Mars - Feasibility and motivation
NASA Technical Reports Server (NTRS)
Haynes, Robert H.; Mckay, Christopher P.
1992-01-01
Scientific concepts are reviewed regarding the potential formation and development of a life-bearing environment on Mars, and a potential ecopoiesis scenario is given. The development of the earth's biosphere is defined, and the major assumptions related to the formation of Martian life are listed. Three basic phases are described for the life-implantation concept which include determining whether sufficient quantities of volatiles are available, engineering the warming of the planet, and implanting microbial communities if necessary. Warming the planet theoretically releases liquid H2O and produces a thick CO2 atmosphere, and the implantation of biological communities is only necessary if no indigenous microbes emerge. It is concluded that a feasibility study is required to assess the possibilities of implanting life on Mars more concretely.
Using NASA Space Imaging Technology to Teach Earth and Sun Topics
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.
2011-12-01
We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.
Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Kelaita, Paul G.; Mccabe, R. Kevin; Merritt, Fergus J.; Plessel, Todd C.; Sandstrom, Timothy A.; West, John T.
1993-01-01
Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described.
Topological Landscapes: A Terrain Metaphor for ScientificData
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio
2007-08-01
Scientific visualization and illustration tools are designed to help people understand the structure and complexity of scientific data with images that are as informative and intuitive as possible. In this context, the use of metaphors plays an important role, since they make complex information easily accessible by using commonly known concepts. In this paper we propose a new metaphor, called 'Topological Landscapes', which facilitates understanding the topological structure of scalar functions. The basic idea is to construct a terrain with the same topology as a given dataset and to display the terrain as an easily understood representation of the actualmore » input data. In this projection from an n-dimensional scalar function to a two-dimensional (2D) model we preserve function values of critical points, the persistence (function span) of topological features, and one possible additional metric property (in our examples volume). By displaying this topologically equivalent landscape together with the original data we harness the natural human proficiency in understanding terrain topography and make complex topological information easily accessible.« less
The Impact of Science Fiction Film on Student Understanding of Science
NASA Astrophysics Data System (ADS)
Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan
2006-04-01
Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.
The availability and accessibility of basic concept vocabulary in AAC software: a preliminary study.
McCarthy, Jillian H; Schwarz, Ilsa; Ashworth, Morgan
2017-09-01
Core vocabulary lists obtained through the analyses of children's utterances include a variety of basic concept words. Supporting young children who use augmentative and alternative communication (AAC) to develop their understanding and use of basic concepts is an area of practice that has important ramifications for successful communication in a classroom environment. This study examined the availability of basic concept words across eight frequently used, commercially available AAC language systems, iPad© applications, and symbol libraries used to create communication boards. The accessibility of basic concept words was subsequently examined using two AAC language page sets and two iPad applications. Results reveal that the availability of basic concept words represented within the different AAC language programs, iPad applications, and symbol libraries varied but was limited across programs. However, there is no significant difference in the accessibility of basic concept words across the language program page sets or iPad applications, generally because all of them require sophisticated motor and cognitive plans for access. These results suggest that educators who teach or program vocabulary in AAC systems need to be mindful of the importance of basic concept words in classroom settings and, when possible, enhance the availability and accessibility of these words to users of AAC.
The history and philosophy of inflammatory bowel disease.
Rogler, Gerhard
2013-01-01
Many interesting statements about inflammatory bowel diseases (IBD) and also Crohn's disease have been made in recent years in journals and scientific meetings. They have influenced our thinking and the perception of the diseases. Among these statements is the notion that IBDs are 'relatively new diseases', that 'IBD is rather a syndrome than a disease' or that with the new insights into pathophysiology, 'we will be able to discriminate many different Crohn's diseases based on genetic risk factors'. A look into history and philosophy may help to clarify misconceptions and prove that many of these statements are either wrong or misleading. People suffered from symptoms that are suggestive of Crohn's disease centuries before the disease concept evolved in the early 19th century and before Burrill B. Crohn could describe a complex of symptoms he suggested to be a so far non-identified disease. Early concepts on the pathophysiology of CD were not so different to present-time theories as it may be assumed. 'Pre-ideas' and basic concepts were leading the search for a cause of Crohn's disease and IBD. With respect to pathophysiology, we have to accept that most likely we will never come up with one unifying concept ('the cause of IBD') as different scientific schools and think-collectives exist. Therefore, the 'classical adaptive immunologists' and the 'innate immunologist' as well as scientists focused on barrier function or the microbiome will never completely understand each other and each other's concepts. As for many other diseases, several different pathophysiological concepts existed in parallel and will do so in the future as it is impossible to prove the exclusive 'truth' of one of the concepts for reasons that will be further discussed below. This means on the other hand that none of the concepts on pathophysiology of IBD we have at present will ever unequivocally be proven to be wrong.
Zepf, Siegfried
2006-12-01
The author examines Bowlby's attachment theory and more recent versions of it from an epistemological viewpoint and subjects it to questioning on whether they are in line with central concepts of Freudian psychoanalysis. He argues that Bowlby's basic tenets regarding attachment theory, which later attachment theorists never seriously questioned, do not conform to scientific standards, and that psychoanalytic issues such as the dynamic unconscious, internal conflicts, interaction of drive wishes and the role of defence in establishing substitutive formations are either ignored or not treated in sufficient depth. In the light of this, Fonagy's assertion that psychoanalytic criticism of attachment theory arose from mutual misunderstandings and ought nowadays to be seen as outdated is reversed: psychoanalytic criticism can only be regarded as outdated if either basic tenets of Freudian psychoanalysis, or attachment theory or both are misunderstood.
What Are We Doing When We Translate from Quantitative Models?
Critchfield, Thomas S; Reed, Derek D
2009-01-01
Although quantitative analysis (in which behavior principles are defined in terms of equations) has become common in basic behavior analysis, translational efforts often examine everyday events through the lens of narrative versions of laboratory-derived principles. This approach to translation, although useful, is incomplete because equations may convey concepts that are difficult to capture in words. To support this point, we provide a nontechnical introduction to selected aspects of quantitative analysis; consider some issues that translational investigators (and, potentially, practitioners) confront when attempting to translate from quantitative models; and discuss examples of relevant translational studies. We conclude that, where behavior-science translation is concerned, the quantitative features of quantitative models cannot be ignored without sacrificing conceptual precision, scientific and practical insights, and the capacity of the basic and applied wings of behavior analysis to communicate effectively. PMID:22478533
NASA Astrophysics Data System (ADS)
Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.
2010-12-01
The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.
Making the Introductory Meteorology Class Relevant in a Minority Serving Community College
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Tremberger, G.; Bluestone, C.
2008-12-01
Queensborough Community College (QCC), a constituent campus of the City University of New York (CUNY), has modified the introductory Meteorology Class lecture and lab to include active learning activities and discovery based learning. The modules were developed at QCC and other 4 year colleges and designed to introduce basic physical concepts important in meteorology. The modules consisted of either interactive lecture demonstrations or discovery-based activities. The discovery based activities are intended to have students become familiar with scientific investigation. Students engage in formulating hypotheses, developing and carrying out experiments, and analyzing scientific data. These activities differ from traditional lab experiments in that they avoid "cookbook" procedures and emphasize having the students learn about physical concepts by applying the scientific method. During the interactive lecture demonstrations the instructor describes an experiment/phenomenon that is to be demonstrated in class. Students discuss the phenomenon based on their experiences and make a prediction about the outcome. The class then runs the experiment, makes observations, and compares the expected results to the actual outcome. As a result of these activities students in the introductory Meteorology class scored higher in exams questions measuring conceptual understanding, as well as factual knowledge. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes. All students also had higher self-efficacy scores after the intervention, compared to an unmodified class.
Statistical primer: how to deal with missing data in scientific research?
Papageorgiou, Grigorios; Grant, Stuart W; Takkenberg, Johanna J M; Mokhles, Mostafa M
2018-05-10
Missing data are a common challenge encountered in research which can compromise the results of statistical inference when not handled appropriately. This paper aims to introduce basic concepts of missing data to a non-statistical audience, list and compare some of the most popular approaches for handling missing data in practice and provide guidelines and recommendations for dealing with and reporting missing data in scientific research. Complete case analysis and single imputation are simple approaches for handling missing data and are popular in practice, however, in most cases they are not guaranteed to provide valid inferences. Multiple imputation is a robust and general alternative which is appropriate for data missing at random, surpassing the disadvantages of the simpler approaches, but should always be conducted with care. The aforementioned approaches are illustrated and compared in an example application using Cox regression.
The future of poultry science research: things I think I think.
Taylor, R L
2009-06-01
Much poultry research progress has occurred over the first century of the Poultry Science Association. During that time, specific problems have been solved and much basic biological knowledge has been gained. Scientific discovery has exceeded its integration into foundation concepts. Researchers need to be involved in the public's development of critical thinking skills to enable discernment of fact versus fiction. Academic, government, and private institutions need to hire the best people. Issues of insufficient research funding will be remedied by a combination of strategies rather than by a single cure. Scientific advocacy for poultry-related issues is critical to success. Two other keys to the future are funding for higher-risk projects, whose outcome is truly unknown, and specific allocations for new investigators. Diligent, ongoing efforts by poultry scientists will enable progress beyond the challenges.
Aragona, Massimiliano
2013-06-01
Recent research suggests that the DSM psychiatric classification is in a paradigmatic crisis and that the DSM-5 will be unable to overcome it. One possible reason is that the DSM is based on a neopositivist epistemology which is inadequate for the present-day needs of psychopathology. However, in which sense is the DSM a neopositivist system? This paper will explore the theoretical similarities between the DSM structure and the neopositivist basic assumptions. It is shown that the DSM has the following neopositivist features: (a) a sharp distinction between scientific and non-scientific diagnoses; (b) the exclusion of the latter as nonsensical; (c) the faith on the existence of a purely observable basis (the description of reliable symptoms); (d) the introduction of the operative diagnostic criteria as rules of correspondence linking the observational level to the diagnostic concept.
The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning
ERIC Educational Resources Information Center
Chen, Chun-Ting; She, Hsiao-Ching
2015-01-01
This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…
How can we enhance girls' interest in scientific topics?
Kerger, Sylvie; Martin, Romain; Brunner, Martin
2011-12-01
Girls are considerably less interested in scientific subjects than boys. One reason may be that scientific subjects are considered to be genuinely masculine. Thus, being interested in science may threaten the self-perception of girls as well as the femininity of their self-image. If scientific topics that are considered to be stereotypically feminine were chosen, however, this potential threat might be overcome which, in turn, might lead to an increase in girls' interest in science. This hypothesis was empirically tested by means of two studies. Participants were 294 (Study 1) and 190 (Study 2) Grade 8 to Grade 9 students. Gender differences in students' interest in masculine and feminine topics were investigated for a range of scientific concepts (Study 1) as well as for a given scientific concept (Study 2) for four scientific subjects (i.e., biology, physics, information technology, and statistics), respectively. Both studies indicated that the mean level of girls' scientific interest was higher when scientific concepts were presented in the context of feminine topics and boys' level of scientific interests was higher when scientific concepts were presented in the context of masculine topics. Girls' interest in science could be substantially increased by presenting scientific concepts in the context of feminine topics. Gender differences as well as individual differences in the level of interest in scientific topics may be taken into account by creating learning environments in which students could select the context in which a certain scientific concept is embedded. ©2011 The British Psychological Society.
ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.
Fegert, Ivana
2013-12-16
The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the guidance was advanced further. For human health assessments it is based on the relevance to humans of the endocrine mechanism of toxicity, the specificity of the endocrine effects with respect to other toxic effects, the potency of the chemical to induce endocrine toxicity and consideration of exposure levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The coexistence of alternative and scientific conceptions in physics
NASA Astrophysics Data System (ADS)
Ozdemir, Omer F.
The purpose of this study was to inquire about the simultaneous coexistence of alternative and scientific conceptions in the domain of physics. This study was particularly motivated by several arguments put forward in opposition to the Conceptual Change Model. In the simplest form, these arguments state that people construct different domains of knowledge and different modes of perception in different situations. Therefore, holding different conceptualizations is unavoidable and expecting a replacement in an individual's conceptual structure is not plausible in terms of instructional practices. The following research questions were generated to inquire about this argument: (1) Do individuals keep their alternative conceptions after they have acquired scientific conceptions? (2) Assuming that individuals who acquired scientific conceptions also have alternative conceptions, how are these different conceptions nested in their conceptual structure? (3) What kind of knowledge, skills, and reasoning are necessary to transfer scientific principles instead of alternative ones in the construction of a valid model? Analysis of the data collected from the non-physics group indicated that the nature of alternative conceptions is framed by two types of reasoning: reasoning by mental simulation and semiformal reasoning. Analysis of the data collected from the physics group revealed that mental images or scenes feeding reasoning by mental simulation had not disappeared after the acquisition of scientific conceptions. The analysis of data also provided enough evidence to conclude that alternative principles feeding semiformal reasoning have not necessarily disappeared after the acquisition of scientific conceptions. However, in regard to semiformal reasoning, compartmentalization was not as clear as the case demonstrated in reasoning by mental simulation; instead semiformal and scientific reasoning are intertwined in a way that the components of semiformal reasoning can easily take their place among the components of scientific reasoning. In spite of the fact that the coexistence of multiple conceptions might obstruct the transfer of scientific conceptions in problem-solving situations, several factors stimulating the use of scientific conceptions were noticed explicitly. These factors were categorized as follows: (a) the level of individuals' domain specific knowledge in the corresponding field, (b) the level of individuals' knowledge about the process of science (how science generates its knowledge claims), (c) the level of individuals' awareness of different types of reasoning and conceptions, and (d) the context in which the problem is situated. (Abstract shortened by UMI.)
ERIC Educational Resources Information Center
Gibbs, Marilyn J.
1988-01-01
Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)
NASA Astrophysics Data System (ADS)
Hoffmann, Achim; Mahidadia, Ashesh
The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.
[Activating therapeutic care in geriatrics : Evaluation of a practice concept].
Acklau, Stefanie; Gödecker, Lisa; Kaden, Andrea; Jahn, Patrick
2016-10-01
The special feature of the concept of activating therapeutic care in geriatrics (ATP-G) is based on the focus of nursing and therapeutic elements specifically related to the elderly. Further significance lies in the bottom-up development of this concept, which shows a close proximity to the nursing practice. The research project targeted the characteristics of ATP-G from a nursing point of view. Furthermore, the resulting elements of professional nursing care understanding for inpatient geriatric rehabilitation were used to build a scientific and theoretical foundation of the ATP-G concept. In this study 12 semi-structured interviews with professional caregivers were realized. The data collection was undertaken in three different facilities of inpatient geriatric (early) rehabilitation, chosen by lot. The data analysis was based on the methodology of qualitative content analysis according to Mayring. The research project showed that the basic elements described in the ATP-G concept are consistent with the view of nursing practitioners and therefore reflect the characteristic features of routine daily practice; nonetheless, some new aspects were found, primarily the importance of interdisciplinary teamwork in geriatric settings. There were also difficulties related to the ATP-G concept which were experienced as restraints by the questioned professionals. Further research should therefore investigate the structures for optimal implementation of the ATP-G concept into standard practice.
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.
2017-12-01
A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.
Bansemir, G
1987-01-01
The conception and evaluation of standardized oral or written questioning as quantifying instruments of research orientate by the basic premises of Marxist-Leninist theory of recognition and general scientific logic. In the present contribution the socio-gerontological research process is outlined in extracts. By referring to the intrinsic connection between some of its essential components--problem, formation of hypotheses, obtaining indicators/measurement, preliminary examination, evaluation-as well as to typical errors and (fictitious) examples of practical research, this contribution contrasts the natural, apparently uncomplicated course of structured questioning with its qualitative methodological fundamentals and demands.
Analyzing Oscillations of a Rolling Cart Using Smartphones and Tablets
NASA Astrophysics Data System (ADS)
Egri, Sándor; Szabó, Lóránt
2015-03-01
It is well known that "interactive engagement" helps students to understand basic concepts in physics.1 Performing experiments and analyzing measured data are effective ways to realize interactive engagement, in our view. Some experiments need special equipment, measuring instruments, or laboratories, but in this activity we advocate student use of mobile phones or tablets to take experimental data. Applying their own devices and measuring simple phenomena from everyday life can improve student interest, while still allowing precise analysis of data, which can give deeper insight into scientific thinking and provide a good opportunity for inquiry-based learning.2
ERIC Educational Resources Information Center
Arthurs, Leilani A.; Van Den Broeke, Matthew S.
2016-01-01
The ability to explain scientific phenomena is a key feature of scientific literacy, and engaging students' prior knowledge, especially their alternate conceptions, is an effective strategy for enhancing scientific literacy and developing expertise. The gap in knowledge about the alternate conceptions that novices have about many of Earth's…
Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective.
Fiusa, Maiara Marx Luz; Carvalho-Filho, Marco Antonio; Annichino-Bizzacchi, Joyce M; De Paula, Erich V
2015-05-06
Coagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world's leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community. During sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis. Reappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.
Nutriproteomics: facts, concepts, and perspectives.
Sauer, Sascha; Luge, Toni
2015-03-01
Nutrition is a basic component of life. Nowadays, human nutrition research focuses amongst others on health-related aspects of food ingredients and extracts, and on analyzing the outcomes of specific diets. Usually, food ingredients such as bioactive peptides come in complex matrices. Single compounds, multiple interactions thereof and the underlying food matrix can vary physiological response of the organism. Proteins and peptides derived from food and beverages can cause adverse allergic reactions but are in general required for multiple functions such as growth and homeostatic regulation. Endogenously expressed human proteins and peptides can be used as biomarkers to monitor physiological deregulation and the effects of food consumption. The intestinal microbiome seems to play a fundamental role in establishing and maintaining physiological regulation and in digesting proteins and peptides and other biomolecules derived from food. Notably, the subtle interplay of flavor naturals in food and beverages with olfactory receptors can result in establishing human taste preferences, which again influences overall physiology. This article presents basic approaches and concepts to address scientific questions in nutritional proteomics and discusses potential benefits of proteomics-based methodologies to help advance the field of molecular nutrition research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin
2017-01-01
This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.
Smith, Joshua J; Wiley, Emily A; Cassidy-Hanley, Donna M
2012-01-01
Tetrahymena has been a useful model in basic research in part due to the fact it is easy to grow in culture and exhibits a range of complex processes, all within a single cell. For these same reasons Tetrahymena has shown enormous potential as a teaching tool for fundamental principles of biology at multiple science education levels that can be integrated into K-12 classrooms and undergraduate and graduate college laboratory courses. These Tetrahymena-based teaching modules are inquiry-based experiences that are also effective at teaching scientific concepts, retaining students in science, and exciting students about the scientific process. Two learning communities have been developed that utilize Tetrahymena-based teaching modules. Advancing Secondary Science Education with Tetrahymena (ASSET) and the Ciliate Genomics Consortium (CGC) have developed modules for K-12 students and college-level curriculums, respectively. These modules range from addressing topics in ecology, taxonomy, and environmental toxicity to more advanced concepts in biochemistry, proteomics, bioinformatics, cell biology, and molecular biology. An overview of the current modules and their learning outcomes are discussed, as are assessment, dissemination, and sustainability strategies for K-12 and college-level curriculum. Copyright © 2012 Elsevier Inc. All rights reserved.
Microgravity Materials Research and Code U ISRU
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Sibille, Laurent
2004-01-01
The NASA microgravity research program, simply put, has the goal of doing science (which is essentially finding out something previously unknown about nature) utilizing the unique long-term microgravity environment in Earth orbit. Since 1997 Code U has in addition funded scientific basic research that enables safe and economical capabilities to enable humans to live, work and do science beyond Earth orbit. This research has been integrated with the larger NASA missions (Code M and S). These new exploration research focus areas include Radiation Shielding Materials, Macromolecular Research on Bone and Muscle Loss, In Space Fabrication and Repair, and Low Gravity ISRU. The latter two focus on enabling materials processing in space for use in space. The goal of this program is to provide scientific and technical research resulting in proof-of-concept experiments feeding into the larger NASA program to provide humans in space with an energy rich, resource rich, self sustaining infrastructure at the earliest possible time and with minimum risk, launch mass and program cost. President Bush's Exploration Vision (1/14/04) gives a new urgency for the development of ISRU concepts into the exploration architecture. This will require an accelerated One NASA approach utilizing NASA's partners in academia, and industry.
The Significance of an Enhanced Concept of the Organism for Medicine
2016-01-01
Recent developments in evolutionary biology, comparative embryology, and systems biology suggest the necessity of a conceptual shift in the way we think about organisms. It is becoming increasingly evident that molecular and genetic processes are subject to extremely refined regulation and control by the cell and the organism, so that it becomes hard to define single molecular functions or certain genes as primary causes of specific processes. Rather, the molecular level is integrated into highly regulated networks within the respective systems. This has consequences for medical research in general, especially for the basic concept of personalized medicine or precision medicine. Here an integrative systems concept is proposed that describes the organism as a multilevel, highly flexible, adaptable, and, in this sense, autonomous basis for a human individual. The hypothesis is developed that these properties of the organism, gained from scientific observation, will gradually make it necessary to rethink the conceptual framework of physiology and pathophysiology in medicine. PMID:27446221
The concept verification testing of materials science payloads
NASA Technical Reports Server (NTRS)
Griner, C. S.; Johnston, M. H.; Whitaker, A.
1976-01-01
The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.
[Ilya Ilich Metchnikov and Paul Ehrlich: 1908 Nobel Prize winners for their research on immunity].
Lokaj, J; John, C
2008-11-01
The Nobel Prize in Physiology or Medicine in 1908 was awarded to Ilya I. Mechnikov and Paul Ehrlich for recognition of their work on immunity. Mechnikov have discovered phagocytes and phagocytosis as the basis of natural cellular immunity. His ,,phagocytic theory" is the principle of immunological concept "self and not self" as the prerequisition of physiological inflammation, and selfmaintaining of organism. Ehrlich developed the methods for standardization of antibody activity in immune sera, described neutralizing and complement-depending effect of antibodies and enunciated the ,"ide-chain" theory of the formation of antibodies. Their concept of the key-stone of immunity was different, but they expressed the basic paradigma of immunology: immunity imply the protection of identity and guarantee the integrity of organism. Both are the founders of immunology as the scientific discipline. Discoveries and conceptions of I. Mechnikov and P. Ehrlich exceedingly influenced development of immunology and are also applicable, instructive and suggestive in contemporary immunology and microbiology.
Basic Scientific Subroutines, Volume II.
ERIC Educational Resources Information Center
Ruckdeschel, F. R.
This book, second in a series dealing with scientific programing in the BASIC language, provides students, engineers, and scientists with a documented library of subroutines for scientific applications. Subjects of the eight chapters include: (1) least-squares approximation of functions and smoothing of data; (2) approximating functions by series…
Concept Similarity in Publications Precedes Cross-disciplinary Collaboration
Post, Andrew R.; Harrison, James H.
2008-01-01
Innovative science frequently occurs as a result of cross-disciplinary collaboration, the importance of which is reflected by recent NIH funding initiatives that promote communication and collaboration. If shared research interests between collaborators are important for the formation of collaborations, methods for identifying these shared interests across scientific domains could potentially reveal new and useful collaboration opportunities. MEDLINE represents a comprehensive database of collaborations and research interests, as reflected by article co-authors and concept content. We analyzed six years of citations using information retrieval-based methods to compute articles’ conceptual similarity, and found that articles by basic and clinical scientists who later collaborated had significantly higher average similarity than articles by similar scientists who did not collaborate. Refinement of these methods and characterization of found conceptual overlaps could allow automated discovery of collaboration opportunities that are currently missed. PMID:18999254
Yoruba Ethnoastronomy - "Orisha/Vodun" or How People's Conceptions of the Sky Constructed Science
NASA Astrophysics Data System (ADS)
Sègla, Dafon Aimé
For the Yoruba, the Sky is the domain of the Supreme God. They believe that "Olorun" or "Olodumaré" owns the Sky and communicates through secondary, intermediary deities sent to Earth by the Supreme God. These deities are "Orisha" but are also named by the Fon in the Republic of Benin as Vodun. Nowadays, Orisha, more widely known as Vodun, is regarded as satanic, magical, and demonic. Using basic archaeology of cosmological concepts, this false picture can be rejected and replaced by a logical and realistic one based on scientific evidence whereby Orisha/Vodun is conceived as a variant of several existing world views, a "science of the local". Given that Western skepticism concerning African cultures' knowledge arises mainly from misleading comparisons, there is a need for a reconciliation between non-Western and Western world views.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Integrating BalloonSAT and Atmospheric Dynamic Concepts into the Secondary Classroom
NASA Astrophysics Data System (ADS)
Fong, B. N.; Kennon, J. T.; Roberts, E.
2016-05-01
Arkansas BalloonSAT is an educational outreach and scientific research program that is part of Arkansas State University in Jonesboro, AR. The following is a unit of instruction to incorporate BalloonSAT measurements into secondary science classes. Students interpret graphs and identify several atmospheric trends and properties of a typical balloon flight. Students engage critical thinking skills in developing and answering their own questions relevant to the BalloonSAT program. Prerequisite concepts students should know are how to interpret graphs and unit conversions. Students should have a basic understanding of gravity, units of temperature and distance, and error in measurements. The unit is designed for one week after end-of-course exams and before the end of school. The unit may take two to five 50-minute periods, depending on how many activities are completed.
Concept similarity in publications precedes cross-disciplinary collaboration.
Post, Andrew R; Harrison, James H
2008-11-06
Innovative science frequently occurs as a result of cross-disciplinary collaboration, the importance of which is reflected by recent NIH funding initiatives that promote communication and collaboration. If shared research interests between collaborators are important for the formation of collaborations,methods for identifying these shared interests across scientific domains could potentially reveal new and useful collaboration opportunities. MEDLINE represents a comprehensive database of collaborations and research interests, as reflected by article co-authors and concept content. We analyzed six years of citations using information retrieval based methods to compute articles conceptual similarity, and found that articles by basic and clinical scientists who later collaborated had significantly higher average similarity than articles by similar scientists who did not collaborate.Refinement of these methods and characterization of found conceptual overlaps could allow automated discovery of collaboration opportunities that are currently missed.
De-implementation: A concept analysis.
Upvall, Michele J; Bourgault, Annette M
2018-04-25
The purpose of this concept analysis is to explore the meaning of de-implementation and provide a definition that can be used by researchers and clinicians to facilitate evidence-based practice. De-implementation is a relatively unknown process overshadowed by the novelty of introducing new ideas and techniques into practice. Few studies have addressed the challenge of de-implementation and the cognitive processes involved when terminating harmful or unnecessary practices. Also, confusion exists regarding the myriad of terms used to describe de-implementation processes. Walker and Avant's method (2011) for describing concepts was used to clarify de-implementation. A database search limited to academic journals yielded 281 publications representing basic research, study protocols, and editorials/commentaries from implementation science experts. After applying exclusion criterion of English language only and eliminating overlap between databases, 41 articles were selected for review. Literature review and synthesis provided a concept analysis and a distinct definition of de-implementation. De-implementation was defined as the process of identifying and removing harmful, non-cost-effective, or ineffective practices based on tradition and without adequate scientific support. The analysis provided further refinement of de-implementation as a significant concept for ongoing theory development in implementation science and clinical practice. © 2018 Wiley Periodicals, Inc.
Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course
NASA Astrophysics Data System (ADS)
Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.
2017-09-01
The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.
Hunting for Habitable Worlds: Engaging Students in an Adaptive Online Setting
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Ben-Naim, D.; Anbar, A. D.; Semken, S. C.
2011-12-01
The field of astrobiology, through its breadth of scope and high level of public interest, offers a unique prospect for introductory science curricula, particularly at the undergraduate level. Traditional university-level science instruction consists of lectures and accompanying lab courses that are highly scripted to emphasize correct replication of results rather than inquiry-driven exploration. These methodologies give students the impression that science is an authoritative list of abstract concepts and experimental results requiring memorization, rather than a methodology for narrowing uncertainties in our knowledge. Additionally, this particular class structure does not take advantage of many new and emerging online multimedia technologies. To address the shortcomings of current pedagogical approaches, we adapted the Arizona State University introductory-level course "Habitable Worlds" for online delivery in the fall semester of 2011. This course is built around the Drake Equation, which allows us to introduce non-science students to the basics of scientific thought and methodology while exploring disciplines as diverse as astronomy, geology, biology, and sustainability in an integrated manner. The online version of this course is structured around a habitable-worlds-hunting quest, where each student is provided with an individualized universe and tasked with finding scientifically realistic computer-generated inhabited planets around realistic stars. In order to successfully complete this mission, students work their way through the course curriculum via interactive exercises that focus on the discovery of basic scientific concepts followed by the mathematics and models that explain them, hence inverting the lecture-lab paradigm. The "Habitable Worlds" course is built on the Adaptive eLearning Platform (AeLP), an innovative educational technology that provides a "tutor over the shoulder" learning experience for students. Our focus is on engaging students with rich interactions (such as data collection using Google Earth, virtual field trips, and interactive simulations) while providing them with intelligent and adaptive feedback and lesson structure. As such, advanced students proceed quickly and are kept engaged, while students with difficulty receive the appropriate remediation and support they need. The AeLP's analytics engine allows instructors to explore large datasets of students' interaction, and assists in identifying problematic concepts or flaws in instructional design. Subsequently, instructors can further adapt and improve the content to their students' specific needs.
ERIC Educational Resources Information Center
Acar, Tulin; Voltan-Acar, Nilufer
2013-01-01
The aim of this study was to evaluate the basic concepts of multigenerational Family Therapy and to evaluate the scenes of the film ''My Father and My Son'' according to these concepts. For these purposes firstly basic concepts of Multigenerational Family Therapy such as differentiation of self, triangles/triangulation, nuclear family emotional…
Scientists' conceptions of scientific inquiry: Revealing a private side of science
NASA Astrophysics Data System (ADS)
Reiff, Rebecca R.
Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged in inquiry investigations, the relationship of scientific inquiry to the nature of science, whether the process of scientific inquiry follows the traditional scientific method, and the similarities and differences in conceptualizations of scientific inquiry across science disciplines. These findings represent a private side of science, which can be useful in characterizing key features of scientific inquiry to be incorporated into K--16 teaching practices.
NASA Astrophysics Data System (ADS)
Arteaga, Juan Manuel Sánchez; El-Hani, Charbel N.
2012-05-01
This paper analyzes the debates on "interracial competition" and "racial extinction" in the biological discourse on human evolution during the second half of the nineteenth century. Our intention is to discuss the ideological function of these biological concepts as tools for the naturalization and scientific legitimation of racial hierarchies during that period. We argue that the examination of these scientific discussions about race from a historical perspective can play the role of a critical platform for students and teachers to think about the role of science in current othering processes, such as those related to biomedical technosciences. If they learn how biological ideas played an ideological function concerning interracial relationships in the past, they can be compelled to ask which ideological functions the biological knowledge they are teaching and learning might play now. If this is properly balanced, they can eventually both value scientific knowledge for its contributions and have a critical appraisal of some of its implications. We propose, here, a number of initial design principles for the construction of teaching sequences about scientific racism and science-technology-society relationships, yet to be empirically tested by iterative cycles of implementation in basic education and teacher education classrooms.
The Physics of Life: A Biophysics Course for Non-science Major Undergraduates
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2014-03-01
Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.
Examining the progression and consistency of thermal concepts: a cross-age study
NASA Astrophysics Data System (ADS)
Adadan, Emine; Yavuzkaya, Merve Nur
2018-03-01
This cross-sectional study examined how the progression and consistency of students' understanding of thermal concepts in everyday contexts changes across the grade levels. A total of 656 Turkish students from Grade 8 (age 13-14), Grade 10 (age 15-16), and the first year of college (age 19-20) participated in the study. The data were analysed using statistical procedures (descriptive and inferential). Findings indicated a substantial progression in the students' scientific understanding of thermal concepts across grade levels. In addition, the students' alternative conceptions about thermal concepts generally decreased in frequency across grade levels, but certain alternative conceptions were observed in every grade level to a similar extent. Even though the number of students who consistently used scientific ideas increased across grade levels, the number of students who consistently used non-scientific ideas decreased across grade levels. However, the number of students who used scientific and non-scientific ideas inconsistently generally increased as they progressed in the science curriculum. These findings can be associated with either fragmentation or alternative conceptions that result from the gradual enrichment processes students experience when they try to integrate scientific concepts into their conceptual frameworks.
More than a Picture: Helping Undergraduates Learn to Communicate through Scientific Images
Watson, Fiona L.
2008-01-01
Images are powerful means of communicating scientific results; a strong image can underscore an experimental result more effectively than any words, whereas a poor image can readily undermine a result or conclusion. Developmental biologists rely extensively on images to compare normal versus abnormal development and communicate their results. Most undergraduate lab science courses do not actively teach students skills to communicate effectively through images. To meet this need, we developed a series of image portfolio assignments and imaging workshops in our Developmental Biology course to encourage students to develop communication skills using images. The improvements in their images over the course of the semester were striking, and on anonymous course evaluations, 73% of students listed imaging skills as the most important skill or concept they learned in the course. The image literacy skills acquired through simple lab assignments and in-class workshops appeared to stimulate confidence in the student's own evaluations of current scientific literature to assess research conclusions. In this essay, we discuss our experiences and methodology teaching undergraduates the basic criteria involved in generating images that communicate scientific content and provide a road map for integrating this curriculum into any upper-level biology laboratory course. PMID:18316805
Hermann the Dalmatian as Astronomer
NASA Astrophysics Data System (ADS)
Dadic, Z.
Hermann the Dalmatian was the subject of great controversy for philosophers, and here his work and translations are considered. As far as Hermann's work are concerned his prime interest for astronomy and astrology is stressed. Astrological "predictions" interested him primarely as predictions of events which are related to global questions, i.e. predicting the future course of events in the universe or destiny of nation as a whole, rather then the destiny of indivinduals. On the other hand it is also evident that Hremann with his knowledge of the Eastern, Arabic scientific tradition and the European spiritual tradition, become one of the most important scientists of his times. Hermann archieved a fruitful syntesis between the two traditions and opened new concepts in science. So he stands as a basic figure at the turning point of European science and the scientific endeavours from the 12th to the 15th century.
Wang, Yong-Yan; Yang, Hong-Jun
2014-03-01
Small and medium-sized enterprises (SMEs) are important components in Chinese medicine industry. However, the lack of big brand is becoming an urgent problem which is critical to the survival of SMEs. This article discusses the concept and traits of Chinese medicine of big brand, from clinical, scientific and market value three aspects. Guided by market value, highlighting clinical value, aiming at the scientific value improvement of big brand cultivation, we put forward the key points in cultivation, aiming at obtaining branded Chinese medicine with widely recognized efficacy, good quality control system and mechanism well explained and meanwhile which can bring innovation improvement to theory of Chinese medicine. According to the characters of SMEs, we hold a view that to build multidisciplinary research union could be considered as basic path, and then, from top-level design, skill upgrading and application three stages to probe the implementation strategy.
Quo vadis, analytical chemistry?
Valcárcel, Miguel
2016-01-01
This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.
[Organization of clinical research: in general and visceral surgery].
Schneider, M; Werner, J; Weitz, J; Büchler, M W
2010-04-01
The structural organization of research facilities within a surgical university center should aim at strengthening the department's research output and likewise provide opportunities for the scientific education of academic surgeons. We suggest a model in which several independent research groups within a surgical department engage in research projects covering various aspects of surgically relevant basic, translational or clinical research. In order to enhance the translational aspects of surgical research, a permanent link needs to be established between the department's scientific research projects and its chief interests in clinical patient care. Importantly, a focus needs to be placed on obtaining evidence-based data to judge the efficacy of novel diagnostic and treatment concepts. Integration of modern technologies from the fields of physics, computer science and molecular medicine into surgical research necessitates cooperation with external research facilities, which can be strengthened by coordinated support programs offered by research funding institutions.
Descobrindo o Universo: Relato de Experiência sobre o Ensino de Astronomia nos Anos Iniciais
NASA Astrophysics Data System (ADS)
Nunes, C. F.; Albrecht, E.
2017-12-01
Astronomy has influenced and fascinated humanity throughout history, such aspects have aided development in different areas of knowledge. However, even having this great influence, its insertion in Brazilian schools is still timid. This paper reports a possibility of working with the theme in basic education. One of the objectives is to understand and analyze the contributions of work with Astronomy in the early years from the perspective of scientific literacy. The methodology employed in the study was qualitative. The teacher in his classroom process acted in a way to mediate the issues that were the starting point of this work. This report of experience deals with a work developed with a group composed by 28 students of the 2nd year of elementary school in a public school of the municipal network of Teaching of São Bernardo do Campo, São Paulo. Based on this premise, the teacher offered the possibility for students to formulate hypotheses and to socialize their findings through research. In this perspective, the teacher mediates the conflicts arising from the doubts and questions of the students so that they can research and collect information to learn the concepts. When the student has the opportunity to present his doubts and to define what the subject wants to research, he becomes the protagonist of his learning, understanding that scientific knowledge is not finite but has a spiral movement where the doubts will lead to new research and discoveries. The final product of this work was a book with the record of the researches done by the students being that it made possible an evaluation of the students' understanding of the basic concepts of Astronomy.
NASA Astrophysics Data System (ADS)
Selkin, P. A.; Cline, E. T.; Beaufort, A.
2008-12-01
In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.
NASA Astrophysics Data System (ADS)
Svedholm, Annika M.; Lindeman, Marjaana
2013-03-01
Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.
Waters, C Kenneth
2004-01-01
What should philosophers of science accomplish when they analyze scientific concepts and interpret scientific knowledge? What is concept analysis if it is not a description of the way scientists actually think? I investigate these questions by using Hans Reichenbach's account of the descriptive, critical, and advisory tasks of philosophy of science to examine Karola Stotz and Paul Griffiths' idea that poll-based methodologies can test philosophical analyses of scientific concepts. Using Reichenbach's account as a point of departure, I argue that philosophy of science should identify and clarify epistemic virtues and describe scientific knowledge in relation to these virtues. The role of concept analysis is to articulate scientific concepts in ways that help reveal epistemic virtues and limitations of particular sciences. This means an analysis of the gene concept(s) should help clarify the explanatory power and limitations of gene-based explanations, and should help account for the investigative utility and biases of gene-centered sciences. I argue that a philosophical analysis of gene concept(s) that helps achieve these critical aims should not be rejected on the basis of poll-based studies even if such studies could show that professional biologists don't actually use gene terminology in precise ways corresponding to the philosophical analysis.
TOPICAL REVIEW: Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008
NASA Astrophysics Data System (ADS)
Grasso, Salvatore; Sakka, Yoshio; Maizza, Giovanni
2009-10-01
The electric current activated/assisted sintering (ECAS) is an ever growing class of versatile techniques for sintering particulate materials. Despite the tremendous advances over the last two decades in ECASed materials and products there is a lack of comprehensive reviews on ECAS apparatuses and methods. This paper fills the gap by tracing the progress of ECAS technology from 1906 to 2008 and surveys 642 ECAS patents published over more than a century. It is found that the ECAS technology was pioneered by Bloxam (1906 GB Patent No. 9020) who developed the first resistive sintering apparatus. The patents were searched by keywords or by cross-links and were withdrawn from the Japanese Patent Office (342 patents), the United States Patent and Trademark Office (175 patents), the Chinese State Intellectual Property Office of P.R.C. (69 patents) and the World Intellectual Property Organization (12 patents). A subset of 119 (out of 642) ECAS patents on methods and apparatuses was selected and described in detail with respect to their fundamental concepts, physical principles and importance in either present ECAS apparatuses or future ECAS technologies for enhancing efficiency, reliability, repeatability, controllability and productivity. The paper is divided into two parts, the first deals with the basic concepts, features and definitions of basic ECAS and the second analyzes the auxiliary devices/peripherals. The basic ECAS is classified with reference to discharge time (fast and ultrafast ECAS). The fundamental principles and definitions of ECAS are outlined in accordance with the scientific and patent literature.
Thorn, Christine Johanna; Bissinger, Kerstin; Thorn, Simon; Bogner, Franz Xaver
2016-01-01
Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner's characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on "soil and sunshine", representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile.
Thorn, Simon; Bogner, Franz Xaver
2016-01-01
Successful learning is the integration of new knowledge into existing schemes, leading to an integrated and correct scientific conception. By contrast, the co-existence of scientific and alternative conceptions may indicate a fragmented knowledge profile. Every learner is unique and thus carries an individual set of preconceptions before classroom engagement due to prior experiences. Hence, instructors and teachers have to consider the heterogeneous knowledge profiles of their class when teaching. However, determinants of fragmented knowledge profiles are not well understood yet, which may hamper a development of adapted teaching schemes. We used a questionnaire-based approach to assess conceptual knowledge of tree assimilation and wood synthesis surveying 885 students of four educational levels: 6th graders, 10th graders, natural science freshmen and other academic studies freshmen. We analysed the influence of learner’s characteristics such as educational level, age and sex on the coexistence of scientific and alternative conceptions. Within all subsamples well-known alternative conceptions regarding tree assimilation and wood synthesis coexisted with correct scientific ones. For example, students describe trees to be living on “soil and sunshine”, representing scientific knowledge of photosynthesis mingled with an alternative conception of trees eating like animals. Fragmented knowledge profiles occurred in all subsamples, but our models showed that improved education and age foster knowledge integration. Sex had almost no influence on the existing scientific conceptions and evolution of knowledge integration. Consequently, complex biological issues such as tree assimilation and wood synthesis need specific support e.g. through repeated learning units in class- and seminar-rooms in order to help especially young students to handle and overcome common alternative conceptions and appropriately integrate scientific conceptions into their knowledge profile. PMID:26807974
ERIC Educational Resources Information Center
Balat, Gülden Uyanik
2014-01-01
Most basic concepts are acquired during preschool period. There are studies indicating that the basic concept knowledge of children is related to language development, cognitive development, academic achievement and intelligence. The relationship between learning behaviors (sometime called learning or cognitive styles) and a child academic success…
NASA Astrophysics Data System (ADS)
Thomas, Stephanie Margarete; Beierkuhnlein, Carl
2013-05-01
The occurrence of ectotherm disease vectors outside of their previous distribution area and the emergence of vector-borne diseases can be increasingly observed at a global scale and are accompanied by a growing number of studies which investigate the vast range of determining factors and their causal links. Consequently, a broad span of scientific disciplines is involved in tackling these complex phenomena. First, we evaluate the citation behaviour of relevant scientific literature in order to clarify the question "do scientists consider results of other disciplines to extend their expertise?" We then highlight emerging tools and concepts useful for risk assessment. Correlative models (regression-based, machine-learning and profile techniques), mechanistic models (basic reproduction number R 0) and methods of spatial regression, interaction and interpolation are described. We discuss further steps towards multidisciplinary approaches regarding new tools and emerging concepts to combine existing approaches such as Bayesian geostatistical modelling, mechanistic models which avoid the need for parameter fitting, joined correlative and mechanistic models, multi-criteria decision analysis and geographic profiling. We take the quality of both occurrence data for vector, host and disease cases, and data of the predictor variables into consideration as both determine the accuracy of risk area identification. Finally, we underline the importance of multidisciplinary research approaches. Even if the establishment of communication networks between scientific disciplines and the share of specific methods is time consuming, it promises new insights for the surveillance and control of vector-borne diseases worldwide.
From Big Data to Knowledge in the Social Sciences.
Hesse, Bradford W; Moser, Richard P; Riley, William T
2015-05-01
One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating "big data to knowledge" is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive.
From Big Data to Knowledge in the Social Sciences
Hesse, Bradford W.; Moser, Richard P.; Riley, William T.
2015-01-01
One of the challenges associated with high-volume, diverse datasets is whether synthesis of open data streams can translate into actionable knowledge. Recognizing that challenge and other issues related to these types of data, the National Institutes of Health developed the Big Data to Knowledge or BD2K initiative. The concept of translating “big data to knowledge” is important to the social and behavioral sciences in several respects. First, a general shift to data-intensive science will exert an influence on all scientific disciplines, but particularly on the behavioral and social sciences given the wealth of behavior and related constructs captured by big data sources. Second, science is itself a social enterprise; by applying principles from the social sciences to the conduct of research, it should be possible to ameliorate some of the systemic problems that plague the scientific enterprise in the age of big data. We explore the feasibility of recalibrating the basic mechanisms of the scientific enterprise so that they are more transparent and cumulative; more integrative and cohesive; and more rapid, relevant, and responsive. PMID:26294799
Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.
ERIC Educational Resources Information Center
Lall, Bernard M.
The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…
Legal & ethical compliance when sharing biospecimen.
Klingstrom, Tomas; Bongcam-Rudloff, Erik; Reichel, Jane
2018-01-01
When obtaining samples from biobanks, resolving ethical and legal concerns is a time-consuming task where researchers need to balance the needs of privacy, trust and scientific progress. The Biobanking and Biomolecular Resources Research Infrastructure-Large Prospective Cohorts project has resolved numerous such issues through intense communication between involved researchers and experts in its mission to unite large prospective study sets in Europe. To facilitate efficient communication, it is useful for nonexperts to have an at least basic understanding of the regulatory system for managing biological samples.Laws regulating research oversight are based on national law and normally share core principles founded on international charters. In interview studies among donors, chief concerns are privacy, efficient sample utilization and access to information generated from their samples. Despite a lack of clear evidence regarding which concern takes precedence, scientific as well as public discourse has largely focused on privacy concerns and the right of donors to control the usage of their samples.It is therefore important to proactively deal with ethical and legal issues to avoid complications that delay or prevent samples from being accessed. To help biobank professionals avoid making unnecessary mistakes, we have developed this basic primer covering the relationship between ethics and law, the concept of informed consent and considerations for returning findings to donors. © The Author 2017. Published by Oxford University Press.
Legal & ethical compliance when sharing biospecimen
Klingstrom, Tomas; Bongcam-Rudloff, Erik; Reichel, Jane
2018-01-01
Abstract When obtaining samples from biobanks, resolving ethical and legal concerns is a time-consuming task where researchers need to balance the needs of privacy, trust and scientific progress. The Biobanking and Biomolecular Resources Research Infrastructure-Large Prospective Cohorts project has resolved numerous such issues through intense communication between involved researchers and experts in its mission to unite large prospective study sets in Europe. To facilitate efficient communication, it is useful for nonexperts to have an at least basic understanding of the regulatory system for managing biological samples. Laws regulating research oversight are based on national law and normally share core principles founded on international charters. In interview studies among donors, chief concerns are privacy, efficient sample utilization and access to information generated from their samples. Despite a lack of clear evidence regarding which concern takes precedence, scientific as well as public discourse has largely focused on privacy concerns and the right of donors to control the usage of their samples. It is therefore important to proactively deal with ethical and legal issues to avoid complications that delay or prevent samples from being accessed. To help biobank professionals avoid making unnecessary mistakes, we have developed this basic primer covering the relationship between ethics and law, the concept of informed consent and considerations for returning findings to donors. PMID:28460118
ERIC Educational Resources Information Center
Zangori, Laura; Forbes, Cory T.
2016-01-01
To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…
ERIC Educational Resources Information Center
Heng, Lee Ling; Surif, Johari; Seng, Cher Hau; Ibrahim, Nor Hasniza
2015-01-01
Purpose: Argumentative practices are central to science education, and have recently been emphasised to promote students' reasoning skills and to develop student's understanding of scientific concepts. This study examines the mastery of scientific argumentation, based on the concept of neutralisation, among secondary level science students, when…
Standardized data sharing in a paediatric oncology research network--a proof-of-concept study.
Hochedlinger, Nina; Nitzlnader, Michael; Falgenhauer, Markus; Welte, Stefan; Hayn, Dieter; Koumakis, Lefteris; Potamias, George; Tsiknakis, Manolis; Saraceno, Davide; Rinaldi, Eugenia; Ladenstein, Ruth; Schreier, Günter
2015-01-01
Data that has been collected in the course of clinical trials are potentially valuable for additional scientific research questions in so called secondary use scenarios. This is of particular importance in rare disease areas like paediatric oncology. If data from several research projects need to be connected, so called Core Datasets can be used to define which information needs to be extracted from every involved source system. In this work, the utility of the Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) as a format for Core Datasets was evaluated and a web tool was developed which received Source ODM XML files and--via Extensible Stylesheet Language Transformation (XSLT)--generated standardized Core Dataset ODM XML files. Using this tool, data from different source systems were extracted and pooled for joined analysis in a proof-of-concept study, facilitating both, basic syntactic and semantic interoperability.
Getting a head start: the importance of personal genetics education in high schools.
Kung, Johnny T; Gelbart, Marnie E
2012-03-01
With advances in sequencing technology, widespread and affordable genome sequencing will soon be a reality. However, studies suggest that "genetic literacy" of the general public is inadequate to prepare our society for this unprecedented access to our genetic information. As the current generation of high school students will come of age in an era when personal genetic information is increasingly utilized in health care, it is of vital importance to ensure these students understand the genetic concepts necessary to make informed medical decisions. These concepts include not only basic scientific knowledge, but also considerations of the ethical, legal, and social issues that will arise in the age of personal genomics. In this article, we review the current state of genetics education, highlight issues that we believe need to be addressed in a comprehensive genetics education curriculum, and describe our education efforts at the Harvard Medical School-based Personal Genetics Education Project.
Consciousness, epilepsy, and emotional qualia.
Monaco, Francesco; Mula, Marco; Cavanna, Andrea E
2005-09-01
The last decade has seen a renaissance of consciousness studies, witnessed by the growing number of scientific investigations on this topic. The concept of consciousness is central in epileptology, despite the methodological difficulties concerning its application to the multifaced ictal phenomenology. The authors provide an up-to-date review of the neurological literature on the relationship between epilepsy and consciousness and propose a bidimensional model (level vs contents of consciousness) for the description of seizure-induced alterations of conscious states, according to the findings of recent neuroimaging studies. The neurophysiological correlates of ictal loss and impairment of consciousness are also reviewed. Special attention is paid to the subjective experiential states associated with medial temporal lobe epilepsy. Such ictal phenomenal experiences are suggested as a paradigm for a neuroscientific approach to the apparently elusive philosophical concept of qualia. Epilepsy is confirmed to represent a privileged window over basic neurobiological mechanisms of consciousness.
Quality improvement in basic histotechnology: the lean approach.
Clark, David
2016-01-01
Lean is a comprehensive system of management based on the Toyota production system (TPS), encompassing all the activities of an organization. It focuses management activity on creating value for the end-user by continuously improving operational effectiveness and removing waste. Lean management creates a culture of continuous quality improvement with a strong emphasis on developing the problem-solving capability of staff using the scientific method (Deming's Plan, Do, Check, Act cycle). Lean management systems have been adopted by a number of histopathology departments throughout the world to simultaneously improve quality (reducing errors and shortening turnround times) and lower costs (by increasing efficiency). This article describes the key concepts that make up a lean management system, and how these concepts have been adapted from manufacturing industry and applied to histopathology using a case study of lean implementation and evidence from the literature. It discusses the benefits, limitations, and pitfalls encountered when implementing lean management systems.
Life is physics and chemistry and communication.
Witzany, Guenther
2015-04-01
Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.
eduSPIM: Light Sheet Microscopy in the Museum.
Jahr, Wiebke; Schmid, Benjamin; Weber, Michael; Huisken, Jan
2016-01-01
Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided.
Education, Enlightenment and Positivism: The Vienna Circle's Scientific World-Conception Revisited
NASA Astrophysics Data System (ADS)
Uebel, Thomase.
The scientific world-conception is properly understood as an enlightenment philosophy only if the current reassessment of the historical Vienna Circle(as opposed to the caricature still prevalent in the popular philosophical imagination) is once more extended to comprehend not only its thorough-going epistemological anti-foundationalism, but also the voluntarist point of its ethical`non-cognitivism'. That is to say, the scientific world-conception is properly understood as the opposite of village positivism only if it is recognized that it has an `other' and that the scientific world-conception was meant by its proponents to perform its enlightenment work only in conjunction with that other of scientific reason - ethical will and willing. Scientific reason cannot determine all there is to determine, it cannot determine the will. In this sense, there was, pace village positivism, more than scientific reason dreamt of. Scientific reason was not made absolute: rather, its (self-) clarification was required if a satisfactory view of its place in `life' was to be attained.
Study of the adaptability of existing hardware designs to a Pioneer Saturn/Uranus probe
NASA Technical Reports Server (NTRS)
1973-01-01
The basic concept of designing a scientific entry probe for the expected range of environments at Saturn or Uranus and making the probe compatible with the interface constraints of the Pioneer spacecraft was investigated for launches in the early 1980's. It was found that the amount of hardware commonality between that used in the Pioneer Venus program and that for the Saturn/Uranus probe was approximately 85%. It is recommended that additional development studies be conducted to improve the hardware definitions of the probe design for the following: heat shield, battery, nose cap jettisoning, and thermal control insulation.
Thermodynamics of nuclear track chemical etching
NASA Astrophysics Data System (ADS)
Rana, Mukhtar Ahmed
2018-05-01
This is a brief paper with new and useful scientific information on nuclear track chemical etching. Nuclear track etching is described here by using basic concepts of thermodynamics. Enthalpy, entropy and free energy parameters are considered for the nuclear track etching. The free energy of etching is determined using etching experiments of fission fragment tracks in CR-39. Relationship between the free energy and the etching temperature is explored and is found to be approximately linear. The above relationship is discussed. A simple enthalpy-entropy model of chemical etching is presented. Experimental and computational results presented here are of fundamental interest in nuclear track detection methodology.
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Reentry Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2014-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPEs first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPEs configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation.
du Prel, Jean-Baptist; Röhrig, Bernd; Blettner, Maria
2009-02-01
In the era of evidence-based medicine, one of the most important skills a physician needs is the ability to analyze scientific literature critically. This is necessary to keep medical knowledge up to date and to ensure optimal patient care. The aim of this paper is to present an accessible introduction into critical appraisal of scientific articles. Using a selection of international literature, the reader is introduced to the principles of critical reading of scientific articles in medicine. For the sake of conciseness, detailed description of statistical methods is omitted. Widely accepted principles for critically appraising scientific articles are outlined. Basic knowledge of study design, structuring of an article, the role of different sections, of statistical presentations as well as sources of error and limitation are presented. The reader does not require extensive methodological knowledge. As far as necessary for critical appraisal of scientific articles, differences in research areas like epidemiology, clinical, and basic research are outlined. Further useful references are presented. Basic methodological knowledge is required to select and interpret scientific articles correctly.
Organization and integration of biomedical knowledge with concept maps for key peroxisomal pathways.
Willemsen, A M; Jansen, G A; Komen, J C; van Hooff, S; Waterham, H R; Brites, P M T; Wanders, R J A; van Kampen, A H C
2008-08-15
One important area of clinical genomics research involves the elucidation of molecular mechanisms underlying (complex) disorders which eventually may lead to new diagnostic or drug targets. To further advance this area of clinical genomics one of the main challenges is the acquisition and integration of data, information and expert knowledge for specific biomedical domains and diseases. Currently the required information is not very well organized but scattered over biological and biomedical databases, basic text books, scientific literature and experts' minds and may be highly specific, heterogeneous, complex and voluminous. We present a new framework to construct knowledge bases with concept maps for presentation of information and the web ontology language OWL for the representation of information. We demonstrate this framework through the construction of a peroxisomal knowledge base, which focuses on four key peroxisomal pathways and several related genetic disorders. All 155 concept maps in our knowledge base are linked to at least one other concept map, which allows the visualization of one big network of related pieces of information. The peroxisome knowledge base is available from www.bioinformaticslaboratory.nl (Support-->Web applications). Supplementary data is available from www.bioinformaticslaboratory.nl (Research-->Output--> Publications--> KB_SuppInfo)
NASA Astrophysics Data System (ADS)
Zhong, Hairong; Xu, Wei; Hu, Haojun; Duan, Chengfang
2017-08-01
This article analyzes the features of fostering optoelectronic students' innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of "Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base", and meanwhile build a whole-process progressive training mode to foster optoelectronic students' innovative practical ability, following the process of "basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project": (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students' "pre-job training barriers" between school and work, with graduation design as the comprehensive training and testing link.
NASA Astrophysics Data System (ADS)
de Freitas, Elizabeth; Palmer, Anna
2016-12-01
The aim of this article is to investigate how new materialist philosophies of matter can help us study the emergence of scientific thought in young children's activities. We draw extensively on the work of Gilles Deleuze to help us understand scientific concepts as concrete universals. In particular, we show how the concept of force is re-animated through this approach, becoming less deterministic, and more inflected with chance and indeterminism. We show how this approach to concepts moves beyond constructivist socio-cultural theories of learning, and reveals how concepts are `material articulations of the world' intra-acting with all other matter and meaning. Finally, we discuss video data and artifacts from an ongoing ethnographic project in Stockholm entitled `Children's relations to the city'. Our analysis of the classroom video data from this project shows how concepts are not timeless transcendent abstractions, but part of an unfolding event and learning assemblage. Thus the article contributes to research on conceptual change in children, with particular focus on scientific concepts.
Craft-Art as a Basis for Human Activity
ERIC Educational Resources Information Center
Karppinen, Seija
2008-01-01
This article based on my doctoral thesis examines the Basic Arts Education system in Finland, focusing on Basic Crafts Education and its description through action concepts. The main task of the study was to create a concept model. In the first part of the study a concept map was created from the practice of Basic Crafts Education. The aim of the…
ERIC Educational Resources Information Center
Hansen, W. Lee; And Others
A concise framework of basic concepts and generalizations for teaching economics for K-12 students is presented. The guide summarizes the basic structure and substance of economics and lists and describes economic concepts. Standard guidelines are provided to help school systems integrate economics into their on-going courses of study. Designed to…
Nomadic concepts in the history of biology.
Surman, Jan; Stráner, Katalin; Haslinger, Peter
2014-12-01
The history of scientific concepts has firmly settled among the instruments of historical inquiry. In our section we approach concepts from the perspective of nomadic concepts (Isabelle Stengers). Instead of following the evolution of concepts within one disciplinary network, we see them as subject to constant reification and change while crossing and turning across disciplines and non-scientific domains. This introduction argues that understanding modern biology is not possible without taking into account the constant transfers and translations that affected concepts. We argue that this approach does not only engage with nomadism between disciplines and non-scientific domains, but reflects on and involves the metaphoric value of concepts as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Narrative and epistemology: Georges Canguilhem's concept of scientific ideology.
Chimisso, Cristina
2015-12-01
In the late 1960s, Georges Canguilhem introduced the concept of 'scientific ideology'. This concept had not played any role in his previous work, so why introduce it at all? This is the central question of my paper. Although it may seem a rather modest question, its answer in fact uncovers hidden tensions in the tradition of historical epistemology, in particular between its normative and descriptive aspects. The term ideology suggests the influence of Althusser's and Foucault's philosophies. However, I show the differences between Canguilhem's concept of scientific ideology and Althusser's and Foucault's respective concepts of ideology. I argue that Canguilhem was in fact attempting to solve long-standing problems in the tradition of historical epistemology, rather than following the lead of his younger colleagues. I argue that Canguilhem's 'refurbishment without rejection' of Bachelard's epistemology, which the concept of scientific ideology was aimed to implement, was necessary to justify the historical narratives that Canguilhem had constructed in his own work as a historian of concepts. A strict acceptance of Bachelard's epistemology would have made it impossible to justify them. Canguilhem's concept of scientific ideology therefore served as a theoretical justification of his practice as a historian. I maintain that the concept of scientific ideology was needed to reconcile Bachelard's normative epistemology with Canguilhem's view of the history of science and its aims, which differed from Bachelard's more than it is generally acknowledged. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schultze-Petzold, H
1976-01-01
Regulations for the protection of useful animals can be traced to the early history of Law. The reason for such regulations has hardly changed up to the present: the expedient incorporation of the animal into the hierachy of values of the prevailing times. Decisive impulses invariably originated from the legal conception, the need for legal protection as well as from the scientific conceptions of society. The development rarely took a linear course and was not without setbacks. The prevention of cruelty to animals has always been faced with particular conflicting situations. Our pluralistic society with its marked philosophy of profit-making has to face such a problem, in particular as a result of livestock keeping in modern systems. The necessity and legitimacy of a permanent supply of large quantities of high-grade animal foodstuffs to be offered to our present industrial society on a competitive and low-cost basis, have contributed to this development. The public and parliament have for some time been demanding a modern federal act for the prevention of cruelty to animals based on a technical conception allowing also those questions of animal protection related to the present keeping of useful animals to be integrated, thus achieving a gradual balancing of interests. Such an Animal Protection Act came into force on October 1, 1972. On account of its scientific orientation it prompts us to give renewed thought to many present-day ideas about the keeping of animals, especially of useful animals, employing modern systems. With this objective in mind the Act has already strongly influenced the developing international harmonization of provisions for Animal Protection. The problems linked with "Animal Protection/Keeping of Useful Animals" require a harmonization of the ethical, scientific, economic and legal aspects as an indispensable prerequisite. On the basis of expert opinions prepared by a group of specialists of the Federal Ministry of Agriculture on the minimum requirements to be satisfied by modern systems of fowl breeding, the various scientific basic concepts and evaluations are presented. The value of the information yielded by modern research into animal behaviour is emphasized in this connection. Future legal ordinances in accordance with Clause 13, para 1 of the Animal Protection Act of July 24, 1972 for the protection of useful animals kept in modern systems call for a particularly thorough scientific foundation which must also stand up to examination by the courts. The problems to be solved require comprehensive research. An urgent task for the near future will be to give the resolution of these problems a firm scientific base. In addition to the topical approach to the subject "Animal Protection/Keeping of Useful Animals", indications are given for a comprehensive approach which will prove indispensable in the future...
[Systematic reviews of the literature: what should be known about them].
Manterola, Carlos; Astudillo, Paula; Arias, Esteban; Claros, Nataniel
2013-03-01
A systematic review (SR) is an article on the «synthesis of the available evidence», in which a review is performed on the quantitative and qualitative aspects of primary studies, with the aim of summarising the existing information on a particular topic. After collecting the articles of interest the researchers then analyse them and compare the evidence they provide with that from similar ones. The reasons for justifying performing an SR are: when there is uncertainty as regards the effect of an intervention due to there being existing evidence against its real usefulness; when it is desired to know the magnitude of the effect of an intervention; and, when it is desired to analyse the behaviour of an intervention in subject sub-groups. The aim of this article is to perform an update on the basic concepts, indications, strengths and weaknesses of SRs, as well as the development of an SR, the most important potential biases to be taken into account in this type of design, and the basic concepts as regards the meta-analysis. Two examples of SR are also included, of use for surgeons, who often come across this type of design when searching for scientific evidence in biomedical journal bases. Copyright © 2011 AEC. Published by Elsevier Espana. All rights reserved.
Symbolic Interaction and Applied Social Research
Kotarba, Joseph A.
2014-01-01
In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism’s overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This component has also contributed to the basic social scientific literature on complex organizations and the self. PMID:25221375
Symbolic Interaction and Applied Social Research: A FOCUS ON TRANSLATIONAL SCIENCE RESEARCH1.
Kotarba, Joseph A
2014-08-01
In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism's overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This component has also contributed to the basic social scientific literature on complex organizations and the self.
Crew Roles and Interactions in Scientific Space Exploration
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bleacher, Jacob E.
2013-01-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.
Crew roles and interactions in scientific space exploration
NASA Astrophysics Data System (ADS)
Love, Stanley G.; Bleacher, Jacob E.
2013-10-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.
Hahn, J
1991-01-01
Pliny's historical outline of the development of medicine, in Natural History 29.1-27, is our primary source concerning the reception of scientific medicine at Rome during the later Republic and early Empire. Here, as elsewhere, Pliny handles Greek doctors and their medical practices with vehement disapproval. But this attitude, at first glance anti-Hellene, traditionalistic, and critical of his coevals, arises from more deeply rooted notions: a specific conception of nature which can be shown to be the basis of Pliny's critique of medicine and his own times. Reconstruction of this "Plinean" conception reveals a view of nature marked by Stoic terminology and categories, though in fact derivate from various sources, idiosyncratic and characterized by a genuine love of and respect for nature and her creations. True comprehension of the lessons offered by nature, resulting in concrete mores of behaviour and moral categories, as opposed to theory and speculation, is the proper modus operandi for Pliny. And thus, with regard to the human process of self-discovery in the natural world, medicine plays a decisive role--for providential nature displays herself most clearly in the production of healing substances. Pliny notes among the proponents of scientific medicine, a general disregard for nature and her rules, while he finds just the opposite in traditional medicine. His own accomplishment resides not only in the safeguarding of numberless recipies from the world of folk medicine, but also in the facts that he under-pins these traditional methods of healing, and their basic principles, with a specific conception of nature, and that he marks out an exceptionally important place for traditional methods of healing in the canon of general knowledge.
Boehm Test of Basic Concepts-Revised. Review.
ERIC Educational Resources Information Center
Padula, Janice
1988-01-01
The manual for the Boehm Test of Basic Concepts-Revised (1986) is reviewed. The test measures a child's knowledge of relational concepts. The revised version, eliminating some imperfections of the original, will continue to be a useful test of verbal concept acquisition. Cautions necessary while using the test are discussed. (SLD)
Control of Breathing During Mechanical Ventilation: Who Is the Boss?
Williams, Kathleen; Hinojosa-Kurtzberg, Marina; Parthasarathy, Sairam
2011-01-01
Over the past decade, concepts of control of breathing have increasingly moved from being theoretical concepts to “real world” applied science. The purpose of this review is to examine the basics of control of breathing, discuss the bidirectional relationship between control of breathing and mechanical ventilation, and critically assess the application of this knowledge at the patient’s bedside. The principles of control of breathing remain under-represented in the training curriculum of respiratory therapists and pulmonologists, whereas the day-to-day bedside application of the principles of control of breathing continues to suffer from a lack of outcomes-based research in the intensive care unit. In contrast, the bedside application of the principles of control of breathing to ambulatory subjects with sleep-disordered breathing has out-stripped that in critically ill patients. The evolution of newer technologies, faster real-time computing abilities, and miniaturization of ventilator technology can bring the concepts of control of breathing to the bedside and benefit the critically ill patient. However, market forces, lack of scientific data, lack of research funding, and regulatory obstacles need to be surmounted. PMID:21333174
Small Science: Infants and Toddlers Experiencing Science in Everyday Family Life
NASA Astrophysics Data System (ADS)
Sikder, Shukla; Fleer, Marilyn
2015-06-01
Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of science learning are afforded at home during this early period of life? The study reported in this paper sought to investigate the scientific development of infants-toddlers (10 to 36 months) growing up in Bangladeshi families living in Australia and Singapore. Four families were studied over 2 years. Digital video observations were made of everyday family life and analysed using Vygotsky's theoretical framework of everyday concepts and scientific concepts (51 h of digital observations). While there are many possibilities for developing scientific concepts in infants-toddlers' everyday life, our study found four categories of what we have called small science: multiple possibilities for science; discrete science; embedded science and counter intuitive science. The findings of this study contribute to the almost non-existent literature into infants and toddlers' scientific development and advance new understandings of early childhood science education.
Reflections on scientific collaboration between basic researchers and clinicians.
Muia, J; Casari, C
2016-10-01
Early career researchers face uncertainties with respect to their job prospects due to dwindling job markets, decreased availability of funding and undefined career paths. As basic researchers and clinicians tend to have different approaches to scientific problems, there are many advantages from successful collaborations between them. Here, we discuss how collaborations between basic and clinical scientists should be promoted early in their careers. To achieve this, researchers, both basic and clinical, must be proactive during their training and early stages of their careers. Mentors can further augment collaborative links in many ways. We suggest that universities and institutions might reassess their involvement in promoting collaborations between basic and clinical researchers. We hope that this paper will serve as a reminder of the importance of such collaborations, and provide the opportunity for all members of the scientific community to reflect on and ameliorate their own contributions. © 2016 International Society on Thrombosis and Haemostasis.
Mediating the Message: The Team Approach to Developing Interdisciplinary Science Exhibitions
NASA Astrophysics Data System (ADS)
Stauffer, B. W.; Starrs, S. K.
2005-05-01
Museum exhibition developers can take advantage of a wide range of methods and media for delivering scientific information to a general audience. But, determining what information to convey and which medium is the best means of conveying it can be an arduous process. How do you design an exhibition so a visiting fifth grade school group learns basic scientific concepts while an amateur naturalist finds enough rich content to warrant coming back in a few months? How much or how little media should be included? What forms of media are most appropriate? Answering these questions requires intensive and iterative collaboration and compromise among a team of educators, scientists and designers. The National Museum of Natural History's Forces of Change Program uses a unique team approach that includes scientific, exhibit design, and education experts to create interdisciplinary science exhibitions. Exhibit topics have explored the dynamics of a grasslands ecosystem, global impacts of El Nino, climate change in the Arctic, the functions of the atmosphere, and soil composition. Exhibition-related products include publications, scavenger hunts, interactive computer kiosks, educational CD-ROMs, animated cartoons, web sites, and school group activities. Team members will describe the team process and the iterative discussions involved in developing these products so they are as scientifically sound and engaging as possible.
ERIC Educational Resources Information Center
Liao, Ya-Wen; She, Hsiao-Ching
2009-01-01
This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…
Science Teachers' Conceptions of Nature of Science: The Case of Bangladesh
ERIC Educational Resources Information Center
Sarkar, Md. Mahbub Alam; Gomes, Jui Judith
2010-01-01
This study explored Bangladeshi science teachers' conceptions of nature of science (NOS) with a particular focus on the nature of (a) scientific knowledge, (b) scientific inquiry and (c) scientific enterprise. The tentative, inferential, subjective and creative NOS, in addition to the myths of the scientific method and experimentation, the nature…
Should Science be Taught in Early Childhood?
NASA Astrophysics Data System (ADS)
Eshach, Haim; Fried, Michael N.
2005-09-01
This essay considers the question of why we should teach science to K-2. After initial consideration of two traditional reasons for studying science, six assertions supporting the idea that even small children should be exposed to science are given. These are, in order: (1) Children naturally enjoy observing and thinking about nature. (2) Exposing students to science develops positive attitudes towards science. (3) Early exposure to scientific phenomena leads to better understanding of the scientific concepts studied later in a formal way. (4) The use of scientifically informed language at an early age influences the eventual development of scientific concepts. (5) Children can understand scientific concepts and reason scientifically. (6) Science is an efficient means for developing scientific thinking. Concrete illustrations of some of the ideas discussed in this essay, particularly, how language and prior knowledge may influence the development of scientific concepts, are then provided. The essay concludes by emphasizing that there is a window of opportunity that educators should exploit by presenting science as part of the curriculum in both kindergarten and the first years of primary school.
ERIC Educational Resources Information Center
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-01-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…
ERIC Educational Resources Information Center
Durukan, Ümmü Gülsüm; Saglam-Arslan, Aysegül
2015-01-01
Learners face a variety of concepts during the instructional process they experience. These concepts are mostly introduced by teachers; thus, the competences of teachers in terms of teaching concepts are vitally important. The aim of this study is to detect the understanding levels of teacher candidates about basic astronomy concepts. The method…
Thermal control unit for long-time survival of scientific instruments on lunar surface
NASA Astrophysics Data System (ADS)
Ogawa, Kazunori; Iijima, Yuichi; Tanaka, Satoshi
A thermal control unit (lunar survival module) is being developed for scientific instruments placed on the lunar surface. This unit is designed to be used on the future Japanese lunar landing mission SELENE-2. The lunar surface is a severe environment for scientific instruments. The absence of convective cooling by an atmosphere makes the ground surface temperature variable in the wide range of -200 to 100 degC, an environment in which space electronics can hardly survive. The surface elements must have a thermal control structure to maintain the inner temperature within the operable ranges of the instruments for long-time measurements, such as 1 month or longer beyond the lunar nights. The objectives of this study are to develop a thermal control unit for the SELENE-2 mission. So far, we conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. The basic structure of the thermal module is rather simple in that a heat insulating shell covers the scientific instruments. The concept is that the conical insulator retains heat in the regolith soil in the daylight, and it can keep the device warm in the night. Results of the model calculations indicated the high potential of long-time survival. A bread board model (BBM) was manufactured, and its thermal-vacuum tests were conducted in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The thermal condition of the lunar surface was simulated by glass beads paved in a vacuum chamber, and a temperature-controlled container. Temperature variations of the BBM in thermal cycling tests were compared to a thermal mathematical model, and the thermal parameters were finally assessed. Feeding the test results back into the thermal model for the lunar surface, some thermal parameters were updated but there was no critical effect on the survivability. The experimental results indicated a sufficient survivability potential of the concept of our thermal control system.
Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008
Grasso, Salvatore; Sakka, Yoshio; Maizza, Giovanni
2009-01-01
The electric current activated/assisted sintering (ECAS) is an ever growing class of versatile techniques for sintering particulate materials. Despite the tremendous advances over the last two decades in ECASed materials and products there is a lack of comprehensive reviews on ECAS apparatuses and methods. This paper fills the gap by tracing the progress of ECAS technology from 1906 to 2008 and surveys 642 ECAS patents published over more than a century. It is found that the ECAS technology was pioneered by Bloxam (1906 GB Patent No. 9020) who developed the first resistive sintering apparatus. The patents were searched by keywords or by cross-links and were withdrawn from the Japanese Patent Office (342 patents), the United States Patent and Trademark Office (175 patents), the Chinese State Intellectual Property Office of P.R.C. (69 patents) and the World Intellectual Property Organization (12 patents). A subset of 119 (out of 642) ECAS patents on methods and apparatuses was selected and described in detail with respect to their fundamental concepts, physical principles and importance in either present ECAS apparatuses or future ECAS technologies for enhancing efficiency, reliability, repeatability, controllability and productivity. The paper is divided into two parts, the first deals with the basic concepts, features and definitions of basic ECAS and the second analyzes the auxiliary devices/peripherals. The basic ECAS is classified with reference to discharge time (fast and ultrafast ECAS). The fundamental principles and definitions of ECAS are outlined in accordance with the scientific and patent literature. PMID:27877308
[Quality concept in health care. Methodology for its measurement].
Morera Guitart, J
2003-12-01
It is increasingly necessary that the neurologists achieve basic knowledgement in clinical management and medical care quality. We will review the concepts of medical care quality (MCQ). Of the definitions checked, we want to emphasize the following aspects. a) application of current scientific knowledge; b) interpersonal relationship; c) environment where the assistance is dispensed; d) results in health; e) cost of assistance; f) risks for the patient and g) patient satisfaction. For the analysis of the MCQ we could distinguish several components: scientific-technical component, efficacy, effectiveness, efficiency, accessibility, continuity, equity, appropriateness, and satisfaction of the patient and of the professional. One of the main objectives to measure the MCQ is to improve the assistance itself. For its measurement we can employ diverse methods depending on our objective: to improve the process, to do Benchmarking, to know the satisfaction of the patients or to guarantee the quality of the medical attention. The most used tools for this measurement are: establishment of criteria-indicator-standard for quality, elaboration of satisfaction questionnaires, interviews to key informant, analysis of complaints and claims of patients and professionals, and clinical audits. The role of the neurologist in the achievement of a high quality neurological attention if fundamental. Therefore, it is necessary some specific formation on: scientific and technical matter, communicative abilities, teamworking, management and organisation of tasks and pharmaco-economic evaluation, and a cultural change that involves every professional on the co-responsibility of the continuous improvement of the processes and of the results of his work, advancing gradually towards the excellence of medical assistance.
Marsan, Lynnsay A; D'Arcy, Christina E; Olimpo, Jeffrey T
2016-12-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices' development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices' comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p -value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students' scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts.
Marsan, Lynnsay A.; D’Arcy, Christina E.; Olimpo, Jeffrey T.
2016-01-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices’ development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices’ comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p-value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students’ scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts. PMID:28101271
The Effective Concepts on Students' Understanding of Chemical Reactions and Energy
ERIC Educational Resources Information Center
Ayyildiz, Yildizay; Tarhan, Leman
2012-01-01
The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit…
Hampel, Harald; Vergallo, Andrea; Giorgi, Filippo Sean; Kim, Seung Hyun; Depypere, Herman; Graziani, Manuela; Saidi, Amira; Nisticò, Robert; Lista, Simone
2018-06-12
Neurodegenerative diseases (ND) are among the leading causes of disability and mortality. Considerable sex differences exist in the occurrence of the various manifestations leading to cognitive decline. Alzheimer's disease (AD) exhibits substantial sexual dimorphisms and disproportionately affects women. Women have a higher life expectancy compared to men and, consequently, have more lifespan to develop AD. The emerging precision medicine and pharmacology concepts - taking into account the individual genetic and biological variability relevant for disease risk, prevention, detection, diagnosis, and treatment - are expected to substantially enhance our knowledge and management of AD. Stratifying the affected individuals by sex and gender is an important basic step towards personalization of scientific research, drug development, and care. We hypothesize that sex and gender differences, extending from genetic to psychosocial domains, are highly relevant for the understanding of AD pathophysiology, and for the conceptualization of basic/translational research and for clinical therapy trial design. Copyright © 2018 Elsevier Inc. All rights reserved.
An overview of conceptual understanding in science education curriculum in Indonesia
NASA Astrophysics Data System (ADS)
Widiyatmoko, A.; Shimizu, K.
2018-03-01
The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.
The polity of academic medicine: evidence-based democracy.
Willing, Steven J; Gunderman, Richard B; Cochran, Philip L; Saxton, Todd
2005-04-01
The authors consider the empirical data examining relationships between democratic governance and organizational success. There is overwhelming evidence that democratically run organizations excel in key parameters of success, such as business valuation, productivity, responsiveness, innovation, decision making, and worker morale and satisfaction. A review of physician surveys shows that discontent with academic administration is a major contributor to faculty turnover. Other data indicate that the basic concepts justifying autocratic governance of a department are deeply flawed and that autocratic governance is counterproductive. The authors conclude that the democratic governance of academic departments is the only model that is scientifically valid and would greatly enhance all missions of academic medicine in the 21st century.
NASA Astrophysics Data System (ADS)
Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.
2011-09-01
This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.
Advanced study of global oceanographic requirements for EOS A/B: Technical volume
NASA Technical Reports Server (NTRS)
1972-01-01
Characteristics of the ocean are considered in terms of U.S. social, scientific and ecomomic priorities and in terms of the measurements that can best be made from a spacecraft. The kinds of information needed to advance the basic ocean sciences, to improve marine transportation and fisheries operations, and to provide information for pollution control are discussed. These information needs were related to sensor concepts and an optimum sensor complement is presented, together with orbital considerations. The data-gathering capabilities of an oceanographic spacecraft were considered in relation to those of terrestrial oceanographic programs, using airborne, surface, and submarine platforms. Data management problems are discussed and are considered to be solvable with current technology.
NASA Astrophysics Data System (ADS)
Reed, Bruce Cameron
2015-06-01
This volume, prepared by an acknowledged expert on the Manhattan Project, gives a concise, fast-paced account of all major aspects of the project at a level accessible to an undergraduate college or advanced high-school student familiar with some basic concepts of energy, atomic structure, and isotopes. The text describes the underlying scientific discoveries that made nuclear weapons possible, how the project was organized, the daunting challenges faced and overcome in obtaining fissile uranium and plutonium, and in designing workable bombs, the dramatic Trinity test carried out in the desert of southern New Mexico in July 1945, and the bombings of Hiroshima and Nagasaki.
Describing Changes in Undergraduate Students' Preconceptions of Research Activities
ERIC Educational Resources Information Center
Cartrette, David P.; Melroe-Lehrman, Bethany M.
2012-01-01
Research has shown that students bring naive scientific conceptions to learning situations which are often incongruous with accepted scientific explanations. These preconceptions are frequently determined to be misconceptions; consequentially instructors spend time to remedy these beliefs and bring students' understanding of scientific concepts to…
[Special therapeutic practices from the viewpoint of naturopathy].
Bühring, M
1997-11-01
Naturopathy being orientated towards natural science and conventional medicine does not lead to basically different judgements about unconventional treatments nor about special therapies such as homeopathy, phytotherapy or anthroposophic medicine. It may, however, be more open-minded towards new ideas and theoretical even philosophical concepts and it is more likely used to question the 'state of the art' of actual medical knowledge. It is only for a relatively small part of unconventional treatments, that naturopathy recognizes a certain plausibility, which causes scientific investigation of the method to be meaningful. Naturopathy sometimes proposes traditional anthropologies and nosologies to be used for the election of suitable indications. A variety of psychologic effects of different methods of naturopathy may not be excluded by protocols used for clinical studies. As far as the majority of unconventional and paramedical treatments is concerned, naturopathy raises ethical beside scientific objections. Beyond a probable success of the treatment, it insists on a certain rationale and intellectual honesty. A differentiation between the more pragmatic interests of a health insurance and the scientific obligations of university medicine is given. An important and decisive criterium for the health insurances results from the demand for economics.
Teaching Scientific Concepts with Transparent Detector Models: An Example from Optics.
ERIC Educational Resources Information Center
Allen, Sue; And Others
This paper describes an attempt to facilitate students' learning of scientific concepts by using detectors that take as input physical information and output an instantiation of the concept. The principle hypothesis was that students would have a better understanding of the concept of image if they were taught to use a simplified, runnable model…
Unders and Overs: Using a Dice Game to Illustrate Basic Probability Concepts
ERIC Educational Resources Information Center
McPherson, Sandra Hanson
2015-01-01
In this paper, the dice game "Unders and Overs" is described and presented as an active learning exercise to introduce basic probability concepts. The implementation of the exercise is outlined and the resulting presentation of various probability concepts are described.
Systems in Science: Modeling Using Three Artificial Intelligence Concepts.
ERIC Educational Resources Information Center
Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.
2003-01-01
Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)
The epistemic integrity of scientific research.
De Winter, Jan; Kosolosky, Laszlo
2013-09-01
We live in a world in which scientific expertise and its epistemic authority become more important. On the other hand, the financial interests in research, which could potentially corrupt science, are increasing. Due to these two tendencies, a concern for the integrity of scientific research becomes increasingly vital. This concern is, however, hollow if we do not have a clear account of research integrity. Therefore, it is important that we explicate this concept. Following Rudolf Carnap's characterization of the task of explication, this means that we should develop a concept that is (1) similar to our common sense notion of research integrity, (2) exact, (3) fruitful, and (4) as simple as possible. Since existing concepts do not meet these four requirements, we develop a new concept in this article. We describe a concept of epistemic integrity that is based on the property of deceptiveness, and argue that this concept does meet Carnap's four requirements of explication. To illustrate and support our claims we use several examples from scientific practice, mainly from biomedical research.
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
ERIC Educational Resources Information Center
Trumper, Ricardo
2006-01-01
In view of students' alternative conceptions about basic concepts in astronomy, we conducted a series of constructivist activities with future elementary and junior high school teachers aimed at changing their conceptions about the cause of seasonal changes, and of several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…
ERIC Educational Resources Information Center
Qudah, Ahmad Hassan
2016-01-01
The study aimed to detect the effect of using an educational site on the Internet in the collection of bachelor's students in the course of basic concepts in mathematics at Al al-Bayt University, and the study sample consisted of all students in the course basic concepts in mathematics in the first semester of the academic year 2014/2015 and the…
2013-01-01
The global healthcare industry is undergoing substantial changes and adaptations to the constant decline of approved new medical entities. This decrease in internal research productivity is resulting in a major decline of patent-protected sales (patent cliff) of most of the pharmaceutical companies. Three major global adaptive trends as driving forces to cope with these challenges are evident: cut backs of internal research and development jobs in the western hemisphere (Europe and USA), following the market growth potential of Asia by building up internal or external research and development capabilities there and finally, ‘early innovation hunting’ with an increased focus on identifying and investing in very early innovation sources within academia and small start-up companies. Early innovation hunting can be done by different approaches: increased corporate funding, establishment of translational institutions to bridge innovation, increasing sponsored collaborations and formation of technology hunting groups for capturing very early scientific ideas and concepts. This emerging trend towards early innovation hunting demands special adaptations from both the pharmaceutical industry and basic researchers in academia to bridge the translation into new medicines which deliver innovative medicines that matters to the patient. This opinion article describes the different modalities of cross-fertilisation between basic university or publicly funded institutional research and the applied research and development activities within the pharmaceutical industry. Two key factors in this important translational bridge can be identified: preparation of both partnering organisations to open up for new and sometime disruptive ideas and creation of truly trust-based relationships between the different groups allowing long-term scientific collaborations while acknowledging that value-creating differences are an essential factor for successful collaboration building. PMID:23496921
Germann, Paul G; Schuhmacher, Alexander; Harrison, Juan; Law, Ronald; Haug, Kevin; Wong, Gordon
2013-03-05
The global healthcare industry is undergoing substantial changes and adaptations to the constant decline of approved new medical entities. This decrease in internal research productivity is resulting in a major decline of patent-protected sales (patent cliff) of most of the pharmaceutical companies. Three major global adaptive trends as driving forces to cope with these challenges are evident: cut backs of internal research and development jobs in the western hemisphere (Europe and USA), following the market growth potential of Asia by building up internal or external research and development capabilities there and finally, 'early innovation hunting' with an increased focus on identifying and investing in very early innovation sources within academia and small start-up companies. Early innovation hunting can be done by different approaches: increased corporate funding, establishment of translational institutions to bridge innovation, increasing sponsored collaborations and formation of technology hunting groups for capturing very early scientific ideas and concepts. This emerging trend towards early innovation hunting demands special adaptations from both the pharmaceutical industry and basic researchers in academia to bridge the translation into new medicines which deliver innovative medicines that matters to the patient. This opinion article describes the different modalities of cross-fertilisation between basic university or publicly funded institutional research and the applied research and development activities within the pharmaceutical industry. Two key factors in this important translational bridge can be identified: preparation of both partnering organisations to open up for new and sometime disruptive ideas and creation of truly trust-based relationships between the different groups allowing long-term scientific collaborations while acknowledging that value-creating differences are an essential factor for successful collaboration building.
NASA Astrophysics Data System (ADS)
Smith, Shirley Mccraw
2003-06-01
The purpose of this research was to investigate students' understanding of interdependency across grade levels. Interdependency concepts selected for this study included food chains, pollination, and seed dispersal. Children's everyday concepts and scientific concepts across grade levels represented the focus of conceptual understanding. The researcher interviewed a total of 24 students across grade levels, six students each from grades 3, 7, and 10, and 6 college students. Data were collected by means of interviews and card sorts. A constructivist theoretical framework formed the groundwork for presenting the focus of this study and for interpreting the results of the interview data. Results were analyzed on the basis of identifying student responses to interview questions as either everyday concepts or as scientific concepts, along with transition through the zone of proximal development (ZPD) by mediation, as developed by Vygotsky. Results revealed that children across grade levels vary in their everyday and scientific understanding of the three interdependency concepts. Results for seed dispersal showed little evidence of understanding for grade 3, that is, seed dispersal was not within the zone of proximal development (ZPD) for grade 3 students. Students in grades 7 and 10 showed a developing transition within the zone of proximal development from everyday to scientific understanding, and college students demonstrated scientific understanding of seed dispersal. For pollination and food chains, results showed that grades 3, 7, and 10 were in transition from everyday to scientific understanding, and all college students demonstrated scientific understanding. The seed dispersal concept proved more complex than pollination and food chains. The findings of this study have implications for classroom teachers. By understanding the dynamic nature of the ZPD continuum for students, teachers can plan instruction to meet the needs of each student.
Rekindling Scientific Curiosity.
ERIC Educational Resources Information Center
Coble, Charles R.; Rice, Dale R.
1983-01-01
Active involvement in society-related issues can elevate junior high school students' interest not only in the problem being solved but also in related scientific concepts. Examples of how scientific concepts and society-related issues can be taught in the same class are presented, focusing on genetic engineering, water shortage, and others.…
ERIC Educational Resources Information Center
Koponen, Ismo T.; Kokkonen, Tommi
2014-01-01
In learning conceptual knowledge in physics, a common problem is the incompleteness of a learning process, where students' personal, often undifferentiated concepts take on more scientific and differentiated form. With regard to such concept learning and differentiation, this study proposes a systemic view in which concepts are considered as…
Care ideologies reflected in 4 conceptions of pharmaceutical care.
Björkman, Ingeborg K; Bernsten, Cecilia B; Sanner, Margareta A
2008-12-01
Different ways to practice pharmaceutical care have been developed. One expression of this fact is the existence of many different classification systems to document drug-related problems (DRPs). Evidence suggests that classification systems have different characteristics and that these characteristics reflect different conceptions of pharmaceutical care. To increase the understanding of conceptions of pharmaceutical care, underlying values and beliefs (ideologies) can be explored. To explore various conceptions of pharmaceutical care to identify the care ideologies on which these conceptions are based. Representatives of 4 selected conceptions of pharmaceutical care were interviewed in face-to-face meetings. During the interviews, 4 basic questions were asked. Three were focused on pharmaceutical care and 1 on DRPs. Interview transcripts were analyzed by an inductive method inspired by grounded theory. The conceptions studied were Strand, Granada-II, PCNE v5.0, and Apoteket. In Strand, patients are given a more active role in the pharmaceutical care process, as compared to Granada-II, PCNE v5.0, and Apoteket. Pharmacists in all the conceptions of pharmaceutical care assume they have special knowledge that patients benefit from. However, they use their knowledge in different ways in the various pharmaceutical care conceptions. In Strand, individual goals of drug therapy are established together with the patient, whereas in Granada-II, PCNE, and Apoteket goals are not explicitly discussed. The identified differences correspond to different care ideologies. The pharmaceutical care conceptions are based on different care ideologies. The ideology is expressed in how therapy goals are set and patient needs defined. Strand is based on a patient-centered ideology; patient therapy goals and needs are defined by the patient together with the practitioners. Granada-II, PCNE, and Apoteket are based on an evidence-based medicine approach; patient therapy goals and needs are defined by the practitioners, based on available scientific knowledge.
Development of a Multi-experience Approach in Introductory Soil and Vegetation Geography Courses.
ERIC Educational Resources Information Center
Limbird, Arthur
1982-01-01
Describes an introductory college level course in soil and vegetation which uses lecture, audiovisual tutorial, individualized instruction, field trips, films, and games. The course consists of three segments: basic concepts of soils, basic concepts of plants, and soil and vegetation concepts in a spatial context. (KC)
Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction
Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.
2016-01-01
Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.
2017-01-01
Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.
Teaching energy using an integrated science approach
NASA Astrophysics Data System (ADS)
Poggi, Valeria; Miceli, Cristina; Testa, Italo
2017-01-01
Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.
BLSS: A Contribution to Future Life Support
NASA Technical Reports Server (NTRS)
Skoog, A. I.
1985-01-01
The problem of the supply of basic life supporting ingredients was analyzed. Storage volume and launch weight of water, oxygen and food in a conventional nonregenerable life support system are directly proportional to the crew size and the length of the mission. Because of spacecraft payload limitations this requires that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. Advanced life support systems need to be developed in which metabolic waste products are regenerated and food is produced. Biological life support systems (BLSS) satisfy the space station environmental control functions and close the food cycle. Numerous scientific space experiments were delineated, the results of which are applicable to the support of BLSS concepts. Requirements and concepts are defined and the feasibility of BLSS for space application are analyzed. The BLSS energy mass relation, and the possibilities to influence it to achieve advantages for the BLSS are determined. A program for the development of BLSS is proposed.
NASA Technical Reports Server (NTRS)
Szuszczewicz, Edward P.
1986-01-01
Large, permanently-manned space platforms can provide exciting opportunities for discoveries in basic plasma and geoplasma sciences. The potential for these discoveries will depend very critically on the properties of the platform, its subsystems, and their abilities to fulfill a spectrum of scientific requirements. With this in mind, the planning of space station research initiatives and the development of attendant platform engineering should allow for the identification of critical science and technology issues that must be clarified far in advance of space station program implementation. An attempt is made to contribute to that process, with a perspective that looks to the development of the space station as a permanently-manned Spaceborne Ionospheric Weather Station. The development of this concept requires a synergism of science and technology which leads to several critical design issues. To explore the identification of these issues, the development of the concept of an Ionospheric Weather Station will necessarily touch upon a number of diverse areas. These areas are discussed.
Steinmann, Michael
2013-01-01
Johann Christian Reil's (1759-1813) importance lies in his theoretical approach to medicine. Following Kant in his early work, he attempts to combine medical experience with an underlying conceptual structure. This attempt is directed against both the chaotic empiricism of traditional medicine and speculative theories such as vitalism. The paper starts from his early reflections on the concept of a life force, which he interprets in the way of a non-reductive materialism. In the following, the basic outlines of his Theory of Fever will be shown. The Theory is a systematic attempt at finding a new foundation for diagnosis and therapy on the basis of the concept of fever, which is understood as modification of vital processes. The paper ends with a discussion of his later work, which has remained controversial so far. It shows that the combination of practical empiricism and scientific theory remained rather unstable in this early phase of the development of modern medicine.
Jin, Hao; Huang, Hai; Dong, Wei; Sun, Jian; Liu, Anding; Deng, Meihong; Dirsch, Olaf; Dahmen, Uta
2012-08-01
As repeatedly operating rat liver transplantation (LTx) until animals survive is inefficient in respect to time and use of living animals, we developed a new training concept. METHODS AND CONCEPTS: Training was divided into four phases: pretraining-phase, basic-microsurgical-training phase, advanced-microsurgical-training phases, and expert-microsurgical-training phase. Two "productivity-phases" were introduced right after the basic- and advanced-microsurgical-training phases, respectively, to allow the trainee to accumulate experience and to be scientifically productive before proceeding to a more complex procedure. PDCA cycles and quality criteria were employed to control the learning-process and the surgical quality. Predefined quality criteria included survival rate, intraoperative, postoperative, and histologic parameters. Three trainees participated in the LTx training and achieved their first survival record within 4-10 operations. All of them completely mastered the LTx in fewer procedures (31, 60 and 26 procedures) as reported elsewhere, and the more complex arterialized or partial LTx were mastered by trainee A and B in additional 9 and 13 procedures, respectively. Fast progress was possible due to a high number of training in the 2 Productivity-phases. The stepwise and PDCA-based training program increased the efficiency of LTx training, whereas the constant application and development of predefined quality criteria guaranteed the quality of microsurgery. Copyright © 2012 Elsevier Inc. All rights reserved.
Atmospheric transport modelling in support of CTBT verification—overview and basic concepts
NASA Astrophysics Data System (ADS)
Wotawa, Gerhard; De Geer, Lars-Erik; Denier, Philippe; Kalinowski, Martin; Toivonen, Harri; D'Amours, Real; Desiato, Franco; Issartel, Jean-Pierre; Langer, Matthias; Seibert, Petra; Frank, Andreas; Sloan, Craig; Yamazawa, Hiromi
Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global monitoring system comprising different verification technologies is currently being set up. The network will include 80 radionuclide (RN) stations distributed all over the globe that measure treaty-relevant radioactive species. While the seismic subsystem cannot distinguish between chemical and nuclear explosions, RN monitoring would provide the "smoking gun" of a possible treaty violation. Atmospheric transport modelling (ATM) will be an integral part of CTBT verification, since it provides a geo-temporal location capability for the RN technology. In this paper, the basic concept for the future ATM software system to be installed at the International Data Centre is laid out. The system is based on the operational computation of multi-dimensional source-receptor sensitivity fields for all RN samples by means of adjoint tracer transport modelling. While the source-receptor matrix methodology has already been applied in the past, the system that we suggest will be unique and unprecedented, since it is global, real-time and aims at uncovering source scenarios that are compatible with measurements. Furthermore, it has to deal with source dilution ratios that are by orders of magnitude larger than in typical transport model applications. This new verification software will need continuous scientific attention, and may well provide a prototype system for future applications in areas of environmental monitoring, emergency response and verification of other international agreements and treaties.
NASA Astrophysics Data System (ADS)
Castano, Carolina
2008-11-01
This article reports on a qualitative and quantitative study that explored whether a constructivist Science learning environment, in which 9 to 10-year old Colombian girls had the opportunity to discuss scientific concepts and socio-scientific dilemmas in groups, improved their understanding of the concepts and the complex relations that exists between species and the environment. Data were collected from two fourth grade groups in a private bilingual school, a treatment and a comparison group. Pre and post tests on the understanding of scientific concepts and the possible consequences of human action on living things, transcriptions of the discussions of dilemmas, and pre and post tests of empathy showed that students who had the opportunity to discuss socio-scientific dilemmas gave better definitions for scientific concepts and made better connections between them, their lives and Nature than students who did not. It is argued that Science learning should occur in constructivist learning environments and go beyond the construction of scientific concepts, to discussions and decision-making related to the social and moral implications of the application of Science in the real world. It is also argued that this type of pedagogical interventions and research on them should be carried out in different sociocultural contexts to confirm their impact on Science learning in diverse conditions.
[Concept and results of the German Research Network on Schizophrenia].
Gaebel, W; Buchkremer, G; Häfner, H; Klosterkötter, J; Maier, W; Möller, H-J; Wölwer, W
2016-04-01
The German Research Network on Schizophrenia (GRNS) was funded by the Federal Ministry of Education and Research (BMBF) from 1999 to 2011. The aim was to obtain a better horizontal and vertical networking of German research and care facilities on schizophrenia, in order to investigate open research questions, to transfer the results into clinical practice and improve care and quality of life in patients with schizophrenia. This paper describes the concept and operations of the GRNS as well as its results on the basis of selected research projects. The GRNS comprised about 25 clinical trials of high practical relevance, which were closely interrelated regarding content, methodology and organization. The trials primarily served the development and evaluation of new and established diagnostic and therapeutic approaches, the assessment of the status quo of clinical care, as well as its improvements, together with the investigation of basic scientific questions. Many substantial results to highly relevant issues were obtained, which led or will lead to an improvement in mental health care. Quantitative and qualitative evaluation parameters, such as scientific publications and obtaining additional grants, as well as promotion of young scientists, public relations activities, congress activities and the foundation of a European Schizophrenia Association, document the successful work of the network. Successful funding requests will allow us to continue cooperative schizophrenia research in Germany as initiated by the GRNS, without necessarily always binding these activities formally to the GRNS.
Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai
2017-07-08
Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Computer Literacy Project. A General Orientation in Basic Computer Concepts and Applications.
ERIC Educational Resources Information Center
Murray, David R.
This paper proposes a two-part, basic computer literacy program for university faculty, staff, and students with no prior exposure to computers. The program described would introduce basic computer concepts and computing center service programs and resources; provide fundamental preparation for other computer courses; and orient faculty towards…
Learning Genetics with Paper Pets
ERIC Educational Resources Information Center
Finnerty, Valerie Raunig
2006-01-01
By the end of the eighth grade, students are expected to have a basic understanding of the mechanism of basic genetic inheritance. However, these concepts can be difficult to teach. In this article, the author introduces a new learning tool that will help facilitate student learning and enthusiasm to the basic concepts of genetic inheritance. This…
Janssen, Sandra
2009-03-01
The paper tries to situate Freud's theory historically by referring it to a paradigm of psychological theory that Marcel Gauchet describes as the "Golden Age" of psychophysics and reflex theory, and that he situates between 1870 and 1900. I will show that until 1900 Freud thinks, in fact, in categories that correspond to this type of thought. His texts On the Psychical Mechanism of Hysterical Phenomena (1893, with Josef Breuer) and A Project for a Scientific Psychology (1895) still follow the conception of a psychological subject on the basis of the stimulus and response model, which can be found in numerous contemporaneous authors. In this model, the psyche is just a place of transit open to the exterior, and its unity can only be a sum of elements of consciousness having a physiological substrate. Nevertheless, Freud's early texts--although appertaining to the reflex paradigm--already contain elements that serve to construct another basic model of the psychic apparatus, which is finally introduced by The Interpretation of Dreams. Those new elements are the separation between interior and exterior, the introduction of endogenous energy, which is linked to the importance of emotions instead of sensations, and the problem of the adaptation to outer reality that results from it. Nevertheless, once more Freud is not the only theorist in whose thought the new paradigm can be found; I again refer his new premises to other contemporary psychologists. The question that arises from Freud's passage from one paradigm to another is how he handles the continuity of his own thought. I describe the difficult compromise between contradictory concepts he finds in his Project for a Scientific Psychology; but certain concepts that derive from the reflex paradigm subsist even during the later development of psychoanalysis. This is especially the case for the concept of the unconscious itself: As I argue, this concept originates in the reflex paradigm, and, in contrast to contemporary psychology, Freud only maintains it longer than other authors do.
God particles in the perspective of The AlQuran Surah Yunus: 61 and modern science
NASA Astrophysics Data System (ADS)
Jumini, Sri
2017-01-01
The Qur'an is the book of Allah revealed to guide human beings, settting the rules of life to enable them to achieve happiness in this world and hereafter. The Qur'an has mentioned various scientific nature detailly and accurately so we are able to find new knowledge which is previously unknown by human being. One was about the God particle (Higgs Boson). This article aims to provide a deeper understanding of the concept of the Higgs Boson, the Higgs Boson explained this concept in detail relatated to 1) Perspective of science 2) Perspective of Al-Qur'an 3) Development of technology or science and technology. This study is a qualitative research using library research (library research) that examines and analyzes the books relating directly or indirectly. The results of the analysis states that 1) The concept of the Higgs Boson particle in terms of basic science is also the reason why almost all elementary particles have a greater mass, 2) The concept of the Higgs Boson in the Qur'an is implied from the results of the comparison interpretation of the commentators in Surah Yunus paragraph 61 related to Atom concepts and smaller particles theory of (Higgs Boson), interpretation of Al-Maraghi, and Al-Misbah. 3) The concept of the Higgs Boson in science and technology provide the most advance technology and it is the greatest achievement in the world of science and technology.
Secondary school physics teachers' conceptions of scientific evidence: A collective case study
NASA Astrophysics Data System (ADS)
Taylor, Joseph A.
Engaging secondary school students in inquiry-oriented tasks that more closely simulate the scholarly activities of scientists has been recommended as a way to improve scientific literacy. Two tasks that are frequently recommended include students' design of original experiments, and students' evaluation of scientific evidence and conclusions. Yet, little is known about teachers' conceptions of experimentation. The principal aim of this study, therefore, was to describe the nature of prospective and practicing physics teachers' conceptions of scientific evidence. More specifically, the following research questions guided this study: (1) What types of issues related to the measurement reliability and experimental validity of scientific evidence do practicing and prospective physics teachers think about when designing experiments? (2) When presented with hypothetical scenarios that describe unsound experimental procedures or poorly supported conclusions (or both), what concerns will prospective and practicing physics teachers raise? And (3) When the participants' responses to parallel research prompts are compared across protocols, what similarities and differences exist? The nature of the teacher-participants' conceptions was described from an analysis of data collected from research prompts such as interviews and hand written artifacts. In these research prompts, the teachers "thought aloud" while designing experiments and critically evaluated student-collected evidence presented in hypothetical classroom scenarios. The data from this study suggested that the three teachers, while contemplating the reliability and validity of scientific evidence, frequently used their conceptions of evidence in conjunction with specific subject matter conceptions. The data also indicated that the relationship between subject matter knowledge and conceptions of evidence was more pronounced for some conceptions of evidence than for others. Suggestions for future research included conducting similar studies in other physics content areas as well as other scientific disciplines. Implications for science teacher education suggested that science and science methods courses encourage the construction of evidence-based arguments, as well as engagement in peer review and critique.
Thai Pre-Service Science Teachers' Conceptions of the Nature of Science
ERIC Educational Resources Information Center
Buaraphan, Khajornsak; Sung-ong, Sunun
2009-01-01
The conceptions of the nature of science (NOS), particularly scientific knowledge, scientific method, scientists' work, and scientific enterprise, of 113 Thai pre-service science teachers were was captured by the Myths of Science Questionnaire (MOSQ) in the first semester of the 2008 academic year. The data was quantitatively and qualitatively…
Thai In-Service Science Teachers' Conceptions of the Nature of Science
ERIC Educational Resources Information Center
Buaraphan, Khajornsak
2009-01-01
Understanding of the Nature of Science (NOS) serves as one of the desirable characteristics of science teachers. The current study attempted to explore 101 Thai in-service science teachers' conceptions of the NOS, particularly scientific knowledge, the scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…
[Biometric bases: basic concepts of probability calculation].
Dinya, E
1998-04-26
The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.
Identifying Students' Conceptions of Basic Principles in Sequence Stratigraphy
ERIC Educational Resources Information Center
Herrera, Juan S.; Riggs, Eric M.
2013-01-01
Sequence stratigraphy is a major research subject in the geosciences academia and the oil industry. However, the geoscience education literature addressing students' understanding of the basic concepts of sequence stratigraphy is relatively thin, and the topic has not been well explored. We conducted an assessment of 27 students' conceptions of…
Students' Conceptions of Function Transformation in a Dynamic Mathematical Environment
ERIC Educational Resources Information Center
Daher, Wajeeh; Anabousy, Ahlam
2015-01-01
The study of function transformations helps students understand the function concept which is a basic and main concept in mathematics, but this study is problematic to school students as well as college students, especially when transformations are performed on non-basic functions. The current research tried to facilitate grade 9 students'…
Outline of Basic Concepts in Anthropology. Publication No. 1.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Anthropology Curriculum Project.
This teaching aid outlines basic anthropological concepts described in the various units of the Anthropology Curriculum Project. The outline of important concepts to be learned is intended to be used by the teacher in conjunction with the other instructional materials in each unit. The introduction defines anthropology, its branches and purposes.…
A Concept Transformation Learning Model for Architectural Design Learning Process
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming
2016-01-01
Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…
NASA Astrophysics Data System (ADS)
Cakir, Mustafa
The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.
Scalable software architectures for decision support.
Musen, M A
1999-12-01
Interest in decision-support programs for clinical medicine soared in the 1970s. Since that time, workers in medical informatics have been particularly attracted to rule-based systems as a means of providing clinical decision support. Although developers have built many successful applications using production rules, they also have discovered that creation and maintenance of large rule bases is quite problematic. In the 1980s, several groups of investigators began to explore alternative programming abstractions that can be used to build decision-support systems. As a result, the notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) problem-solving methods--domain-independent algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper highlights how developers can construct large, maintainable decision-support systems using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.
Eisenhardt, Sarah; Fleckenstein, Johannes
2016-07-01
Climacteric syndrome refers to recurring symptoms such as hot flashes, chills, headache, irritability and depression. This is usually experienced by menopausal women and can be related to a hormonal reorganization in the hypothalamic-pituitary-gonadal axis. In Traditional Chinese Medicine, originating 1000s of years ago, above-mentioned symptoms can be interpreted on the basis of the philosophic diagnostic concepts, such as the imbalance of Yin and Yang, the Zang-Fu and Basic substances (e.g. Qi, Blood and Essence). These concepts postulate balance and harmonization as the principle aim of a treatment. In this context, it is not astounding that one of the most prominent ancient textbooks dating back to 500-200 BC, Huang di Neijing: The Yellow Emperor's Classic of Internal Medicine gives already first instructions for diagnosis and therapy of climacteric symptoms. For therapy, traditional Chinese medicine comprises five treatment principles: Chinese herbal medicine, TuiNa (a Chinese form of manual therapy), nutrition, activity (e.g. QiGong) and acupuncture (being the most widespread form of treatment used in Europe). This review provides an easy access to the concepts of traditional Chinese medicine particularly regarding to climacteric syndrome and also focuses on current scientific evidence.
The helical ventricular myocardial band of Torrent-Guasp.
Kocica, Mladen J; Corno, Antonio F; Lackovic, Vesna; Kanjuh, Vladimir I
2007-01-01
We live in an era of substantial progress in understanding myocardial structure and function at genetic, molecular, and microscopic levels. Yet, ventricular myocardium has proven remarkably resistant to macroscopic analyses of functional anatomy. Pronounced and practically indefinite global and local structural anisotropy of its fibers and other ventricular wall constituents produces electrical and mechanical properties that are nonlinear, anisotropic, time varying, and spatially inhomogeneous. The helical ventricular myocardial band of Torrent-Guasp is a revolutionary new concept in understanding global, 3-dimensional, functional architecture of the ventricular myocardium. This concept defines the principal, cumulative vectors, integrating the tissue architecture (ie, form) and net forces developed (ie, function) within the ventricular mass. The primary purpose of this review is to emphasize the importance of this concept, in the light of collaborative efforts to establish an integrative approach, defining ventricular form and function by linking across multiple scales of biological organization, as explained in the ongoing Physiome project. Because one of the most important scientific missions in this century is integration of basic research with clinical medicine, we believe that this knowledge is not of merely academic importance, but is also the essential prerequisite in clinical evaluation and treatment of different heart diseases.
Basic Measurement and Related Careers: Level C.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
The teaching guide, part of a series of four, consists of learning experiences for use at the levels of grades 3 and 4 in mathematics. It focuses on the basic concepts of measurement and developing measurement skills in the early grades. It progresses to the concept of measurement by comparison and to developing basic volume measurement skills.…
The Effect of Home Related Science Activities on Students' Performance in Basic Science
ERIC Educational Resources Information Center
Obomanu, B. J.; Akporehwe, J. N.
2012-01-01
Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…
Using a Thyroid Case Study and Error Plausibility to Introduce Basic Lab Skills
ERIC Educational Resources Information Center
Browning, Samantha; Urschler, Margaret; Meidl, Katherine; Peculis, Brenda; Milanick, Mark
2017-01-01
We describe a 3-hour session that provides students with the opportunity to review basic lab concepts and important techniques using real life scenarios. We began with two separate student-engaged discussions to remind/reinforce some basic concepts in physiology and review calculations with respect to chemical compounds. This was followed by…
Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''
NASA Astrophysics Data System (ADS)
Kurki-Suonio, Kaarle
2011-03-01
This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.
The Solar Probe mission - Mission design concepts and requirements
NASA Technical Reports Server (NTRS)
Ayon, Juan A.
1992-01-01
The Solar Probe concept as studied by the Jet Propulsion Laboratory represents the first mission to combine out-of-the-ecliptic scientific coverage with multiple, close solar encounters (at 4 solar radii). The scientific objectives of the mission have driven the investigation and analysis of several mission design concepts, all optimized to meet the science/mission requirements. This paper reviews those mission design concepts developed, the science objectives that drive the mission design, and the principle mission requirements associated with these various concepts.
ERIC Educational Resources Information Center
Buaraphan, Khajornsak; Abedin Forhad, Ziaul
2014-01-01
Understanding of nature of science (NOS) serves as one of the desirable characteristics of science teachers. The current study explored 55 Thai and 110 Bangladeshi in-service secondary science teachers' conceptions of NOS regarding scientific knowledge, scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…
"Small Science": Infants and Toddlers Experiencing Science in Everyday Family Life
ERIC Educational Resources Information Center
Sikder, Shukla; Fleer, Marilyn
2015-01-01
Vygotsky (1987) stated that the restructured form of everyday concepts learned at home and in the community interact with scientific concepts introduced in formal school settings, leading to a higher level of scientific thinking for school-aged children. But, what does this mean for the scientific learning of infants and toddlers? What kinds of…
Schultze-Lutter, F
2016-12-01
The early detection of psychoses has become increasingly relevant in research and clinic. Next to the ultra-high risk (UHR) approach that targets an immediate risk of developing frank psychosis, the basic symptom approach that targets the earliest possible detection of the developing disorder is being increasingly used worldwide. The present review gives an introduction to the development and basic assumptions of the basic symptom concept, summarizes the results of studies on the specificity of basic symptoms for psychoses in different age groups as well as on studies of their psychosis-predictive value, and gives an outlook on future results. Moreover, a brief introduction to first recent imaging studies is given that supports one of the main assumptions of the basic symptom concept, i. e., that basic symptoms are the most immediate phenomenological expression of the cerebral aberrations underlying the development of psychosis. From this, it is concluded that basic symptoms might be able to provide important information on future neurobiological research on the etiopathology of psychoses. © Georg Thieme Verlag KG Stuttgart · New York.
Emerging Applications of Liquid Crystals Based on Nanotechnology
Sohn, Jung Inn; Hong, Woong-Ki; Choi, Su Seok; Coles, Harry J.; Welland, Mark E.; Cha, Seung Nam; Kim, Jong Min
2014-01-01
Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices. PMID:28788555
Computer Aided Enzyme Design and Catalytic Concepts
Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh
2014-01-01
Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method. PMID:24814389
"Blame" Concept in Phraseology: Cognitive-Semantic Aspect (Based on the French Language)
ERIC Educational Resources Information Center
Zalavina, Tatyana Y.; Kisel, Olesya V.
2016-01-01
Phraseology is one of the basic and most important objects of study in cognitive linguistics. The article deals with verbal fixed phrases in their correlation with the cognitive structure of knowledge--a concept. The used definitional analysis method to identify the basic notions of the conceptual content of the concept of blame and basic…
ERIC Educational Resources Information Center
Trumper, Ricardo
2006-01-01
Bearing in mind students' misconceptions about basic concepts in astronomy, the present study conducted a series of constructivist activities aimed at changing future elementary and junior high school teachers' conceptions about the cause of seasonal changes, and several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…
ERIC Educational Resources Information Center
Yücel, Elif Özata; Özkan, Mulis
2015-01-01
In this study, we determined cognitive structures and misconceptions about basic ecological concepts by using "word association" tests on secondary school students, age between 12-14 years. Eighty-nine students participated in this study. Before WAT was generated, basic ecological concepts that take place in the secondary science…
Challenges in studying the effects of scientific societies on research integrity.
Levine, Felice J; Iutcovich, Joyce M
2003-04-01
Beyond impressionistic observations, little is known about the role and influence of scientific societies on research conduct. Acknowledging that the influence of scientific societies is not easily disentangled from other factors that shape norms and practices, this article addresses how best to study the promotion of research integrity generally as well as the role and impact of scientific societies as part of that process. In setting forth the parameters of a research agenda, the article addresses four issues: (1) how to conceptualize research on scientific societies and research integrity; (2) challenges and complexities in undertaking basic research; (3) strategies for undertaking basic research that is attentive to individual, situational, organizational, and environmental levels of analysis; and (4) the need for evaluation research as integral to programmatic change and to assessment of the impact of activities by scientific societies.
Conceptual Hierarchies in a Flat Attractor Network
O’Connor, Christopher M.; Cree, George S.; McRae, Ken
2009-01-01
The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable
Stepin, V S; Zatravkin, S N
2016-01-01
The article presents the results of analysis of works of supreme Russian physiologists and pathologists of XX-XXI centuries. The analysis was applied on the basis concept of structure and dynamics of scientific cognition developed by one o the authors of the present article. The applied analysis permits affirming that during second half of XX-early XXI centuries in medicine occurred and continues to occurring transformations whose character and scope totally corresponds to scientific revolution and occurring and establishing in medicine new conceptions have all signs permitting referring them to post-neoclassic type of scientific rationality.
eduSPIM: Light Sheet Microscopy in the Museum
Schmid, Benjamin; Weber, Michael; Huisken, Jan
2016-01-01
Light Sheet Microscopy in the Museum Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. Design Principles of an Educational Light Sheet Microscope To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The eduSPIM Design Is Tailored Easily to Fit Numerous Applications The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided. PMID:27560188
Planetary entry, descent, and landing technologies
NASA Astrophysics Data System (ADS)
Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.
2003-04-01
Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.
ERIC Educational Resources Information Center
Dudu, Washington T.
2014-01-01
The paper explores conceptions of the nature of scientific inquiry (NOSI) held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was…
ERIC Educational Resources Information Center
Wierdsma, Menno; Boersma, Kerst Th.; Knippels, Marie-Christine; van Oers, Bert
2016-01-01
In many science education practices, students are expected to develop an understanding of scientific knowledge without being allowed a view of the practices and cultures that have developed and use this knowledge. Therefore, students should be allowed to develop scientific concepts in relation to the contexts in which those concepts are used.…
Analysis of the Educational Implications of the Concept of Scientific Revolutions.
ERIC Educational Resources Information Center
Prather, J. Preston
This paper is based on the work of Thomas Kuhn, a physicist turned philosopher and historian of science. In his book, "The Structure of Scientific Revolution," he posited a new concept of the nature and history of science and strongly criticized the current textbook tradition of science education. This study analyzed Kuhn's concept of…
ERIC Educational Resources Information Center
Busch, Phyllis S.
1985-01-01
Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)
Acceptance of mixed scientific and clinical activities in a sub-speciality urology meeting.
Buchholz, Noor N P; El Howairis, Mohammed El Fatih; Durner, Leopold; Harry, Damiete; Kachrilas, Stefanos; Rodgers, Allen L; Hakenberg, Oliver
2015-04-01
Basic urolithiasis research into the causes for stone formation has been stagnating for a long time. Emergence of effective stone treatment modalities has shifted the public and clinicians' focus away from basic research towards symptomatic treatment solutions. This has occurred in spite of urolithiasis being a highly recurrent disease with an enormous socio-economic impact warranting a prophylactic and recurrence-preventing approach. An integrated, multidisciplinary translational platform has been developed in the form of urolithiasis meetings bringing together urologists, radiologists, nephrologists, basic scientists, dieticians and other stake holders interested in stone disease, for an exchange of knowledge, mutual education and understanding, and professional networking. Traditionally, such combined meetings are split into sessions addressing the specific interests of clinicians and scientists. At the recent Experts in Stone Disease Symposium we devised and implemented a program which mixed clinical and basic science activities throughout. We interviewed delegates between sessions regarding their acceptance of this novel concept using a standardized questionnaire. Sessions were well-attended, alleviating our initial anxiety that delegates would not appreciate a "no-choice" program. Of the 74 delegates who were interviewed, 60 (81%) were urologists, and 14 (19%) were non-urologists such as nephrologists, dieticians, and students. This is representative of the overall distribution of delegates at the conference. 71% felt that a closer co-operation and understanding between clinicians and scientists will ultimately benefit both groups, as well as patients; 95% found the mixed session approach beneficial, with half appreciating it as very good and innovative; 94% believed that they had derived useful learnings from the "other side"; 94% found that such mixed sessions are useful for their future work and understanding of the urolithiasis field as a whole; 94% agreed that mixed meetings of this type are useful in enhancing networking between the different stake holders in urolithiasis treatment and research. Finally, 85% would like to visit future mixed session meetings, and 89% would encourage their juniors to attend, too. Not only was a platform created to facilitate multidisciplinary exchange and networking, but delegates from several different backgrounds were encouraged to attend presentations in disciplines other than their own. The results of our survey confirm an overwhelmingly positive acceptance of this integrated multidisciplinary concept for stone meetings. As such, we are encouraged to continue with this concept in future conferences.
Lumlerdkij, Natchagorn; Tantiwongse, Jaturapat; Booranasubkajorn, Suksalin; Boonrak, Ranida; Akarasereenont, Pravit; Laohapand, Tawee; Heinrich, Michael
2018-04-24
Thai traditional medicine (TTM) is widely practiced in Thailand and continues to gain importance in cancer management, but little is known about the TTM practitioners' emic concepts and practice. With this study we firstly aim to document the practice of cancer treatment and prevention by TTM practitioners and, secondly, to evaluate how such traditional concepts and practices are correlated with biomedical ones. This in turn can form the basis for developing novel strategies for designing pharmacological experiments and longer term strategies to develop TTM practice. Semi-structured interviews with 33 TTM practitioners were performed in five provinces in different regions of Thailand. The following information were recorded; basic information of informants, descriptions of cancer (mareng in Thai), causes, diagnosis, treatment, and prevention. Plants used in the treatment and prevention of mareng were also collected. Using an in depth ethnographic approach four representative case studies to assist in a better understanding of the characteristics of mareng, its diagnosis, treatment, and prevention are reported here. Five characteristics of mareng - waste accumulation (khong sia), chronic illnesses (krasai), inflammation (kan aksep), bad blood (luead) and lymph (namlueang), and the imbalance of four basic elements (dhātu si) - have been identified. Explanatory models of cancer in TTM were linked with biomedical concepts and relevant pharmacological actions. Traditional uses and available scientific evidence of medicinal plants mentioned in the case studies for the treatment or prevention of mareng are presented and discussed. Here for the first time five main characteristics of cancer based on Thai traditional medical concepts are analysed. Our findings are relevant not only for the planning of clinical studies or pharmacological experiment in the search for novel compounds for cancer treatment and prevention, but also for the integration of Thai traditional medicine in cancer care. Copyright © 2018 Elsevier B.V. All rights reserved.
de Schipper, Elles; Lundequist, Aiko; Wilteus, Anna Löfgren; Coghill, David; de Vries, Petrus J; Granlund, Mats; Holtmann, Martin; Jonsson, Ulf; Karande, Sunil; Levy, Florence; Al-Modayfer, Omar; Rohde, Luis; Tannock, Rosemary; Tonge, Bruce; Bölte, Sven
2015-08-01
This is the first in a series of four empirical investigations to develop International Classification of Functioning, Disability and Health (ICF) Core Sets for Attention Deficit Hyperactivity Disorder (ADHD). The objective here was to use a comprehensive scoping review approach to identify the concepts of functional ability and disability used in the scientific ADHD literature and link these to the nomenclature of the ICF-CY. Systematic searches were conducted using Medline/PubMed, PsycINFO, ERIC and Cinahl, to extract the relevant concepts of functional ability and disability from the identified outcome studies of ADHD. These concepts were then linked to ICF-CY by two independent researchers using a standardized linking procedure. Data from identified studies were analysed until saturation of ICF-CY categories was reached. Eighty studies were included in the final analysis. Concepts contained in these studies were linked to 128 ICF-CY categories. Of these categories, 68 were considered to be particularly relevant to ADHD (i.e., identified in at least 5 % of the studies). Of these, 32 were related to Activities and participation, 31 were related to Body functions, and five were related to environmental factors. The five most frequently identified categories were school education (53 %), energy and drive functions (50 %), psychomotor functions (50 %), attention functions (49 %), and emotional functions (45 %). The broad variety of ICF-CY categories identified in this study underlines the necessity to consider ability and disability in ADHD across all dimensions of life, for which the ICF-CY provides a valuable and universally applicable framework. These results, in combination with three additional preparatory studies (expert survey, focus groups, clinical study), will provide a scientific basis to define the ICF Core Sets for ADHD for multi-purpose use in basic and applied research, and every day clinical practice.
The significance of levels of organization for scientific research: A heuristic approach.
Brooks, Daniel S; Eronen, Markus I
2018-04-10
The concept of 'levels of organization' has come under fire recently as being useless for scientific and philosophical purposes. In this paper, we show that 'levels' is actually a remarkably resilient and constructive conceptual tool that can be, and in fact is, used for a variety of purposes. To this effect, we articulate an account of the importance of the levels concept seen in light of its status as a major organizing concept of biology. We argue that the usefulness of 'levels' is best seen in the heuristic contributions the concept makes to treating and structuring scientific problems. We illustrate this with two examples from biological research. Copyright © 2018. Published by Elsevier Ltd.
Betsch, Cornelia; Böhm, Robert; Airhihenbuwa, Collins O; Butler, Robb; Chapman, Gretchen B; Haase, Niels; Herrmann, Benedikt; Igarashi, Tasuku; Kitayama, Shinobu; Korn, Lars; Nurm, Ülla-Karin; Rohrmann, Bernd; Rothman, Alexander J; Shavitt, Sharon; Updegraff, John A; Uskul, Ayse K
2016-10-01
This review introduces the concept of culture-sensitive health communication. The basic premise is that congruency between the recipient's cultural characteristics and the respective message will increase the communication's effectiveness. Culture-sensitive health communication is therefore defined as the deliberate and evidence-informed adaptation of health communication to the recipients' cultural background in order to increase knowledge and improve preparation for medical decision making and to enhance the persuasiveness of messages in health promotion. To achieve effective health communication in varying cultural contexts, an empirically and theoretically based understanding of culture will be indispensable. We therefore define culture, discuss which evolutionary and structural factors contribute to the development of cultural diversity, and examine how differences are conceptualized as scientific constructs in current models of cultural differences. In addition, we will explicate the implications of cultural differences for psychological theorizing, because common constructs of health behavior theories and decision making, such as attitudes or risk perception, are subject to cultural variation. In terms of communication, we will review both communication strategies and channels that are used to disseminate health messages, and we will discuss the implications of cultural differences for their effectiveness. Finally, we propose an agenda both for science and for practice to advance and apply the evidence base for culture-sensitive health communication. This calls for more interdisciplinary research between science and practice but also between scientific disciplines and between basic and applied research. © The Author(s) 2015.
The oblique perspective: philosophical diagnostics of contemporary life sciences research.
Zwart, Hub
2017-12-01
This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.
Application of Platelet-Rich Plasma to Disorders of the Knee Joint
Mandelbaum, Bert R.; McIlwraith, C. Wayne
2013-01-01
Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674
Brookes, Crittenden E
2007-01-01
Previous papers dealt with the concept of psyche as that dynamic field which underlies the subjective experience of mind. A new paradigm, psychodynamic science, was suggested for dealing with subjective data. The venue of the psychotherapeutic consulting room is now brought directly into science, expanding the definition of psychotherapy to include both humanistic and scientific elements. Certain concepts were introduced to amplify this new scientific model, including psyche as hypothetical construct, the concept of meaning as replacement for operational validation in scientific investigation, the synonymity of meaning and insight, and the concept of synchronicity, together with the meaning-connected affect of numinosity. The presence of unhealthy anxiety as the conservative ego attempts to preserve its integrity requires a deeper look at the concept of meaning. This leads to a distinction between meaning and erroneous meaning. The main body of this paper amplifies that distinction, and introduces the concept of intolerance of ambiguity in the understanding of erroneous meanings and their connection with human neurosis.
Gutenbrunner, Christoph; Fialka-Moser, Veronika; Li, Leonard S W; Paternostro-Sluga, Tatjana; Stucki, Gerold; Nugraha, Boya; Guzman, Juan Manuel; Imamura, Marta; Battistella, Linamara Rizzo; Li, Jianan
2014-09-01
Scientific congresses are an important tool to support communication among scientists, enabling exchange of knowledge and discussion of research results. They can also provide specialist education and allow a forum in which to develop the goals and policies of scientific societies. The World Congresses of the International Society of Physical and Rehabilitation Medicine (ISPRM) aims at continuous improvement of congress quality. The programme development aims are: to operate at the highest possible scientific level; to guarantee continuous communication within the main areas of science in the field; and to invite experts to present topics of recent interest. The first section, the basic programme, largely comprises original papers selected from submitted abstracts. The second section covers topics of recent interest in more depth. Other sessions include recent topics arising from the ISPRM-World Health Organization (ISPRM-WHO) liaison, collaborative sessions with other societies, including national societies special interest sessions and ISPRM partners, and sessions organized by young scientists and students. These aims and programme guide the organizers of the 9th World Congress, which will be held on 19-23 June 2015 in Berlin. The concepts described here will be developed further for use in future ISPRM World Congresses.
Multiple-Agent Air/Ground Autonomous Exploration Systems
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.
2007-01-01
Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.
Fundamentals in Biostatistics for Research in Pediatric Dentistry: Part I - Basic Concepts.
Garrocho-Rangel, J A; Ruiz-Rodríguez, M S; Pozos-Guillén, A J
The purpose of this report was to provide the reader with some basic concepts in order to better understand the significance and reliability of the results of any article on Pediatric Dentistry. Currently, Pediatric Dentists need the best evidence available in the literature on which to base their diagnoses and treatment decisions for the children's oral care. Basic understanding of Biostatistics plays an important role during the entire Evidence-Based Dentistry (EBD) process. This report describes Biostatistics fundamentals in order to introduce the basic concepts used in statistics, such as summary measures, estimation, hypothesis testing, effect size, level of significance, p value, confidence intervals, etc., which are available to Pediatric Dentists interested in reading or designing original clinical or epidemiological studies.
Basic science right, not basic science lite: medical education at a crossroad.
Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott
2009-11-01
This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.
Surveying Geology Concepts in Education Standards for a Rapidly Changing Global Context
ERIC Educational Resources Information Center
Guffey, Sarah K.; Slater, Stephanie J.; Schleigh, Sharon P.; Slater, Timothy F.; Heyer, Inge
2016-01-01
Internationally much attention is being paid to which of a seemingly endless list of scientific concepts should be taught to schoolchildren to enable them to best participate in the global economy of the 21st Century. In regards to science education, the concepts framing the subject of geology holds exalted status as core scientific principles in…
Patient Privacy in the Era of Big Data.
Kayaalp, Mehmet
2018-01-20
Privacy was defined as a fundamental human right in the Universal Declaration of Human Rights at the 1948 United Nations General Assembly. However, there is still no consensus on what constitutes privacy. In this review, we look at the evolution of privacy as a concept from the era of Hippocrates to the era of social media and big data. To appreciate the modern measures of patient privacy protection and correctly interpret the current regulatory framework in the United States, we need to analyze and understand the concepts of individually identifiable information, individually identifiable health information, protected health information, and de-identification. The Privacy Rule of the Health Insurance Portability and Accountability Act defines the regulatory framework and casts a balance between protective measures and access to health information for secondary (scientific) use. The rule defines the conditions when health information is protected by law and how protected health information can be de-identified for secondary use. With the advents of artificial intelligence and computational linguistics, computational text de-identification algorithms produce de-identified results nearly as well as those produced by human experts, but much faster, more consistently and basically for free. Modern clinical text de-identification systems now pave the road to big data and enable scientists to access de-identified clinical information while firmly protecting patient privacy. However, clinical text de-identification is not a perfect process. In order to maximize the protection of patient privacy and to free clinical and scientific information from the confines of electronic healthcare systems, all stakeholders, including patients, health institutions and institutional review boards, scientists and the scientific communities, as well as regulatory and law enforcement agencies must collaborate closely. On the one hand, public health laws and privacy regulations define rules and responsibilities such as requesting and granting only the amount of health information that is necessary for the scientific study. On the other hand, developers of de-identification systems provide guidelines to use different modes of operations to maximize the effectiveness of their tools and the success of de-identification. Institutions with clinical repositories need to follow these rules and guidelines closely to successfully protect patient privacy. To open the gates of big data to scientific communities, healthcare institutions need to be supported in their de-identification and data sharing efforts by the public, scientific communities, and local, state, and federal legislators and government agencies.
Patient Privacy in the Era of Big Data
Kayaalp, Mehmet
2018-01-01
Privacy was defined as a fundamental human right in the Universal Declaration of Human Rights at the 1948 United Nations General Assembly. However, there is still no consensus on what constitutes privacy. In this review, we look at the evolution of privacy as a concept from the era of Hippocrates to the era of social media and big data. To appreciate the modern measures of patient privacy protection and correctly interpret the current regulatory framework in the United States, we need to analyze and understand the concepts of individually identifiable information, individually identifiable health information, protected health information, and de-identification. The Privacy Rule of the Health Insurance Portability and Accountability Act defines the regulatory framework and casts a balance between protective measures and access to health information for secondary (scientific) use. The rule defines the conditions when health information is protected by law and how protected health information can be de-identified for secondary use. With the advents of artificial intelligence and computational linguistics, computational text de-identification algorithms produce de-identified results nearly as well as those produced by human experts, but much faster, more consistently and basically for free. Modern clinical text de-identification systems now pave the road to big data and enable scientists to access de-identified clinical information while firmly protecting patient privacy. However, clinical text de-identification is not a perfect process. In order to maximize the protection of patient privacy and to free clinical and scientific information from the confines of electronic healthcare systems, all stakeholders, including patients, health institutions and institutional review boards, scientists and the scientific communities, as well as regulatory and law enforcement agencies must collaborate closely. On the one hand, public health laws and privacy regulations define rules and responsibilities such as requesting and granting only the amount of health information that is necessary for the scientific study. On the other hand, developers of de-identification systems provide guidelines to use different modes of operations to maximize the effectiveness of their tools and the success of de-identification. Institutions with clinical repositories need to follow these rules and guidelines closely to successfully protect patient privacy. To open the gates of big data to scientific communities, healthcare institutions need to be supported in their de-identification and data sharing efforts by the public, scientific communities, and local, state, and federal legislators and government agencies. PMID:28903886
The Nazaré Wave: a trigger for learning
NASA Astrophysics Data System (ADS)
Carapuço, M. M.; Cunha, A.; Taborda, R.; Andrade, C.; Maurício, C.
2016-02-01
Ocean management faces relevant sustainability challenges. It is consensual that a wiser governance of the oceans can only be achieved by the involvement of all key-players. In this scope scientists, as knowledge generators, have a vital role in ocean governance. Scientists are therefore called to share their knowledge outside the scientific community. This effort, framed under the Responsible Research and Innovation approach, will contribute to a more informed society, which in turn will be able to make better decisions. However, communicating science is a challenging task as is often necessary to inspire the audience and assure their receptivity, which may not be tuned to scientific contents. The present work focuses on the importance of the use of communication triggers in scientific knowledge transfer in ocean sciences. In this work the Nazaré wave - the highest wave ever surfed - was used as the communication trigger as it is a very popular subject with the media and is given great media coverage. Results show that the use of this subject can be an excellent trigger for the transfer of scientific knowledge on basic wave dynamics to the students. Additionally to the theme itself, it was found that short scientific animation videos voiced-over by students performed very well as the communication channel. The scripts used were written by scientists and commented by the students, previously to recording, assuring that the adequate language was used, and that the essential principles and fundamental concepts of waves reach the audience. Results of using the Nazaré´ wave as a communication trigger have been extremely positive and resulted in a well-succeeded engagement platform.
Explanation, argumentation and dialogic interactions in science classrooms
NASA Astrophysics Data System (ADS)
Aguiar, Orlando G.
2016-12-01
As a responsive article to Miranda Rocksén's paper "The many roles of `explanation' in science education: a case study", this paper aims to emphasize the importance of the two central themes of her paper: dialogic approaches in science education and the role of explanations in science classrooms. I start discussing the concepts of dialogue and dialogism in science classrooms contexts. Dialogism is discussed as the basic tenet from which Rocksén developed her research design and methods. In turn, dialogues in science classrooms may be considered as a particular type of discourse that allows the students' culture, mostly based on everyday knowledge, and the science school culture, related to scientific knowledge and language to be interwoven. I argue that in school, science teachers are always committed to the resolution of differences according to a scientific position for the knowledge to be constructed. Thus, the institution of schooling constrains the ways in which dialogue can be conducted in the classrooms, as the scientific perspective will be always, beforehand, the reference for the conclusions to be reached. The second theme developed here, in dialogue with Rocksén, is about explanations in science classrooms. Based on Jean Paul Bronckart (Atividade de linguagem, textos e discursos: por um interacionismo sócio-discursivo, Educ, São Paulo, 1999), the differences and relationship between explanation and argumentation as communicative acts are re-discussed as well its practical consequences to science teaching. Finally, some epistemological questions are raised about the status of scientific explanations in relation to non-scientific ones.
Sharma, Vinamra; Chaudhary, Anand Kumar
2014-01-01
To maintain health and to cure diseases through Rasayana (rejuvenation) therapy along with main treatment is the unique approach of Ayurveda. The basic constituent unit of a living being is always a functional cell. Question arises from where it is generated? How it attains its final specific differentiation form? As age progresses, various changes occur at every cell level and cell undergoes to adaptation accordingly. Microenvironment for cell nourishment diminishes with age or as disease condition persists. In this context, Acharyas had contributed and documented various facts and theories through their insight wisdom. Hidden secretes in the basic principles of any medical system are needed to be explained in terms of contemporary knowledge. Contemporary research areas should be opened to include various explanations of different fields of ancient thoughts to support these new doctrines, if any. This review may be helpful to open the door of future research area in the field of reverse scientific approach of Ayurveda in the context of Dhatu Siddhanta (theory of tissues formation and differentiation) and theory of stem cell.
Fung, Lawrence K; Reiss, Allan L
2016-07-15
The field of psychiatry is approaching a major inflection point. The basic science behind cognition, emotion, behavior, and social processes has been advancing rapidly in the past 20 years. However, clinical research supporting the classification system in psychiatry has not kept up with these scientific advances. To begin organizing the basic science of psychiatry in a comprehensive manner, we begin by selecting fragile X syndrome, a neurogenetic disease with cognitive-behavioral manifestations, to illustrate key concepts in an integrative, multidimensional model. Specifically, we describe key genetic and molecular mechanisms (e.g., gamma-aminobutyric acidergic dysfunction and metabotropic glutamate receptor 5-associated long-term depression) relevant to the pathophysiology of fragile X syndrome as well as neural correlates of cognitive-behavioral symptoms. We then describe what we have learned from fragile X syndrome that may be applicable to other psychiatric disorders. We conclude this review by discussing current and future opportunities in diagnosing and treating psychiatric diseases. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
[Hand Therapy in the Treatment of Patients with CRPS].
Körbler, C; Pfau, M; Becker, F; Koester, U; Werdin, F
2015-06-01
In the modern treatment of CRPS a multidisciplinary concept is firmly established (MMPT, multimodal pain therapy). Besides medical therapy and psychotherapy, physio- and occupational therapy count as basic treatment options. Although physio- and occupational therapy (in the following called hand therapy) are the most important basic treatments, the therapy is hardly standardised and there are few scientific investigations concerning their application. Therefore the purpose of this paper is to present the applied hand therapeutic techniques with regard to function/performance, application and effectiveness, and to derive a suitable treatment algorithm. The techniques used in hand therapy are presented and reviewed in regard to their effectiveness by means of a literature search. It turns out that exercise therapy, manual therapy, graded motor imaging, CO2 baths and occupational therapy have a proven benefit for the patients. Although for many of the treatments reliable evidence-based data are lacking a treatment algorithm was established but there is a strong need for further investigations concerning the therapeutic effectiveness in the treatment of CRPS. © Georg Thieme Verlag KG Stuttgart · New York.
Sharma, Vinamra; Chaudhary, Anand Kumar
2014-01-01
To maintain health and to cure diseases through Rasayana (rejuvenation) therapy along with main treatment is the unique approach of Ayurveda. The basic constituent unit of a living being is always a functional cell. Question arises from where it is generated? How it attains its final specific differentiation form? As age progresses, various changes occur at every cell level and cell undergoes to adaptation accordingly. Microenvironment for cell nourishment diminishes with age or as disease condition persists. In this context, Acharyas had contributed and documented various facts and theories through their insight wisdom. Hidden secretes in the basic principles of any medical system are needed to be explained in terms of contemporary knowledge. Contemporary research areas should be opened to include various explanations of different fields of ancient thoughts to support these new doctrines, if any. This review may be helpful to open the door of future research area in the field of reverse scientific approach of Ayurveda in the context of Dhatu Siddhanta (theory of tissues formation and differentiation) and theory of stem cell. PMID:26664231
Growth in Turkish Positive Basic Sciences, 1933-1966.
ERIC Educational Resources Information Center
Ozinonu, A. Kemal
This study collected data on the measurable qualities of Turkish science in terms of high level scientific manpower, scientific productivity, and scientific fertility from 1933 to 1966 and analyzed the data collected with the goal of providing a deeper understanding of the nature of Turkish science. Scientific personnel, including Turkish…
Basic Inferences of Scientific Reasoning, Argumentation, and Discovery
ERIC Educational Resources Information Center
Lawson, Anton E.
2010-01-01
Helping students better understand how scientists reason and argue to draw scientific conclusions has long been viewed as a critical component of scientific literacy, thus remains a central goal of science instruction. However, differences of opinion persist regarding the nature of scientific reasoning, argumentation, and discovery. Accordingly,…
Hybrid materials science: a promised land for the integrative design of multifunctional materials
NASA Astrophysics Data System (ADS)
Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément
2014-05-01
For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
The concept of financial value during the crisis
NASA Astrophysics Data System (ADS)
Chournazidis, Anastasia J.
2015-02-01
The scope of this article regards economy as a scientific theory and its challenged credibility today. The aim of this notice is to determine whether financial science can utilize endogenous and exogenous balances in order to verify its credibility, directing the society under crisis to the road to rationality and perception. According to André Orléan's theory and his scientific thought, as expressed in his book "The Empire of Value. A New Foundation for Economics" analysis of the neoclassic theory suggesting usability as a trade's value and the seeking of useful goods as the core of production and exchanges. Contrary to this financial model dominating the modern financial science, it is advocated that trading value is an independent figure, an imperial authority achieved via money. Transactions are subject to an independent rationale according to Georg Simmel, since economy is a sui genesis sociological form, leading to usability. Reversing the cause and effect relation, it is proven that the independence of trading value is the basic principle to investigate economy. In this prism, we can redefine economy as part of the social system and social powers.
Understanding AIDS: historical interpretations and the limits of biomedical individualism.
Fee, E; Krieger, N
1993-01-01
The popular and scientific understanding of acquired immunodeficiency syndrome (AIDS) in the United States has been shaped by successive historical constructions or paradigms of disease. In the first paradigm, AIDS was conceived of as a "gay plague," by analogy with the sudden, devastating epidemics of the past. In the second, AIDS was normalized as a chronic disease to be managed medically over the long term. By examining and extending critiques of both paradigms, it is possible to discern the emergence of an alternative paradigm of AIDS as a collective chronic infectious disease and persistent pandemic. Each of these constructions of AIDS incorporates distinct views of the etiology, prevention, pathology, and treatment of disease; each tacitly promotes different conceptions of the proper allocation of individual and social responsibility for AIDS. This paper focuses on individualistic vs collective, and biomedical vs social and historical, understandings of disease. It analyzes the use of individualism as methodology and as ideology, criticizes some basic assumptions of the biomedical model, and discusses alternative strategies for scientific research, health policy, and disease prevention. Images p1478-a p1480-a p1482-a PMID:8214245
On Picturing a Candle: The Prehistory of Imagery Science.
MacKisack, Matthew; Aldworth, Susan; Macpherson, Fiona; Onians, John; Winlove, Crawford; Zeman, Adam
2016-01-01
The past 25 years have seen a rapid growth of knowledge about brain mechanisms involved in visual mental imagery. These advances have largely been made independently of the long history of philosophical - and even psychological - reckoning with imagery and its parent concept 'imagination'. We suggest that the view from these empirical findings can be widened by an appreciation of imagination's intellectual history, and we seek to show how that history both created the conditions for - and presents challenges to - the scientific endeavor. We focus on the neuroscientific literature's most commonly used task - imagining a concrete object - and, after sketching what is known of the neurobiological mechanisms involved, we examine the same basic act of imagining from the perspective of several key positions in the history of philosophy and psychology. We present positions that, firstly, contextualize and inform the neuroscientific account, and secondly, pose conceptual and methodological challenges to the scientific analysis of imagery. We conclude by reflecting on the intellectual history of visualization in the light of contemporary science, and the extent to which such science may resolve long-standing theoretical debates.
Hybrid materials science: a promised land for the integrative design of multifunctional materials.
Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément
2014-06-21
For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.
ERIC Educational Resources Information Center
Michel, Hanno; Neumann, Irene
2016-01-01
Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a…
NASA Astrophysics Data System (ADS)
Mongillo, Geraldine
The purpose of this qualitative study was to discover the influence of instructional games on middle school learners' use of scientific language, concept understanding, and attitude toward learning science. The rationale for this study stemmed from the lack of research concerning the value of play as an instructional strategy for older learners. Specifically, the study focused on the ways in which 6 average ability 7th grade students demonstrated scientific language and concept use during gameplay. The data were collected for this 6-week study in a southern New Jersey suburban middle school and included audio recordings of the 5 games observed in class, written documents (e.g., student created game questions, self-evaluation forms, pre- and post-assessments, and the final quiz) interviews, and researcher field notes. Data were coded and interpreted borrowing from the framework for scientific literacy developed by Bybee (1997). Based on the findings, the framework was modified to reflect the level of scientific understanding demonstrated by the participants and categorized as: Unacquainted, Nominal, Functional, and Conceptual. Major findings suggested that the participants predominantly achieved the Functional level of scientific literacy (i.e., the ability to adequately and appropriately use scientific language in both written and oral discourse) during games. Further, it was discovered that the participants achieved the Conceptual level of scientific literacy during gameplay. Through games participants were afforded the opportunity to use common, everyday language to explore concepts, promoted through peer collaboration. In games the participants used common language to build understandings that exceeded Nominal or token use of the technical vocabulary and concepts. Additionally, the participants reported through interviews and self-evaluation forms that their attitude (patterns included: Motivation, Interest, Fun, Relief from Boredom, and an Alternate Learning Approach) toward learning science was positively affected by playing games. This research confirmed the value of playing instructional games and indicated the potential benefits for teaching and learning scientific vocabulary and concepts in middle school settings. Educators are in need of finding methods that stimulate the often disinterested or disengaged adolescent student. Results from this investigation suggested that games provided a meaningful alternate learning approach that relieved the boredom associated with traditional science instruction.
ERIC Educational Resources Information Center
Perkinson, Henry
1978-01-01
Describes the theories of Karl Popper regarding scientific knowledge and scientific methodology; tells how the Popper-Darwinian theory of growth of knowledge offers an alternative nonauthoritarian conception of the educational process, and thus an alternative conception of the functions of the teacher and the school. (GT)
ERIC Educational Resources Information Center
Chu, Hye-Eun; Treagust, David F.; Chandrasegaran, A. L.
2009-01-01
A large scale study involving 1786 year 7-10 Korean students from three school districts in Seoul was undertaken to evaluate their understanding of basic optics concepts using a two-tier multiple-choice diagnostic instrument consisting of four pairs of items, each of which evaluated the same concept in two different contexts. The instrument, which…
The development of scientific thinking in elementary school: a comprehensive inventory.
Koerber, Susanne; Mayer, Daniela; Osterhaus, Christopher; Schwippert, Knut; Sodian, Beate
2015-01-01
The development of scientific thinking was assessed in 1,581 second, third, and fourth graders (8-, 9-, 10-year-olds) based on a conceptual model that posits developmental progression from naïve to more advanced conceptions. Using a 66-item scale, five components of scientific thinking were addressed, including experimental design, data interpretation, and understanding the nature of science. Unidimensional and multidimensional item response theory analyses supported the instrument's reliability and validity and suggested that the multiple components of scientific thinking form a unitary construct, independent of verbal or reasoning skills. A partial credit model gave evidence for a hierarchical developmental progression. Across each grade transition, advanced conceptions increased while naïve conceptions decreased. Independent effects of intelligence, schooling, and parental education on scientific thinking are discussed. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Orthodontics for the dog. Bite evaluation, basic concepts, and equipment.
Ross, D L
1986-09-01
Evaluation of canine occlusion (an occlusal evaluation table is included), growth patterns of the head, basic concepts of orthodontics such as how teeth move, length of treatment, and limits to movements, and equipment and materials are considered in this article.
Chicano Alternative Education.
ERIC Educational Resources Information Center
Galicia, H. Homero; Almaguer, Clementina
Alternative schooling is challenging some basic notions of curriculum, operation, and structure of traditional schools; it is not challenging the basic concept of schooling. Chicano alternative education, an elusive concept, lacks a precise definition. Chicano alternative schools reflect a vast diversity in structure, focus, and goals. The Chicano…
M-HELP: a miniaturized total health examination system launched on a mobile phone platform.
Yu, Yang; Li, Jingjing; Liu, Jing
2013-11-01
A timely health examination is of great significance for incipient disease detection and prevention. However, conventional examinations generally rely heavily on bulky and expensive instrumentation, which is not easily available. To address technical barriers, an innovative, highly miniaturized, and integrated health examination system-Mobile Health Examination Launched on the Phone (M-HELP)-was developed. Based on the design of a multifunctional Android® (Google, Mountain View, CA) application and the development of different wireless biomedical sensor modules, a mobile phone was incorporated into a central terminal for personal health examination. More than 12 parameters, including electrocardiogram, heart sound, and eye test, as well as others, covered the majority of the crucial parameters in a total health examination and have been successfully established and incorporated into the system. Unlike the conventional examination, the M-HELP system could generate electronic health records and send them to physicians via e-mails or multimedia messages. This significantly simplifies the general health examination with much lower cost and fewer temporal and spatial restrictions. For proof of concept, a bench-scale test recruiting 11 volunteer subjects showed that the average time spent on a total health examination with M-HELP system was about 28 min. This article clarifies the basic concept of a total health examination on the platform of a mobile phone, demonstrates the basic features of the M-HELP system with group tests, and suggests the practical future application of the new system and the scientific issues thus raised.
Understanding the biological concept "bird": A kindergarten case study
NASA Astrophysics Data System (ADS)
Buchholz, Dilek
The purpose of this qualitative, multiple case study of 14 students in a metropolitan public school in the Deep South was to find out, during a period of three months, what these kindergarten-aged children knew about birds, whether this knowledge represented current scientific thought, if such science instruction meaningfully affected their prior knowledge, and if so, what the factors during instruction that seemed to influence their understanding of the concept of bird were. The research was conducted in three phases; preinstruction interviews, instruction, and postinstruction interviews. The theoretical framework for this research was based on the Human Constructivism theory of learning (Mintzes, Wandersee and Novak, 1997). Instructional materials consisted of carefully chosen books (both fiction and non-fiction), guest speakers, field trips, a live bird in the classroom, students' observation journals, teacher-made classification and sorting activities, and picture-based concept maps. The findings suggest that young children's knowledge of birds was limited chiefly to birds' anatomical and morphological characteristics, with repeated references being made by the children to human characteristics. There was a positive, significant difference in young children's pre- and postinstruction scientific knowledge of birds. Although performance varied from child to child after instruction, most children were able to identify some common birds by name. Just one child resisted conceptual change. Kindergarten children's basic knowledge of bird behavior was limited to flight and eating. Although the children had more conceptual knowledge at the end, understanding still appeared to be shallow. The children did develop their skill in observing markedly. It also became evident that these kindergarten children needed more (a) experience in asking questions, (b) practice in techniques of visual representation, and (c) language development in order to be able to explain what they observed. Scientific study of birds appeared to be an underutilized gateway to learning about living organisms in early childhood, especially in view of the fact that birds are the only large animals in nature that are easily seen by children during daytime hours. Such early childhood bird studies also correlate well with the National Science Education Standards (NRC, 1996).
Del Pinal, Guillermo; Reuter, Kevin
2017-04-01
The concepts expressed by social role terms such as artist and scientist are unique in that they seem to allow two independent criteria for categorization, one of which is inherently normative (Knobe, Prasada, & Newman, 2013). This study presents and tests an account of the content and structure of the normative dimension of these "dual character concepts." Experiment 1 suggests that the normative dimension of a social role concept represents the commitment to fulfill the idealized basic function associated with the role. Background information can affect which basic function is associated with each social role. However, Experiment 2 indicates that the normative dimension always represents the relevant commitment as an end in itself. We argue that social role concepts represent the commitments to basic functions because that information is crucial to predict the future social roles and role-dependent behavior of others. Copyright © 2016 Cognitive Science Society, Inc.
Avengers Assemble! Using pop-culture icons to communicate science
2014-01-01
Engaging communication of complex scientific concepts with the general public requires more than simplification. Compelling, relevant, and timely points of linkage between scientific concepts and the experiences and interests of the general public are needed. Pop-culture icons such as superheroes can represent excellent opportunities for exploring scientific concepts in a mental “landscape” that is comfortable and familiar. Using an established icon as a familiar frame of reference, complex scientific concepts can then be discussed in a more accessible manner. In this framework, scientists and the general public use the cultural icon to occupy a commonly known performance characteristic. For example, Batman represents a globally recognized icon who represents the ultimate response to exercise and training. The physiology that underlies Batman's abilities can then be discussed and explored using real scientific examples that highlight truths and fallacies contained in the presentation of pop-culture icons. Critically, it is not important whether the popular representation of the icon shows correct science because the real science can be revealed in discussing the character through this lens. Scientists and educators can then use these icons as foils for exploring complex ideas in a context that is less threatening and more comfortable for the target audience. A “middle-ground hypothesis” for science communication is proposed in which pop-culture icons are used to exploring scientific concepts in a bridging mental landscape that is comfortable and familiar. This approach is encouraged for communication with all nonscientists regardless of age. PMID:25039082
Avengers Assemble! Using pop-culture icons to communicate science.
Zehr, E Paul
2014-06-01
Engaging communication of complex scientific concepts with the general public requires more than simplification. Compelling, relevant, and timely points of linkage between scientific concepts and the experiences and interests of the general public are needed. Pop-culture icons such as superheroes can represent excellent opportunities for exploring scientific concepts in a mental “landscape” that is comfortable and familiar. Using an established icon as a familiar frame of reference, complex scientific concepts can then be discussed in a more accessible manner. In this framework, scientists and the general public use the cultural icon to occupy a commonly known performance characteristic. For example, Batman represents a globally recognized icon who represents the ultimate response to exercise and training. The physiology that underlies Batman’s abilities can then be discussed and explored using real scientific examples that highlight truths and fallacies contained in the presentation of pop-culture icons. Critically, it is not important whether the popular representation of the icon shows correct science because the real science can be revealed in discussing the character through this lens. Scientists and educators can then use these icons as foils for exploring complex ideas in a context that is less threatening and more comfortable for the target audience. A “middle-ground hypothesis” for science communication is proposed in which popculture icons are used to exploring scientific concepts in a bridging mental landscape that is comfortable and familiar. This approach is encouraged for communication with all nonscientists regardless of age.
ERIC Educational Resources Information Center
Mercer County Community Coll., Trenton, NJ.
Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…
Scientific reasoning profile of junior secondary school students on the concept of static fluid
NASA Astrophysics Data System (ADS)
Mariana, N.; Siahaan, P.; Utari, S.
2018-05-01
Scientific reasoning is one of the most important ability. This study aims to determine the profile of scientific reasoning of junior high school students about the concept of static fluid. This research uses a descriptive method with a quantitative approach to get an idea about the scientific reasoning of One Roof Junior Secondary School Student Kotabaru Reteh in Riau. The technique of collecting data is done by test of scientific reasoning. Scientific reasoning capability refers to Furtak’s EBR (Evidence Based Reasoning) scientific reasoning indicator that contains the components of claims, data, evidence, and rules. The result obtained on each element of scientific reasoning is 35% claim, 23% data, 21% evidence and 17% rule. The conclusions of this research that scientific reasoning of Satu Atap Junior Secondary School student Kotabaru Reteh, Riau Province still in the low category.
Space Infrared Telescope Facility (SIRTF) science instruments
NASA Technical Reports Server (NTRS)
Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.
1989-01-01
Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.
Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry
NASA Astrophysics Data System (ADS)
Fabiani, Sergio
2018-05-01
The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to produce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry.
Conflicts of interest in translational research
Parks, Malcolm R; Disis, Mary L
2004-01-01
Translational research requires a team approach to scientific inquiry and product development. Translational research teams consist of basic and clinical scientists who can be members of both academic and industrial communities. The conception, pre-clinical testing, and clinical evaluation of a diagnostic or therapeutic approach demands an intense interaction between investigators with diverse backgrounds. As the barriers between industry and academia are removed, issues of potential conflict of interest become more complex. Translational researchers must become aware of the situations which constitute conflict of interest and understand how such conflicts can impact their research programs. Finally, the translational research community must participate in the dialogue ongoing in the public and private sectors and help shape the rules that will govern conflicts that arise during the evolution of their research programs. PMID:15301694
Drack, Manfred; Pouvreau, David
2015-07-04
Bertalanffy's so-called "general system theory" (GST) and cybernetics were and are often confused: this calls for clarification. In this article, Bertalanffy's conceptions and ideas are compared with those developed in cybernetics in order to investigate the differences and convergences. Bertalanffy was concerned with first order cybernetics. Nonetheless, his perspectivist epistemology is also relevant with regard to developments in second order cybernetics, and the latter is therefore also considered to some extent. W. Ross Ashby's important role as mediator between GST and cybernetics is analysed. The respective basic epistemological approaches, scientific approaches and inherent world views are discussed. We underline the complementarity of cybernetic and "organismic" trends in systems research within the unitary hermeneutical framework of "general systemology".
Exciting middle and high school students about immunology: an easy, inquiry-based lesson.
Lukin, Kara
2013-03-01
High school students in the United States are apathetic about science, technology, engineering and mathematics (STEM), and the workforce pipeline in these areas is collapsing. The lack of understanding of basic principles of biology means that students are unable to make educated decisions concerning their personal health. To address these issues, we have developed a simple, inquiry-based outreach lesson centered on a mouse dissection. Students learn key concepts in immunology and enhance their understanding of human organ systems. The experiment highlights aspects of the scientific method and authentic data collection and analysis. This hands-on activity stimulates interest in biology, personal health and careers in STEM fields. Here, we present all the information necessary to execute the lesson effectively with middle and high school students.
Teaching Ionic Solvation Structure with a Monte Carlo Liquid Simulation Program
NASA Astrophysics Data System (ADS)
Serrano, Agostinho; Santos, Flávia M. T.; Greca, Ileana M.
2004-09-01
It is shown how basic aspects of ionic solvation structure, a fundamental topic for understanding different concepts and levels of representations of chemical structure and transformation, can be taught with the help of a Monte Carlo simulation package for molecular liquids. By performing a pair distribution function analysis of the solvation of Na + , Cl , and Ar in water, it is shown that it is feasible to explain the differences in solvation for these differently charged solutes. Visual representations of the solvated ions can also be employed to help the teaching activity. This may serve as an introduction to the study of solvation structure in chemistry undergraduate courses. The advantages of using tested, up-to-date scientific simulation programs as the fundamental bricks in the construction of virtual laboratories is also discussed.
JASMINE Simulator - construction of framework
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Ueda, Seiji; Kuwabara, Takashi; Yano, Taihei; Gouda, Naoteru
2004-10-01
JASMINE is an abbreviation of Japan Astrometry Satellite Mission for INfrared Exploration currently planned at National Astronomical Observatory of Japan. JASMINE stands at a stage where its basic design will be determined in a few years. Then it is very important for JASMINE to simulate the data stream generated by the astrometric fields in order to support investigations of accuracy, sampling strategy, data compression, data analysis, scientific performances, etc. It is found that the new software technologies of Object Oriented methodologies with Unified Modeling Language are ideal for the simulation system of JASMINE (JASMINE Simualtor). In this paper, we briefly introduce some concepts of such technologies and explain the framework of the JASMINE Simulator which is constructed by new technologies. We believe that these technologies are useful also for other future big projects of astronomcial research.
Strategic marketing: an introduction for medical specialists.
Lexa, Frank James; Berlin, Jonathan
2006-03-01
Marketing and branding are 2 of the most important factors for business success in the United States. They are particularly critical in service industries such as diagnostic imaging. However, in spite of their strategic importance in radiology success, a search of the peer-reviewed radiology literature reveals a paucity of published work that addresses marketing for imaging practices. In particular, there is a dearth of literature addressing the role (both direct and indirect) of radiologists in marketing efforts. In this article, the authors attempt to identify and correct some common misconceptions that physicians and other scientific and technical professionals have about marketing. Basic terms and preliminary concepts are introduced to provide a foundational understanding of the topic, allowing the interested reader to move forward and explore these critical issues in greater depth.
NASA Astrophysics Data System (ADS)
Drack, Manfred; Pouvreau, David
2015-07-01
Bertalanffy's so-called "general system theory" (GST) and cybernetics were and are often confused: this calls for clarification. In this article, Bertalanffy's conceptions and ideas are compared with those developed in cybernetics in order to investigate the differences and convergences. Bertalanffy was concerned with first order cybernetics. Nonetheless, his perspectivist epistemology is also relevant with regard to developments in second order cybernetics, and the latter is therefore also considered to some extent. W. Ross Ashby's important role as mediator between GST and cybernetics is analysed. The respective basic epistemological approaches, scientific approaches and inherent world views are discussed. We underline the complementarity of cybernetic and "organismic" trends in systems research within the unitary hermeneutical framework of "general systemology".
Seeing the World in a Grain of Sand
NASA Astrophysics Data System (ADS)
Clucas, T.; Wirth, G. S.
2015-12-01
Enabling people to trigger and to witness landscape change is a powerful method of communicating scientific concepts. Alaska EPSCoR and GINA have found an effective tool for this effort in their "Augmented-Reality Sandbox," an engaging hands-on interface that can be used to teach about topography, hydrology, natural hazards, and landscape change. People are consistently excited about the sandbox, the success of which has led EPSCoR to construct mobile versions which have traveled to remote Alaskan communities. EPSCoR has also developed model curricula that use the sandbox to teach basic topography and hydrology skills, and is working on advanced lessons based around hydrologic and landscape hazards. Instructions on building a mobile sandbox, curricula, and video of the sandbox in action are available at www.alaska.edu/epscor/Augmented-Reality%20Sandbox/
Quantum Measurement Theory in Gravitational-Wave Detectors.
Danilishin, Stefan L; Khalili, Farid Ya
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Ethics in medical technologies: the Roman Catholic viewpoint.
Zyciński, Joseph
2006-06-01
New medical techniques and novel scientific discoveries bring many basic questions concerning the role of human dignity in medical research as well as in the society of the future. This paper presents the Roman Catholic approach to the use of new technologies, the research of human embryos, the ethical aspects of studies on the human genome. The concept of "human ecology", as proposed by John Paul II, is introduced to reconcile the academic freedom of research with insurmountable ethical barriers which must be recognized to defend human dignity. In critical appraisal of Peter Singer's concept of the quality of life the author points out that it is irrational to try to reduce this quality to the level of biological parameters. Human dignity as well as the sanctity of life express also a quality of life so important for the cultural growth of Homo sapiens. To protect human ecology it is our moral duty to defend human dignity and to recognize the importance of those values that are fundamental in the process of development of the human species.
Acupuncture and Its Role in Modern Medicine
Lewin, Andrew J.
1974-01-01
Although both the philosophic and physiologic basis of acupuncture seems fanciful to Western medical thinking, the results obtained in the treatment of certain disease states cannot be lightly dismissed. Its use in the induction of surgical analgesia may have immediate application for Western Medicine. Its mechanism of action is a complete enigma, but information accumulated from research in hypnosis, visceral learning and, most important, the physiology of pain perception may contain clues to the pathophysiologic principles involved. The fact that many disorders for which acupuncture therapy is useful are thought to have a large psychosomatic component only serves to reinforce the Eastern concept of inseparability of mind and body. A great deal of attention is being given to this concept in the current medical literature. In order to define the role of acupuncture in modern medical practice, a more scientific approach in both clinical and basic research is necessary. If acupuncture can be proved safe and efficacious in the treatment of certain diseases, lack of knowledge regarding its mechanism of action should not delay its incorporation into our medical armamentarium. PMID:4590887
Forum on Aging and Skeletal Health: Summary of the Proceedings of an ASBMR Workshop
Khosla, Sundeep; Bellido, Teresita M.; Drezner, Marc K.; Gordon, Catherine M.; Harris, Tamara B.; Kiel, Douglas P.; Kream, Barbara E.; LeBoff, Meryl S.; Lian, Jane B.; Peterson, Charlotte A.; Rosen, Clifford; Williams, John. P.; Winer, Karen K.; Sherman, Sherry S.
2013-01-01
With the aging of the population, the scope of the problem of age-related bone loss and osteoporosis will continue to increase. As such, it is critical to obtain a better understanding of the factors determining the acquisition and loss of bone mass, from childhood to senescence. While there have been significant advances in recent years in our understanding of both the basic biology of aging and a clinical definition of age-related frailty, few of these concepts in aging research have been adequately evaluated for their relevance and application to skeletal aging or fracture prevention. The March 2011 “Forum on Aging and Skeletal Health”, sponsored by the NIH and ASBMR, sought to bring together leaders in aging and bone research to enhance communications among diverse fields of study so as to accelerate the pace of scientific advances needed to reduce the burden of osteoporotic fractures. This report summarizes the major concepts presented at this meeting and in each area, identifies key questions to help set the agenda for future research in skeletal aging. PMID:21915901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Raul; Carreras, Benjamin A; van Milligen, B. Ph.
An idea that the late Prof. Radu Balescu often pondered during his long and distinguished scientific career was the possibility of constructing simple stochastic or probabilistic models able to capture the basic features of the complex dynamics of turbulent transport in magnetically confined plasmas. In particular, the application of the continuous-time random walk (CTRW) concept to this task was one of his favorites. In the last few years prior to his death, we also became interested in applying (variations of the standard) CTRW to these problems. In our case, it was the natural way to move beyond the simple paradigmsmore » based on sandpile constructs that we had been previously studying. This common interest fueled an intense electronic correspondence between Prof. Balescu and us that started in 2004 and was only interrupted by his unexpected death in June 2006. In this paper, we pay tribute to his memory by reviewing some of these exciting concepts that interested him so much and by sketching the problems and ideas that we discussed so frequently during these two years. Regretfully, he will no longer be here to help us solve them.« less
Teaching Individuals with Developmental Delays: Basic Intervention Techniques.
ERIC Educational Resources Information Center
Lovaas, O. Ivar
This teaching manual for treatment of children with developmental disabilities is divided into seven sections that address: (1) basic concepts; (2) transition into treatment; (3) early learning concepts; (4) expressive language; (5) strategies for visual learners; (6) programmatic considerations; and (7) organizational and legal issues. Among…
Environmental Education: Back to Basics.
ERIC Educational Resources Information Center
Warpinski, Robert
1984-01-01
Describes an instructional framework based on concepts of energy, ecosystems, carrying capacity, change, and stewardship. Stresses the importance of determining what is really important (basic) for each student to experience or learn in relation to each concept and grade level. Student-centered learning activities and sample lesson on energy…
Resident physician's knowledge and attitudes toward biostatistics and research methods concepts.
Alzahrani, Sami H; Aba Al-Khail, Bahaa A
2015-10-01
To assess the knowledge and attitudes of resident physicians toward biostatistics and research methodology concepts. We conducted a cross-sectional study between November 2014 and October 2014 at King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia. A self-administered questionnaire was distributed to all participants. The response rate was 90%. One hundred sixty-two resident completed the questionnaire. Most residents were well-informed in basic concepts, such as, "P" values, study power, and case control studies; more than half had confidence in interpreting the results of scientific papers. Conversely, more than 67% of the residents were not knowledgeable on more sophisticated terms in biostatistics. Residents with previous training in evidence-based medicine (EBM) (p=0.05) and non-specialist residents (p=0.003) were more likely to have better knowledge scores. Females (p=0.003), and those with previous training in biostatistics and epidemiology had positive attitude toward biostatistics (p less than 0.001 in both cases). Residents who read medical journals scored lower than those who never read journals (p=0.001). Prior courses in EBM, as well as male gender were associated with knowledge scores. Reinforcing training after graduation from medical school with special focus on integrating biostatistics with epidemiology and research methods is needed.
Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.
Musen, M. A.
1998-01-01
When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community. PMID:9929181
Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.
Musen, M A
1998-01-01
When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.
NASA Astrophysics Data System (ADS)
Unterbruner, U.; Hilberg, S.; Schiffl, I.
2015-11-01
Groundwater is a crucial topic in education for sustainable development. Nevertheless, international studies with students of different ages have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Building upon international research a multimedia learning program ("Between the raincloud and the tap") was developed. Insights from the fields of conceptual change research, multimedia research, and the Model of Educational Reconstruction were specifically implemented. Two studies were conducted with Austrian pupils (7th grade) and teacher training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge regarding groundwater were determined in a pre- and post-test. The pupils and students greatly profited from independently working through the learning software. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results speak for the fact that theory-guided multimedia learning programs can play an important role in the transfer of research results into the classroom, particularly in science education.
NASA Astrophysics Data System (ADS)
Stanic, M.; Cassibry, J. T.; Adams, R. B.
2013-05-01
Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.
Aronson, Benjamin D; Silveira, Linda A
2009-01-01
In the laboratory, students can actively explore concepts and experience the nature of scientific research. We have devised a 5-wk laboratory project in our introductory college biology course whose aim was to improve understanding in five major concepts that are central to basic cellular, molecular biology, and genetics while teaching molecular biology techniques. The project was focused on the production of adenine in Saccharomyces cerevisiae and investigated the nature of mutant red colonies of this yeast. Students created red mutants from a wild-type strain, amplified the two genes capable of giving rise to the red phenotype, and then analyzed the nucleotide sequences. A quiz assessing student understanding in the five areas was given at the start and the end of the course. Analysis of the quiz showed significant improvement in each of the areas. These areas were taught in the laboratory and the classroom; therefore, students were surveyed to determine whether the laboratory played a role in their improved understanding of the five areas. Student survey data demonstrated that the laboratory did have an important role in their learning of the concepts. This project simulated steps in a research project and could be adapted for an advanced course in genetics.
NASA Astrophysics Data System (ADS)
Krisdiana, A.; Aminah, N. S.; Nurosyid, F.
2018-03-01
This study aims to investigate the scientific literacy among 12th grade science students in SMA Negeri 2 Karanganyar. The instrument used is a four-tier wave diagnostic instrument. This instrument was originally used to diagnose students’ conceptions about nature and propagation of waves. This study using quantitative descriptive method. The diagnostic results based on dominant students’ answers show the lack of knowledge percentage of 14.3%-77.1%, alternative conceptions percentage 0%-60%, scientific conceptions percentage 0%-65.7%. Lack of knowledge indicated when there is doubt about at least one tier of the student’s answer. The results of the research shows that the students’ dominant scientific literacy is in the nominal literacy category with the percentage of 22.9% - 91.4%, the functional literacy with the percentage 2.86% - 28.6%, and the conceptual/procedural literacy category with the percentage 0% - 65.7%. Description level of nominal literacy in context of the current study is student have alternative conceptions and lack of knowledge. Student recognize the scientific terms, but is not capable to justify this term.
77 FR 5032 - National Cancer Institute; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... Initiatives; RFA and RFP Concept Reviews; and Scientific Presentations. Place: National Institutes of Health... Group(s); and Budget Presentations; Reports of Special Initiatives; RFA and RFP Concept Reviews; and Scientific Presentations. Place: National Institutes of Health, Building 31, 31 Center Drive, 6th Floor, Conf...
[M.S. Gilyarov's Scientific School of Soil Zoology].
Chesnova, L V
2005-01-01
The role of M.S. Gilyarov's scientific school in the development of the subject and methodology of a new complex discipline formed in the mid-20th century--soil zoology--was considered. The establishment and evolution of the proper scientific school was periodized. The creative continuity and development of the basic laws and technical approaches included in the teacher's scientific program was demonstrated by scientific historical analysis.
Money Matters for the Young Learner
ERIC Educational Resources Information Center
Hill, Andrew T.
2010-01-01
Children's economic reasoning follows a developmental sequence in which their ideas about money and other basic economic concepts are forming. Even children in the early primary grades can learn some basic economics and retain understanding of economic concepts if they are taught in developmentally appropriate ways. Given how important economic…
ECON 12: Teacher's Materials. Units I and II.
ERIC Educational Resources Information Center
Wiggins, Suzanne
The objectives of this experimental 12th grade economics course begin with an understanding that "economic analysis applies a set of basic concepts and their interrelationships to problems (involving) economic scarcity." Fifteen basic concepts are to be learned (e. g., want, markets, money, etc.) as well as the definition and vocabulary…
Teaching Young Children Basic Concepts of Geography: A Literature-Based Approach.
ERIC Educational Resources Information Center
Hannibal, Mary Anne Zeitler; Vasiliev, Ren; Lin, Qiuyun
2002-01-01
This article advocates a literature-based instructional approach as a way of promoting geographic awareness in early childhood classrooms. Instruction focuses on basic geography concepts of location, place, human- environment interaction, movement, and region. Examples of children's picture books are included to show what early childhood teachers…
Lifeline: A Tool for Logistics Professionals
2017-06-01
proof of concept study is designed to provide a basic understanding of the Supply Corps community, provide a comparative analysis of the organizational...concept study is designed to provide a basic understanding of the Supply Corps community, provide a comparative analysis of the organizational...APPLICATION) ......................................................................................63 G. DESIGN
Basic Concepts and Conservation Skill Training in Kindergarten Chilren.
ERIC Educational Resources Information Center
Wasik, Barbara H.; And Others
1980-01-01
The study investigated the effects of basic concepts training on conservation acquisition in 41 kindergarten children (17 White boys, 15 White girls, 6 Black girls, and 5 Black boys). Only the conservation training program resulted in significant effects, and that was for the White students alone. (Author)
Econosense: A Common Sense Approach to the Study of Economics.
ERIC Educational Resources Information Center
McPheron, Linda
This student activity book and teacher's guide address specific economic terms and concepts correlated to specific student learning objectives. The concepts presented are those essential to any student developing a basic understanding of economics. Each lesson follows a specific format with a basic core of information, comprehension questions,…
Basic Concepts of Intercultural Communication: Selected Readings.
ERIC Educational Resources Information Center
Bennett, Milton J., Ed.
This collection of articles, with a developmental learning focus, explores the core building blocks of intercultural communication. The articles in the collection represent the theory-into-practice school of intercultural communication. The collection's goal is to present basic concepts from a variety of perspectives which, when taken together,…
Using a Self-Administered Visual Basic Software Tool To Teach Psychological Concepts.
ERIC Educational Resources Information Center
Strang, Harold R.; Sullivan, Amie K.; Schoeny, Zahrl G.
2002-01-01
Introduces LearningLinks, a Visual Basic software tool that allows teachers to create individualized learning modules that use constructivist and behavioral learning principles. Describes field testing of undergraduates at the University of Virginia that tested a module designed to improve understanding of the psychological concepts of…
ERIC Educational Resources Information Center
Karsai, Istvan; Kampis, George
2010-01-01
Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…
ERIC Educational Resources Information Center
Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel
2014-01-01
The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…
Mikhail Geraskov (1874-1957): Methodological Concepts of Learning Physics
ERIC Educational Resources Information Center
Ilieva, Mariyana
2014-01-01
Mikhail Geraskov is a distinguished Bulgarian educator from the first half of the twentieth century, who developed the scientific foundations of didactics and methodology of training. His work contributed a lot to the development of the Bulgarian pedagogy. The subject of scientific research is didactical conceptions and methodological conceptions…
Avengers Assemble! Using Pop-Culture Icons to Communicate Science
ERIC Educational Resources Information Center
Zehr, E. Paul
2014-01-01
Engaging communication of complex scientific concepts with the general public requires more than simplification. Compelling, relevant, and timely points of linkage between scientific concepts and the experiences and interests of the general public are needed. Pop-culture icons such as superheroes can represent excellent opportunities for exploring…
"Clicking through" or Learning Concepts
ERIC Educational Resources Information Center
Stidwell, Peter
2005-01-01
The author has developed an innovative science website resource that also shows how engineers use science. As well as addressing scientific facts and concepts, the resource also engages children in the process of scientific enquiry, using graph tools and data interpretation. Part of the resource helps children to understand that much of what they…
Conceptual Level of Understanding about Sound Concept: Sample of Fifth Grade Students
ERIC Educational Resources Information Center
Bostan Sarioglan, Ayberk
2016-01-01
In this study, students' conceptual change processes related to the sound concept were examined. Study group was comprises of 325 fifth grade middle school students. Three multiple-choice questions were used as the data collection tool. At the data analysis process "scientific response", "scientifically unacceptable response"…
Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool
ERIC Educational Resources Information Center
Newman, Dina L.; Snyder, Christopher W.; Fisk, J. Nick; Wright, L. Kate
2016-01-01
Scientific teaching requires scientifically constructed, field-tested instruments to accurately evaluate student thinking and gauge teacher effectiveness. We have developed a 23-question, multiple select--format assessment of student understanding of the essential concepts of the central dogma of molecular biology that is appropriate for all…
Conceptions of Traditional Cosmological Ideas among Literate and Nonliterate Nigerians.
ERIC Educational Resources Information Center
Ogunniyi, M. B.
1987-01-01
Examines the nature of selected traditional cosmological concepts among literate and nonliterate Nigerians. Findings indicate that the respondents, regardless of their status, hold both scientific and traditional notions of the universe. A preference for a scientific world view was evidenced by those who experienced a history/philosophy of science…
NASA Astrophysics Data System (ADS)
Wardani, K. U.; Mulyani, S.; Wiji
2018-04-01
The aim of this study was to develop intertextual learning strategy with guided inquiry on solubility equilibrium concept to enhance student’s scientific processing skills. This study was conducted with consideration of some various studies which found that lack of student’s process skills in learning chemistry was caused by learning chemistry is just a concept. The method used in this study is a Research and Development to generate the intertextual learning strategy with guided inquiry. The instruments used in the form of sheets validation are used to determine the congruence of learning activities by step guided inquiry learning and scientific processing skills with aspects of learning activities. Validation results obtained that the learning activities conducted in line with aspects of indicators of the scientific processing skills.
Alternatives to animal experimentation in basic research.
Gruber, Franz P; Hartung, Thomas
2004-01-01
In contrast to animal testing required by law to guarantee minimum safety standards for the licensing of drugs and chemicals, there are no regulations in basic research forcing scientists to perform animal tests. By (usually) free choice, questions are posed and hypotheses are examined which, in many cases, can only be answered by means of animal tests. Just as easily, different questions could be asked or different hypotheses could be examined which do not require animal tests. The only criterion for the choice of a topic is its relevance which cannot necessarily be judged in the short-term. Thus, it is up to the individual scientist to judge what is worth studying and therefore worth animal consumption. The educated mind will consider ethical aspects of this choice. However, on the other hand, this decision is largely influenced by questions of efficacy or (in a negative sense) by the obstacles posed to an animal consuming approach. Here, peer review and general attitude will strongly influence the methodology chosen. Availability and awareness of adequate in vitro techniques represent the prerequisites for the use of alternative methods. The least one can do in basic research is to avoid tests which cause severe suffering to animals, as is required in Switzerland and other European countries by binding ethical principles and guidelines. The increasing standard of approval and control procedures has improved the situation over the years. There are many examples of successful alternative methods in basic research. But, the application of such methods is in most cases limited to the laboratories in which they were developed, calling for technology transfer. Exceptions are procedures that are used worldwide, like the production of monoclonal antibodies, which instead of using the ascites mouse can also be performed in vitro with some good will. In these cases, commercialisation of the techniques has aided their spread within the scientific community. Sadly, many methods, even if published in the scientific literature, are little standardised and reproducible. The suggestion is put forward that publicly accessible databases should make available more detailed descriptions of methodologies. Due to limitations in space, many scientific journals cannot publish detailed methodological descriptions. However, nowadays a supplementary central deposit of methods could easily be linked to the respective article. In numerous cases though, there is simply a lack of will to change procedures to methods without animal tests or to pose questions differently in order to avoid the use of animals or to reduce their number or, at least, to reduce stress. In other cases, researchers are simply not aware of the limitations of the animal experiment as such. A thorough review of the validity of critical animal experiments should be carried out and made available publicly. For example, many animal experiments are dramatically "under-powered", i.e. carried out with groups that are too small to allow conclusions to be drawn from the outcome. This stands in marked contrast to in vitro experiments where replicate experiments usually represent no major problem. Since in vitro models are generally more prone to artefacts due to the numerous variables, e.g. of cell culture, the key requirement for their application is their validation and quality control. Guided by the experience from validation studies for alternative methods in toxicology, concepts of a Good Cell Culture Practice (GCCP) are currently being developed which aim to define minimum quality standards for in vitro techniques. This initiative aiming to increase quality must be complemented by a concept to systematically assess the relevance of the tests in order to finally achieve an evidence-based biomedical research. A change in this direction is only possible if those public funds, which were previously assigned predominantly to alternatives to the animal tests required by law, are now channelled increasingly into developing those for basic research. A financial incentive is necessary to change procedures in basic research to animal free procedures. Ethical considerations alone will bring little movement or change. It is unacceptable that, while numbers of animal tests decrease in development and notification of drugs and chemicals, they are increasing in basic research. Due to the central role of publishing scientific results, the key options for control are the respective rules of journals for the acceptance of articles. By demanding certain standards in the instructions for authors, e.g. of quality (GCCP), relevance and in case of animal experiments proof that no alternative is available, pressure could be dramatically increased. It is suggested to hold a consensus conference of journals in the life sciences on this topic.
Facilitating Stewardship of scientific data through standards based workflows
NASA Astrophysics Data System (ADS)
Bastrakova, I.; Kemp, C.; Potter, A. K.
2013-12-01
There are main suites of standards that can be used to define the fundamental scientific methodology of data, methods and results. These are firstly Metadata standards to enable discovery of the data (ISO 19115), secondly the Sensor Web Enablement (SWE) suite of standards that include the O&M and SensorML standards and thirdly Ontology that provide vocabularies to define the scientific concepts and relationships between these concepts. All three types of standards have to be utilised by the practicing scientist to ensure that those who ultimately have to steward the data stewards to ensure that the data can be preserved curated and reused and repurposed. Additional benefits of this approach include transparency of scientific processes from the data acquisition to creation of scientific concepts and models, and provision of context to inform data use. Collecting and recording metadata is the first step in scientific data flow. The primary role of metadata is to provide details of geographic extent, availability and high-level description of data suitable for its initial discovery through common search engines. The SWE suite provides standardised patterns to describe observations and measurements taken for these data, capture detailed information about observation or analytical methods, used instruments and define quality determinations. This information standardises browsing capability over discrete data types. The standardised patterns of the SWE standards simplify aggregation of observation and measurement data enabling scientists to transfer disintegrated data to scientific concepts. The first two steps provide a necessary basis for the reasoning about concepts of ';pure' science, building relationship between concepts of different domains (linked-data), and identifying domain classification and vocabularies. Geoscience Australia is re-examining its marine data flows, including metadata requirements and business processes, to achieve a clearer link between scientific data acquisition and analysis requirements and effective interoperable data management and delivery. This includes participating in national and international dialogue on development of standards, embedding data management activities in business processes, and developing scientific staff as effective data stewards. Similar approach is applied to the geophysical data. By ensuring the geophysical datasets at GA strictly follow metadata and industry standards we are able to implement a provenance based workflow where the data is easily discoverable, geophysical processing can be applied to it and results can be stored. The provenance based workflow enables metadata records for the results to be produced automatically from the input dataset metadata.
The Notion of Scientific Knowledge in Biology
NASA Astrophysics Data System (ADS)
Morante, Silvia; Rossi, Giancarlo
2016-03-01
The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of biology and its compliance with the fundamental laws of physics.
Meeting Basic Needs Is Not beyond Our Reach.
ERIC Educational Resources Information Center
Haq, Mahbub ul
1978-01-01
Reviews the status of the continuing debate on the concept of "basic needs" in development policy for the world's poorest countries, reprinted from a World Bank report. Discusses "core" basic needs (food and nutrition, drinking water, basic health, shelter, and basic education) and possible operational policies. (MF)
Public information: a major tool in cancer prevention.
Ziant, G
1993-05-01
The methodology for an information campaign is discussed, detailing follow up in five stages: (1) assessment of needs: a good knowledge of behaviour patterns and the kind of information needed is the basic element to create the concept of a campaign. A pre-survey is an indispensable tool to secure this information; (2) basic scientific information: communication to the public has to be based on precise and recent scientific data; (3) comprehension of the information: communicating with the general public should be through texts that are clear and accessible to the greater part of the population; (4) production of supporting documents: each element of the campaign has to produce an impact on the person receiving the message; and (5) evaluating the impact of an information campaign. An evaluation can check whether objectives have been reached, and also correct errors and help prepare the next campaign even more professionally. These five stages are essential to set up a successful information campaign. We also give examples from our magazines Cancer-info and Smoke Buster-info. Through information public opinion can be mobilized to influence political decisions in the public health sector. One evidence for the importance of collective influence on political decision makers is our campaign to promote the total ban on tobacco advertising. As large-scale information campaigns need important financial resources it is essential to balance the cost to generate sufficient funds to finance further projects in the health sector; we discuss this matter as well as the impact on the image of the association.(ABSTRACT TRUNCATED AT 250 WORDS)
Marine Atmospheric Corrosion of Carbon Steel: A Review.
Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel
2017-04-13
The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.
Teaching the Teachers: Physical Science for the Non-Scientific
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.
2004-12-01
The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.
Techniques and methods to guarantee Bologna-conform higher education in GNSS
NASA Astrophysics Data System (ADS)
Mayer, M.
2012-04-01
The Bologna Declaration is aiming for student-centered, outcome-related, and competence-based teaching. In order to fulfill these demands, deep level learning techniques should be used to meet the needs of adult-compatible and self-determined learning. The presentation will summarize selected case studies carried out in the framework of the lecture course "Introduction into GNSS positioning" of the Geodetic Institute of the Karlsruhe Institute of Technology (Karlsruhe, Germany). The lecture course "Introduction into GNSS positioning" is a compulsory part of the Bachelor study course "Geodesy and Geoinformatics" and also a supplementary module of the Bachelor study course "Geophysics". Within the lecture course, basic knowledge and basic principles of Global Navigation Satellite Systems, like GPS, are imparted. The lecture course was migrated starting from a classically designed geodetic lecture course, which consisted of a well-adapted combination of teacher-centered classroom lectures and practical training (e.g., field exercises). The recent Bologna-conform blended learning concepts supports and motivates students to learn more sustainable using online and classroom learning methods. Therefore, an appropriate combination of - classroom lectures: Students and teacher give lectures - practical training: Students select topics individually - online learning: ILIAS (learning management system) is used as data, result, and communication platform. The framing didactical method is based on the so-called anchored instruction approach. Within this approach, an up-to-date scientific GNSS-related paper dealing with the large-scale geodetic project "Fehmarn Belt Fixed Link" is used as anchor. The students have to read the paper individually in the beginning of the semester. This enables them to realize a lot of not-known GNSS-related facts. Therefore, questions can be formulated. The lecture course deals with these questions, in order to answer them. At the end of the lecture course, the author of the scientific paper gave a concluding lecture. Within the presentation, the didactical concept of the enriched blended learning approach is discussed in detail in order to gain insight into the didactical design of the lecture course and the higher education principles taken into account in order to guarantee Bologna-conform teaching and learning.
Workshop Results: Teaching Geoscience to K-12 Teachers
NASA Astrophysics Data System (ADS)
Nahm, A.; Villalobos, J. I.; White, J.; Smith-Konter, B. R.
2012-12-01
A workshop for high school and middle school Earth and Space Science (ESS) teachers was held this summer (2012) as part of an ongoing collaboration between the University of Texas at El Paso (UTEP) and El Paso Community College (EPCC) Departments of Geological Sciences. This collaborative effort aims to build local Earth science literacy and educational support for the geosciences. Sixteen teachers from three school districts from El Paso and southern New Mexico area participated in the workshop, consisting of middle school, high school, early college high school, and dual credit faculty. The majority of the teachers had little to no experience teaching geoscience, thus this workshop provided an introduction to basic geologic concepts to teachers with broad backgrounds, which will result in the introduction of geoscience to many new students each year. The workshop's goal was to provide hands-on activities illustrating basic geologic and scientific concepts currently used in introductory geology labs/lectures at both EPCC and UTEP to help engage pre-college students. Activities chosen for the workshop were an introduction to Google Earth for use in the classroom, relative age dating and stratigraphy using volcanoes, plate tectonics utilizing the jigsaw pedagogy, and the scientific method as a think-pair-share activity. All activities where designed to be low cost and materials were provided for instructors to take back to their institutions. A list of online resources for teaching materials was also distributed. Before each activity, a short pre-test was given to the participants to gauge their level of knowledge on the subjects. At the end of the workshop, participants were given a post-test, which tested the knowledge gain made by participating in the workshop. In all cases, more correct answers were chosen in the post-test than the individual activity pre-tests, indicating that knowledge of the subjects was gained. The participants enjoyed participating in these activities and intend to use them in their classes in the future. Copies of the materials used in this workshop are available upon request.
Making the Connection between Environmental Science and Decision Making
NASA Astrophysics Data System (ADS)
Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.
2011-12-01
As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and understanding between scientists and decision-makers, leading to enhanced outcomes in the fields of climate science, water resources, and ecosystem services.
The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)
NASA Astrophysics Data System (ADS)
Hoffman, Reviewed By Megan M.
2000-01-01
"You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon-free language and are then tied explicitly to familiar situations and life experiences. For instance, a power outage at a baseball game helps set the scene for quantum mechanics and Heisenberg's uncertainty principle, while jump-starting a car illustrates the conversion of energy from potential through kinetic to chemical. Most of the fine pedagogical features of the first edition have been continued, including descriptions of relevant technologies, historical aspects of various discoveries, and clear descriptions of mathematical approaches to the topics. The second edition of The Sciences has increased the accessibility of science and scientific concepts by adding several new features to the successful features of the first edition: "The Ongoing Process of Science" addresses current scientific questions; "Stop and Think" encourages students to consider further implications of the topic at hand; and "Science News" provides excerpts from the periodical of the same name. In addition, previous features that highlighted connections to human physiology have been broadened to include all living things, thus allowing students to make connections between the familiar and the more abstract, for instance magnetic navigation in birds (Electricity and Magnetism), upright human posture (Plate Tectonics) and blood clotting (The Chemical Bond). A final addition to each chapter is "Great Ideas Across the Sciences", which ties the Great Idea on which the chapter is based to each of the natural sciences. This latter addition is one that students might easily overlook, but it has great potential for opening class discussion on how, for instance, the science of entropy relates to weather, arthritis, volcanoes, and gasoline use (Chapter 4). Trefil and Hazen offer a basis for understanding physics, chemistry, biology, earth science, and cosmology. While the text and figures provide a basic description of these topics, this book will not produce physicists, chemists, etc. Keep the general-science purpose of the text in mind when you begin to feel that the chapters on your favorite topic are leaving out details or ideas that you consider crucial to scientific literacy in your area. My first impression of the chapter on Classical and Modern Genetics was that it did not spend enough time on Mendel and his foundational contributions to biology. Consequently, I went well beyond the text material in my lecture on Mendelian genetics. To my regret, I learned that this extra, "crucial" material was more intimidating than enlightening. While there are sure to be critics who will wish that certain topics were covered in more depth or who will want topics added or deleted, my conclusion after teaching from this book is that Trefil and Hazen have provided a clear, well-considered, and extremely useful text for a general science course.
Open Science: a first step towards Science Communication
NASA Astrophysics Data System (ADS)
Grigorov, Ivo; Tuddenham, Peter
2015-04-01
As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.
Pre-Service Teachers' Mental Models of Basic Astronomy Concepts
ERIC Educational Resources Information Center
Arslan, A. Saglam; Durikan, U.
2016-01-01
The aim of the present study is to determine pre-service teachers' mental models related to basic astronomy concepts. The study was conducted using a survey method with 293 pre-service teachers from 4 different departments; physics education, science education, primary teacher education and early childhood education. An achievement test with…
Item Response Theory: A Basic Concept
ERIC Educational Resources Information Center
Mahmud, Jumailiyah
2017-01-01
With the development in computing technology, item response theory (IRT) develops rapidly, and has become a user friendly application in psychometrics world. Limitation in classical theory is one aspect that encourages the use of IRT. In this study, the basic concept of IRT will be discussed. In addition, it will briefly review the ability…
Pima College Students' Knowledge of Selected Basic Physical Science Concepts.
ERIC Educational Resources Information Center
Iadevaia, David G.
In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…
Spanish Translation and Validation of the Bracken Basic Concept Scale.
ERIC Educational Resources Information Center
Bracken, Bruce A; Fouad, Nadya
1987-01-01
The Bracken Basic Concept Scale (BBCS) was translated into Spanish, and 32 preschool and primary age bilingual children were assessed in a counter-balanced format with the English and newly translated Spanish forms to assess the adequacy of the translation. Preliminary content validity of the Spanish BBCS was demonstrated. (Author/JAZ)
Multinational Validation of the Spanish Bracken Basic Concept Scale for Cross-Cultural Assessments.
ERIC Educational Resources Information Center
Bracken, Bruce A.; And Others
1990-01-01
Investigated construct validity of the Spanish translation of the Bracken Basic Concept Scale (BBCS) in Latino children (n=293) including monolingual Spanish-speaking children from Puerto Rico and Venezuela and Spanish-dominant bilingual Latino children from Texas. Results provided support for construct validity of the Spanish version of the…
ERIC Educational Resources Information Center
South Dakota Dept. of Environmental Protection, Pierre.
Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…
Introduction to Probability, Part 1 - Basic Concepts. Student Text. Revised Edition.
ERIC Educational Resources Information Center
Blakeslee, David W.; And Others
This book is designed to introduce the reader to some fundamental ideas about probability. The mathematical theory of probability plays an increasingly important role in science, government, industry, business, and economics. An understanding of the basic concepts of probability is essential for the study of statistical methods that are widely…
Getting Back to Basics (& Acidics)
ERIC Educational Resources Information Center
Rhodes, Sam
2006-01-01
This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…
Teacher knowledge of basic language concepts and dyslexia.
Washburn, Erin K; Joshi, R Malatesha; Binks-Cantrell, Emily S
2011-05-01
Roughly one-fifth of the US population displays one or more symptoms of dyslexia: a specific learning disability that affects an individual's ability to process written language. Consequently, elementary school teachers are teaching students who struggle with inaccurate or slow reading, poor spelling, poor writing, and other language processing difficulties. Findings from studies have indicated that teachers lack essential knowledge needed to teach struggling readers, particularly children with dyslexia. However, few studies have sought to assess teachers' knowledge and perceptions about dyslexia in conjunction with knowledge of basic language concepts related to reading instruction. Thus, the purpose of the present study was to examine elementary school teachers' knowledge of basic language concepts and their knowledge and perceptions about dyslexia. Findings from the present study indicated that teachers, on average, were able to display implicit skills related to certain basic language concepts (i.e. syllable counting), but failed to demonstrate explicit knowledge of others (i.e. phonics principles). Also, teachers seemed to hold the common misconception that dyslexia is a visual processing deficit rather than phonological processing deficit. Copyright © 2011 John Wiley & Sons, Ltd.
Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1985-01-01
Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.
78 FR 32260 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... 20892, (301) 435-4445, [email protected] . Name of Committee: Oncology 1-Basic Translational... . Name of Committee: Oncology 1-Basic Translational Integrated Review Group Molecular Oncogenesis Study...
Concept Maps for Improved Science Reasoning and Writing: Complexity Isn’t Everything
Dowd, Jason E.; Duncan, Tanya; Reynolds, Julie A.
2015-01-01
A pervasive notion in the literature is that complex concept maps reflect greater knowledge and/or more expert-like thinking than less complex concept maps. We show that concept maps used to structure scientific writing and clarify scientific reasoning do not adhere to this notion. In an undergraduate course for thesis writers, students use concept maps instead of traditional outlines to define the boundaries and scope of their research and to construct an argument for the significance of their research. Students generate maps at the beginning of the semester, revise after peer review, and revise once more at the end of the semester. Although some students revised their maps to make them more complex, a significant proportion of students simplified their maps. We found no correlation between increased complexity and improved scientific reasoning and writing skills, suggesting that sometimes students simplify their understanding as they develop more expert-like thinking. These results suggest that concept maps, when used as an intervention, can meet the varying needs of a diverse population of student writers. PMID:26538388
Multi-level meta-workflows: new concept for regularly occurring tasks in quantum chemistry.
Arshad, Junaid; Hoffmann, Alexander; Gesing, Sandra; Grunzke, Richard; Krüger, Jens; Kiss, Tamas; Herres-Pawlis, Sonja; Terstyanszky, Gabor
2016-01-01
In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. We investigated the operations that represent basic functionalities in Quantum Chemistry, developed the relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository.Graphical AbstractMeta-workflows and embedded workflows in the template representation.
NASA Astrophysics Data System (ADS)
Deming, Grace L.; Miller, Scott T.; Trasco, John D.
1996-05-01
Students become more interested in learning and retain more in courses that rely on active rather than passive teaching methods. Cooperative learning activities can be structured to engage students toward greater participation in their own education. We have developed a sourcebook containing a variety of cooperative learning methods and activities to aid in the teaching of astronomy at the undergraduate level. Special effort has been made to include activities that can be used within the classroom or as a group homework assignment, in courses with teaching assistants and those without, and in large or small classes. In addition to reinforcing concepts taught in introductory astronomy, the activities are structured to strengthen skills associated with a scientifically literate person. A goal of undergraduate science education is to produce citizens who can understand and share in the excitement of scientific discoveries as well as make informed decisions regarding scientific and technological issues. The sourcebook, available in August, 1996, will contain sections on the advantages/disadvantages of group activities, basic cooperative learning techniques, in class/out of class activities, and how to use peer instruction to expose students to the wonderfaul astronomy resources on the internet. Each activity includes suggestions to the instructor as to how the assignment can be incorporated into an introductory astronomy course. This project funded by NSF DUE-9354503.
Teaching Mathematical Biology in High School Using Adapted Primary Literature
NASA Astrophysics Data System (ADS)
Norris, Stephen P.; Stelnicki, Nathan; de Vries, Gerda
2012-08-01
The study compared the effect of two adaptations of a scientific article on students' comprehension and use of scientific inquiry skills. One adaptation preserved as much as possible the canonical form of the original article (APL, Adapted Primary Literature) and the other was written in a more narrative mode typical of secondary literature (SL). Both adaptations contained the same content. Two hundred and eleven senior high school students in a Western Canadian school district participated. The numbers of males and females were approximately equal, and all students were registered in an introductory calculus course. All students were given a 90 min class by their teachers that introduced them to the basic mathematical concepts needed to read the articles. Students were randomly assigned to read either the APL or the SL and afterwards to complete a questionnaire, which was common to both groups. Major findings showed that the SL students better understood the article, that the APL students thought more critically about the article, that females understood the article better than males, and that students' attitudes towards reading the articles, regardless of group, were positively associated with their comprehension and use of inquiry skills. The results coincide in important ways with those of similar studies in Israel, and show that asking students to read text that resembles scientific writing increases their use of critical thinking skills when reading.
Basic Principles of Animal Science. Reprinted.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…
The Sustainable Development Goals - conceptual approaches for science and research projects
NASA Astrophysics Data System (ADS)
Schmalzbauer, Bettina; Visbeck, Martin
2017-04-01
Challenged to provide answers to some of the world's biggest societal and environmental problems, the scientific community has consistently delivered exciting and solid information that is often used to assess the situation in many different parts of the globe to document the anthropogenic cause of environmental changes and to provide perspectives on possible development scenarios. With the adoption of the Paris climate agreement and the 2030 Agenda for Sustainable Development (and its 17 Sustainable Development Goals (SDGs)) major issues for society are now in its complexity in implementation. That are: consistency with other political processes (e.g. UNFCCC, IPBES), implementability (e.g. interactions between SDGs, pathways) and measurability (e.g. indicators). We argue that science can contribute to all these aspects by providing fundamental knowledge necessary for decision-making and practical implementation of the SDGs. Cooperation beyond disciplines and national boarders is essential, as well as the integration of concepts and methods of natural and social sciences. The outcome of two international conferences has called out four specific areas where science can make significant contributions towards SDG implementation: First, deep and integrated scientific knowledge is needed for better understanding key interactions, synergies and trade-offs embedded in the SDGs. Second, sound scientific input is needed for co-designing and executing of scientific assessments in the context of the SDG process (going beyond the good examples set by IPCC and IPBES). Third, science can support the establishment of evidence-based procedures for the development of scenarios and identify possible pathways for the world in 2030 or beyond. Fourth, progress on SDG implementation needs to be supported by a meaningful indicator framework, and this framework needs scientific input to refine indicators, and further develop and standardise methods. The main conclusion is that a comprehensive approach is needed that combines basic science and solution-oriented science, and integrates knowledge from natural science, social sciences, engineering and humanities (but also from other knowledge domains) to meet the overall objective of the 2030 Agenda. Foresight, integrated assessment and integrated modelling can be possible successful approaches for knowledge exchange, learning, and identifying possible coherent development pathways towards global sustainability.To ensure rapid and effective uptake of new research results the concepts of co-design of research projects and co-production of knowledge show promise.
Analysis of the most common concept inventories in physics: What are we assessing?
NASA Astrophysics Data System (ADS)
Laverty, James T.; Caballero, Marcos D.
2018-06-01
Assessing student learning is a cornerstone of educational practice. Standardized assessments have played a significant role in the development of instruction, curricula, and educational spaces in college physics. However, the use of these assessments to evaluate student learning is only productive if they continue to align with our learning goals. Recently, there have been calls to elevate the process of science ("scientific practices") to the same level of importance and emphasis as the concepts of physics ("core ideas" and "crosscutting concepts"). We use the recently developed Three-Dimensional Learning Assessment Protocol to investigate how well the most commonly used standardized assessments in introductory physics (i.e., concept inventories) align with this modern understanding of physics education's learning goals. We find that many of the questions on concept inventories do elicit evidence of student understanding of core ideas, but do not have the potential to elicit evidence of scientific practices or crosscutting concepts. Furthermore, we find that the individual scientific practices and crosscutting concepts that are assessed using these tools are limited to a select few. We discuss the implications that these findings have on designing and testing curricula and instruction both in the past and for the future.
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2012 CFR
2012-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2013 CFR
2013-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2011 CFR
2011-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2010 CFR
2010-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
Scientific independence: A key to credibility
Leonard F. Ruggiero
2007-01-01
Independence and objectivity are key ingredients of scientific credibility, especially in research organizations that are part of a natural resource management agency like the Forest Service. Credibility, in turn, is essential to the utility of scientific information in socio-political processes. In order to develop this thesis further, a basic understanding of Forest...
ERIC Educational Resources Information Center
Grooms, Jonathon; Enderle, Patrick; Sampson, Victor
2015-01-01
Scientific argumentation is an essential activity for the development and refinement of scientific knowledge. Additionally, fostering argumentation related to scientific concepts can help students engage in a variety of essential scientific practices and enhance their science content knowledge. With the increasing prevalence and emphasis on…
ERIC Educational Resources Information Center
Greene, Barbara A.; Lubin, Ian A.; Slater, Janis L.; Walden, Susan E.
2013-01-01
Two studies were conducted to examine content knowledge changes following 2 weeks of professional development that included scientific research with university scientists. Engaging teachers in scientific research is considered to be an effective way of encouraging knowledge of both inquiry pedagogy and content knowledge. We used concept maps with…
Does Teaching Sequence Matter When Teaching High School Chemistry with Scientific Visualisations?
ERIC Educational Resources Information Center
Fogarty, Ian; Geelan, David; Mukherjee, Michelle
2012-01-01
Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier's Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the…
Learning Gains for Core Concepts in a Serious Game on Scientific Reasoning
ERIC Educational Resources Information Center
Forsyth, Carol; Pavlik, Philip, Jr.; Graesser, Arthur C.; Cai, Zhiqiang; Germany, Mae-lynn; Millis, Keith; Dolan, Robert P.; Butler, Heather; Halpern, Diane
2012-01-01
"OperationARIES!" is an Intelligent Tutoring System that teaches scientific inquiry skills in a game-like atmosphere. Students complete three different training modules, each with natural language conversations, in order to acquire deep-level knowledge of 21 core concepts of research methodology (e.g., correlation does not mean…
The Tentativeness of Scientific Theories: Conceptions of Pre-Service Science Teachers
ERIC Educational Resources Information Center
Jain, Jasmine; Abdullah, Nabilah; Lim, Beh Kian
2014-01-01
The recognition of sound understanding of Nature of Science (NOS) in promoting scientific literacy among individuals has heightened the need to probe NOS conceptions among various groups. However, the nature of quantitative studies in gauging NOS understanding has left the understanding on few NOS aspects insufficiently informed. This paper aimed…
Thinking like a Scientist: Innateness as a Case Study
ERIC Educational Resources Information Center
Knobe, Joshua; Samuels, Richard
2013-01-01
The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding.…
Award for Distinguished Scientific Contributions: Susan E. Carey
ERIC Educational Resources Information Center
American Psychologist, 2009
2009-01-01
Susan E. Carey, winner of the 2009 Award for Distinguished Scientific Contributions, is cited for groundbreaking studies of the nature of concepts and conceptual change. Her research deepens understanding of the development of concepts, and of the belief systems in which they are embedded, over human childhood, over the history of science, and…
ERIC Educational Resources Information Center
Malleus, Elina; Kikas, Eve; Marken, Tiivi
2017-01-01
The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud…
What's Natural about Nature? Deceptive Concepts in Socio-Scientific Decision-Making
ERIC Educational Resources Information Center
Lindahl, Mats Gunnar; Linder, Cedric
2015-01-01
The conflicts between nature and nurture are brought to the fore and challenges socio-scientific decision-making in science education. The multitude of meanings of these concepts and their roles in societal discourses can impede students' development of understanding for different perspectives, e.g. on gene technology. This study problematizes…
Implementation and Evaluation of the Course Dossier Methodology
ERIC Educational Resources Information Center
Khanam, Wahidun N.; Kalman, Calvin S.
2017-01-01
It has been argued that for novice students to acquire a full understanding of scientific texts, they also need to pursue a recurrent construction of their comprehension of scientific concepts. The course dossier method has students examine concepts in multiple passes: (a) through reflective writing on text before it is considered in the…
ERIC Educational Resources Information Center
Marks, Ralf; Eilks, Ingo
2009-01-01
This paper revisits the discussion about the objectives of scientific literacy-oriented chemistry teaching, its connection to the German concept of "Allgemeinbildung", and the debate of "science through education" vs. "education through science". About 10 years ago the sociocritical and problem-oriented approach to…
Empowerment in critical care - a concept analysis.
Wåhlin, Ingrid
2017-03-01
The purpose of this paper was to analyse how the concept of empowerment is defined in the scientific literature in relation to critical care. As empowerment is a mutual process affecting all individuals involved, the perspectives of not only patients and next of kin but also staff were sought. A literature review and a concept analysis based on Walker and Avant's analysis procedure were used to identify the basic elements of empowerment in critical care. Twenty-two articles with a focus on critical care were discovered and included in the investigation. A mutual and supportive relationship, knowledge, skills, power within oneself and self-determination were found to be the common attributes of empowerment in critical care. The results could be adapted and used for all parties involved in critical care - whether patients, next of kin or staff - as these defining attributes are assumed to be universal to all three groups, even if the more specific content of each attribute varies between groups and individuals. Even if empowerment is only sparsely used in relation to critical care, it appears to be a very useful concept in this context. The benefits of improving empowerment are extensive: decreased levels of distress and strain, increased sense of coherence and control over situation, and personal and/or professional development and growth, together with increased comfort and inner satisfaction. © 2016 The Authors. Scandinavian Journal of Caring Sciences published by John Wiley & Sons Ltd on behalf of Nordic College.
Evaluating the Interdisciplinary Discoverability of Data
NASA Astrophysics Data System (ADS)
Gordon, S.; Habermann, T.
2017-12-01
Documentation needs are similar across communities. Communities tend to agree on many of the basic concepts necessary for discovery. Shared concepts such as a title or a description of the data exist in most metadata dialects. Many dialects have been designed and recommendations implemented to create metadata valuable for data discovery. These implementations can create barriers to discovering the right data. How can we ensure that the documentation we curate will be discoverable and understandable by researchers outside of our own disciplines and organizations? Since communities tend to use and understand many of the same documentation concepts, the barriers to interdisciplinary discovery are caused by the differences in the implementation. Thus tools and methods designed for the conceptual layer that evaluate records for documentation concepts, regardless of the dialect, can be effective in identifying opportunities for improvement and providing guidance. The Metadata Evaluation Web Service combined with a Jupyter Notebook interface allows a user to gather insight about a collection of records with respect to different communities' conceptual recommendations. It accomplishes this via data visualizations and provides links to implementation specific guidance on the ESIP Wiki for each recommendation applied to the collection. By utilizing these curation tools as part of an iterative process the data's impact can be increased by making it discoverable to a greater scientific and research community. Due to the conceptual focus of the methods and tools used, they can be utilized by any community or organization regardless of their documentation dialect or tools.
Science Advisory Committee on Chemicals Basic Information
The SACC will provide independent scientific advice and recommendations to the EPA on the scientific basis for risk assessments, methodologies, and pollution prevention measures and approaches for chemicals regulated under the TSCA.
78 FR 54665 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
...: Center for Scientific Review Special Emphasis Panel; Basic Biology of Neurological Disorders. Date..., Bethesda, MD 20892, 301-435- 1242, [email protected] . Name of Committee: Biological Chemistry and...
Concept of scientific wildlife conservation and its dissemination
ZHOU, Xue-Hong; WAN, Xiao-Tong; JIN, Yu-Hui; ZHANG, Wei
2016-01-01
In recent years, wildlife conservation has attracted great public attention. However, substantial distinctions can be found in the prevailing concepts of wildlife conservation, particularly with the recent notion that emphasizes animal rights. Wildlife welfare and wildlife rights are not synonymous, with welfare more compatible with the reasonable and legal utilization of wildlife. The key to scientific wildlife conservation is the appropriate awareness and appreciation of the relationship between wildlife conservation and utilization and the theoretical basis of holism. Nevertheless, rational biases regarding the public’s understanding of wildlife conservation and the spread of information via social media still exist. As such, expansion of the concept of scientific wildlife conservation requires the application of several measures. Wildlife conservation researchers should be regarded as the most important disseminators of scientifically-based information, with education in schools and universities of growing importance. Furthermore, the media should shoulder the social responsibility for the accurate dissemination of conservation information. PMID:27686785
Concept of scientific wildlife conservation and its dissemination.
Zhou, Xue-Hong; Wan, Xiao-Tong; Jin, Yu-Hui; Zhang, Wei
2016-09-18
In recent years, wildlife conservation has attracted great public attention. However, substantial distinctions can be found in the prevailing concepts of wildlife conservation, particularly with the recent notion that emphasizes animal rights. Wildlife welfare and wildlife rights are not synonymous, with welfare more compatible with the reasonable and legal utilization of wildlife. The key to scientific wildlife conservation is the appropriate awareness and appreciation of the relationship between wildlife conservation and utilization and the theoretical basis of holism. Nevertheless, rational biases regarding the public's understanding of wildlife conservation and the spread of information via social media still exist. As such, expansion of the concept of scientific wildlife conservation requires the application of several measures. Wildlife conservation researchers should be regarded as the most important disseminators of scientifically-based information, with education in schools and universities of growing importance. Furthermore, the media should shoulder the social responsibility for the accurate dissemination of conservation information.
NASA Astrophysics Data System (ADS)
Malleus, Elina; Kikas, Eve; Marken, Tiivi
2017-06-01
The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud formation and rain in kindergarten (age 5-7), second (age 8-9) and fourth (age 10-11) grade children, who were questioned on the basis of structured interview technique. In order to represent consistency in children's answers, three different types of clouds were introduced (a cirrus cloud, a cumulus cloud, and a rain cloud). Our results indicate that children in different age groups gave a similarly high amount of synthetic answers, which suggests the need for teachers to understand the formation process of different misconceptions to better support the learning process. Even children in kindergarten may have conceptions that represent different elements of scientific understanding and misconceptions cannot be considered age-specific. Synthetic understanding was also shown to be more consistent (not depending on cloud type) suggesting that gaining scientific understanding requires the reorganisation of existing concepts, that is time-consuming. Our results also show that the appearance of the cloud influences children's answers more in kindergarten where they mostly related rain cloud formation with water. An ability to create abstract connections between different concepts should also be supported at school as a part of learning new scientific information in order to better understand weather-related processes.
Marques, J Frederico
2007-12-01
The deterioration of semantic memory usually proceeds from more specific to more general superordinate categories, although rarer cases of superordinate knowledge impairment have also been reported. The nature of superordinate knowledge and the explanation of these two semantic impairments were evaluated from the analysis of superordinate and basic-level feature norms. The results show that, in comparison to basic-level concepts, superordinate concepts are not generally less informative and have similar feature distinctiveness and proportion of individual sensory features, but their features are less shared by their members. Results are in accord with explanations based on feature connection weights and/or concept confusability for the superordinate advantage cases. Results especially support an explanation for superordinate impairments in terms of higher semantic control requirements as related to features being less shared between concept members. Implications for patients with semantic impairments are also discussed.
Concept confusion and concept discernment in basic magnetism using analogical reasoning
NASA Astrophysics Data System (ADS)
Lemmer, Miriam; Nicodimus Morabe, Olebogeng
2017-07-01
Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.
A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing
NASA Astrophysics Data System (ADS)
Yang, Hsiu-Ting; Wang, Kuo-Hua
2014-08-01
Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.
77 FR 4050 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
..., Bethesda, MD 20892, (301) 435-1046, [email protected] . Name of Committee: Oncology 1--Basic...- 4467, [email protected] . Name of Committee: Oncology 1--Basic Translational Integrated Review Group...
77 FR 56216 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... personal privacy. Name of Committee: Oncology 1-Basic Translational Integrated Review Group; Cancer... 20892, 301-435-1254, [email protected]ih.gov . Name of Committee: Oncology 1-Basic Translational...
78 FR 10186 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Committee: Center for Scientific Review Special Emphasis Panel; RFA: EY 13-001 Basic Behavioral Research on... Panel; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: March 7, 2013. Time: 8...
NASA Astrophysics Data System (ADS)
Small, J. D.
2007-12-01
Basic science literacy, especially with regards to environmental change science, is often lacking in traditional K- 12 and undergraduate education. This generally leads to broad misconceptions based on distorted presentations of science in the media. Current educational research suggests that the teaching and learning of science can happen in many ways, whether it is through lectures, labs, research, inquiry or informal learning activities. This study was motivated by the desire to investigate the ability to teach environmental change science content in the non-traditional mode of an undergraduate composition and writing course. This technique offers educators another option for the integration of climate and environmental change material into their curriculum. The study incorporates the assessment and evaluation of student writing, in-class participation and student self- evaluations from "Writing about Change: Global Environmental Change and Society" a writing course that fulfils a requirement to graduate from the University of California - Santa Cruz. The course was taught Winter Quarter 2007 with a total of 28 days of instruction and the participation of 20 undergraduate students. The overarching goals of this study can be broadly classified as attitudinal, skills development and content retention. This study was designed to address three broad questions related to the above broad goals: i) Did students leave the class more comfortable and confident with environmental change issues and content? ii) Did students develop skills that are useful for reading and writing about scientific material? iii) What did students learn (retain): more general concepts or specific facts regarding climate and environmental change? Preliminary analysis and coding of student work clearly show that students were successful in developing skills for understanding and utilizing scientific information via writing and making thoughtful judgments regarding the reliability of environmental change science in various media. More detailed analysis of student work and responses are necessary in order to fully evaluate the depth and breadth of student understanding and retention of scientific content and concepts.
Quasi-isochronous muon collection channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.
2015-04-26
Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons intomore » RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for neutrino factories, and muon colliders as Higgs factories or energy-frontier discovery machines.« less
Stress and reproductive failure: past notions, present insights and future directions
Sheps, Sam; Clara Arck, Petra
2008-01-01
Problem Maternal stress perception is frequently alleged as a cause of infertility, miscarriages, late pregnancy complications or impaired fetal development. The purpose of the present review is to critically assess the biological and epidemiological evidence that considers the plausibility of a stress link to human reproductive failure. Methods All epidemiological studies published between 1980 and 2007 that tested the link between stress exposure and impaired reproductive success in humans were identified. Study outcomes were evaluated on the basis of how associations were predicted, tested and integrated with theories of etiology arising from recent scientific developments in the basic sciences. Further, published evidence arising from basic science research has been assessed in order to provide a mechanistic concept and biological evidence for the link between stress perception and reproductive success. Results Biological evidence points to an immune–endocrine disequilibrium in response to stress and describes a hierarchy of biological mediators involved in a stress trigger to reproductive failure. Epidemiological evidence presents positive correlations between various pregnancy failure outcomes with pre-conception negative life events and elevated daily urinary cortisol. Strikingly, a relatively new conceptual approach integrating the two strands of evidence suggests the programming of stress susceptibility in mother and fetus via a so-called pregnancy stress syndrome. Conclusions An increasing specificity of knowledge is available about the types and impact of biological and social pathways involved in maternal stress responses. The present evidence is sufficient to warrant a reconsideration of conventional views on the etiology of reproductive failure. Physicians and patients will benefit from the adaptation of this integrated evidence to daily clinical practice. PMID:18274890
NASA Astrophysics Data System (ADS)
Patriot, E. A.; Suhandi, A.; Chandra, D. T.
2018-05-01
The ultimate goal of learning in the curriculum 2013 is that learning must improve and balance between soft skills and hard skills of learners. In addition to the knowledge aspect, one of the other skills to be trained in the learning process using a scientific approach is communication skills. This study aims to get an overview of the implementation of interactive conceptual instruction with multi representation to optimize the achievement of students’ scientific communication skills on work and energy concept. The scientific communication skills contains the sub-skills were searching the information, scientific writing, group discussion and knowledge presentation. This study was descriptive research with observation method. Subjects in this study were 35 students of class X in Senior High School at Sumedang. The results indicate an achievement of optimal scientific communication skills. The greatest achievement of KKI based on observation is at fourth meeting of KKI-3, which is a sub-skill of resume writing of 89%. Allmost students responded positively to the implication of interactive conceptual instruction with multi representation approach. It can be concluded that the implication of interactive conceptual instruction with multi representation approach can optimize the achievement of students’ scientific communication skill on work and energy concept.