Sample records for basic taste stimuli

  1. Altered processing of rewarding and aversive basic taste stimuli in symptomatic women with anorexia nervosa and bulimia nervosa: An fMRI study.

    PubMed

    Monteleone, Alessio Maria; Monteleone, Palmiero; Esposito, Fabrizio; Prinster, Anna; Volpe, Umberto; Cantone, Elena; Pellegrino, Francesca; Canna, Antonietta; Milano, Walter; Aiello, Marco; Di Salle, Francesco; Maj, Mario

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have displayed a dysregulation in the way in which the brain processes pleasant taste stimuli in patients with anorexia nervosa (AN) and bulimia nervosa (BN). However, exactly how the brain processes disgusting basic taste stimuli has never been investigated, even though disgust plays a role in food intake modulation and AN and BN patients exhibit high disgust sensitivity. Therefore, we investigated the activation of brain areas following the administration of pleasant and aversive basic taste stimuli in symptomatic AN and BN patients compared to healthy subjects. Twenty underweight AN women, 20 symptomatic BN women and 20 healthy women underwent fMRI while tasting 0.292 M sucrose solution (sweet taste), 0.5 mM quinine hydrochloride solution (bitter taste) and water as a reference taste. In symptomatic AN and BN patients the pleasant sweet stimulus induced a higher activation in several brain areas than that induced by the aversive bitter taste. The opposite occurred in healthy controls. Moreover, compared to healthy controls, AN patients showed a decreased response to the bitter stimulus in the right amygdala and left anterior cingulate cortex, while BN patients showed a decreased response to the bitter stimulus in the right amygdala and left insula. These results show an altered processing of rewarding and aversive taste stimuli in ED patients, which may be relevant for understanding the pathophysiology of AN and BN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. When music is salty: The crossmodal associations between sound and taste.

    PubMed

    Guetta, Rachel; Loui, Psyche

    2017-01-01

    Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population.

  3. When music is salty: The crossmodal associations between sound and taste

    PubMed Central

    Guetta, Rachel; Loui, Psyche

    2017-01-01

    Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population. PMID:28355227

  4. Oleogustus: The Unique Taste of Fat.

    PubMed

    Running, Cordelia A; Craig, Bruce A; Mattes, Richard D

    2015-09-01

    Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Encapsulation of Aroma

    NASA Astrophysics Data System (ADS)

    Zuidam, Nicolaas Jan; Heinrich, Emmanuel

    Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.

  6. A High Throughput In Vivo Assay for Taste Quality and Palatability

    PubMed Central

    Palmer, R. Kyle; Long, Daniel; Brennan, Francis; Buber, Tulu; Bryant, Robert; Salemme, F. Raymond

    2013-01-01

    Taste quality and palatability are two of the most important properties measured in the evaluation of taste stimuli. Human panels can report both aspects, but are of limited experimental flexibility and throughput capacity. Relatively efficient animal models for taste evaluation have been developed, but each of them is designed to measure either taste quality or palatability as independent experimental endpoints. We present here a new apparatus and method for high throughput quantification of both taste quality and palatability using rats in an operant taste discrimination paradigm. Cohorts of four rats were trained in a modified operant chamber to sample taste stimuli by licking solutions from a 96-well plate that moved in a randomized pattern beneath the chamber floor. As a rat’s tongue entered the well it disrupted a laser beam projecting across the top of the 96-well plate, consequently producing two retractable levers that operated a pellet dispenser. The taste of sucrose was associated with food reinforcement by presses on a sucrose-designated lever, whereas the taste of water and other basic tastes were associated with the alternative lever. Each disruption of the laser was counted as a lick. Using this procedure, rats were trained to discriminate 100 mM sucrose from water, quinine, citric acid, and NaCl with 90-100% accuracy. Palatability was determined by the number of licks per trial and, due to intermediate rates of licking for water, was quantifiable along the entire spectrum of appetitiveness to aversiveness. All 96 samples were evaluated within 90 minute test sessions with no evidence of desensitization or fatigue. The technology is capable of generating multiple concentration–response functions within a single session, is suitable for in vivo primary screening of tastant libraries, and potentially can be used to evaluate stimuli for any taste system. PMID:23951319

  7. Spatiotemporal Coding of Individual Chemicals by the Gustatory System

    PubMed Central

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui

    2015-01-01

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. PMID:26338341

  8. Spatiotemporal Coding of Individual Chemicals by the Gustatory System.

    PubMed

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui; Stopfer, Mark

    2015-09-02

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. Copyright © 2015 the authors 0270-6474/15/3512309-13$15.00/0.

  9. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    PubMed

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  10. Taste Receptor Cells That Discriminate Between Bitter Stimuli

    PubMed Central

    Caicedo, Alejandro; Roper, Stephen D.

    2013-01-01

    Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863

  11. The development of basic taste sensitivity and preferences in children.

    PubMed

    Fry Vennerød, Frida Felicia; Nicklaus, Sophie; Lien, Nanna; Almli, Valérie L

    2018-08-01

    This study aims at understanding how preference and sensitivity to the basic tastes develop in the preschool years, and how the two relate to each other. To expand on the existing literature regarding taste preferences conducted in cross-sectional studies, a longitudinal design was applied with children from age four to six years old. During the springs of 2015, 2016, and 2017, 131 children born in 2011 were tested in their kindergartens. To investigate preferences for sweet, sour and bitter tastes, the children performed ranking-by-elimination procedures on fruit-flavored beverages and chocolates with three taste intensity levels. The beverages varied in either sucrose, citric acid, or the bitter component isolone. The chocolates varied in the bitter component theobromine from cocoa and sucrose content. Each year, the children also performed paired-comparison tasks opposing plain water to tastant dilutions at four concentrations. The stimuli consisted of the five basic tastes: sweet (sucrose) sour (citric acid monohydrate) umami (monosodium glutamate), salty (sodium chloride), and bitter (quinine hydrochloride dihydrate). Preference for sweetness levels increased with age, while preference for bitterness and sourness levels were stable. Concerning taste sensitivity, the children showed an increase in sensitivity for sourness and saltiness, a decrease for sweetness, and stability for umami and bitterness. A negative association was found between sweetness sensitivity and preference for sweetness. The study highlights different trajectories of sensitivity and preferences across tastes. On average, a reduction in sweetness sensitivity combined with an increase in preference for higher sweetness was observed from the age of four to six. The weak relationship between taste sensitivity and taste preference in our data suggests that taste preference development is shaped by a multitude of factors in addition to taste sensitivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  13. Cross-modal Associations between Real Tastes and Colors.

    PubMed

    Saluja, Supreet; Stevenson, Richard J

    2018-06-02

    People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.

  14. Responses of primate cortical neurons to unitary and binary taste stimuli.

    PubMed

    Miyaoka, Y; Pritchard, T C

    1996-01-01

    1. The responses of 126 neurons in primary gustatory cortices of two rhesus monkeys were recorded during sapid stimulation of the tongue with 18 taste stimuli. Ten of these stimuli were dissolved in distilled water (DW): 1.0 M sucrose (Suc), 0.1 M and 0.03 M sodium chloride (NaCl), 0.003 M hydrochloric acid (HCl), 0.001 M quinine hydrochloride (QHCl), 0.03 M monosodium glutamate (MSG), 0.03 M polycose, 0.3 M glycine, 0.1 M proline, and 0.1 M malic acid. Seven other stimuli were dissolved in 0.03 M MSG; the last stimulus was a mixture of 1.0 M Suc and 0.03 M NaCl. 2. The average spontaneous rate (2.2 +/- 0.2 spikes/s, mean +/- SE) and response to DW (2.5 +/- 0.2) of these 126 neurons was low but within the range previously reported for neurons in primate taste cortex. Suc was the most effective stimulus for 24.1% of the neurons tested followed by NaCl (15.7%), QHCl (14.8%), HCl (11.1%), MSG (10.2%), and other miscellaneous unitary gustatory stimuli (8.3%). Binary taste mixtures were the most effective stimuli for 15.7% of the sample. The net responses (corrected for DW, in spikes/s) for Suc-best (3.3), NaCl-best (4.3), HCl-best (3.4), QHCl-best (2.3), and MSG-best (4.1) were sluggish, but comparable with that reported previously. 3. The response breadth of the 82 neurons that responded best to either Suc, NaCl, HCl, or QHCl measured with the entropy coefficient indicated a moderate response breadth for these neurons (mean = 0.79; range = 0.30-0.98). According to the response criteria adopted in this experiment (water response +/- 1.96 SD), however, 81 of these 82 neurons (98.1%) responded to only one or two of the four basic taste stimuli. The disparity between the entropy- and criterion-based measures of response derive from the nature of the two statistics. Adjustments that would make the entropy statistic less inclusive and the definition of a response according to statistical criteria less exclusive would increase their concordance. 4. Three multivariate statistics (cluster, principal axis factor, and multidimensional analysis) were used to analyze the data. Cluster analysis enabled us to divide the 82 taste neurons into groups on the basis of response similarity. Each of the four largest groups was dominated by neurons that responded best to one of the four basic taste stimuli: Suc, NaCl, QHCl, and HCl (ranked in descending order); the fifth largest cluster contained neurons that responded best to MSG. Principal axis factor analysis demonstrated that 80.8% of the total variance could be accounted for by three factors. Neurons responding best to Suc, NaCl, and QHCl each were closely associated with one of those three factors, but the loadings of the HCl-best neurons were evenly distributed across all three factors. The communality coefficient of these three factors was > 80% for the Suc-, NaCl-, HCl-, and QHCl-best neurons; the MSG-best neurons, by comparison, had very few high loadings on any of these three factors and a correspondingly low communality coefficient of 40.4%, a difference that was statistically significant from the other four groups. Thus the three factors related to Suc-, NaCl-, HCl-, and QHCl-best neurons are not relevant to MSG-best neurons. We used multidimensional analysis to arrange the neurons that responded best to Suc, NaCl, HCl, QHCl, and MSG into five loosely arranged and partially overlapping clusters. A multidimensional space based on stimulus similarity showed that MSG was as different from the four basic taste stimuli as they were from one another. 5. Mixture suppression, a common observation in human psychophysical experiments, was examined at the neurophysiological level by including binary tastants in the stimulus battery. The average response of 19 Suc-best neurons to 1.0 M Suc (4.1 spikes/s) decreased to near 0 when the solvent was changed from DW to either 0.03 M MSG or 0.03 M NaCl. Similar decrements were observed in NaCl- and MSG-best neurons tested with Suc/NaCl mixtures.

  15. Rewiring the taste system.

    PubMed

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  16. Rewiring the Taste System

    PubMed Central

    Lee, Hojoon; Macpherson, Lindsey J.; Parada, Camilo A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2018-01-01

    In mammals, taste buds typically contain 50-100 tightly packed taste receptor cells (TRCs) representing all five basic qualities: sweet, sour, bitter, salty and umami1,2. Notably, mature taste cells have life spans of only 5-20 days, and consequently, are constantly replenished by differentiation of taste stem cells3. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (i.e. ensuring that a labeled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, etc.), we examined how new connections are specified to retain fidelity of signal transmission. Our results show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (Sema3A and Sema7A)4-6. Here, we demonstrate that targeted expression of Sema3A or Sema7A in different classes of TRCs produce peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered animals whereby bitter neurons now respond to sweet tastants, sweet neurons respond to bitter, or with sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labeled-line sensory circuit preserves signaling integrity despite rapid and stochastic turnover of receptor cells. PMID:28792937

  17. Taste intensity and hedonic responses to simple beverages in gastrointestinal cancer patients.

    PubMed

    Bossola, Maurizio; Cadoni, Gabriella; Bellantone, Rocco; Carriero, Concetta; Carriero, Elena; Ottaviani, Fabrizio; Borzomati, Domenico; Tortorelli, Antonio; Doglietto, Giovan Battista

    2007-11-01

    Changes in the taste of food have been implicated as a potential cause of reduced dietary intake among cancer patients. However, data on intensity and hedonic responses to the four basic tastes in cancer are scanty and contradictory. The present study aimed at evaluating taste intensity and hedonic responses to simple beverages in 47 anorectic patients affected by gastrointestinal cancer and in 55 healthy subjects. Five suprathreshold concentrations of each of the four test substances (sucrose in black current drinks, citric acid in lemonade, NaCl in unsalted tomato juice, and urea in tonic water) were used. Patients were invited to express a judgment of intensity and pleasantness ranging from 0 to 10. Mean intensity scores directly correlated with concentrations of sour, salty, bitter, and sweet stimuli, in both normals and those with cancer. Intensity judgments were higher in cancer patients with respect to sweet (for median and high concentrations, P<0.05), salty (for all concentrations, P<0.05), and bitter tastes (for median concentration, P<0.01). Hedonic function increased with the increase of the stimuli only for the sweet taste. A negative linear correlation was found between sour, bitter, and salty concentrations and hedonic score. Both in cancer patients and in healthy subjects, hedonic judgments increased with the increase of the stimulus for the sweet taste (r=0.978 and r=0.985, P=0.004 and P=0.002, respectively), and decreased for the salty (r=-0.827 and r=-0.884, P=0.084 and P=0.047, respectively) and bitter tastes (r=-0.990 and r=-0.962, P=0.009 and P=0.001, respectively). For the sour taste, the hedonic scores remained stable with the increase of the stimulus in noncancer controls (r=-0.785, P=0.115) and decreased in cancer patients (r=-0.996, P=0.0001). The hedonic scores for the sweet taste and the bitter taste were similar in cancer patients and healthy subjects, and these scores were significantly higher in cancer patients than in healthy subjects for most of the concentrations of the salty taste and all the concentrations of the sour taste. The present study suggests that cancer patients, compared to healthy individuals, have a normal sensitivity, a normal liking for pleasant stimuli, and a decreased dislike for unpleasant stimuli. Moreover, when compared to controls, they show higher hedonic scores for middle and high concentrations of the salty taste and for all concentrations of the sour taste. Further studies are needed to evaluate whether these changes observed in cancer patients translate into any alteration in dietary behavior and/or food preferences.

  18. Barium versus nonbarium stimuli: differences in taste intensity, chemesthesis, and swallowing behavior in healthy adult women.

    PubMed

    Nagy, Ahmed; Steele, Catriona M; Pelletier, Cathy A

    2014-06-01

    The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status (supertasters; nontasters). Perceived taste intensity and chemesthetic properties (fizziness; burning-stinging) were rated for 7 tastant solutions (each prepared with and without barium) using the general Labeled Magnitude Scale. Tongue-palate pressures and submental surface electromyography (sEMG) were simultaneously measured during swallowing of these same randomized liquids. Path analysis differentiated the effects of stimulus, genetic taste status, age, barium condition, taste intensity, and an effortful saliva swallow strength covariate on swallowing. Barium stimuli were rated as having reduced taste intensity compared with nonbarium stimuli. Barium also dampened fizziness but did not influence burning-stinging sensation. The amplitudes of tongue-palate pressure or submental sEMG did not differ when swallowing barium versus nonbarium stimuli. Despite impacting taste intensity, the addition of barium to liquid stimuli does not appear to alter behavioral parameters of swallowing. Barium solutions can be considered to elicit behaviors that are similar to those used with nonbarium liquids outside the assessment situation.

  19. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    PubMed

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  20. Influence of the perceived taste intensity of chemesthetic stimuli on swallowing parameters given age and genetic taste differences in healthy adult women.

    PubMed

    Pelletier, Cathy A; Steele, Catriona M

    2014-02-01

    This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled Magnitude Scale ratings of taste intensity were collected for deionized water; carbonated water; 2.7% w/v citric acid; and diluted ethanol. These stimuli were swallowed, with measurement of tongue-palate pressures and submental sEMG. Path analysis differentiated stimulus, genetic taste status, age, and perceived taste intensity effects on swallowing. Signal amplitude during effortful saliva swallowing served as a covariate representing participant strength. Significant differences (p < .05) in taste intensity were seen across liquids: citric acid > ethanol > carbonated water > water. Supertasters perceived greater taste intensity than did nontasters. Lingua-palatal pressure and sEMG amplitudes were correlated with the strength covariate. Anterior palate pressures and sEMG amplitudes were significantly higher for the citric acid stimulus. Perceived taste intensity was a significant mediator of stimulus differences. These data provide confirmatory evidence that high-intensity sour stimuli do influence swallowing behaviors. In addition, taste genetics influence the perception of taste intensity for stimuli with chemesthetic properties, which modulates behavioral responses.

  1. Barium versus Nonbarium Stimuli: Differences in Taste Intensity, Chemesthesis, and Swallowing Behavior in Healthy Adult Women

    ERIC Educational Resources Information Center

    Nagy, Ahmed; Steele, Catriona M.; Pelletier, Cathy A.

    2014-01-01

    Purpose: The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Method: Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status…

  2. A high-throughput method to measure NaCl and acid taste thresholds in mice.

    PubMed

    Ishiwatari, Yutaka; Bachmanov, Alexander A

    2009-05-01

    To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.

  3. Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain

    PubMed Central

    Wilson, David M.; Boughter, John D.; Lemon, Christian H.

    2012-01-01

    A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505

  4. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  5. Investigating the Predictive Value of Functional MRI to Appetitive and Aversive Stimuli: A Pattern Classification Approach.

    PubMed

    McCabe, Ciara; Rocha-Rego, Vanessa

    2016-01-01

    Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder.

  6. Breadth of tuning in taste afferent neurons varies with stimulus strength

    PubMed Central

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2015-01-01

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. PMID:26373451

  7. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  8. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.

  9. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747

  10. Participants with pharmacologically impaired taste function seek out more intense, higher calorie stimuli.

    PubMed

    Noel, Corinna A; Sugrue, Meaghan; Dando, Robin

    2017-10-01

    Research suggests a weaker sense of taste in people with obesity, with the assumption that a debilitated taste response increases the desire for more intensely tasting stimuli to compensate for decreased taste input. However, empirical testing of this supposition remains largely absent. In a randomized, repeated measures design, 51 healthy subjects were treated with varying concentrations of a tea containing Gymnema sylvestre (GS), to temporarily and selectively diminish sweet taste perception, or a control tea. Following treatment in the four testing sessions, taste intensity ratings for various sweet stimuli were captured on the generalized Labeled Magnitude Scale (gLMS), liking for real foods assessed on the hedonic gLMS, and optimal level of sweetness quantified via an ad-libitum mixing task. Data were analyzed with mixed models assessing both treatment condition and each subject's resultant sweet response with various taste-related outcomes, controlling for covariates. GS treatment diminished sweet intensity perception (p < 0.001), reduced liking for sweet foods (p < 0.001), and increased the desired sucrose content of these foods (p < 0.001). Regression modeling revealed a 1% reduction in sweet taste response was associated with a 0.40 g/L increase in optimal concentration of sucrose (p < 0.001). Our results show that an attenuation in the perceived taste intensity of sweeteners correlates with shifted preference and altered hedonic response to select sweet foods. This suggests that those with a diminished sense of taste may desire more intense stimuli to attain a satisfactory level of reward, potentially influencing eating habits to compensate for a lower gustatory input. Copyright © 2017. Published by Elsevier Ltd.

  11. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional 5-HT3 receptors that play a significant role in the neurotransmission of taste information from taste buds to nerves. In addition, we show that the anesthetic pentobarbital, widely used in taste nerve recordings, blocks 5-HT3 signaling. Therefore, many conclusions drawn from those data need to be reexamined in light of this anesthetic effect. PMID:26631478

  12. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  13. Effect of Magnitude Estimation of Pleasantness and Intensity on fMRI Activation to Taste

    PubMed Central

    Cerf-Ducastel, B.; Haase, L.; Murphy, C.

    2012-01-01

    The goal of the present study was to investigate whether the psychophysical evaluation of taste stimuli using magnitude estimation influences the pattern of cortical activation observed with neuroimaging. That is, whether different brain areas are involved in the magnitude estimation of pleasantness relative to the magnitude estimation of intensity. fMRI was utilized to examine the patterns of cortical activation involved in magnitude estimation of pleasantness and intensity during hunger in response to taste stimuli. During scanning, subjects were administered taste stimuli orally and were asked to evaluate the perceived pleasantness or intensity using the general Labeled Magnitude Scale (Green 1996, Bartoshuk et al. 2004). Image analysis was conducted using AFNI. Magnitude estimation of intensity and pleasantness shared common activations in the insula, rolandic operculum, and the medio dorsal nucleus of the thalamus. Globally, magnitude estimation of pleasantness produced significantly more activation than magnitude estimation of intensity. Areas differentially activated during magnitude estimation of pleasantness versus intensity included, e.g., the insula, the anterior cingulate gyrus, and putamen; suggesting that different brain areas were recruited when subjects made magnitude estimates of intensity and pleasantness. These findings demonstrate significant differences in brain activation during magnitude estimation of intensity and pleasantness to taste stimuli. An appreciation for the complexity of brain response to taste stimuli may facilitate a clearer understanding of the neural mechanisms underlying eating behavior and over consumption. PMID:23227271

  14. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.

    PubMed

    Geran, Laura C; Travers, Susan P

    2006-11-01

    Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.

  15. Taste Receptor Signaling-- From Tongues to Lungs

    PubMed Central

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  16. Cracking Taste Codes by Tapping into Sensory Neuron Impulse Traffic

    PubMed Central

    Frank, Marion E.; Lundy, Robert F.; Contreras, Robert J.

    2008-01-01

    Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from “taste” nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na+-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well-characterized. Specialists are associated with species’ nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor: T1R, and N specialists, associated with the epithelial sodium channel: ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific thanT1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately “crack taste codes.” PMID:18824076

  17. A test for measuring gustatory function.

    PubMed

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A; Sobel, Marc; Sayed, Nabil

    2008-08-01

    The purpose of this study was to determine the usefulness of edible taste strips for measuring human gustatory function. The physical properties of edible taste strips were examined to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined to determine whether or not taste strips could detect recognition thresholds that were equal to or better than those obtained from aqueous tests. Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 cm2 taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared with results that were obtained from a standard "sip and spit" recognition threshold test. Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to 5% of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared with an aqueous taste test. Edible taste strips are a highly sensitive method for examining taste recognition thresholds in humans. This new means of presenting taste stimuli should have widespread applications for examining human taste function in the laboratory, in the clinic, or at remote locations.

  18. A comparison of English and Japanese taste languages: taste descriptive methodology, codability and the umami taste.

    PubMed

    O'Mahony, M; Ishii, R

    1986-05-01

    Everyday taste descriptions for a range of stimuli were obtained from selected groups of American and Japanese subjects, using a variety of stimuli, stimulus presentation procedures and response conditions. In English there was a tendency to use a quadrapartite classification system: 'sweet', 'sour', 'salty' and 'bitter'. The Japanese had a different strategy, adding a fifth label: 'Ajinomoto', referring to the taste of monosodium glutamate. This label was generally replaced by umami--the scientific term--by Japanese who were workers or trained tasters involved with glutamate manufacture. Cultural differences in taste language have consequences for taste psychophysicists who impose a quadrapartite restriction on allowable taste descriptions. Stimulus presentation by filter-paper or aqueous solution elicited the same response trends. Language codability was only an indicator of degree of taste mixedness/singularity if used statistically with samples of sufficient size; it had little value as an indicator for individual subjects.

  19. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    PubMed

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  20. Investigating the Predictive Value of Functional MRI to Appetitive and Aversive Stimuli: A Pattern Classification Approach

    PubMed Central

    McCabe, Ciara; Rocha-Rego, Vanessa

    2016-01-01

    Background Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. Method 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. Results The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Conclusions Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder. PMID:27870866

  1. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  2. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey.

    PubMed

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-02-18

    Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.

  3. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  4. TRPs in Taste and Chemesthesis

    PubMed Central

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  5. TRPs in taste and chemesthesis.

    PubMed

    Roper, Stephen D

    2014-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.

  6. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  7. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  8. Role of the ectonucleotidase NTPDase2 in taste bud function.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  9. Difference in receptive field features of taste neurons in rat granular and dysgranular insular cortices.

    PubMed

    Ogawa, H; Murayama, N; Hasegawa, K

    1992-01-01

    Receptive fields (RFs) of 59 cortical taste neurons (35 in the granular insular area, area GI, 21 in the dysgranular insular area, area DI, and 3 in the agranular insular area, area AI) were identified in the oral cavity of the rat. The fraction of the neurons with RFs in the anterior oral cavity only was significantly larger in area GI (74.3%) than in area DI (42.9%). On the other hand, the fraction of neurons with RFs in both the anterior and posterior oral cavity was larger in area DI (42.9%) than in area GI (11.4%). On the whole, it is suggested that area GI is involved in discrimination of several taste stimuli in the oral cavity, whereas in area DI taste information originating from various regions of the oral cavity is integrated. When neurons were classified according to the best stimulus which most excited the neuron among the four basic tastes, different categories of taste neurons had RFs in different parts of the oral cavity. It is suggested that, in either taste area, different categories of taste neurons are involved in different sorts of taste coding. The majority of neurons in both areas had bilateral RFs. In area GI, neurons with RFs on single subpopulations of taste buds were significantly more numerous at the rostral region of the cortex than at the caudal region. There was no such relation between RF types and cortical localization in area DI. Otherwise, topographic representation of the oral cavity by taste neurons on the cortical surface was not obvious. RF features of taste neurons did not differ across layers in either cortical area.

  10. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  11. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  12. Autonomic nervous system responses to sweet taste: evidence for habituation rather than pleasure.

    PubMed

    Leterme, A; Brun, L; Dittmar, A; Robin, O

    2008-03-18

    Previous recordings of the variations of autonomic nervous system (ANS) parameters associated with each primary taste (sweet, salty, sour and bitter) showed that sweet taste induced very weak ANS responses, in the same range or weaker than responses evoked by mineral water. The purpose of this study was then to determine whether this weak ANS activation reflects the pleasant hedonic valence of sweet or the habituation of the organism to this innate-accepted taste. Twenty healthy volunteer subjects (8 males and 12 females, mean age=22.85 years) participated in the experiment. Taste stimuli were a solution of 0.3 M sucrose and three sweet flavours (orange juice, coke, lemonade) as "pleasant" sweet stimuli, and a solution of 0.15 M NaCl as an "unpleasant" stimulus. "Evian" mineral water served as the diluent and as a neutral stimulus. Throughout the test, five ANS parameters (skin potential and skin resistance, skin blood flow and skin temperature, instantaneous heart rate) were simultaneously and continuously recorded. After they had tasted each solution, subjects filled out a questionnaire in which they had to evaluate the hedonic dimension and the sweet intensity of each gustative stimulus. The lack of correlation between the mean hedonic scores associated with the four sweet stimuli and the mean values of the autonomic parameter variations tends to indicate that the weak ANS responses induced by the sweet gustative stimuli rather reflect the habituation of the organism to sweet taste than a gradation in sensory pleasure.

  13. Peptide regulators of peripheral taste function.

    PubMed

    Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D

    2013-03-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Smell differential reactivity, but not taste differential reactivity, is related to food neophobia in toddlers.

    PubMed

    Monnery-Patris, Sandrine; Wagner, Sandra; Rigal, Natalie; Schwartz, Camille; Chabanet, Claire; Issanchou, Sylvie; Nicklaus, Sophie

    2015-12-01

    Previous research has identified relationships between chemosensory reactivity and food neophobia in children. However, most studies have investigated this relationship using declarative data and without separately analysing smell and taste reactivity. Our first objective was to assess the relationships between smell and taste differential reactivity in toddlers (i.e. reactivity towards several stimuli), using experimental behavioural measurements. The second objective was to determine the relationships between smell (or taste) differential reactivity and food neophobia in toddlers, with the hypothesis that the more responsive a toddler was across food odours or tastes, the more neophobic s/he would be. An additional objective was to determine whether the potential relationships between smell (or taste) differential reactivity and food neophobia differ according to gender. One hundred and twenty-three toddlers aged from 20 to 22 months from the Opaline birth cohort (Observatory of Food Preferences in Infants and Children) were involved. A questionnaire was used to assess child's food neophobia. Toddlers' differential reactivity for smell (and for taste) was defined as the variability of behavioural responses over 8 odorants, and over the five basic tastes. Smell and taste differential reactivities were not correlated. Food neophobia scores were modestly but significantly positively correlated with smell differential reactivity but not with taste differential reactivity. When gender was considered, smell reactivity and neophobia were correlated only among boys. This indicates the need to study smell and taste reactivity separately to determine their associations with eating behaviours. This suggests that the rejection of novel foods in neophobic boys could be partly due to food odour. This finding is new and clearly requires further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Discrimination of taste qualities among mouse fungiform taste bud cells.

    PubMed

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  16. Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness

    PubMed Central

    Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle

    2010-01-01

    Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076

  17. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    PubMed

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli

    PubMed Central

    DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258

  19. [Molecular receptors of taste agents].

    PubMed

    Giliarov, D A; Sakharova, T A; Buzdin, A A

    2009-01-01

    All representatives of higher eukaryotes can probably differentially perceive nutrients and poisonous substances. Molecular mechanisms of transduction of taste information have been best studied for mammals and for the fruit fly Drosophila. Here, we consider receptor mechanisms and conjugated primary signal processes of stimulation of taste receptor cells by stimuli of various taste modalities.

  20. Recognition by Rats of Binary Taste Solutions and Their Components.

    PubMed

    Katagawa, Yoshihisa; Yasuo, Toshiaki; Suwabe, Takeshi; Yamamura, Tomoki; Gen, Keika; Sako, Noritaka

    2016-09-13

    This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.

  2. Improvement in taste sensitivity following pulmonary rehabilitation in patients with chronic obstructive pulmonary disease.

    PubMed

    Ito, Kumiko; Kohzuki, Masahiro; Takahashi, Tamao; Ebihara, Satoru

    2014-10-01

    Weight loss is common in patients with chronic obstructive pulmonary disease (COPD). Anorexia, postulated to be associated with alteration in taste sensitivity, may contribute to weight loss in these patients. Pulmonary rehabilitation is known to lead to improved exercise performance in patients with COPD. However, the relationship between pulmonary rehabilitation and taste sensitivity has not been evaluated. The objective of this study was to compare taste sensitivity before and after pulmonary rehabilitation in patients with COPD. Single-group intervention trial. Twenty-two patients with COPD. The six-min walk distance (6MWD), COPD assessment test, body mass index, fat mass index, fat-free mass index and taste test were conducted before and after 4-week pulmonary rehabilitation. Taste sensitivity was evaluated using the filter-paper disc method for 4 taste stimuli. Taste stimuli were salty, sweet, sour, and bitter tastes. Taste sensitivity was evaluated before and after pulmonary rehabilitation using the taste recognition threshold. Following pulmonary rehabilitation, the 6MWD, COPD assessment test, salty recognition threshold, sweet recognition threshold and bitter recognition threshold improved significantly, whereas there were no significant improvements in body mass index, fat mass index, fat-free mass index or sour recognition threshold. Pulmonary rehabilitation may improve taste sensitivity in patients with COPD.

  3. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters

    PubMed Central

    Thompson, John A.

    2016-01-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. PMID:26762887

  4. Dietary customs and food availability shape the preferences for basic tastes: A cross-cultural study among Polish, Tsimane' and Hadza societies.

    PubMed

    Sorokowska, Agnieszka; Pellegrino, Robert; Butovskaya, Marina; Marczak, Michalina; Niemczyk, Agnieszka; Huanca, Tomas; Sorokowski, Piotr

    2017-09-01

    Biological significance of food components suggests that preferences for basic tastes should be similar across cultures. On the other hand, cultural factors play an important role in diet and can consequently influence individual preference for food. To date, very few studies have compared basic tastes preferences among populations of very diverse environmental and cultural conditions, and research rather did not involve traditional populations for whom the biological significance of different food components might be the most pronounced. Hence, our study focused on basic taste preferences in three populations, covering a broad difference in diet due to environmental and cultural conditions, market availability, dietary habits and food acquirement: 1) a modern society (Poles, n = 200), 2) forager-horticulturalists from Amazon/Bolivia (Tsimane', n = 138), and 3) hunter-gatherers from Tanzania (Hadza, n = 85). The preferences for basic tastes were measured with sprays containing supra-threshold levels of sweet, sour, bitter, salty, and umami taste solutions. We observed several interesting differences between participating societies. We found that Tsimane' and Polish participants liked the sweet taste more than other tastes, while Hadza participants liked salty and sour tastes more than the remaining tastes. Further, Polish people found bitter taste particularly aversive, which was not observed in the traditional societies. Interestingly, no cross-cultural differences were observed for relative liking of umami taste - it was rated closely to neutral by members of all participating societies. Additionally, Hadza showed a pattern to like basic tastes that are more common to their current diet than societies with access to different food sources. These findings demonstrate the impact of diet and market availability on preference for basic tastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    PubMed

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  6. Transgenic labeling of higher order neuronal circuits linked to phospholipase C-β2-expressing taste bud cells in medaka fish.

    PubMed

    Ieki, Takashi; Okada, Shinji; Aihara, Yoshiko; Ohmoto, Makoto; Abe, Keiko; Yasuoka, Akihito; Misaka, Takumi

    2013-06-01

    The sense of taste plays a pivotal role in the food-selecting behaviors of vertebrates. We have shown that the fish ortholog of the phospholipase C gene (plc-β2) is expressed in a subpopulation of taste bud cells that transmit taste stimuli to the central nervous system to evoke favorable and aversive behaviors. We generated transgenic medaka expressing wheat germ agglutinin (WGA) under the control of a regulatory region of the medaka plc-β2 gene to analyze the neuronal circuit connected to these sensory cells. Immunohistochemical analysis of the transgenic fish 12 days post fertilization revealed that the WGA protein was transferred to cranial sensory ganglia and several nuclei in the hindbrain. WGA signals were also detected in the secondary gustatory nucleus in the hindbrain of 3-month-old transgenic fish. WGA signals were observed in several diencephalic and telencephalic regions in 9-month-old transgenic fish. The age-dependent increase in the labeled brain regions strongly suggests that labeling occurred at taste bud cells and progressively extended to cranial nerves and neurons in the central nervous system. These data are the first to demonstrate the tracing of higher order gustatory neuronal circuitry that is associated with a specific subpopulation of taste bud cells. These results provide insight into the basic neuronal architecture of gustatory information processing that is common among vertebrates. Copyright © 2012 Wiley Periodicals, Inc.

  7. Gustatory sensation of (L)- and (D)-amino acids in humans.

    PubMed

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  8. Effect of negative emotions evoked by light, noise and taste on trigeminal thermal sensitivity.

    PubMed

    Yang, Guangju; Baad-Hansen, Lene; Wang, Kelun; Xie, Qiu-Fei; Svensson, Peter

    2014-11-07

    Patients with migraine often have impaired somatosensory function and experience headache attacks triggered by exogenous stimulus, such as light, sound or taste. This study aimed to assess the influence of three controlled conditioning stimuli (visual, auditory and gustatory stimuli and combined stimuli) on affective state and thermal sensitivity in healthy human participants. All participants attended four experimental sessions with visual, auditory and gustatory conditioning stimuli and combination of all stimuli, in a randomized sequence. In each session, the somatosensory sensitivity was tested in the perioral region with use of thermal stimuli with and without the conditioning stimuli. Positive and Negative Affect States (PANAS) were assessed before and after the tests. Subject based ratings of the conditioning and test stimuli in addition to skin temperature and heart rate as indicators of arousal responses were collected in real time during the tests. The three conditioning stimuli all induced significant increases in negative PANAS scores (paired t-test, P ≤0.016). Compared with baseline, the increases were in a near dose-dependent manner during visual and auditory conditioning stimulation. No significant effects of any single conditioning stimuli were observed on trigeminal thermal sensitivity (P ≥0.051) or arousal parameters (P ≥0.057). The effects of combined conditioning stimuli on subjective ratings (P ≤0.038) and negative affect (P = 0.011) were stronger than those of single stimuli. All three conditioning stimuli provided a simple way to evoke a negative affective state without physical arousal or influence on trigeminal thermal sensitivity. Multisensory conditioning had stronger effects but also failed to modulate thermal sensitivity, suggesting that so-called exogenous trigger stimuli e.g. bright light, noise, unpleasant taste in patients with migraine may require a predisposed or sensitized nervous system.

  9. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters.

    PubMed

    Stratford, Jennifer M; Thompson, John A

    2016-03-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Stimulus-Dependent Effects of Temperature on Bitter Taste in Humans

    PubMed Central

    Andrew, Kendra

    2017-01-01

    This study investigated the effects of temperature on bitter taste in humans. The experiments were conducted within the context of current understanding of the neurobiology of bitter taste and recent evidence of stimulus-dependent effects of temperature on sweet taste. In the first experiment, the bitterness of caffeine and quinine sampled with the tongue tip was assessed at 4 different temperatures (10°, 21°, 30°, and 37 °C) following pre-exposure to the same solution or to water for 0, 3, or 10 s. The results showed that initial bitterness (0-s pre-exposure) followed an inverted U-shaped function of temperature for both stimuli, but the differences across temperature were statistically significant only for quinine. Conversely, temperature significantly affected adaptation to the bitterness of quinine but not caffeine. A second experiment used the same procedure to test 2 additional stimuli, naringin and denatonium benzoate. Temperature significantly affected the initial bitterness of both stimuli but had no effect on adaptation to either stimulus. These results confirm that like sweet taste, temperature affects bitter taste sensitivity and adaptation in stimulus-dependent ways. However, the thermal effect on quinine adaptation, which increased with warming, was opposite to what had been found previously for adaptation to sweetness. The implications of these results are discussed in relation to findings from prior studies of temperature and bitter taste in humans and the possible neurobiological mechanisms of gustatory thermal sensitivity. PMID:28119357

  11. Metallic taste from electrical and chemical stimulation.

    PubMed

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  12. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli

    PubMed Central

    DeSimone, John A.; Ren, ZuoJun; Phan, Tam-Hao T.; Heck, Gerard L.; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) Ca2+ concentration ([Ca2+]i) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO2, and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca2+-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca2+]i attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na+ conductance. A decrease in TRC [Ca2+]i enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na+ conductance but did not affect CT responses to KCl or NH4Cl. An increase in TRC [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H+]i and [Ca2+]i was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release. PMID:22956787

  13. International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family

    PubMed Central

    Wu, Long-Jun; Sweet, Tara-Beth

    2010-01-01

    Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca2+ and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels. PMID:20716668

  14. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Vigues, S.; Hobbs, J.

    2005-01-01

    The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less

  15. Gli3 is a negative regulator of Tas1r3-expressing taste cells

    PubMed Central

    Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua

    2018-01-01

    Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007

  16. Influence of the Perceived Taste Intensity of Chemesthetic Stimuli on Swallowing Parameters Given Age and Genetic Taste Differences in Healthy Adult Women

    ERIC Educational Resources Information Center

    Pelletier, Cathy A.; Steele, Catriona M.

    2014-01-01

    Purpose: This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Method: Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled…

  17. Effects of pramipexole on the processing of rewarding and aversive taste stimuli.

    PubMed

    McCabe, Ciara; Harwood, James; Brouwer, Sietske; Harmer, Catherine J; Cowen, Philip J

    2013-07-01

    Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.

  18. Sip and spit or sip and swallow: Choice of method differentially alters taste intensity estimates across stimuli.

    PubMed

    Running, Cordelia A; Hayes, John E

    2017-11-01

    While the myth of the tongue map has been consistently and repeatedly debunked in controlled studies, evidence for regional differences in suprathreshold intensity has been noted by multiple research groups. Given differences in physiology between the anterior and posterior tongue (fungiform versus foliate and circumvallate papillae) and differences in total area stimulated (anterior only versus whole tongue, pharynx, and epiglottis), small methodological changes (sip and spit versus sip and swallow) have the potential to substantially influence data. We hypothesized instructing participants to swallow solutions would result in greater intensity ratings for taste versus expectorating the solutions, particularly for umami and bitter, as these qualities were previously found to elicit regional differences in perceived intensity. Two experiments were conducted: one with model taste solutions [sucrose (sweet), a monosodium glutamate/inosine monophosphate (MSG/IMP) mixture (savory/umami), isolone (a bitter hop extract), and quinine HCl (bitter)], and a second with actual food products (grapefruit juice, salty vegetable stock, savory vegetable stock, iced coffee, and a green tea sweetened with acesulfame-potassium and sucralose). In a counterbalanced crossover design, participants (n=66 in experiment 1 and 64 in experiment 2) rated the stimuli for taste intensities both when swallowing and when spitting out the stimuli. Results suggest swallowing may lead to greater reported bitterness versus spitting out the stimulus, but that this effect was not consistent across all samples. Thus, explicit instructions to spit out or swallow samples should be given to participants in studies investigating differences in taste intensities, as greater intensity may sometimes, but not always, be observed when swallowing various taste stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of Age and Removable Artificial Dentition on Taste

    DTIC Science & Technology

    1990-08-01

    gland activity, to decline with age. Similarly, Cohen the taste intensity spectrum and provide sensitivity to weak gustatory stimuli was and Gitman ...Field J, I. Cohen T, Gitman L. Oral complaints and taste AMWQr ed Sci 1976;272:285-99. ed. Handbook of physiology, selection I, perception in the

  20. Sensory receptors of the larynx.

    PubMed

    Bradley, R M

    2000-03-06

    The larynx is a highly reflexogenic area, and stimulation with mechanical and chemical stimuli results in a number of protective reflexes. Investigators have used anatomical, behavioral, and neurophysiological techniques to examine the receptors responsible for initiating these reflex responses. Histologic examination has revealed the presence of free nerve endings, Merkel cells, Meissner corpuscles, and taste buds. Mechanoreceptors have been classified in several different ways and are located either in the superficial mucosa or in muscles and laryngeal joints. Recordings from afferent fibers innervating laryngeal mechanoreceptors have revealed that some of them are spontaneously active whereas others are silent until stimulated. Laryngeal mechanoreceptors respond to stimulation with either a rapidly adapting or a slowly adapting response pattern. Often the mechanoreceptors respond to respiratory movement of the larynx, giving bursts of action potentials during inspiration. A large number of taste buds that are anatomically similar to lingual taste buds populates the laryngeal surface of the epiglottis. Taste buds of the larynx respond to a number of chemical stimuli and to water. They do not respond to NaCl solutions close to physiological concentrations (0.154 M) but do respond at both a lower and higher concentration. When water is the solvent for the chemical stimuli, most chemicals initiate a response in laryngeal taste buds. However, when 0.154 M saline is used as a solvent, chemicals that taste bitter or sweet when applied to the tongue are ineffective stimuli. Taste buds of the larynx tend to be stimulated by the pH and tonicity of the stimulating solution and not by the gustatory properties. These results reveal a fundamental difference between the chemoreceptors of the oral cavity and larynx and result in the conclusion that chemoreceptors of the larynx do not play a role in gustation but are adapted to detect chemicals that are not saline-like in composition.

  1. Modulation of taste responsiveness by the satiation hormone peptide YY

    PubMed Central

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  2. Dietary fat induces sustained reward response in the human brain without primary taste cortex discrimination

    PubMed Central

    Tzieropoulos, Hélène; Rytz, Andreas; Hudry, Julie; le Coutre, Johannes

    2013-01-01

    To disentangle taste from reward responses in the human gustatory cortex, we combined high density electro-encephalography with a gustometer delivering tastant puffs to the tip of the tongue. Stimuli were pure tastants (salt solutions at two concentrations), caloric emulsions (two milk preparations identical in composition except for fat content) and a mixture of high fat milk with the lowest salt concentration. Early event-related potentials (ERPs) showed a dose-response effect for increased taste intensity, with higher amplitude and shorter latency for high compared to low salt concentration, but not for increased fat content. However, the amplitude and distribution of late potentials were modulated by fat content independently of reported intensity and discrimination. Neural source estimation revealed a sustained activation of reward areas to the two high-fat stimuli. The results suggest calorie detection through specific sensors on the tongue independent of perceived taste. Finally, amplitude variation of the first peak in the event-related potential to the different stimuli correlated with papilla density, suggesting a higher discrimination power for subjects with more fungiform papillae. PMID:23430280

  3. Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity

    PubMed Central

    Wheeler, Daniel S.; Chang, Stephen E.; Holland, Peter C.

    2013-01-01

    Mediated learning is a unique cognitive phenomenon in which mental representations of physically absent stimuli enter into associations with directly-activated representations of physically present stimuli. Three experiments investigated the functional physiology of mediated learning involving the use of odor-taste associations. In Experiments 1a and 1b, basolateral amygdala lesions failed to attenuate mediated taste aversion learning. In Experiment 2, dorsal hippocampus inactivation impaired mediated learning, but left direct learning intact. Considered with past studies, the results implicate the dorsal hippocampus in mediated learning generally, and suggest a limit on the importance of the basolateral amygdala. PMID:23274135

  4. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    PubMed

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  5. Glucagon-like peptide-1 is specifically involved in sweet taste transmission

    PubMed Central

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J.; Margolskee, Robert F.; Ninomiya, Yuzo

    2015-01-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.—Takai, S., Yasumatsu, K., Inoue, M., Iwata, S., Yoshida, R., Shigemura, N., Yanagawa, Y., Drucker, D. J., Margolskee, R. F., Ninomiya, Y. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. PMID:25678625

  6. Taste and Temperature in Swallowing Transit Time after Stroke

    PubMed Central

    Cola, Paula C.; Gatto, Ana R.; da Silva, Roberta G.; Spadotto, André A.; Ribeiro, Priscila W.; Schelp, Arthur O.; Carvalho, Lidia R.; Henry, Maria A.C.A.

    2012-01-01

    Background Oropharyngeal dysphagia is common in individuals after stroke. Taste and temperature are used in dysphagia rehabilitation. The influence of stimuli, such as taste and temperature, on swallowing biomechanics has been investigated in both healthy individuals and in individuals with neurological disease. However, some questions still remain unanswered, such as how the sequence of offered stimuli influences the pharyngeal response. The goal of the present study was to determine the influence of the sequence of stimuli, sour taste and cold temperature, on pharyngeal transit time during deglutition in individuals after stroke. Methods The study included 60 individuals with unilateral ischemic stroke, 29 males and 31 females, aged 41–88 years (mean age: 66.2 years) examined 0–50 days after ictus (median: 6 days), with mild to moderate oropharyngeal dysphagia. Exclusion criteria were hemorrhagic stroke patients, patients with decreased level of consciousness, and clinically unstable patients, as confirmed by medical evaluation. The individuals were divided into two groups of 30 individuals each. Group 1 received a nonrandomized sequence of stimuli (i.e. natural, cold, sour, and sour-cold) and group 2 received a randomized sequence of stimuli. A videofluoroscopic swallowing study was performed to analyze the pharyngeal transit time. Four different stimuli (natural, cold, sour, and sour-cold) were offered. The images were digitalized and specific software was used to measure the pharyngeal transit time. Since the values did not present regular distribution and uniform variances, nonparametric tests were performed. Results Individuals in group 1 presented a significantly shorter pharyngeal transit time with the sour-cold stimulus than with the other stimuli. Individuals in group 2 did not show a significant difference in pharyngeal transit time between stimuli. Conclusions The results showed that the sequence of offered stimuli influences the pharyngeal transit time in a different way in individuals after stroke and suggest that, when the sour-cold stimulus is offered in a randomized sequence, it can influence the response to the other stimuli in stroke patients. Hence, the sour-cold stimulus could be used as a therapeutic aid in dysphagic stroke patients. PMID:23139681

  7. Attenuation and cross-attenuation in taste aversion learning in the rat: Studies with ionizing radiation, lithium chloride and ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO)more » disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less

  8. Attenuation and cross-attenuation in taste aversion learning in the rat: studies with ionizing radiation, lithium chloride and ethanol.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.

  9. Attenuation and cross-attenuation in taste-aversion learning in the rat: Studies with ionizing radiation, lithium chloride, and ethanol. Scientific report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1989-01-01

    The pre-exposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride, and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired pre-exposures to lithium chloride blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiationmore » or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less

  10. Using Single Colors and Color Pairs to Communicate Basic Tastes

    PubMed Central

    Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed. PMID:27698979

  11. Enhancing effects of saccharin on gustatory responses to D-phenylalanine in monkey single chorda tympani fibers.

    PubMed

    Ninomiya, Y; Hellekant, G

    1994-01-28

    Taste enhancing effects of sodium saccharin (Sac) on D-phenylalanine (D-Phe), first found in mice, were examined by comparing single fiber responses to various taste stimuli in the monkey chorda tympani nerve. Fifteen fibers sampled were divided into the following 5 groups according to their responsiveness to 5 prototypical taste stimuli; 8 sucrose-, 2 quinine-, 2 acid-, 2 NaCl- and one monosodium glutamate (MSG)-best fibers. Out of 8 sucrose-best fibers, 5 fibers showed enhancement of D-Phe responses after the stimulation with Sac, but neither the remaining 3 sucrose-best fibers nor other fibers showed the enhancement. These results suggest that (1) the enhancement of D-Phe responses by Sac also occurs in the monkey peripheral taste system, and (2) there exist distinct receptor sites for D-Phe responsible for occurrence of the enhancement, and (3) taste cells possessing the D-Phe receptor site are innervated by a limited subpopulation of sucrose-best fibers.

  12. Selective attention to affective value alters how the brain processes taste stimuli.

    PubMed

    Grabenhorst, Fabian; Rolls, Edmund T

    2008-02-01

    How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 M monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect-related vs. more sensory-related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.

  13. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Age differences in the brain mechanisms of good taste.

    PubMed

    Rolls, Edmund T; Kellerhals, Michele B; Nichols, Thomas E

    2015-06-01

    There is strong evidence demonstrating age-related differences in the acceptability of foods and beverages. To examine the neural foundations underlying these age-related differences in the acceptability of different flavors and foods, we performed an fMRI study to investigate brain and hedonic responses to orange juice, orange soda, and vegetable juice in three different age groups: Young (22), Middle (40) and Elderly (60 years). Orange juice and orange soda were found to be liked by all age groups, while vegetable juice was disliked by the Young, but liked by the Elderly. In the insular primary taste cortex, the activations to these stimuli were similar in the 3 age groups, indicating that the differences in liking for these stimuli between the 3 groups were not represented in this first stage of cortical taste processing. In the agranular insula (anterior to the insular primary taste cortex) where flavor is represented, the activations to the stimuli were similar in the Elderly, but in the Young the activations were larger to the vegetable juice than to the orange drinks; and the activations here were correlated with the unpleasantness of the stimuli. In the anterior midcingulate cortex, investigated as a site where the activations were correlated with the unpleasantness of the stimuli, there was again a greater activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. In the amygdala (and orbitofrontal cortex), investigated as sites where the activations were correlated with the pleasantness of the stimuli, there was a smaller activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. The Middle group was intermediate with respect to the separation of their activations to the stimuli in the brain areas that represent the pleasantness or unpleasantness of flavors. Thus age differences in the activations to different flavors can in some brain areas be related to, and probably cause, the differences in pleasantness of foods as they differ for people of different ages. This novel work provides a foundation for understanding the underlying neural bases for differences in food acceptability between age groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    PubMed Central

    Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi

    2010-01-01

    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306

  16. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    USDA-ARS?s Scientific Manuscript database

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  17. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  18. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    PubMed Central

    Boughter, John D; Raghow, Sandeep; Nelson, Theodore M; Munger, Steven D

    2005-01-01

    Background Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. Results B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. Conclusion B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste. PMID:15967025

  19. Normal taste acuity and preference in female adolescents with impaired 6-n-propylthiouracil sensitivity.

    PubMed

    Nagai, Ayako; Kubota, Masaru; Sakai, Midori; Higashiyama, Yukie

    2014-01-01

    This study was conducted to determine the relationship between 6-n-propylthiouracil sensitivity and taste characteristics in female students at Nara Women's University. Participants (n=135) were screened for 6-npropylthiouracil sensitivity using a taste test with 0.56 mM 6-n-propylthiouracil solution, and the sensitivity was confirmed by an assay for the bitter-taste receptor gene, TAS2R38. Based on the screening results, 33 6-npropylthiouracil tasters and 21 non-tasters were enrolled. The basic characteristics that are thought to influence taste acuity, including body mass index, saliva volume and serum micronutrient concentrations (iron, zinc and copper), were similar between the two groups. In an analysis using a filter-paper disc method, there were no differences in the acuity for four basic tastes (sweet, salty, sour and bitter) between 6-n-propylthiouracil tasters and non-tasters. In addition, the taste preference for the four basic tastes as measured by a visual analogue scale was also comparable between the two groups. This is the first study to demonstrate that 6-n-propylthiouracil nontasters have taste sensitivity for the four basic tastes similar to that in 6-n-propylthiouracil tasters, at least in female adolescents, as measured by the gustatory test using a filter-paper disc method.

  20. The Effect of Temperature on Umami Taste

    PubMed Central

    Alvarado, Cynthia; Andrew, Kendra; Nachtigal, Danielle

    2016-01-01

    The effect of temperature on umami taste has not been previously studied in humans. Reported here are 3 experiments in which umami taste was measured for monopotassium glutamate (MPG) and monosodium glutamate (MSG) at solution temperatures between 10 and 37 °C. Experiment 1 showed that for subjects sensitive to MPG on the tongue tip, 1) cooling reduced umami intensity whether sampled with the tongue tip or in the whole mouth, but 2) had no effect on the rate of umami adaptation on the tongue tip. Experiment 2 showed that temperature had similar effects on the umami taste of MSG and MPG on the tongue tip but not in the whole mouth, and that contrary to umami taste, cooling to 10 °C increased rather than decreased the salty taste of both stimuli. Experiment 3 was designed to investigate the contribution of the hT1R1–hT1R3 glutamate receptor to the cooling effect on umami taste by using the T1R3 inhibitor lactisole. However, lactisole failed to block the umami taste of MPG at any temperature, which supports prior evidence that lactisole does not block umami taste for all ligands of the hT1R1–hT1R3 receptor. We conclude that temperature can affect sensitivity to the umami and salty tastes of glutamates, but in opposite directions, and that the magnitude of these effects can vary across stimuli and modes of tasting (i.e., whole mouth vs. tongue tip exposures). PMID:27102813

  1. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  2. Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons

    PubMed Central

    Li, Jinrong

    2015-01-01

    The temperature of taste stimuli can modulate gustatory processing. Perceptual data indicate that the adapted temperature of oral epithelia also influences gustation, although little is known about the neural basis of this effect. Here, we electrophysiologically recorded orosensory responses (spikes) to 25°C (cool) and 35°C (warm) solutions of sucrose (0.1 and 0.3 M), NaCl (0.004, 0.1, and 0.3 M), and water from taste-sensitive neurons in the nucleus of the solitary tract in mice under varied thermal adaptation of oral epithelia. Conditions included presentation of taste stimuli isothermal to adaptation temperatures of 25°C (constant cooling) and 35°C (constant warming), delivery of 25°C stimuli following 35°C adaptation (relative cooling), and presentation of 35°C stimuli following 25°C adaptation (relative warming). Responses to sucrose in sucrose-oriented cells (n = 15) were enhanced under the constant and relative warming conditions compared with constant cooling, where contiguous cooling across adaptation and stimulus periods induced the lowest and longest latency responses to sucrose. Yet compared with constant warming, cooling sucrose following warm adaptation (relative cooling) only marginally reduced activity to 0.1 M sucrose and did not alter responses to 0.3 M sucrose. Thus, warmth adaptation counteracted the attenuation in sucrose activity associated with stimulus cooling. Analysis of sodium-oriented (n = 25) neurons revealed adaptation to cool water, and cooling taste solutions enhanced unit firing to 0.004 M (perithreshold) NaCl, whereas warmth adaptation and stimulus warming could facilitate activity to 0.3 M NaCl. The concentration dependence of this thermal effect may reflect a dual effect of temperature on the sodium reception mechanism that drives sodium-oriented cells. PMID:25673737

  3. [Functional development of chemosensory systems in the ontogeny of fish].

    PubMed

    Kasumian, A O

    2011-01-01

    Regularities of the functional development of chemosensory systems in the ontogeny of fish has been studied, i.e., the olfactory system, the taste system, and the common chemical sense. The olfactory system begins to function and provides response of juveniles to chemical signals before the taste system. Embryos that have hatched from coating but that do not yet feed exhibit nonspecialized motor responses to olfactory stimuli already. Immediately after the transition to exogenous nutrition, olfactory sensitivity to signals which elicit defensive and feeding behavioral responses begins to form and the ability to differentiate between similar odors develops. The reception of a limited number of taste stimuli occurs in the larvae during the transition to exogenous nutrition. With age, the spectrum of effective taste substances expands and the time spent on the definition of palatability by juvenile fishes reduces. Functional development of individual components of the taste system arises heterochronously, i.e., the outer (extraoral) form of taste reception arises earlier and more rapidly, and the buccal (intraoral) form of taste reception arises slower. No information is available about the functional development of the common chemical sense in the ontogeny of fish. It is assumed that the function of the chemosensory system arises in fish in early larval instar.

  4. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila.

    PubMed

    Hiroi, Makoto; Meunier, Nicolas; Marion-Poll, Frédéric; Tanimura, Teiichi

    2004-12-01

    In Drosophila, gustatory receptor neurons (GRNs) occur within hair-like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l-, s-, and i-type, according to their length and location. Of these, l- and s-type labellar sensilla possess these four cells, but most i-type sensilla house only two GRNs. In i-type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10-50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i-type sensilla appears to be performed by one GRN with the combined properties of S+L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter-sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly. copyright (c) 2004 Wiley Periodicals, Inc.

  5. Taste responses in patients with Parkinson's disease

    PubMed Central

    Sienkiewicz-Jaros..., H; Scinska, A; Kuran, W; Ryglewicz, D; Rogowski, A; Wrobel, E; Korkosz, A; Kukwa, A; Kostowski, W; Bienkowski, P

    2005-01-01

    Objective: Preclinical studies indicate that dopaminergic transmission in the basal ganglia may be involved in processing of both pleasant and unpleasant stimuli. Given this, the aim of the present study was to assess taste responses to sweet, bitter, sour, and salty substances in patients with Parkinson's disease (PD). Methods: Rated intensity and pleasantness of filter paper discs soaked in sucrose (10–60%), quinine (0.025–0.5%), citric acid (0.25–4.0%), or sodium chloride (1.25–20%) solutions was evaluated in 30 patients with PD and in 33 healthy controls. Paper discs soaked in deionised water served as control stimuli. In addition, reactivity to 100 ml samples of chocolate and vanilla milk was assessed in both groups. Taste detection thresholds were assessed by means of electrogustometry. Sociodemographic and neuropsychiatric data, including cigarette smoking, alcohol consumption, tea and coffee drinking, depressive symptoms, and cognitive functioning were collected. Results: In general, perceived intensity, pleasantness, and identification of the sucrose, quinine, citric acid, or sodium chloride samples did not differ between the PD patients and controls. Intensity ratings of the filter papers soaked in 0.025% quinine were significantly higher in the PD patients compared with the control group. No inter-group differences were found in taste responses to chocolate and vanilla milk. Electrogustometric thresholds were significantly (p = 0.001) more sensitive in the PD patients. Conclusions: PD is not associated with any major alterations in responses to pleasant or unpleasant taste stimuli. Patients with PD may present enhanced taste acuity in terms of electrogustometric threshold. PMID:15607993

  6. Galvanic Tongue Stimulation Inhibits Five Basic Tastes Induced by Aqueous Electrolyte Solutions.

    PubMed

    Aoyama, Kazuma; Sakurai, Kenta; Sakurai, Satoru; Mizukami, Makoto; Maeda, Taro; Ando, Hideyuki

    2017-01-01

    Galvanic tongue stimulation (GTS) modulates taste sensation. However, the effect of GTS is contingent on the electrode polarity in the proximity of the tongue. If an anodal electrode is attached in the proximity of the tongue, an electrical or metallic taste is elicited. On the other hand, if only cathodal electrode is attached in the proximity of the tongue, the salty taste, which is induced by electrolyte materials, is inhibited. The mechanism of this taste inhibition is not adequately understood. In this study, we aim to demonstrate that the inhibition is cause by ions, which elicit taste and which migrate from the taste sensors on the tongue by GTS. We verified the inhibitory effect of GTS on all five basic tastes induced by electrolyte materials. This technology is effective for virtual reality systems and interfaces to support dietary restrictions. Our findings demonstrate that cathodal-GTS inhibits all the five basic tastes. The results also support our hypothesis that the effects of cathodal-GTS are caused by migrating tasting ions in the mouth.

  7. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults.

    PubMed

    Mattes, Richard D

    2007-05-01

    Evidence supporting a taste component for dietary fat has prompted study of plausible transduction mechanisms. One hypothesizes that long-chain, unsaturated fatty acids block selected delayed-rectifying potassium channels, resulting in a sensitization of taste receptor cells to stimulation by other taste compounds. This was tested in 17 male and 17 female adult (mean +/- SE age = 23.4 +/- 0.7 yr) propylthiouracil tasters with normal resting triglyceride concentrations (87.3 +/- 5.6 mg/day) and body mass index (23.3 +/- 0.4 kg/m(2)). Participants were tested during two approximately 30-min test sessions per week for 8 wk. Eight stimuli were assessed in duplicate via an ascending, three-alternative, forced-choice procedure. Qualities were randomized over weeks. Stimuli were presented as room-temperature, 5-ml portions. They included 1% solutions of linoleic acid with added sodium chloride (salty), sucrose (sweet), citric acid (sour), and caffeine (bitter) as well as solutions of these taste compounds alone. Participants also rated the intensity of the five strongest concentrations using the general labeled magnitude scale. The suprathreshold samples were presented in random order with a rinse between each. Subjects made the ratings self-paced while wearing nose clips. It was hypothesized that taste thresholds would be lower and absolute intensity ratings or slopes of intensity functions would be higher for the stimuli mixed with the linoleic acid. Thresholds were compared by paired t-tests and intensity ratings by repeated measures analysis of variance. Thresholds were significantly higher (i.e., lower sensitivity) for the sodium chloride, citric acid, and caffeine solutions with added fatty acid. Sweet, sour, and salty intensity ratings were lower or unchanged by the addition of a fatty acid. The two highest concentrations of caffeine were rated as weaker in the presence of linoleic acid. These data do not support a mechanism for detecting dietary fats whereby fatty acids sensitize taste receptor cells to stimulation by taste compounds.

  8. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    PubMed

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  9. Hedonic and Nucleus Accumbens Neural Responses to a Natural Reward Are Regulated by Aversive Conditioning

    ERIC Educational Resources Information Center

    Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M.

    2010-01-01

    The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…

  10. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Awareness of dysgeusia and gustatory tests in patients undergoing chemotherapy for breast cancer.

    PubMed

    Kuba, Sayaka; Fujiyama, Rie; Yamanouchi, Kosho; Morita, Michi; Sakimura, Chika; Hatachi, Toshiko; Matsumoto, Megumi; Yano, Hiroshi; Takatsuki, Mitsuhisa; Hayashida, Naomi; Nagayasu, Takeshi; Eguchi, Susumu

    2018-05-12

    We analyzed the prevalence of gustatory test abnormalities in breast cancer (BC) patients undergoing chemotherapy. We enrolled 43 BC patients undergoing chemotherapy and 38 BC patients who had never undergone chemotherapy (control group). Two gustatory tests were conducted: an instillation method examining the threshold for four basic taste stimuli and an electrogustometry method measuring the threshold for perception with electric stimulation at the front two-thirds of the tongue (cranial nerve VII) and at the back third of the tongue (cranial nerve IX). The results of the two gustatory tests and clinicopathological factors were compared between the chemotherapy and control groups and between patients with and without awareness of dysgeusia in the chemotherapy group. In the chemotherapy group, 19 (44%) patients were aware of dysgeusia and 8 (19%) had hypogeusia using the instillation method. Although more patients had parageusia in the chemotherapy than control group, no significant differences in the results of the two gustatory tests were observed. Patients with dysgeusia awareness had a higher threshold at cranial nerve IX using the electrogustometry method than those without dysgeusia awareness; no significant differences in hypogeusia were observed using the instillation method. In fact, 74% (14/19) of patients with dysgeusia awareness could identify the four tastes accurately using the instillation method. Similar results were observed for the instillation and electrogustometry methods at cranial nerve VII. While approximately half of the chemotherapy patients were aware of dysgeusia, 81% (35/43) of them could accurately identify the four basic tastes using the instillation method.

  12. Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli.

    PubMed

    Bimpisidis, Zisis; De Luca, Maria Antonietta; Pisanu, Augusta; Di Chiara, Gaetano

    2013-02-01

    Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.

    PubMed

    Hsiao, Yi-Hsing; Hsu, Chia-Hsien; Chen, Chihchen

    2016-07-08

    The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.

  14. Response properties of the pharyngeal branch of the glossopharyngeal nerve for umami taste in mice and rats.

    PubMed

    Kitagawa, Junichi; Takahashi, Yoshihiro; Matsumoto, Shigeji; Shingai, Tomio

    2007-04-24

    Many studies have reported the mechanism underlying umami taste. However, there are no investigations of responses to umami stimuli taste originating from chemoreceptors in the pharyngeal region. The pharyngeal branch of the glossopharyngeal nerve (GPN-ph) innervating the pharynx has unique responses to taste stimulation that differs from responses of the chorda tympani nerve and lingual branch of the glossopharyngeal nerve. Water evokes robust response, but NaCl solutions at physiological concentrations do not elicit responses. The present study was designed to examine umami taste (chemosensory) responses in the GPN-ph. Response characteristics to umami taste were compared between mice and rats. In mice, stimulation with compounds eliciting umami taste (0.1M monosodium L-glutamate (MSG), 0.01M inosine monophosphate (IMP) and the mixture of 0.1M MSG+0.01M IMP) evoked higher responses than application of distilled water (DW). However, synergistic response of a mixture of 0.1M MSG+0.01M IMP was not observed. In rats, there is no significant difference between the responses to umami taste (0.1M MSG, 0.01M IMP and the mixture of 0.1M MSG+0.01M IMP) and DW. Monopotassium glutamate (MPG) was used in rats to examine the contribution of the sodium component of MSG on the response. Stimulation with 0.1M MPG evoked a higher response when compared with responses to DW. The present results suggest that umami taste compounds are effective stimuli of the chemoreceptors in the pharynx of both mice and rats.

  15. Chemesthesis and taste: evidence of independent processing of sensation intensity.

    PubMed

    Green, Barry G; Alvarez-Reeves, Marty; George, Pravin; Akirav, Carol

    2005-11-15

    The ability to perceive taste from temperature alone ("thermal taste") was recently shown to predict higher perceptual responsiveness to gustatory and olfactory stimuli. This relationship was hypothesized to be due in part to individual differences in CNS processes involved in flavor perception. Here we report three experiments that tested whether subjects who differ in responsiveness to thermal taste and/or chemical taste also differ in responsiveness to oral chemesthesis. In experiment 1, subjects identified as 'thermal tasters' (TTs) or 'thermal non-tasters' (TnTs) used the general Labeled Magnitude Scale to rate the intensity of sensations produced on the tongue tip by capsaicin, menthol, sucrose, NaCl, citric acid, and QSO4. TTs rated all four taste stimuli higher than did TnTs, whereas sensations of burning/stinging/pricking and temperature from capsaicin and menthol did not differ significantly between groups. In experiment 2, testing with capsaicin on both the front and back of the tongue confirmed there was no difference in ratings of burning/stinging/pricking when subjects were grouped according to the ability to perceive thermal taste. In experiment 3, subjects were classified as high- or low-tasters according to their ratings of sucrose sweetness rather than thermal taste. No group difference was found for perception of capsaicin even when presented in mixture with sucrose or NaCl. The results are discussed in the context of previous evidence of an association between chemesthesis and sensitivity to the bitter tastant PROP, and in terms of the various peripheral and central neural processes that may underlie intensity perception in taste and chemesthesis.

  16. Taste preferences of the common vampire bat (Desmodus rotundus).

    PubMed

    Thompson, R D; Elias, D J; Shumake, S A; Gaddis, S E

    1982-04-01

    Taste preference tests, with simultaneous presentation of treated and untreated food, were administered to 24 common vampire bats (Desmodus rotundus). The bats received brief exposures to four different stimuli representing sweet, salty, sour, and bitter tastes, each at four different concentrations. Despite a strong location bias, the bats significantly (P < 0.01) avoided the highest concentrations of the salty, sour, and bitter tastes. Consumption of the sweet stimulus at all concentrations was similar to that of the untreated standard. Vampires evidently can discriminate based on taste, although their ability is apparently poorly developed when compared with some euryphagous species such as the rat. Hence, taste is probably not a factor in host selection by the vampire.

  17. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats

    PubMed Central

    Fontanini, Alfredo

    2017-01-01

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. SIGNIFICANCE STATEMENT Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. PMID:28077705

  18. Cortical Activation in Response to Pure Taste Stimuli During the Physiological States of Hunger and Satiety

    PubMed Central

    Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire

    2009-01-01

    This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional preload. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli. PMID:19007893

  19. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety.

    PubMed

    Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire

    2009-02-01

    This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional pre-load. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli.

  20. Age and sex differences in the taste sensitivity of young adult, young-old and old-old Japanese.

    PubMed

    Yoshinaka, Masaki; Ikebe, Kazunori; Uota, Masahiro; Ogawa, Taiji; Okada, Tadashi; Inomata, Chisato; Takeshita, Hajime; Mihara, Yusuke; Gondo, Yasuyuki; Masui, Yukie; Kamide, Kei; Arai, Yasumichi; Takahashi, Ryutaro; Maeda, Yoshinobu

    2016-12-01

    The present study examined sex and age differences in taste sensitivity among young adult, young-old and old-old Japanese. Participants were divided into three groups comprising 477 men and 519 women in the young-old group (aged 69-71 years), 449 men and 500 women in the old-old group (aged 79-81 years), and 35 men and 35 women in the young adult group (aged 24-32 years). Recognition thresholds for the four basic tastes were measured using the 1-mL whole mouth gustatory test, in which taste solutions of the four basic tastes were tested in five concentrations. Young adults showed significantly lower recognition thresholds than the young-old group, and the young-old group showed significantly lower recognition thresholds than the old-old group. Among the young-old and old-old groups, women showed significantly lower recognition thresholds than males for sour, salty and bitter tastes, but there was no sex difference in the sweet taste threshold between the two groups. The present study confirmed that there are age and sex differences in taste sensitivity for the four basic tastes among young adult, young-old, and old-old Japanese, and that the sensitivity of sweet taste is more robust than the other tastes. Geriatr Gerontol Int 2016; 16: 1281-1288. © 2015 Japan Geriatrics Society.

  1. Primacy and Recency Effects for Taste

    ERIC Educational Resources Information Center

    Daniel, Thomas A.; Katz, Jeffrey S.

    2018-01-01

    Historically, much of what we know about human memory has been discovered in experiments using visual and verbal stimuli. In two experiments, participants demonstrated reliably high recognition for nonverbal liquids. In Experiment 1, participants showed high accuracy for recognizing tastes (bitter, salty, sour, sweet) over a 30-s delay in a…

  2. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  3. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  4. Orexin-1 receptor antagonist in central nucleus of the amygdala attenuates the acquisition of flavor-taste preference in rats.

    PubMed

    Risco, Severiano; Mediavilla, Cristina

    2014-11-01

    Previous studies demonstrated that the intracerebroventricular administration of SB-334867-A, a selective antagonist of orexin OX1R receptors, blocks the acquisition of saccharin-induced conditioned flavor preference (CFP) but not LiCl-induced taste aversion learning (TAL). Orexinergic fibers from the lateral hypothalamus end in the central nucleus of the amygdala (CeA), which expresses orexin OX1R receptors. Taste and sensory inputs also are present in CeA, which may contribute to the development of taste learning. This study analyzed the effect of two doses (1.5 and 6μg/0.5μl) of SB-334867-A administered into the CeA on flavor-taste preference induced by saccharin and on TAL induced by a single administration of LiCl (0.15M, 20ml/kg, i.p.). Outcomes indicate that inactivation of orexinergic receptors in the CeA attenuates flavor-taste preference in a two-bottle test (saccharin vs. water). Intra-amygdalar SB-334867-A does not affect gustatory processing or the preference for the sweet taste of saccharin given that SB-334867-A- and DMSO-treated groups (control animals) increased the intake of the saccharin-associated flavor across training acquisition sessions. Furthermore, SB-334867-A in the CeA does not block TAL acquisition ruling out the possibility that functional inactivation of OX1R receptors interferes with taste processing. Orexin receptors in the CeA appear to intervene in the association of a flavor with orosensory stimuli, e.g., a sweet and pleasant taste, but could be unnecessary when the association is established with visceral stimuli, e.g., lithium chloride. These data suggest that orexinergic projections to the CeA may contribute to the reinforcing signals facilitating the acquisition of taste learning and the change in hedonic evaluation of the taste, which would have important implications for the OX1R-targeted pharmacological treatment of eating disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    PubMed

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste-guided tasks, our study provides evidence for the key role of orbitofrontal cortex activity in choice behavior and shows that this is dissociable from the adjacent insular cortex-dependent taste aversion memory. Understanding the brain mechanisms that underlie the impact that emotional associations have on survival choice behaviors may lead to better treatments for mental disorders characterized by emotional decision-making deficits. Copyright © 2016 the authors 0270-6474/16/3610574-10$15.00/0.

  6. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.

    PubMed

    Gulbransen, Brian D; Clapp, Tod R; Finger, Thomas E; Kinnamon, Sue C

    2008-06-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.

  7. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground-Background Color Combinations.

    PubMed

    Woods, Andy T; Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined.

  8. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground–Background Color Combinations

    PubMed Central

    Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined. PMID:27708752

  9. Relation between acute and late irradiation impairment of four basic tastes and irradiated tongue volume in patients with head-and-neck cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Hideomi; Nakagawa, Keiichi; Nakamura, Naoki

    2006-12-01

    Purpose: Taste loss is a major cause of morbidity in patients undergoing head-and-neck irradiation. The relationship between the time course and the degree of taste disorder was studied in both acute and late phases. Methods and Materials: Taste ability was measured by the taste threshold for the four basic tastes using a filter paper disc method in patients before, during, and after radiotherapy. The subjects were divided into two groups. In Group A, Radiation fields included most of the tongue (n = 100), and in Group B Radiation fields did not include the tip of the tongue (n = 18).more » Results: In Group A, there was a significant impairment of the threshold of all four basic tastes at 3 weeks after starting radiotherapy (RT), and this impairment remained at 8 weeks (p < 0.05). This was not seen in Group B. In Group A, there was no significant difference in the patterns of taste sensitivity change between the high-dose (>20 Gy) and low-dose ({<=}20 Gy) groups. In the late phase, recovery of taste loss was seen in both groups since 4 months after completing RT. Conclusions: Unless the anterior part of the tongue was irradiated, taste loss was not observed during RT. When the anterior part of the tongue was irradiated, a difference by radiation dose was not observed in the taste loss pattern. Additionally, radiation-induced taste dysfunction appears to be a temporal effect.« less

  10. The Effects of Sweet, Bitter, Salty and Sour Stimuli on Alpha Rhythm. A Meg Study.

    PubMed

    Kotini, Athanasia; Anninos, Photios; Gemousakakis, Triandafillos; Adamopoulos, Adam

    2016-09-01

    the possible diff erences in processing gustatory stimuli in healthy subjects was investigated by magnetoencephalography (meg). meg recordings were evaluated for 10 healthy volunteers (3 men within the age range 20-46 years, 7 women within the age range 10-28 years), with four diff erent gustatory stimuli: sweet, bi" er, sour and salty. Fast fourier transform was performed on meg epochs recorded for the above conditions and the eff ect of each kind of stimuli on alpha rhythm was examined. A significant higher percent of alpha power was found irrespective of hemispheric side in all gustatory states located mainly at the occipital, le$ and right parietal lobes. One female volunteer experienced no statistically signifi cance when comparing normal with salty and sour taste respectively. Two female volunteers exhibited no statistically signifi cance when comparing their normal with their salty taste. One male volunteer experienced no statistically signifi cance when comparing the normalbitter and normal-salty states correspondingly. All the other subjects showed statistically signifi cant changes in alpha power for the 4 gustatory stimuli. The pattern of activation caused by the four stimuli indicated elevated gustatory processing mechanisms. This cortical activation might have applicability in modulation of brain status.

  11. The chemistry and physiology of sour taste--a review.

    PubMed

    Ramos Da Conceicao Neta, Edith Ramos; Johanningsmeier, Suzanne D; McFeeters, Roger F

    2007-03-01

    Sour taste is the key element in the flavor profile of food acidulants. Understanding the chemistry and physiology of sour taste is critical for efficient control of flavor in the formulation of acid and acidified foods. After a brief introduction to the main applications of food acidulants, several chemical parameters associated with sour taste are discussed. Special emphasis is given to hydrogen ions, protonated (undissociated) acid species, titratable acidity, anions, molar concentration, and physical and chemical properties of organic acids. This article also presents an overview of the physiology of sour taste and proposed theories for the transduction mechanisms for sour taste. The physiology of sour taste perception remains controversial and significant diversity exists among species with regard to cellular schemes used for detection of stimuli. The variety of mechanisms proposed, even within individual species, highlights the complexity of elucidating sour taste transduction. However, recent evidence suggests that at least one specific sour taste receptor protein has been identified.

  12. Taste buds as peripheral chemosensory processors

    PubMed Central

    Roper, Stephen D.

    2012-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50–100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds – Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell–cell communication shapes taste bud signaling via these transmitters. PMID:23261954

  13. Taste buds as peripheral chemosensory processors.

    PubMed

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. "Turn Up the Taste": Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch.

    PubMed

    Wang, Qian Janice; Wang, Sheila; Spence, Charles

    2016-05-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants' loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants' choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants' valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch-taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. © The Author 2016. Published by Oxford University Press.

  15. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    PubMed

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  16. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells

    PubMed Central

    Frim, Yonina G.; Hochman, Ayelet; Lubitz, Gabrielle S.; Basile, Anthony J.; Sclafani, Anthony

    2017-01-01

    The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmetabolizable sugar analog. The only taste stimuli that elicited CPIR were glucose and the glucose-containing saccharides (sucrose, maltose, Polycose). When we mixed an α-glucosidase inhibitor (acarbose) with the latter three saccharides, the mice no longer exhibited CPIR. This revealed that the carbohydrates were hydrolyzed in the mouth, and that the liberated glucose triggered CPIR. We also found that increasing the intensity or duration of oral glucose stimulation caused a corresponding increase in CPIR magnitude. To identify the components of the glucose-specific taste-signaling pathway, we examined the necessity of Calhm1, P2X2+P2X3, SGLT1, and Sur1. Among these proteins, only Sur1 was necessary for CPIR. Sur1 was not necessary, however, for taste-mediated attraction to sugars. Given that Sur1 is a subunit of the ATP-sensitive K+ channel (KATP) channel and that this channel functions as a part of a glucose-sensing pathway in pancreatic β-cells, we asked whether the KATP channel serves an analogous role in taste cells. We discovered that oral stimulation with drugs known to increase (glyburide) or decrease (diazoxide) KATP signaling produced corresponding changes in glucose-stimulated CPIR. We propose that the KATP channel is part of a novel signaling pathway in taste cells that mediates glucose-induced CPIR. PMID:28148491

  17. Learning to (dis)like: The effect of evaluative conditioning with tastes and faces on odor valence assessed by implicit and explicit measurements.

    PubMed

    van den Bosch, I; van Delft, J M; de Wijk, R A; de Graaf, C; Boesveldt, S

    2015-11-01

    Evaluative conditioning may be an important mechanism for learning food preferences and aversions; however, in both real life and experimental settings it has not been consistently successful. The current study aimed to gain more insight into which underlying factors may contribute to a successful outcome of olfactory evaluative conditioning. Two groups of 18 participants came in on three consecutive days, and were repeatedly exposed to four novel, neutral odors (CS) coupled to varying disliked, neutral, liked, or no stimuli (taste and/or pictures, US), following a 50% reinforcement schedule, leading to 40 odor presentations per session. Liking ratings, as well as changes in the autonomic nervous system were assessed before, during and after conditioning. We were able to induce negative, but not positive, affective changes by pairing neutral odors with tastes and pictures differing in valence. Negative as well as multimodal stimuli appear to be more potent US, since they may be considered more salient. Lastly, results of the current study imply that heart rate is responsive to changes in valence of olfactory stimuli, and perhaps even more sensitive than explicit ratings of liking. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.

    PubMed

    Samuelsen, Chad L; Fontanini, Alfredo

    2017-01-11

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. Copyright © 2017 the authors 0270-6474/17/370244-14$15.00/0.

  19. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

    PubMed

    Piette, Caitlin E; Baez-Santiago, Madelyn A; Reid, Emily E; Katz, Donald B; Moran, Anan

    2012-07-18

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

  20. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses

    PubMed Central

    Piette, Caitlin E.; Baez-Santiago, Madelyn A.; Reid, Emily E.; Katz, Donald B.; Moran, Anan

    2012-01-01

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)—anatomically interconnected nodes of the gustatory system—code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through “epochs.” The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during and after temporarily inactivating BLA (BLAx) in awake rats. BLAx changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste-specificity of responses remained stable; information about taste palatability, however, which normally resides in the “Late” epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability-specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity. PMID:22815512

  1. Using sound-taste correspondences to enhance the subjective value of tasting experiences.

    PubMed

    Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles

    2015-01-01

    The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate's taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop's own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food's identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations.

  2. Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa.

    PubMed

    Cowdrey, Felicity A; Park, Rebecca J; Harmer, Catherine J; McCabe, Ciara

    2011-10-15

    Recent evidence has shown that individuals with acute anorexia nervosa and those recovered have aberrant physiological responses to rewarding stimuli. We hypothesized that women recovered from anorexia nervosa would show aberrant neural responses to both rewarding and aversive disorder-relevant stimuli. Using functional magnetic resonance imaging (fMRI), the neural response to the sight and flavor of chocolate, and their combination, in 15 women recovered from restricting-type anorexia nervosa and 16 healthy control subjects matched for age and body mass index was investigated. The neural response to a control aversive condition, consisting of the sight of moldy strawberries and a corresponding unpleasant taste, was also measured. Participants simultaneously recorded subjective ratings of "pleasantness," "intensity," and "wanting." Despite no differences between the groups in subjective ratings, individuals recovered from anorexia nervosa showed increased neural response to the pleasant chocolate taste in the ventral striatum and pleasant chocolate sight in the occipital cortex. The recovered participants also showed increased neural response to the aversive strawberry taste in the insula and putamen and to the aversive strawberry sight in the anterior cingulate cortex and caudate. Individuals recovered from anorexia nervosa have increased neural responses to both rewarding and aversive food stimuli. These findings suggest that even after recovery, women with anorexia nervosa have increased salience attribution to food stimuli. These results aid our neurobiological understanding and support the view that the neural response to reward may constitute a neural biomarker for anorexia nervosa. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  3. “Turn Up the Taste”: Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch

    PubMed Central

    Wang, Sheila; Spence, Charles

    2016-01-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants’ loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants’ choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants’ valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch–taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. PMID:26873934

  4. Taste-immunosuppression engram: reinforcement and extinction.

    PubMed

    Niemi, Maj-Britt; Härting, Margarete; Kou, Wei; Del Rey, Adriana; Besedovsky, Hugo O; Schedlowski, Manfred; Pacheco-López, Gustavo

    2007-08-01

    Several Pavlovian conditioning paradigms have documented the brain's abilities to sense immune-derived signals or immune status, associate them with concurrently relevant extereoceptive stimuli, and reinstate such immune responses on demand. Specifically, the naturalistic relation of food ingestion with its possible immune consequences facilitates taste-immune associations. Here we demonstrate that the saccharin taste can be associated with the immunosuppressive agent cyclosporine A, and that such taste-immune associative learning is subject to reinforcement. Furthermore, once consolidated, this saccharin-immunosuppression engram is resistant to extinction when avoidance behavior is assessed. More importantly, the more this engram is activated, either at association or extinction phases, the more pronounced is the conditioned immunosuppression.

  5. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  6. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro

    PubMed Central

    Gulbransen, Brian D; Clapp, Tod R; Kinnamon, Sue C; Finger, Thomas E

    2009-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear (Finger et al. 2003). Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein α-gustducin, PLCβ2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium, and this response is blocked by the PLC inhibitor U73122. In addition GFP+ cells respond to the PLC activator 3M3FBS, the neuromodulators ATP and ACh, but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist, denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system. PMID:18417634

  7. Taste information derived from T1R-expressing taste cells in mice.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  8. Burying by rats in response to aversive and nonaversive stimuli

    PubMed Central

    Poling, Alan; Cleary, James; Monaghan, Michael

    1981-01-01

    Previous investigations have shown that rats bury a variety of conditioned and unconditioned aversive stimuli. Such burying has been considered as a species-typical defensive reaction. In the present studies, rats buried spouts filled with Tabasco sauce, or condensed milk to which a taste aversion was conditioned, but did not bury water-filled spouts or spouts filled with a palatable novel food (apple juice) to which a taste aversion was not conditioned. However, in other experiments rats consistently and repeatedly buried Purina Rat Chow, Purina Rat Chow coated with quinine, and glass marbles. This indicates that a variety of stimuli, not all aversive or novel, evoke burying by rats. Whereas the behavior may reasonably be considered as a species-typical defensive behavior in some situations, the wide range of conditions that occasion burying suggests that the behavior has no single biological function. PMID:16812198

  9. Peripheral coding of taste

    PubMed Central

    Liman, Emily R.; Zhang, Yali V.; Montell, Craig

    2014-01-01

    Five canonical tastes, bitter, sweet, umami (amino acid), salty and sour (acid) are detected by animals as diverse as fruit flies and humans, consistent with a near universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types. PMID:24607224

  10. Age differences in suprathreshold sensory function.

    PubMed

    Heft, Marc W; Robinson, Michael E

    2014-02-01

    While there is general agreement that vision and audition decline with aging, observations for the somatosensory senses and taste are less clear. The purpose of this study was to assess age differences in multimodal sensory perception in healthy, community-dwelling participants. Participants (100 females and 78 males aged 20-89 years) judged the magnitudes of sensations associated with graded levels of thermal, tactile, and taste stimuli in separate testing sessions using a cross-modality matching (CMM) procedure. During each testing session, participants also rated words that describe magnitudes of percepts associated with differing-level sensory stimuli. The words provided contextual anchors for the sensory ratings, and the word-rating task served as a control for the CMM. The mean sensory ratings were used as dependent variables in a MANOVA for each sensory domain, with age and sex as between-subject variables. These analyses were repeated with the grand means for the word ratings as a covariate to control for the rating task. The results of this study suggest that there are modest age differences for somatosensory and taste domains. While the magnitudes of these differences are mediated somewhat by age differences in the rating task, differences in warm temperature, tactile, and salty taste persist.

  11. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    PubMed Central

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  12. Functional diversification of taste cells in vertebrates

    PubMed Central

    Matsumoto, Ichiro; Ohmoto, Makoto; Abe, Keiko

    2012-01-01

    Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five “basic” tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species. PMID:23085625

  13. Sour Ageusia in Two Individuals Implicates Ion Channels of the ASIC and PKD Families in Human Sour Taste Perception at the Anterior Tongue

    PubMed Central

    Huque, Taufiqul; Cowart, Beverly J.; Dankulich-Nagrudny, Luba; Pribitkin, Edmund A.; Bayley, Douglas L.; Spielman, Andrew I.; Feldman, Roy S.; Mackler, Scott A.; Brand, Joseph G.

    2009-01-01

    Background The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. Methods and Findings Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1β, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-β2, the δ-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as β-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1β, PKD2L1, phospholipase C-β2, and δ-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. Conclusions These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals (“natural knockouts”) suggests a cell lineage for sour that is independent of the other taste modalities. PMID:19812697

  14. Taste, olfactory, and food reward value processing in the brain.

    PubMed

    Rolls, Edmund T

    2015-04-01

    Complementary neuronal recordings in primates, and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in a second tier of processing, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by associative learning with olfactory and visual inputs, and these neurons encode food reward value on a continuous scale in that they only respond to food when hungry, and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions, and selective attention to affective value, modulate the representation of the reward value of taste and olfactory stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex, a tertiary taste cortical area. The food reward representations formed in this way play an important role in the control of appetite, and food intake. Individual differences in these reward representations may contribute to obesity, and there are age-related differences in these value representations that shape the foods that people in different age groups find palatable. In a third tier of processing in medial prefrontal cortex area 10, decisions between stimuli of different reward value are taken, by attractor decision-making networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Diurnal Variation of Sweet Taste Recognition Thresholds Is Absent in Overweight and Obese Humans

    PubMed Central

    Sanematsu, Keisuke; Nakamura, Yuki; Nomura, Masatoshi; Shigemura, Noriatsu; Ninomiya, Yuzo

    2018-01-01

    Sweet taste thresholds are positively related to plasma leptin levels in normal weight humans: both show parallel diurnal variations and associations with postprandial glucose and insulin rises. Here, we tested whether this relationship also exists in overweight and obese (OW/Ob) individuals with hyperleptinemia. We tested 36 Japanese OW/Ob subjects (body mass index (BMI) > 25 kg/m2) for recognition thresholds for various taste stimuli at seven different time points from 8:00 a.m. to 10:00 p.m. using the staircase methodology, and measured plasma leptin, insulin, and blood glucose levels before each taste threshold measurement. We also used the homeostatic model assessment of insulin resistance (HOMA-IR) to evaluate insulin resistance. The results demonstrated that, unlike normal weight subjects, OW/Ob subjects showed no significant diurnal variations in the recognition thresholds for sweet stimuli but exhibited negative associations between the diurnal variations of both leptin and sweet recognition thresholds and the HOMA-IR scores. These findings suggest that in OW/Ob subjects, the basal leptin levels (~20 ng/mL) may already exceed leptin’s effective concentration for the modulation of sweet sensitivity and that this leptin resistance-based attenuation of the diurnal variations of the sweet taste recognition thresholds may also be indirectly linked to insulin resistance in OW/Ob subjects. PMID:29498693

  16. Caffeine Bitterness is Related to Daily Caffeine Intake and Bitter Receptor mRNA Abundance in Human Taste Tissue

    PubMed Central

    Lipchock, Sarah V.; Spielman, Andrew I.; Mennella, Julie A.; Mansfield, Corrine J.; Hwang, Liang-Dar; Douglas, Jennifer E.; Reed, Danielle R.

    2018-01-01

    We investigated whether the abundance of bitter receptor mRNA expression from human taste papillae is related to an individual’s perceptual ratings of bitter intensity and habitual intake of bitter drinks. Ratings of the bitterness of caffeine and quinine and three other bitter stimuli (urea, propylthiouracil, and denatonium benzoate) were compared with relative taste papilla mRNA abundance of bitter receptors that respond to the corresponding bitter stimuli in cell-based assays (TAS2R4, TAS2R10, TAS2R38, TAS2R43, and TAS2R46). We calculated caffeine and quinine intake from a food frequency questionnaire. The bitterness of caffeine was related to the abundance of the combined mRNA expression of these known receptors, r = 0.47, p = .05, and self-reported daily caffeine intake, t(18) = 2.78, p = .012. The results of linear modeling indicated that 47% of the variance among subjects in the rating of caffeine bitterness was accounted for by these two factors (habitual caffeine intake and taste receptor mRNA abundance). We observed no such relationships for quinine but consumption of its primary dietary form (tonic water) was uncommon. Overall, diet and TAS2R gene expression in taste papillae are related to individual differences in caffeine perception. PMID:28118781

  17. Taste perception, associated hormonal modulation, and nutrient intake

    PubMed Central

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  18. Taste-aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste-aversion learning. The first experiment determined the threshold for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr or each other. The resultsmore » are discussed in terms of the implications of these findings for understanding the nature of the unconditional stimuli leading to the acquisition of a conditioned taste aversion.« less

  19. Transient receptor potential channel M5 and phospholipaseC-beta2 colocalizing in zebrafish taste receptor cells.

    PubMed

    Yoshida, Yuki; Saitoh, Kana; Aihara, Yoshiko; Okada, Shinji; Misaka, Takumi; Abe, Keiko

    2007-10-08

    In mammals, transient receptor potential (TRP) channel M5 (TRPM5) is coexpressed with phospholipaseC-beta2 (PLC-beta2) in the taste receptor cells, and both PLC-beta2 and TRPM5 are essential elements in the signal transduction of sweet, bitter and umami stimuli. In this study, we identified the zebrafish homologue of TRPM5 (zfTRPM5) and examined its expression in the gustatory system by in-situ hybridization. Using a transgenic zebrafish line that expressed green fluorescent protein under the control of the PLC-beta2 promoter, we showed that zfTRPM5 is expressed in green fluorescent protein-labeled cells of the taste buds. These results demonstrate that zfTRPM5 and PLC-beta2 colocalize in zebrafish taste receptor cells, suggesting their crucial roles in taste signaling via the fish taste receptors.

  20. Which characteristic of Natto: appearance, odor, or taste most affects preference for Natto.

    PubMed

    Tsumura, Yuki; Ohyane, Aki; Yamashita, Kuniko; Sone, Yoshiaki

    2012-05-28

    In Japan, consumption of Natto, a fermented bean dish, is recommended because of its high quality protein, digestibility in the gut and its preventive effect on blood clot formation due to high vitamin K content. However, consumption of Natto in Kansai and the Chugoku area (the western part of Honshu) is less than that in the other areas of Japan probably because of a "food related cultural inhibition". In this study, we determined which characteristic of Natto (appearance, odor or taste) most affect subjects' perception of sensory attributes by observation of brain hemodynamics in relation to subjects' preference for Natto. In this experiment, we defined each subject's changes in brain hemodynamics as (+) or (-) corresponding to an increase or a decrease in total hemoglobin concentration after stimuli compared to that before stimuli. As a result, there was no relation between preference for Natto and change in brain hemodynamics by the stimuli of "looking at" or "smelling", while there was a significant relationship between preference and stimulus of "ingestion"; (+) : (-) = 21:15 in the subjects of the "favorite" group and (+):(-) = 30:7 in the subjects of the "non-favorite" group (P = 0.034). This result indicated that characteristic "taste" of Natto most affects preference for Natto.

  1. Learning to Dislike Chocolate: Conditioning Negative Attitudes toward Chocolate and Its Effect on Chocolate Consumption.

    PubMed

    Wang, Yan; Wang, Guosen; Zhang, Dingyuan; Wang, Lei; Cui, Xianghua; Zhu, Jinglei; Fang, Yuan

    2017-01-01

    Evaluative conditioning (EC) procedures can be used to form and change attitudes toward a wide variety of objects. The current study examined the effects of a negative EC procedure on attitudes toward chocolate, and whether it influenced chocolate evaluation and consumption. Participants were randomly assigned to the experimental condition in which chocolate images were paired with negative stimuli, or the control condition in which chocolate images were randomly paired with positive stimuli (50%) and negative stimuli (50%). Explicit and implicit attitudes toward chocolate images were collected. During an ostensible taste test, chocolate evaluation and consumption were assessed. Results revealed that compared to participants in the control condition, participants in the experimental condition showed more negative explicit and implicit attitudes toward chocolate images and evaluated chocolate more negatively during the taste test. However, chocolate consumption did not differ between experimental and control conditions. These findings suggest that pairing chocolate with negative stimuli can influence attitudes toward chocolate, though behavioral effects are absent. Intervention applications of EC provide avenues for future research and practices.

  2. Learning to Dislike Chocolate: Conditioning Negative Attitudes toward Chocolate and Its Effect on Chocolate Consumption

    PubMed Central

    Wang, Yan; Wang, Guosen; Zhang, Dingyuan; Wang, Lei; Cui, Xianghua; Zhu, Jinglei; Fang, Yuan

    2017-01-01

    Evaluative conditioning (EC) procedures can be used to form and change attitudes toward a wide variety of objects. The current study examined the effects of a negative EC procedure on attitudes toward chocolate, and whether it influenced chocolate evaluation and consumption. Participants were randomly assigned to the experimental condition in which chocolate images were paired with negative stimuli, or the control condition in which chocolate images were randomly paired with positive stimuli (50%) and negative stimuli (50%). Explicit and implicit attitudes toward chocolate images were collected. During an ostensible taste test, chocolate evaluation and consumption were assessed. Results revealed that compared to participants in the control condition, participants in the experimental condition showed more negative explicit and implicit attitudes toward chocolate images and evaluated chocolate more negatively during the taste test. However, chocolate consumption did not differ between experimental and control conditions. These findings suggest that pairing chocolate with negative stimuli can influence attitudes toward chocolate, though behavioral effects are absent. Intervention applications of EC provide avenues for future research and practices. PMID:28900409

  3. As bitter as a trombone: synesthetic correspondences in nonsynesthetes between tastes/flavors and musical notes.

    PubMed

    Crisinel, Anne-Sylvie; Spence, Charles

    2010-10-01

    In parallel to studies of various cases of synesthesia, many cross-modal correspondences have also been documented in nonsynesthetes. Among these correspondences, implicit associations between taste and pitch have been reported recently (Crisinel & Spence, 2009, 2010). Here, we replicate and extend these findings through explicit matching of sounds of varying pitch to a range of tastes/flavors. In addition, participants in the experiment reported here also chose the type of musical instrument most appropriate for each taste/flavor. The association of sweet and sour tastes to high-pitched notes was confirmed. By contrast, umami and bitter tastes were preferentially matched to low-pitched notes. Flavors did not display such strong pitch associations. The choice of musical instrument seems to have been driven primarily by a matching of the hedonic value and familiarity of the two types of stimuli. Our results raise important questions about our representation of tastes and flavors and could also lead to applications in the marketing of food products.

  4. Using sound-taste correspondences to enhance the subjective value of tasting experiences

    PubMed Central

    Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles

    2015-01-01

    The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate’s taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop’s own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food’s identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations. PMID:26388813

  5. Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice

    PubMed Central

    Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.

    2013-01-01

    Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702

  6. Glucagon signaling modulates sweet taste responsiveness.

    PubMed

    Elson, Amanda E T; Dotson, Cedrick D; Egan, Josephine M; Munger, Steven D

    2010-10-01

    The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.

  7. Interactions between radiation and amphetamine in taste-aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    Three experiments were run to assess the role of the area postrema in taste-aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning to intact ratsmore » and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less-severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste-aversion learning may involve area post-remamediated mechanisms, particularly at the lower doses, but an intact area postrema is not a necessary condition of the acquisition of an amphetamine-induced taste aversion.« less

  8. Interactions between radiation and amphetamine in taste aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-08-01

    Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intactmore » rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion.« less

  9. Supertaster, super reactive: oral sensitivity for bitter taste modulates emotional approach and avoidance behavior in the affective startle paradigm.

    PubMed

    Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D

    2014-08-01

    People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  11. Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose

    PubMed Central

    Flores, Veronica L.; Moran, Anan; Bernstein, Max

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929

  12. Decline of umami preference in aged rats.

    PubMed

    Miura, Hirohito; Ooki, Makoto; Kanemaru, Norikazu; Harada, Shuitsu

    2014-08-08

    The effects of aging on the umami sensation were compared between the preference and neural responses from the greater superficial petrosal nerve (GSP innervating the soft palate) and the chorda tympani nerve (CT innervating the fungiform papillae) in the Sprague Dawley rat. A two-bottle preference test revealed that younger rats (5-12 weeks) preferred significantly 0.001 M 5'-inosine monophosphate (IMP), 0.01 M mono sodium glutamate (MSG), and binary mixtures of 0.001 M IMP+0.01 M MSG than deionized water. However, aged rats (21-22 months) showed no significant preference to these umami solutions compared to deionized water. Among the other four basic taste stimuli, there were no significant differences in preference between young and aged rats. Regardless of the age of the rat, neural responses from the GSP and CT produced robust integrated responses to all three umami solutions used in the two-bottle tests. These results indicate that the lack of preference to umami in aged rats is a central nervous system phenomenon and suggests that the loss of preference to umami taste in aged rats is caused by homeostatic changes in the brain incurred by aging. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The role of lipolysis in human orosensory fat perception

    PubMed Central

    Voigt, Nadine; Stein, Julia; Galindo, Maria Mercedes; Dunkel, Andreas; Raguse, Jan-Dirk; Meyerhof, Wolfgang; Hofmann, Thomas; Behrens, Maik

    2014-01-01

    Taste perception elicited by food constituents and facilitated by sensory cells in the oral cavity is important for the survival of organisms. In addition to the five basic taste modalities, sweet, umami, bitter, sour, and salty, orosensory perception of stimuli such as fat constituents is intensely investigated. Experiments in rodents and humans suggest that free fatty acids represent a major stimulus for the perception of fat-containing food. However, the lipid fraction of foods mainly consists of triglycerides in which fatty acids are esterified with glycerol. Whereas effective lipolysis by secreted lipases (LIPs) liberating fatty acids from triglycerides in the rodent oral cavity is well established, a similar mechanism in humans is disputed. By psychophysical analyses of humans, we demonstrate responses upon stimulation with triglycerides which are attenuated by concomitant LIP inhibitor administration. Moreover, lipolytic activities detected in minor salivary gland secretions directly supplying gustatory papillae were correlated to individual sensitivities for triglycerides, suggesting that differential LIP levels may contribute to variant fat perception. Intriguingly, we found that the LIPF gene coding for lingual/gastric LIP is not expressed in human lingual tissue. Instead, we identified the expression of other LIPs, which may compensate for the absence of LIPF. PMID:24688103

  14. Metastable neural dynamics mediates expectation

    NASA Astrophysics Data System (ADS)

    Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo

    Sensory stimuli are processed faster when their presentation is expected compared to when they come as a surprise. We previously showed that, in multiple single-unit recordings from alert rat gustatory cortex, taste stimuli can be decoded faster from neural activity if preceded by a stimulus-predicting cue. However, the specific computational process mediating this anticipatory neural activity is unknown. Here, we propose a biologically plausible model based on a recurrent network of spiking neurons with clustered architecture. In the absence of stimulation, the model neural activity unfolds through sequences of metastable states, each state being a population vector of firing rates. We modeled taste stimuli and cue (the same for all stimuli) as two inputs targeting subsets of excitatory neurons. As observed in experiment, stimuli evoked specific state sequences, characterized in terms of `coding states', i.e., states occurring significantly more often for a particular stimulus. When stimulus presentation is preceded by a cue, coding states show a faster and more reliable onset, and expected stimuli can be decoded more quickly than unexpected ones. This anticipatory effect is unrelated to changes of firing rates in stimulus-selective neurons and is absent in homogeneous balanced networks, suggesting that a clustered organization is necessary to mediate the expectation of relevant events. Our results demonstrate a novel mechanism for speeding up sensory coding in cortical circuits. NIDCD K25-DC013557 (LM); NIDCD R01-DC010389 (AF); NSF IIS-1161852 (GL).

  15. Immunocytochemical analysis of P2X2 in rat circumvallate taste buds.

    PubMed

    Yang, Ruibiao; Montoya, Alana; Bond, Amanda; Walton, Jenna; Kinnamon, John C

    2012-05-23

    Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3(Dbl-/-) mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP(3)R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, "atypical" mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis that ATP may be a key neurotransmitter in taste transduction and that Type II cells release ATP, activating P2X2 receptors in nerve processes.

  16. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study.

    PubMed

    Tokita, K; Boughter, J D

    2016-03-01

    The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste-responsive neurons still possessed a topographic organization. Published by Elsevier Ltd.

  17. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    PubMed

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Reduced brain response to a sweet taste in Hispanic young adults.

    PubMed

    Szajer, Jacquelyn; Jacobson, Aaron; Green, Erin; Murphy, Claire

    2017-11-01

    Hispanics have an increased risk for metabolic disorders, which evidence suggests may be due to interactions between lifespan biological, genetic, and lifestyle factors. Studies show the diet of many U.S. Hispanic groups have high sugar consumption, which has been shown to influence future preference for and consumption of high-sugar foods, and is associated with increased risk for insulin-related disorders and obesity. Taste is a primary determinant of food preference and selection. Differences in neural response to taste have been associated with obesity. Understanding brain response to sweet taste stimuli in healthy Hispanic adults is an important first step in characterizing the potential neural mechanisms for this behavior. We used fMRI to examine brain activation during the hedonic evaluation of sucrose as a function of ethnicity in Hispanic and non-Hispanic young adults. Taste stimuli were administered orally while subjects were scanned at 3T. Data were analyzed with AFNI via 3dROIstats and 3dMEMA, a mixed effects multi-level analysis of whole brain activation. The Hispanic group had significantly lower ROI activation in the left amygdala and significantly lower whole brain activation in regions critical for reward processing, and hedonic evaluation (e.g. frontal, orbitofrontal, and anterior cingulate cortices) than the non-Hispanic group. Differences in processing of sweet tastes have important clinical and public health implications, especially considering increased risk of metabolic syndrome and cognitive decline in Hispanic populations. Future research to better understanding relationships between health risk and brain function in Hispanic populations is warranted to better conceptualize and develop interventions for these populations. Copyright © 2017. Published by Elsevier B.V.

  19. Taste perception, associated hormonal modulation, and nutrient intake.

    PubMed

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The Molecular and Cellular Basis of Bitter Taste in Drosophila

    PubMed Central

    Weiss, Linnea A.; Dahanukar, Anupama; Kwon, Jae Young; Banerjee, Diya; Carlson, John R.

    2011-01-01

    Summary The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 bitter neurons, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 Gr taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste. PMID:21262465

  1. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-08-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride didmore » produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.« less

  2. Changes in taste bud volume during taste disturbance.

    PubMed

    Srur, Ehab; Pau, Hans Wilhelm; Just, Tino

    2011-08-01

    On-line mapping and serial volume measurements of taste buds with confocal laser scanning microscopy provide information on the peripheral gustatory organ over time. We report the volumetric measurements of four selected fungiform papillae over 8 weeks in a 62-year-old man with taste disturbance, which was more apparent on the right than on the left side. In the two papillae on the right side, no taste buds were detected within the fungiform papillae in the sixth and eighth week. During sixth and eighth week, there was no response to the highest presented stimuli in electrogustometry (1 mA) on the right-sided tongue tip nor at the tongue edge. The morphology (shape, diameter) of the fungiform papillae on both sides remained unchanged. Comparison of the time course of the volume changes revealed differences corresponding to gustatory sensitivity. These findings suggest that the time course of volume changes indicated taste disturbance in our patient, rather than morphological changes in the fungiform papillae. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1987-08-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.

  4. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    PubMed

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  5. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

    PubMed

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-10-14

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mechanisms of taste bud cell loss after head and neck irradiation.

    PubMed

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  7. Mechanisms of taste bud cell loss after head and neck irradiation

    PubMed Central

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  8. Lateral Hypothalamus Contains Two Types of Palatability-Related Taste Responses with Distinct Dynamics

    PubMed Central

    Yoshida, Takashi; Monk, Kevin J.; Katz, Donald B.

    2013-01-01

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions. PMID:23719813

  9. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    PubMed

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  10. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  11. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  12. A preference test for sweet taste that uses edible strips.

    PubMed

    Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C

    2014-02-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  14. A Preference Test for Sweet Taste That Uses Edible Strips

    PubMed Central

    Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.

    2014-01-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255

  15. Proceedings of the 2015 A.S.P.E.N. Research Workshop - Taste Signaling: Impact on Food Selection, Intake, and Health

    PubMed Central

    Spector, Alan C.; le Roux, Carel W; Munger, Steven D.; Travers, Susan P.; Sclafani, Anthony; Mennella, Julie A.

    2016-01-01

    This paper summarizes research findings from six experts in the field of taste and feeding that were presented at the 2015 ASPEN Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass, increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding PMID:26598504

  16. Temperature Influences Chorda Tympani Nerve Responses to Sweet, Salty, Sour, Umami, and Bitter Stimuli in Mice.

    PubMed

    Lu, Bo; Breza, Joseph M; Contreras, Robert J

    2016-08-06

    Temperature profoundly affects the perceived intensity of taste, yet we know little of the extent of temperature's effect on taste in the peripheral nervous system. Accordingly, we investigated the influence of temperature from 23 °C to 43 °C in 4 °C intervals on the integrated responses of the chorda tympani (CT) nerve to a large series of chemical stimuli representing sweet, salty, sour, bitter, and umami tastes in C57BL/J6 mice. We also measured neural responses to NaCl, Na-gluconate, Na-acetate, Na-sulfate, and MSG with and without 5 µM benzamil, an epithelial sodium channel (ENaC) antagonist, to assess the influence of temperature on ENaC-dependent and ENaC-independent response components. Our results showed that for most stimuli (0.5M sucrose, glucose, fructose, and maltose; 0.02M saccharin and sucralose; 0.5M NaCl, Na-gluconate, Na-acetate, Na-sulfate, KCl, K-gluconate, K-acetate, and K-sulfate; 0.05M citric acid, acetic acid, and HCl; 0.1M MSG and 0.05M quinine hydrochloride: QHCl), CT response magnitudes were maximal between 35 °C and 39 °C and progressively smaller at cooler or warmer temperatures. In contrast, the weakest responses to NH 4 Cl, (NH 4 ) 2 SO4, and K-sulfate were at the lowest temperature, with response magnitude increasing monotonically with increasing temperature, while the largest responses to acetic acid were at the lowest temperature, with response magnitude decreasing with increasing temperature. The response to sweet and umami stimuli across temperatures were similar reflecting the involvement of TRPM5 activity, in contrast to bitter stimuli, which were weakly affected by temperature. Temperature-modulated responses to salts and acids most likely operate through mechanisms independent of ENaC and TRPM5. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Temperature Influences Chorda Tympani Nerve Responses to Sweet, Salty, Sour, Umami, and Bitter Stimuli in Mice

    PubMed Central

    Lu, Bo; Breza, Joseph M.

    2016-01-01

    Temperature profoundly affects the perceived intensity of taste, yet we know little of the extent of temperature’s effect on taste in the peripheral nervous system. Accordingly, we investigated the influence of temperature from 23 °C to 43 °C in 4 °C intervals on the integrated responses of the chorda tympani (CT) nerve to a large series of chemical stimuli representing sweet, salty, sour, bitter, and umami tastes in C57BL/J6 mice. We also measured neural responses to NaCl, Na-gluconate, Na-acetate, Na-sulfate, and MSG with and without 5 µM benzamil, an epithelial sodium channel (ENaC) antagonist, to assess the influence of temperature on ENaC-dependent and ENaC-independent response components. Our results showed that for most stimuli (0.5M sucrose, glucose, fructose, and maltose; 0.02M saccharin and sucralose; 0.5M NaCl, Na-gluconate, Na-acetate, Na-sulfate, KCl, K-gluconate, K-acetate, and K-sulfate; 0.05M citric acid, acetic acid, and HCl; 0.1M MSG and 0.05M quinine hydrochloride: QHCl), CT response magnitudes were maximal between 35 °C and 39 °C and progressively smaller at cooler or warmer temperatures. In contrast, the weakest responses to NH4Cl, (NH4)2SO4, and K-sulfate were at the lowest temperature, with response magnitude increasing monotonically with increasing temperature, while the largest responses to acetic acid were at the lowest temperature, with response magnitude decreasing with increasing temperature. The response to sweet and umami stimuli across temperatures were similar reflecting the involvement of TRPM5 activity, in contrast to bitter stimuli, which were weakly affected by temperature. Temperature-modulated responses to salts and acids most likely operate through mechanisms independent of ENaC and TRPM5. PMID:27497433

  18. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

    PubMed Central

    Wilson, David M.; Brasser, Susan M.

    2011-01-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002

  19. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    PubMed

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  20. Brief Exposures to the Taste of Ethanol (EtOH) and Quinine Promote Subsequent Acceptance of EtOH in a Paradigm that Minimizes Postingestive Consequences.

    PubMed

    Loney, Gregory C; Meyer, Paul J

    2018-03-01

    Aversion to the orosensory properties of concentrated ethanol (EtOH) solutions is often cited as a primary barrier to initiation of drinking and may contribute to abstention. These aversive properties include gustatory processes which encompass both bitter-like taste qualities and trigeminal-mediated irritation. Chronic intermittent EtOH access (CIA) results in substantial and persistent increases in EtOH consumption, but the degree to which this facilitation involves sensory responding to EtOH and other bitter stimuli is currently undetermined. Long-Evans rats were given brief-access licking tests designed to examine the immediate, taste-guided assessment of the palatability of EtOH and quinine solutions. Rats were assessed once in a naïve state and again following previous brief-access exposure, or following 4 weeks of CIA. The relationship between the sensitivity to the aversive orosensory properties of EtOH and quinine following EtOH access and the impact of antecedent quinine exposure on the acceptance of EtOH were determined in 2 parallel studies. Both brief access to EtOH and 4-week CIA resulted in substantial rightward shifts in the concentration-response function of brief-access EtOH licking, indicating that EtOH exposure increased acceptance of the taste of EtOH. The initial sensitivity to the aversive orosensory properties of EtOH and quinine was positively correlated in naïve rats, such that rats that were initially more accepting of quinine were also more accepting of EtOH. Rats that sampled quinine immediately prior to tasting EtOH exhibited successive positive contrast in that they were more accepting of highly concentrated EtOH, relative to a water-control group. Increased EtOH acceptance following exposure is, at least in part, facilitated by a decrease in its aversive sensory properties. Both long- and short-term access increase the palatability of the taste of EtOH in brief-access licking tests. Moreover, the sensitivity to the bitterness of quinine was predictive of acceptance of EtOH indicating some commonality in the sensory mechanisms that mediate the initial acceptance of the 2 stimuli. Accordingly, immediate prior exposure to quinine results in increased acceptance of EtOH, suggesting that successive positive contrast between oral stimuli may contribute to increased alcohol consumption. Copyright © 2017 by the Research Society on Alcoholism.

  1. Sweets and fats tasting in patients with anorexia nervosa: the role of the thought-shape fusion cognitive distortion.

    PubMed

    Monje Moreno, José Manuel; Alvarez Amor, Leticia; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; Jáuregui-Lobera, Ignacio

    2014-05-01

    It has been found that the olfactorygustatory function is altered in patients with eating disorders, with an impairment affecting the perception of olfactory and gustatory stimuli. The aim was to explore the subjective reactivity after the exposure and tasting of foods with different gradient of sweetness and different fats textures. In addition, changes in the thought-shape fusion (TSF) cognitive distortion were assessed after tasting those different presentations as well as the correlations between the initial scores on TSF-Questionnaire (TSF-Q) and the different responses after that tasting. A total of 15 healthy controls and 23 outpatients with anorexia nervosa underwent two sessions of tasting (sweets with different gradient of sweetness and fats with different textures) and they filled several questionnaires (pre- and post-tasting) to measure their responses after tasting. Participants showed less "self-control" after tasting sweets. The score on TSF-Q increased significantly after the sweets tasting in the patients group. Patients had the worst response after tasting presentations with more quantity of glucose (less gradient of sweetness) than after tasting those with more amount of sucrose (much more sweetness). With respect to the fats, patients showed the worst reaction after tasting the most unfamiliar texture. Pre fats tasting TSF-Q scores correlated significantly with all responses in the patients group. Both psychological and biological (e.g. genetic) factors could be involved in the reactions of patients with anorexia nervosa after tasting sweets and fats. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Effects and Mechanisms of Tastants on the Gustatory-Salivary Reflex in Human Minor Salivary Glands.

    PubMed

    Satoh-Kuriwada, Shizuko; Shoji, Noriaki; Miyake, Hiroyuki; Watanabe, Chiyo; Sasano, Takashi

    2018-01-01

    The effects and mechanisms of tastes on labial minor salivary gland (LMSG) secretion were investigated in 59 healthy individuals. Stimulation with each of the five basic tastes (i.e., sweet, salty, sour, bitter, and umami) onto the tongue induced LMSG secretion in a dose-dependent manner. Umami and sour tastes evoked greater secretion than did the other tastes. A synergistic effect of umami on LMSG secretion was recognized: a much greater increase in secretion was observed by a mixed solution of monosodium glutamate and inosine 5'-monophosphate than by each separate stimulation. Blood flow (BF) in the nearby labial mucosa also increased following stimulation by each taste except bitter. The BF change and LMSG secretion in each participant showed a significant positive correlation with all tastes, including bitter. Administration of cevimeline hydrochloride hydrate to the labial mucosa evoked a significant increase in both LMSG secretion and BF, while adrenaline, atropine, and pirenzepine decreased LMSG secretion and BF. The change in LMSG secretion and BF induced by each autonomic agent was significantly correlated in each participant. These results indicate that basic tastes can induce the gustatory-salivary reflex in human LMSGs and that parasympathetic regulation is involved in this mechanism.

  3. Wine Expertise Predicts Taste Phenotype

    PubMed Central

    Hayes, John E; Pickering, Gary J

    2011-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli. PMID:22888174

  4. Effects of Nicotine on Olfactogustatory Incentives: Preference, Palatability, and Operant Choice Tests

    PubMed Central

    2013-01-01

    Introduction: The use of additives in tobacco may capitalize on the incentive motivational properties of tastes and scents such as mint (menthol), vanilla, and strawberry. These incentives are intended to increase tobacco experimentation, but their salience may also be enhanced by the incentive amplifying effects of nicotine (NIC). The goal of the present studies was to investigate the potential interaction between the incentive amplifying effects of NIC and gustatory incentives. Methods: One of two discriminable tastes (grape or cherry Kool-Aid®; 0.05% wt/vol; unsweetened) was paired with sucrose (20% wt/vol; conditioned stimulus [CS+]) in deionized water, whereas the other taste (CS−) was presented in deionized water. Experiment 1 investigated the effects of NIC pretreatment on preference for the CS+ versus CS− in 2-bottle choice tests. Experiment 2 investigated the effects of NIC on palatability of the CS+ and CS− using orofacial taste reactions. Experiment 3 investigated the effects of NIC on reinforcement by the CS+ and CS− using a concurrent choice operant task. Results: NIC pretreatment robustly increased operant responding for the CS+ but did not alter responding for the CS− in the operant choice task (Experiment 3). However, NIC pretreatment did not alter intake or palatability of the CS+ or CS− (Experiments 1 and 2). Conclusions: NIC increases the reinforcing effects of gustatory incentive stimuli, even though these stimuli were not paired with NIC administration. The findings suggest that adding taste incentives to tobacco products may increase the attractiveness of these products to consumers and the probability of repeated use. PMID:23430737

  5. Wine Expertise Predicts Taste Phenotype.

    PubMed

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  6. Neural processing of reward and punishment in young people at increased familial risk of depression.

    PubMed

    McCabe, Ciara; Woffindale, Caroline; Harmer, Catherine J; Cowen, Philip J

    2012-10-01

    Abnormalities in the neural representation of rewarding and aversive stimuli have been well-described in patients with acute depression, and we previously found abnormal neural responses to rewarding and aversive sight and taste stimuli in recovered depressed patients. The aim of the present study was to determine whether similar abnormalities might be present in young people at increased familial risk of depression but with no personal history of mood disorder. We therefore used functional magnetic resonance imaging to examine the neural responses to pleasant and aversive sights and tastes in 25 young people (16-21 years of age) with a biological parent with depression and 25 age- and gender-matched control subjects. We found that, relative to the control subjects, participants with a parental history of depression showed diminished responses in the orbitofrontal cortex to rewarding stimuli, whereas activations to aversive stimuli were increased in the lateral orbitofrontal cortex and insula. In anterior cingulate cortex the at-risk group showed blunted neural responses to both rewarding and aversive stimuli. Our findings suggest that young people at increased familial risk of depression have altered neural representation of reward and punishment, particularly in cortical regions linked to the use of positive and negative feedback to guide adaptive behavior. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani

    PubMed Central

    1980-01-01

    Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114

  9. Whole-nerve chorda tympani responses to sweeteners in C57BL/6ByJ and 129P3/J mice

    PubMed Central

    Inoue, Masashi; McCaughey, Stuart A.; Bachmanov, Alexander A.; Beauchamp, Gary K.

    2013-01-01

    The C57BL/6ByJ (B6) strain of mice exhibits higher preferences than does the 129P3/J (129) strain for a variety of sweet-tasting compounds. We measured gustatory afferent responses of the whole chorda tympani nerve in these two strains using a broad array of sweeteners and other taste stimuli. Neural responses were greater in B6 than in 129 mice to the sugars sucrose and maltose, the polyol D-sorbitol, and the non-caloric sweeteners NaSaccharin, acesulfame-K, SC-45647, and sucralose. Lower neural response thresholds were also observed in the B6 strain for most of these stimuli. The strains did not differ on their neural responses to amino acids that are thought to taste sweet to mice, with the exception of L-proline, which evoked larger responses in the B6 strain. Aspartame and thaumatin, which taste sweet to humans but are not strongly preferred by B6 or 129 mice, did not evoke neural responses that exceeded threshold in either strain. The strains generally did not differ in their neural responses to NaCl, quinine, and HCl. Thus, variation between the B6 and 129 strains in the peripheral gustatory system may contribute to differences in their consumption of many sweeteners. PMID:11555486

  10. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds

    PubMed Central

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M.

    2012-01-01

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from “local epithelium”, in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. PMID:22659543

  11. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  12. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  13. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    PubMed

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.

    PubMed

    Manzi, Brian; Hummel, Thomas

    2014-02-01

    To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations prior to determining the ideal taste strip application method.

  15. Effect of low body temperature on associative interference in conditioned taste aversion.

    PubMed

    Christianson, John P; Anderson, Mathew J; Misanin, James R; Hinderliter, Charles F

    2005-06-01

    When two novel conditioned stimuli precede an unconditioned stimulus (US), the interval between the two conditioned stimuli (CS1 and CS2) influences the magnitude of the CS-US associability of each CS. As the interval between CS1 and CS2 increases, the associability of CS1 with the US decreases due to interference by CS2 and the associability of CS2 increases, given its temporal proximity to the US. Because hypothermia has been reported to increase the interval at which conditioned taste aversions can be formed, its influence was examined on the above relationship, i.e., how interference from CS2 affects the associability of CS1 with the US. Rats received a conditioned taste aversion procedure where CS1 and CS2 were presented either one after the other or separated by an 80-min. delay. For all subjects, the US or pseudo-US was presented immediately after CS2. When hypothermia was interpolated between the two flavor stimuli that were spaced 80 min. apart, CS2-interference with the CS1-US association was greatly attenuated. We propose that hypothermia modifies internal timing mechanisms such that the externally timed 80-min. CS1-CS2 interval was perceived as much shorter for rats made hypothermic. As a result of this perceived shortened inter-CS interval, CS2 produced less interference for the CS1-US association than would be expected for such a relatively long delay between CS1 and CS2.

  16. Cocaine decreases saccharin preference without altering sweet taste sensitivity.

    PubMed

    Roebber, Jennifer K; Izenwasser, Sari; Chaudhari, Nirupa

    2015-06-01

    In rodents, saccharin consumption is suppressed when the sweet taste stimulus is paired with moderate doses of cocaine. Several hypotheses have been used to explain the seemingly contradictory effect of decreased consumption of a normally preferred substance following a highly rewarding drug. A common theme across these hypotheses is that saccharin is interpreted as less rewarding after cocaine pairing. We considered the alternative possibility that suppression is caused not by a change in reward circuitry, but rather by a change in taste detection, for instance by altering the afferent taste response and decreasing sensitivity to sweet taste stimuli. To evaluate this possibility, we measured saccharin taste sensitivity of mice before and after a standard cocaine-pairing paradigm. We measured taste sensitivity using a brief-access lickometer equipped with multiple concentrations of saccharin solution and established concentration-response curves before and after saccharin-cocaine pairing. Our results indicate that the EC50 for saccharin was unaltered following pairing. Instead, the avidity of licking saccharin, an indicator of motivation, was depressed. Latency to first-lick, a negative indicator of motivation, was also dramatically increased. Thus, our findings are consistent with the interpretation that saccharin-cocaine pairing results in devaluing of the sweet taste reward. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of smoking on taste: assessment with contact endoscopy and taste strips.

    PubMed

    Konstantinidis, Iordanis; Chatziavramidis, Angelos; Printza, Athanasia; Metaxas, Spyros; Constantinidis, Jannis

    2010-10-01

    This study aims to compare the taste function between smokers and nonsmokers with clinical testing, subjective ratings, and contact endoscopy of the tongue. Cross-sectional survey. Data were collected from 38 smokers (mean age 37 years; 25 female, 23 male) and 34 nonsmokers (mean age 33.5 years; 18 female, 16 male). The parameters assessed were the number of fungiform papillae per square centimeter in a noncontact way and their morphology (surface, capillary vessels) by contact endoscopy. The morphology of the filiform papillae has also been assessed. In addition, clinical testing of gustatory function was performed by means of taste strips and subjective intensity ratings of natural taste stimuli. No significant difference was found in clinical testing and intensity ratings between the two study groups. A trend toward significance was found in taste strip results for decreased bitter taste in heavy smokers (P = .06). The number and the size of fungiform papillae did not significantly differ between the study groups. No sex-related differences were observed. Smokers exhibited significantly more keratin structures on the fungiform papillae surface, less tortuous capillary vessels, and a significant distortion of their filiform papillae. Taste function presents significant resistance to smoking, although changes in morphology of fungiform and filiform papillae have been observed especially in heavy smokers. Laryngoscope, 2010.

  18. A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131

    PubMed Central

    Prandi, Simone; Bromke, Marta; Hübner, Sandra; Voigt, Anja; Boehm, Ulrich; Meyerhof, Wolfgang; Behrens, Maik

    2013-01-01

    The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs), direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics. PMID:24367558

  19. Effects of caffeine deprivation on taste and mood.

    PubMed

    Brauer, L.H.; Buican, B.; de Wit, H.

    1994-04-01

    Despite its ubiquitous consumption in the natural environment, caffeine has not been a reliable reinforcer in laboratory settings. The reinforcing effects of caffeine are greater in caffeine-dependent subjects relative to non-dependent subjects, but the mechanism underlying this difference remains unclear. We hypothesized that deprivation from caffeine would produce alterations in subjective ratings of stimuli commonly associated with caffeine consumption. Specifically, we hypothesized that hedonic ratings of the coffee taste would be selectively enhanced following caffeine deprivation. Twelve regular caffeine users received acute doses of caffeine (300mg) or placebo after 33h of caffeine deprivation or non-deprivation. They rated the taste of coffee and sucrose, saccharin, and quinine solutions on intensity, bitterness, sweetness, pleasantness, and unpleasantness. Contrary to our hypothesis, subjects' ratings of the pleasantness of the coffee taste were not significantly altered by caffeine deprivation. However, subjects' ratings of the bitterness and sweetness of the coffee taste and ratings of the sucrose solution were altered by caffeine. Implications of these data for caffeine self-administration are discussed.

  20. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    PubMed

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  1. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    PubMed Central

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  2. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    PubMed

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  3. Sweet liking in patients with Parkinson's disease.

    PubMed

    Sienkiewicz-Jarosz, Halina; Scinska, Anna; Swiecicki, Lukasz; Lipczynska-Lojkowska, Wanda; Kuran, Wlodzimierz; Ryglewicz, Danuta; Kolaczkowski, Marcin; Samochowiec, Jerzy; Bienkowski, Przemyslaw

    2013-06-15

    Pleasant tastes and odors are considered phylogenetically old natural rewards and their hedonic evaluation is regarded as a good indicator of the reward system function. The primary aim of the present study was to compare pleasantness ratings of sucrose solutions (1-30%, w/w) and sweet liking/disliking status in 20 patients with Parkinson's disease (PD) and in 20 age-matched healthy controls. In addition, basic sensory aspects of gustatory (intensity ratings, electrogustometric thresholds) and olfactory function (identification abilities in the Sniffin' Stick test) were assessed in both groups. The number of odors rated as pleasant, unpleasant, and neutral was also compared. As expected, the PD patients showed a significant impairment in olfactory identification abilities. There were no differences between the PD patients and controls in electrogustometric thresholds. Rated intensity of higher sucrose concentrations did not differ between the groups. The PD patients tended to rate water taste as more intense in comparison with the controls. Pleasantness ratings of sucrose solutions, the proportion of subjects rating 30% sucrose as the most pleasant (sweet likers), and the number of odors rated as pleasant did not differ between the study groups. The present results suggest that PD does not lead to any obvious alterations in pleasantness ratings of chemosensory stimuli. The study requires replication in larger samples. Copyright © 2013. Published by Elsevier B.V.

  4. Analysis of Facial Expression by Taste Stimulation

    NASA Astrophysics Data System (ADS)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  5. Early milk feeding influences taste acceptance and liking during infancy12345

    PubMed Central

    Mennella, Julie A; Forestell, Catherine A; Morgan, Lindsay K; Beauchamp, Gary K

    2009-01-01

    Background: We identified a model system that exploits the inherent taste variation in early feedings to investigate food preference development. Objective: The objective was to determine whether exposure to differing concentrations of taste compounds in milk and formulas modifies acceptance of exemplars of the 5 basic taste qualities in a familiar food matrix. Specifically, we examined the effects of consuming hydrolyzed casein formulas (HCFs), which have pronounced bitter, sour, and savory tastes compared with breast milk (BM) and bovine milk–based formulas (MFs), in which these taste qualities are weaker. Design: Subgroups of BM-, MF- and HCF-fed infants, some of whom were fed table foods, were studied on 6 occasions to measure acceptance of sweet, salty, bitter, savory, sour, and plain cereals. Results: In infants not yet eating table foods, the HCF group ate significantly more savory-, bitter-, and sour-tasting and plain cereals than did the BM or MF groups. HCF infants displayed fewer facial expressions of distaste while eating the bitter and savory cereals, and they and BM infants were more likely to smile while they were eating the savory cereal. In formula-fed infants eating table foods, preferences for the basic tastes reflected the types of foods they were being fed. In general, those infants who ate more food displayed fewer faces of distaste. Conclusions: The type of formula fed to infants has an effect on their response to taste compounds in cereal before solid food introduction. This model system of research investigation sheds light on sources of individual differences in taste and perhaps cultural food preferences. PMID:19605570

  6. The effect of barium on perceptions of taste intensity and palatability.

    PubMed

    Dietsch, Angela M; Solomon, Nancy Pearl; Steele, Catriona M; Pelletier, Cathy A

    2014-02-01

    Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, nontaster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40 % w/v barium: noncarbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter), and sucrose (sweet). Mixed-model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than nontasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions.

  7. Perceptual and neural responses to sweet taste in humans and rodents.

    PubMed

    Lemon, Christian H

    2015-08-01

    This mini-review discusses some of the parallels between rodent neurophysiological and human psychophysical data concerning temperature effects on sweet taste. "Sweet" is an innately rewarding taste sensation that is associated in part with foods that contain calories in the form of sugars. Humans and other mammals can show unconditioned preference for select sweet stimuli. Such preference is poised to influence diet selection and, in turn, nutritional status, which underscores the importance of delineating the physiological mechanisms for sweet taste with respect to their influence on human health. Advances in our knowledge of the biology of sweet taste in humans have arisen in part through studies on mechanisms of gustatory processing in rodent models. Along this line, recent work has revealed there are operational parallels in neural systems for sweet taste between mice and humans, as indexed by similarities in the effects of temperature on central neurophysiological and psychophysical responses to sucrose in these species. Such association strengthens the postulate that rodents can serve as effective models of particular mechanisms of appetitive taste processing. Data supporting this link are discussed here, as are rodent and human data that shed light on relationships between mechanisms for sweet taste and ingestive disorders, such as alcohol abuse. Rodent models have utility for understanding mechanisms of taste processing that may pertain to human flavor perception. Importantly, there are limitations to generalizing data from rodents, albeit parallels across species do exist.

  8. Flavour and identification threshold detection overview of Slovak adepts for certified testing.

    PubMed

    Vietoris, VladimIr; Barborova, Petra; Jancovicova, Jana; Eliasova, Lucia; Karvaj, Marian

    2016-07-01

    During certification process of sensory assessors of Slovak certification body we obtained results for basic taste thresholds and lifestyle habits. 500 adult people were screened during experiment with food industry background. For analysis of basic and non basic tastes, we used standardized procedure of ISO 8586-1:1993. In flavour test experiment, group of (26-35 y.o) produced the lowest error ratio (1.438), highest is (56+ y.o.) group with result (2.0). Average error value based on gender for women was (1.510) in comparison to men (1.477). People with allergies have the average error ratio (1.437) in comparison to people without allergies (1.511). Non-smokers produced less errors (1.484) against the smokers (1.576). Another flavour threshold identification test detected differences among age groups (by age are values increased). The highest number of errors made by men in metallic taste was (24%) the same as made by women (22%). Higher error ratio made by men occurred in salty taste (19%) against women (10%). Analysis detected some differences between allergic/non-allergic, smokers/non-smokers groups.

  9. A New Gustometer for Taste Testing in Rodents

    PubMed Central

    Blonde, Ginger D.; Henderson, Ross P.; Treesukosol, Yada; Hendrick, Paul; Newsome, Ryan; Fletcher, Fred H.; Tang, Te; Donaldson, James A.

    2015-01-01

    In recent years, to circumvent the interpretive limitations associated with intake tests commonly used to assess taste function in rodents, investigators have developed devices called gustometers to deliver small volumes of taste samples and measure immediate responses, thereby increasing confidence that the behavior of the animal is under orosensory control. Most of these gustometers can be used to measure unconditioned licking behavior to stimuli presented for short durations and/or can be used to train the animal to respond to various fluid stimuli differentially so as to obtain a reward and/or avoid punishment. Psychometric sensitivity and discrimination functions can thus be derived. Here, we describe a new gustometer design, successfully used in behavioral experiments, that was guided by our experience with an older version used for over 2 decades. The new computer-controlled gustometer features no dead space in stimulus delivery lines, effective cleaning of the licking substrate, and the ability to measure licking without passing electrical current through the animal. The parts and dimensions are detailed, and the benefits and limitations of certain design features are discussed. Schematics for key circuits are provided as supplemental information. Accordingly, it should be possible to fabricate this device in a fashion customized for one’s needs. PMID:25616763

  10. Effects and Mechanisms of Tastants on the Gustatory-Salivary Reflex in Human Minor Salivary Glands

    PubMed Central

    Shoji, Noriaki; Miyake, Hiroyuki; Watanabe, Chiyo; Sasano, Takashi

    2018-01-01

    The effects and mechanisms of tastes on labial minor salivary gland (LMSG) secretion were investigated in 59 healthy individuals. Stimulation with each of the five basic tastes (i.e., sweet, salty, sour, bitter, and umami) onto the tongue induced LMSG secretion in a dose-dependent manner. Umami and sour tastes evoked greater secretion than did the other tastes. A synergistic effect of umami on LMSG secretion was recognized: a much greater increase in secretion was observed by a mixed solution of monosodium glutamate and inosine 5′-monophosphate than by each separate stimulation. Blood flow (BF) in the nearby labial mucosa also increased following stimulation by each taste except bitter. The BF change and LMSG secretion in each participant showed a significant positive correlation with all tastes, including bitter. Administration of cevimeline hydrochloride hydrate to the labial mucosa evoked a significant increase in both LMSG secretion and BF, while adrenaline, atropine, and pirenzepine decreased LMSG secretion and BF. The change in LMSG secretion and BF induced by each autonomic agent was significantly correlated in each participant. These results indicate that basic tastes can induce the gustatory-salivary reflex in human LMSGs and that parasympathetic regulation is involved in this mechanism. PMID:29651428

  11. Cross-cultural differences in crossmodal correspondences between basic tastes and visual features

    PubMed Central

    Wan, Xiaoang; Woods, Andy T.; van den Bosch, Jasper J. F.; McKenzie, Kirsten J.; Velasco, Carlos; Spence, Charles

    2014-01-01

    We report a cross-cultural study designed to investigate crossmodal correspondences between a variety of visual features (11 colors, 15 shapes, and 2 textures) and the five basic taste terms (bitter, salty, sour, sweet, and umami). A total of 452 participants from China, India, Malaysia, and the USA viewed color patches, shapes, and textures online and had to choose the taste term that best matched the image and then rate their confidence in their choice. Across the four groups of participants, the results revealed a number of crossmodal correspondences between certain colors/shapes and bitter, sour, and sweet tastes. Crossmodal correspondences were also documented between the color white and smooth/rough textures on the one hand and the salt taste on the other. Cross-cultural differences were observed in the correspondences between certain colors, shapes, and one of the textures and the taste terms. The taste-patterns shown by the participants from the four countries tested in the present study are quite different from one another, and these differences cannot easily be attributed merely to whether a country is Eastern or Western. These findings therefore highlight the impact of cultural background on crossmodal correspondences. As such, they raise a number of interesting questions regarding the neural mechanisms underlying crossmodal correspondences. PMID:25538643

  12. Cross-cultural differences in crossmodal correspondences between basic tastes and visual features.

    PubMed

    Wan, Xiaoang; Woods, Andy T; van den Bosch, Jasper J F; McKenzie, Kirsten J; Velasco, Carlos; Spence, Charles

    2014-01-01

    We report a cross-cultural study designed to investigate crossmodal correspondences between a variety of visual features (11 colors, 15 shapes, and 2 textures) and the five basic taste terms (bitter, salty, sour, sweet, and umami). A total of 452 participants from China, India, Malaysia, and the USA viewed color patches, shapes, and textures online and had to choose the taste term that best matched the image and then rate their confidence in their choice. Across the four groups of participants, the results revealed a number of crossmodal correspondences between certain colors/shapes and bitter, sour, and sweet tastes. Crossmodal correspondences were also documented between the color white and smooth/rough textures on the one hand and the salt taste on the other. Cross-cultural differences were observed in the correspondences between certain colors, shapes, and one of the textures and the taste terms. The taste-patterns shown by the participants from the four countries tested in the present study are quite different from one another, and these differences cannot easily be attributed merely to whether a country is Eastern or Western. These findings therefore highlight the impact of cultural background on crossmodal correspondences. As such, they raise a number of interesting questions regarding the neural mechanisms underlying crossmodal correspondences.

  13. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis

    PubMed Central

    1990-01-01

    Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber. PMID:2374001

  14. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud.

    PubMed

    Herness, Scott; Zhao, Fang-Li

    2009-07-14

    The evolving view of the taste bud increasingly suggests that it operates as a complex signal processing unit. A number of neurotransmitters and neuropeptides and their corresponding receptors are now known to be expressed in subsets of taste receptor cells in the mammalian bud. These expression patterns set up hard-wired cell-to-cell communication pathways whose exact physiological roles still remain obscure. As occurs in other cellular systems, it is likely that neuropeptides are co-expressed with neurotransmitters and function as neuromodulators. Several neuropeptides have been identified in taste receptor cells including cholecystokinin (CCK), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and glucagon-like peptide 1 (GLP-1). Of these, CCK and NPY are the best studied. These two peptides are co-expressed in the same presynaptic cells; however, their postsynaptic actions are both divergent and antagonistic. CCK and its receptor, the CCK-1 subtype, are expressed in the same subset of taste receptor cells and the autocrine activation of these cells produces a number of excitatory physiological actions. Further, most of these cells are responsive to bitter stimuli. On the other hand, NPY and its receptor, the NPY-1 subtype, are expressed in different cells. NPY, acting in a paracrine fashion on NPY-1 receptors, results in inhibitory actions on the cell. Preliminary evidence suggests the NPY-1 receptor expressing cell co-expresses T1R3, a member of the T1R family of G-protein coupled receptors thought to be important in detection of sweet and umami stimuli. Thus the neuropeptide expressing cells co-express CCK, NPY, and CCK-1 receptor. Neuropeptides released from these cells during bitter stimulation may work in concert to both modulate the excitation of bitter-sensitive taste receptor cells while concurrently inhibiting sweet-sensitive cells. This modulatory process is similar to the phenomenon of lateral inhibition that occurs in other sensory systems.

  15. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    PubMed

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Innate and learned preferences for sweet taste during childhood.

    PubMed

    Ventura, Alison K; Mennella, Julie A

    2011-07-01

    In nature, carbohydrates are a source of energy often equated with sweetness, the detection of which is associated with powerful hedonic appeal. Intakes of processed carbohydrates in the form of added sugars and sugar-sweetened beverages have risen consistently among all age groups over the last two decades. In this review, we describe the biological underpinnings that drive the consumption of sweet-tasting foods among pediatric populations. Scientific literature suggests that children's liking for all that is sweet is not solely a product of modern-day technology and advertising but reflects their basic biology. In fact, heightened preference for sweet-tasting foods and beverages during childhood is universal and evident among infants and children around the world. The liking for sweet tastes during development may have ensured the acceptance of sweet-tasting foods, such as mother's milk and fruits. Moreover, recent research suggests that liking for sweets may be further promoted by the pain-reducing properties of sugars. An examination of the basic biology of sweet taste during childhood provides insight, as well as new perspectives, for how to modify children's preferences for and intakes of sweet foods to improve their diet quality.

  17. Soy sauce and its umami taste: a link from the past to current situation.

    PubMed

    Lioe, Hanifah Nuryani; Selamat, Jinap; Yasuda, Masaaki

    2010-04-01

    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.

  18. Identification of the key bitter compounds in our daily diet is a prerequisite for the understanding of the hTAS2R gene polymorphisms affecting food choice.

    PubMed

    Hofmann, Thomas

    2009-07-01

    In order to decode genetic variations affecting food choice and to determine whether to accept or to reject certain food products, it is a necessary prerequisite to deorphanize the hTAS2R/ligand pairs using the key bitter compounds in foods as stimuli rather than doing this either by using artificial molcules, to which the normal consumer had never been exposed, or by using food-born molecules which do not at all contribute to the overall bitterness. Therefore, the chemical structure of the most active bitter molecules in foods needs to be unequivocally determined in order to be sure that hTAS2R polymorphisms are related to the key molecules which really contribute to the overall bitterness perception of food products. As most studies focused primarily on quantitatively predominating compounds, rather than selecting the target compounds to be identified with regard to taste-activity, it seems that yet unknown components play a key role in evoking the bitter taste of food products. Driven by the need to discover the key players inducing the food taste, the research area "sensomics" made tremendous efforts in recent years to map the sensometabolome and to identify the most intense taste-active metabolites in fresh and processed foods. The present article summarizes recent studies on the identification of orphan key bitter stimuli in fresh, fermented, and thermally processed foods using carrots, cheese, and roasted coffee as examples.

  19. Caenorhabditis elegans TRPV Channels Function in a Modality-Specific Pathway to Regulate Response to Aberrant Sensory Signaling

    PubMed Central

    Ezak , Meredith J.; Hong , Elizabeth; Chaparro-Garcia , Angela; Ferkey , Denise M.

    2010-01-01

    Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974

  20. The effect of background music on the taste of wine.

    PubMed

    North, Adrian C

    2012-08-01

    Research concerning cross-modal influences on perception has neglected auditory influences on perceptions of non-auditory objects, although a small number of studies indicate that auditory stimuli can influence perceptions of the freshness of foodstuffs. Consistent with this, the results reported here indicate that independent groups' ratings of the taste of the wine reflected the emotional connotations of the background music played while they drank it. These results indicate that the symbolic function of auditory stimuli (in this case music) may influence perception in other modalities (in this case gustation); and are discussed in terms of possible future research that might investigate those aspects of music that induce such effects in a particular manner, and how such effects might be influenced by participants' pre-existing knowledge and expertise with regard to the target object in question. ©2011 The British Psychological Society.

  1. Dried bonito dashi: taste qualities evaluated using conditioned taste aversion methods in wild-type and T1R1 knockout mice.

    PubMed

    Delay, Eugene R; Kondoh, Takashi

    2015-02-01

    The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers

    PubMed Central

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2018-01-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222

  3. Whole transcriptome profiling of taste bud cells.

    PubMed

    Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F

    2017-08-08

    Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.

  4. Gustatory Receptor Neurons in Manduca sexta Contain a TrpA1-Dependent Signaling Pathway that Integrates Taste and Temperature

    PubMed Central

    2013-01-01

    Temperature modulates the peripheral taste response of many animals, in part by activating transient receptor potential (Trp) cation channels. We hypothesized that temperature would also modulate peripheral taste responses in larval Manduca sexta. We recorded excitatory responses of the lateral and medial styloconic sensilla to chemical stimuli at 14, 22, and 30 °C. The excitatory responses to 5 chemical stimuli—a salt (KCl), 3 sugars (sucrose, glucose, and inositol) and an alkaloid (caffeine)—were unaffected by temperature. In contrast, the excitatory response to the aversive compound, aristolochic acid (AA), increased robustly with temperature. Next, we asked whether TrpA1 mediates the thermally dependent taste response to AA. To this end, we 1) identified a TrpA1 gene in M. sexta; 2) demonstrated expression of TrpA1 in the lateral and medial styloconic sensilla; 3) determined that 2 TrpA1 antagonists (HC-030031 and mecamylamine) inhibit the taste response to AA, but not caffeine; and then 4) established that the thermal dependence of the taste response to AA is blocked by HC-030031. Taken together, our results indicate that TrpA1 serves as a molecular integrator of taste and temperature in M. sexta. PMID:23828906

  5. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor

    PubMed Central

    Kurihara, Kenzo

    2015-01-01

    Three umami substances (glutamate, 5′-inosinate, and 5′-guanylate) were found by Japanese scientists, but umami has not been recognized in Europe and America for a long time. In the late 1900s, umami was internationally recognized as the fifth basic taste based on psychophysical, electrophysiological, and biochemical studies. Three umami receptors (T1R1 + T1R3, mGluR4, and mGluR1) were identified. There is a synergism between glutamate and the 5′-nucleotides. Among the above receptors, only T1R1 + T1R3 receptor exhibits the synergism. In rats, the response to a mixture of glutamate and 5′-inosinate is about 1.7 times larger than that to glutamate alone. In human, the response to the mixture is about 8 times larger than that to glutamate alone. Since glutamate and 5′-inosinate are contained in various foods, we taste umami induced by the synergism in daily eating. Hence umami taste induced by the synergism is a main umami taste in human. PMID:26247011

  6. Effects of acids on neural activity elicited by other taste stimuli in the rat Chorda tympani.

    PubMed

    Sakurai, N; Kanemura, F; Watanabe, K; Shimizu, Y; Tonosaki, K

    2000-03-24

    The purpose of this study is whether the gustatory neural response of taste cell to a binary mixture with threshold concentration of acid becomes synergistic or antagonistic can be estimated from the whole chorda tympani (CT) nerve in the rat. The present data demonstrate that acids are synergistic enhancer for sugars, and suppressor for NaCl and QHCl, but no effect to glycine and alanine. These results suggest that the acid was modifying the interaction of the other stimulus with its transduction mechanism.

  7. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    PubMed

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.

  8. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Regulation of bitter taste responses by tumor necrosis factor

    PubMed Central

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong

    2015-01-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  10. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Opposing neural effects of naltrexone on food reward and aversion: implications for the treatment of obesity.

    PubMed

    Murray, Elizabeth; Brouwer, Sietske; McCutcheon, Rob; Harmer, Catherine J; Cowen, Philip J; McCabe, Ciara

    2014-11-01

    Opioid antagonism reduces the consumption of palatable foods in humans but the neural substrates implicated in these effects are less well understood. The aim of the present study was to examine the effects of the opioid antagonist, naltrexone, on neural response to rewarding and aversive sight and taste stimuli. We used functional magnetic resonance imaging (fMRI) to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 20 healthy volunteers who received a single oral dose of naltrexone (50 mg) and placebo in a double-blind, repeated-measures cross-over, design. Relative to placebo, naltrexone decreased reward activation to chocolate in the dorsal anterior cingulate cortex and caudate, and increased aversive-related activation to unpleasant strawberry in the amygdala and anterior insula. These findings suggest that modulation of key brain areas involved in reward processing, cognitive control and habit formation such as the dorsal anterior cingulate cortex (dACC) and caudate might underlie reduction in food intake with opioid antagonism. Furthermore we show for the first time that naltrexone can increase activations related to aversive food stimuli. These results support further investigation of opioid treatments in obesity.

  12. Vasopressin and the Regulation of Thirst.

    PubMed

    Bichet, Daniel G

    2018-01-01

    Recent experiments using optogenetic tools allow the identification and functional analysis of thirst neurons and vasopressin producing neurons. Two major advances provide a detailed anatomy of taste for water and arginine-vasopressin (AVP) release: (1) thirst and AVP release are regulated not only by the classical homeostatic, intero-sensory plasma osmolality negative feedback, but also by novel, extero-sensory, anticipatory signals. These anticipatory signals for thirst and vasopressin release converge on the same homeostatic neurons of circumventricular organs that monitor the composition of the blood; (2) acid-sensing taste receptor cells (which express polycystic kidney disease 2-like 1 protein) on the tongue that were previously suggested as the sour taste sensors also mediate taste responses to water. The tongue has a taste for water. The median preoptic nucleus (MnPO) of the hypothalamus could integrate multiple thirst-generating stimuli including cardiopulmonary signals, osmolality, angiotensin II, oropharyngeal and gastric signals, the latter possibly representing anticipatory signals. Dehydration is aversive and MnPO neuron activity is proportional to the intensity of this aversive state. © 2018 The Author(s) Published by S. Karger AG, Basel.

  13. Tachykinins Stimulate a Subset of Mouse Taste Cells

    PubMed Central

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709

  14. Human biology of taste.

    PubMed

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  15. Food Science of Dashi and Umami Taste.

    PubMed

    Ninomiya, Kumiko

    2016-01-01

    Umami is a basic tastes, along with sweet, salty, bitter and sour, which is imparted by glutamate, one of the free amino acids in foods. Since its discovery of umami by a Japanese scientist in 1908, umami is now perceived globally a basic taste. Recent collaboration among chefs and researchers on traditional soup stocks showed a difference in taste profiles of Japanese soup stock 'dashi' and Western style soup stock. The free amino acids profile's in dashi and soup stock showed how Japanese have traditionally adopted a simple umami taste. The exchange of knowledge on cooking methods and diverse types of umami rich foods in different countries displays the blending of the culinary arts, food science and technology for healthy and tasty solutions. Since Japanese cuisine 'WASHOKU' was listed in the 'Intangible Heritage of UNESCO' in 2013, many people in the world now have great interest in Japanese cuisine. One of the unique characteristics of this cuisine is that 'dashi' is an indispensable material for cooking a variety of Japanese dishes. Many chefs from Europe, US and South America have come to Japan to learn Japanese cuisine in the last 10 years, and umami has become recognized as a common taste worldwide. Researchers and culinary professionals have begun to pay attention to the traditional seasonings and condiments rich in glutamate available throughout the world.

  16. Response in taste circuitry is not modulated by hunger and satiety in women remitted from bulimia nervosa.

    PubMed

    Ely, Alice V; Wierenga, Christina E; Bischoff-Grethe, Amanda; Bailer, Ursula F; Berner, Laura A; Fudge, Julie L; Paulus, Martin P; Kaye, Walter H

    2017-07-01

    Individuals with bulimia nervosa (BN) engage in episodes of binge eating, marked by loss of control and eating despite fullness. Does altered reward and metabolic state contribute to BN pathophysiology? Normally, hunger increases (and satiety decreases) reward salience to regulate eating. We investigated whether BN is associated with an abnormal response in a neural circuit involved in translating taste signals into motivated behavior, when hungry and fed. Twenty-six women remitted from BN (RBN) and 22 control women (CW) were administered water and sucrose during 2 counterbalanced fMRI visits, following a 16-hr fast or a standardized breakfast. Significant Group × Condition interactions were found in the left putamen, insula, and amygdala. Post hoc analyses revealed CW were significantly more responsive to taste stimuli when hungry versus fed in the left putamen and amygdala. In contrast, RBN response did not differ between conditions. Further, RBN had greater activation in the left amygdala compared with CW when fed. Findings suggest that RBN neural response to rewarding stimuli may not be modulated by metabolic state. Data raise the possibility that disinhibited eating in BN could result from a failure to devalue food reward when fed, resulting in an exaggerated response. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Research progress of the bitter taste receptor genes in primates.

    PubMed

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  18. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    PubMed

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli

    PubMed Central

    1980-01-01

    Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes. PMID:7190997

  20. Tactile interaction with taste localization: influence of gustatory quality and intensity.

    PubMed

    Lim, Juyun; Green, Barry G

    2008-02-01

    Taste is always accompanied by tactile stimulation, but little is known about how touch interacts with taste. One exception is evidence that taste can be "referred" to nearby tactile stimulation. It was recently found (Lim J, and Green BG. 2007. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses. 32:31-39) that spatial discrimination of taste was poorer for bitterness than for other tastes when the perceived intensities were matched. We hypothesized that this difference may have been caused by greater referral of bitterness by touch. The present study tested this hypothesis by comparing localization of quinine sulfate and sucrose under conditions that minimized and maximized the opportunity for referral. In both conditions, stimulation was produced by 5 cotton swabs spaced 1 cm apart and arranged in an arc to enable simultaneous contact with the front edge of the tongue. Only one swab contained the taste stimulus, whereas the rest were saturated with deionized water. In both conditions, the swabs were stroked up-and-down against the tongue 5 times. Subjects were asked to identify which swab contained the taste stimulus 1) 5 s after the fifth stroke (touch-removed condition) and 2) immediately at the end of the fifth stroke, with the swabs still in contact with the tongue (touch-maintained condition). Ratings of taste intensity were obtained to assess the possible effect of perceived intensity on spatial localization. Taste localization was surprisingly accurate, especially for sucrose, with errors of localization in the range of 1 cm or less. For both stimuli, localization tended to be poorer when the tactile stimulus was present while subjects made their judgments, but the difference between conditions was significant only for the lower concentration of quinine. The results are discussed in terms of both the surprisingly good spatial acuity of taste and the possibility of having a close perceptual relationship between touch and bitter taste.

  1. Enhancement of Retronasal Odors by Taste

    PubMed Central

    Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2012-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“other”) intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste–odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of “cherry” and “vanilla” flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. PMID:21798851

  2. Evaluation of taste solutions by sensor fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less

  3. Peripheral gustatory processing of sweet stimuli by golden hamsters.

    PubMed

    Frank, Marion E; Formaker, Bradley K; Hettinger, Thomas P

    2005-07-15

    Behaviors and taste-nerve responses to bitter stimuli are linked to compounds that bind T2 receptors expressed in one subset of taste-bud receptor cells (TRCs); and behavioral and neural responses to sweet stimuli are linked to chemical compounds that bind a T1 receptor expressed in a different TRC subset. Neural and behavioral responses to bitter-sweet mixtures, however, complicate the ostensible bitter and sweet labeled lines. In the golden hamster, Mesocricetus auratus, quinine hydrochloride, the bitter prototype, suppresses chorda tympani (CT) nerve responses to the sweet prototype: sucrose. This bitter-sweet inhibition was tested with concentration series of sucrose and dulcin, a hydrophobic synthetic sweetener that hamsters behaviorally cross-generalize with sucrose. Dulcin, sucrose and other sweeteners activate one subset of CT fibers: S neurons; whereas, quinine activates a separate subset of CT fibers: E neurons. Whole-nerve and S-neuron CT responses to a sweetener concentration series, mixed with 0, 1, 3 and 10 mM quinine, were measured for 0-2.5 s transient and/or 2.6-10 s steady-state response periods. Ten-sec total single-fiber records, aligned at response onset, were averaged for 100 ms bins to identify response oscillations. Quinine inhibition of dulcin and sucrose responses was identical. Each log molar increment in quinine resulted in equivalent declines in response to either sweetener. Furthermore, sucrose response decrements paralleled response increments in quinine-sensitive CT neurons to the same quinine increases. A 1.43 Hz bursting rhythm to the sweeteners was unchanged by quinine inhibition or decreases in sweetener concentration. Taste-bud processing, possibly between-cell inhibition and within-cell negative feedback, must modify signals initiated by T1 receptors before they are transmitted to the brain.

  4. Perception of trigeminal mixtures.

    PubMed

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Differential Facial Responses to Four Basic Tastes in Newborns.

    ERIC Educational Resources Information Center

    Rosentstein, Diana; Oster, Harriet

    1988-01-01

    Investigated the distinctiveness and recognizability of taste-elicited facial expressions in 12 newborns two hours of age. Findings demonstrated that newborns differentiate sour and bitter from each other and from salty, and discriminate between sweet and nonsweet. Judges accurately identified newborns' responses to sucrose, but systematically…

  6. (+)-(S)-alapyridaine--a general taste enhancer?

    PubMed

    Soldo, Tomislav; Blank, Imre; Hofmann, Thomas

    2003-06-01

    N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.

  7. Enhancement of Combined Umami and Salty Taste by Glutathione in the Human Tongue and Brain.

    PubMed

    Goto, Tazuko K; Yeung, Andy Wai Kan; Tanabe, Hiroki C; Ito, Yuki; Jung, Han-Sung; Ninomiya, Yuzo

    2016-09-01

    Glutathione, a natural substance, acts on calcium receptors on the tongue and is known to enhance basic taste sensations. However, the effects of glutathione on brain activity associated with taste sensation on the tongue have not been determined under standardized taste delivery conditions. In this study, we investigated the sensory effect of glutathione on taste with no effect of the smell when glutathione added to a combined umami and salty taste stimulus. Twenty-six volunteers (12 women and 14 men; age 19-27 years) performed a sensory evaluation of taste of a solution of monosodium L-glutamate and sodium chloride, with and without glutathione. The addition of glutathione changed taste qualities and significantly increased taste intensity ratings under standardized taste delivery conditions (P < 0.001). Functional magnetic resonance imaging showed that glutathione itself elicited significant activation in the left ventral insula. These results are the first to demonstrate the enhancing effect of glutathione as reflected by brain data while tasting an umami and salty mixture. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Genomic and Genetic Evidence for the Loss of Umami Taste in Bats

    PubMed Central

    Zhao, Huabin; Xu, Dong; Zhang, Shuyi; Zhang, Jianzhi

    2012-01-01

    Umami taste is responsible for sensing monosodium glutamate, nucleotide enhancers, and other amino acids that are appetitive to vertebrates and is one of the five basic tastes that also include sour, salty, sweet, and bitter. To study how ecological factors, especially diets, impact the evolution of the umami taste, we examined the umami taste receptor gene Tas1r1 in a phylogenetically diverse group of bats including fruit eaters, insect eaters, and blood feeders. We found that Tas1r1 is absent, unamplifiable, or pseudogenized in each of the 31 species examined, including the genome sequences of two species, suggesting the loss of the umami taste in most, if not all, bats regardless of their food preferences. Most strikingly, vampire bats have also lost the sweet taste receptor gene Tas1r2 and the gene required for both umami and sweet tastes (Tas1r3), being the first known mammalian group to lack two of the five tastes. The puzzling absence of the umami taste in bats calls for a better understanding of the roles that this taste plays in the daily life of vertebrates. PMID:22117084

  9. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    PubMed Central

    Woods, Andy T.; Spence, Charles

    2015-01-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365

  10. "What's Your Taste in Music?" A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes.

    PubMed

    Wang, Qian Janice; Woods, Andy T; Spence, Charles

    2015-12-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  11. Lesions of the amygdala central nucleus abolish lipoprivic-enhanced responding during oil-predicting conditioned stimuli.

    PubMed

    Benoit, S C; Morell, J R; Davidson, T L

    1999-12-01

    T. L. Davidson, A. M. Altizer, S. C. Benoit, E. K. Walls, and T. L. Powley (1997) reported that rats show facilitated responding to conditioned stimuli (CSs) that predict oil, after administration of the lipoprivic agent, Na-2-mercaptoacetate (MA). This facilitation was blocked by vagal deafferentation. The present article extends that investigation to another structure, the amygdala central nucleus (CN). The CN receives inputs from dorsal vagal nuclei, and neurotoxic lesions of this nucleus are reported to abolish feeding in response to lipoprivic challenges. In Experiment 1, rats with ibotenic acid (IBO) lesions of the CN failed to show enhanced appetitive responding during oil-predicting CSs after administration of MA. Experiment 2 used a conditioned taste-aversion procedure to establish that rats with IBO lesions of the CN were able to discriminate the tastes of sucrose and peanut oil and had intact CS-US representations. It is concluded that the amygdala CN is a necessary structure for the detection of lipoprivic challenges.

  12. Facial affective reactions to bitter-tasting foods and body mass index in adults.

    PubMed

    Garcia-Burgos, D; Zamora, M C

    2013-12-01

    Differences in food consumption among body-weight statuses (e.g., higher fruit intake linked with lower body mass index (BMI) and energy-dense products with higher BMI) has raised the question of why people who are overweight or are at risk of becoming overweight eat differently from thinner people. One explanation, in terms of sensitivity to affective properties of food, suggests that palatability-driven consumption is likely to be an important contributor to food intake, and therefore body weight. Extending this approach to unpalatable tastes, we examined the relationship between aversive reactions to foods and BMI. We hypothesized that people who have a high BMI will show more negative affective reactions to bitter-tasting stimuli, even after controlling for sensory perception differences. Given that hedonic reactions may influence consumption even without conscious feelings of pleasure/displeasure, the facial expressions were included in order to provide more direct access to affective systems than subjective reports. Forty adults (28 females, 12 males) participated voluntarily. Their ages ranged from 18 to 46 years (M=24.2, SD=5.8). On the basis of BMI, participants were classified as low BMI (BMI<20; n=20) and high BMI (BMI>23; n=20). The mean BMI was 19.1 for low BMI (SD=0.7) and 25.2 for high BMI participants (SD=1.8). Each subject tasted 5 mL of a grapefruit juice drink and a bitter chocolate drink. Subjects rated the drinks' hedonic and incentive value, familiarity and bitter intensity immediately after each stimulus presentation. The results indicated that high BMI participants reacted to bitter stimuli showing more profound changes from baseline in neutral and disgust facial expressions compared with low BMI. No differences between groups were detected for the subjective pleasantness and familiarity. The research here is the first to examine how affective facial reactions to bitter food, apart from taste responsiveness, can predict differences in BMI. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  14. The Musical Taste of Young People

    ERIC Educational Resources Information Center

    Mozgot, V. G.

    2014-01-01

    Data from a longitudinal survey of the musical tastes of young people distinguish five basic vectors of its development: an orientation toward the Western paradigm; young people's unlimited amount of time spent in the consumption of music; the indiscriminate nature of their music interests; the influence that a person's membership in a particular…

  15. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles.

    PubMed

    Ahn, Sae Ryun; An, Ji Hyun; Song, Hyun Seok; Park, Jin Wook; Lee, Sang Hun; Kim, Jae Hyun; Jang, Jyongsik; Park, Tai Hyun

    2016-08-23

    For several decades, significant efforts have been made in developing artificial taste sensors to recognize the five basic tastes. So far, the well-established taste sensor is an E-tongue, which is constructed with polymer and lipid membranes. However, the previous artificial taste sensors have limitations in various food, beverage, and cosmetic industries because of their failure to mimic human taste reception. There are many interactions between tastants. Therefore, detecting the interactions in a multiplexing system is required. Herein, we developed a duplex bioelectronic tongue (DBT) based on graphene field-effect transistors that were functionalized with heterodimeric human umami taste and sweet taste receptor nanovesicles. Two types of nanovesicles, which have human T1R1/T1R3 for the umami taste and human T1R2/T1R3 for the sweet taste on their membranes, immobilized on micropatterned graphene surfaces were used for the simultaneous detection of the umami and sweet tastants. The DBT platform led to highly sensitive and selective recognition of target tastants at low concentrations (ca. 100 nM). Moreover, our DBT was able to detect the enhancing effect of taste enhancers as in a human taste sensory system. This technique can be a useful tool for the detection of tastes instead of sensory evaluation and development of new artificial tastants in the food and beverage industry.

  16. Taste bud leptin: sweet dampened at initiation site.

    PubMed

    Travers, Susan P; Frank, Marion E

    2015-05-01

    The intriguing observation that leptin decreases sweet-evoked peripheral gustatory responses has aroused much interest (Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. 2000. Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci U S A. 97(20):11044-11049.) due to its implied importance in controlling appetite. The effects of this anorexic hormone, however, appear more conditional than originally believed. In this issue of Chemical Senses, a careful study by Glendinning and colleagues, find no effects of leptin on sweet-evoked chorda tympani responses, whereas an equally careful study by Meredith and colleagues, find decreased release of ATP and increased release of 5-HT from taste buds in response to sweet stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium.

    PubMed

    Zhang, Fenni; Zhang, Qian; Zhang, Diming; Lu, Yanli; Liu, Qingjun; Wang, Ping

    2014-04-15

    Sweeteners are commonly used as food additives in our daily life, which, however, have been causing a number of undesirable diseases since the last century. Therefore, the detection and quantification of sweeteners are of great value for food safety. In this study, we used a taste biosensor to measure and analyze different sweeteners, both natural and artificial sweeteners included. Electrophysiological activities from taste epithelium were detected by the multi-channel biosensors and analyzed with spatiotemporal methods. The longtime signal result showed different temporal-frequency properties with stimulations of individual sweeteners such as glucose, sucrose, saccharin, and cyclamate, while the multi-channel results in our study revealed the spatial expression of taste epithelium to sweet stimuli. Furthermore, in the analysis of sweetener with different concentrations, the result showed obvious dose-dependent increases in signal responses of the taste epithelium, which indicated promising applications in sweetness evaluation. Besides, the mixture experiment of two natural sweeteners with a similar functional unit (glucose and sucrose) presented two signal patterns, which turned out to be similar with responses of each individual stimulus involved. The biosensor analysis of common sweeteners provided new approaches for both natural and artificial sweeteners evaluation. © 2013 Published by Elsevier B.V.

  18. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes.

    PubMed

    Nolden, Alissa A; McGeary, John E; Hayes, John E

    2016-03-15

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. Copyright © 2016. Published by Elsevier Inc.

  19. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes

    PubMed Central

    Nolden, Alissa A.; McGeary, John E.; Hayes, John E.

    2016-01-01

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. PMID:26785164

  20. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    PubMed Central

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in suppressing bitter tastes. Further development of psychophysical tools for children will help us better understand their sensory worlds. Multiple testing strategies will help us refine methods to assess acceptance and compliance/adherence by various pediatric populations. Research involving animal models, in which the gustatory system can be more invasively manipulated, can elucidate mechanisms, ultimately providing potential targets. These approaches, combined with new technologies and guided by findings from clinical studies, will potentially lead to effective ways to enhance drug acceptance and compliance in pediatric populations. PMID:23886820

  1. Taste preference changes throughout different life stages in male rats

    PubMed Central

    Yamamoto, Takashi; Ueda, Katsura; Nakatsuka, Michiko; Kumabe, Shunji; Inui, Tadashi; Iwai, Yasutomo

    2017-01-01

    Taste preference, a key component of food choice, changes with aging. However, it remains unclear how this occurs. To determine differences in taste preference between rats in different life stages, we examined the consumption of taste solutions and water using a two-bottle test. Male Sprague-Dawley rats of different ages were used: juvenile (3–6 weeks), young adult (8–11 weeks), adult (17–20 weeks), middle-aged (34–37 weeks), and old-aged (69–72 weeks). The intakes of the high and low concentration solutions presented simultaneously were measured. We observed that the old-aged group had lower preference ratios for 0.3 M sucrose and 0.1 M MSG in comparison with other groups. The preference ratio for 0.03 mM QHCl was higher in the middle-aged group than in the three younger groups and higher in the old-aged group than the juvenile group. The taste preferences for HCl and NaCl did not significantly differ among the age groups. The old-aged group tended to prefer high concentrations of sucrose, QHCl, NaCl, and MSG to low concentrations, indicating age-related decline in taste sensitivity. We also aimed to investigate differences between life stages in the electrophysiological responses of the chorda tympani nerve, one of the peripheral gustatory nerves, to taste stimuli. The electrophysiological recordings showed that aging did not alter the function of the chorda tympani nerve. This study showed that aging induced alterations in taste preference. It is likely that these alterations are a result of functional changes in other peripheral taste nerves, the gastrointestinal system, or the central nervous system. PMID:28742813

  2. Suprathreshold measures of taste perception in children - Association with dietary quality and body weight.

    PubMed

    Feeney, Emma L; O'Brien, Sinead A; Scannell, Amalia G M; Markey, Anne; Gibney, Eileen R

    2017-06-01

    Childhood obesity is an increasing problem in the Western world, and is affected by a multitude of interacting factors. Recent evidence suggests that taste perception may differ between obese and normal weight children. Evidence also suggests that perception of sweet and bitter taste is linked to differential food liking of various foods. To date, most studies have focused on single food items or food groups, rather than an overall view of dietary quality, and mainly on bitterness. Thus it is unclear whether taste perception is associated with dietary quality in children. Our objective was to examine the link between taste perception, dietary quality and body weight in Irish school children, in conjunction with other known influences of body weight. Taste perception was measured using the gLMS for bitter, salty and sweet stimuli. Detailed dietary intake data were collected from 525 children aged 7-13 via a 3-day diet history. Energy misreporters were identified and excluded from the dietary analyses, leaving n = 483 children. Dietary quality was assessed using Healthy Eating Index. Salivary DNA was collected and analyzed for variations in the bitter receptor gene TAS2R38. Sex differences were observed whereby intensity perception of sweetness was lower in the overweight/obese males, while no association was observed for sweet taste in the females. Despite the differences in weight status, taste perception was not associated with differences in overall dietary quality, measured via HEI score, in this cohort. Prospective cohort studies in children are necessary to better understand the association between taste intensity, food intake and weight over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A taste for words and sounds: a case of lexical-gustatory and sound-gustatory synesthesia

    PubMed Central

    Colizoli, Olympia; Murre, Jaap M. J.; Rouw, Romke

    2013-01-01

    Gustatory forms of synesthesia involve the automatic and consistent experience of tastes that are triggered by non-taste related inducers. We present a case of lexical-gustatory and sound-gustatory synesthesia within one individual, SC. Most words and a subset of non-linguistic sounds induce the experience of taste, smell and physical sensations for SC. SC's lexical-gustatory associations were significantly more consistent than those of a group of controls. We tested for effects of presentation modality (visual vs. auditory), taste-related congruency, and synesthetic inducer-concurrent direction using a priming task. SC's performance did not differ significantly from a trained control group. We used functional magnetic resonance imaging to investigate the neural correlates of SC's synesthetic experiences by comparing her brain activation to the literature on brain networks related to language, music, and sound processing, in addition to synesthesia. Words that induced a strong taste were contrasted to words that induced weak-to-no tastes (“tasty” vs. “tasteless” words). Brain activation was also measured during passive listening to music and environmental sounds. Brain activation patterns showed evidence that two regions are implicated in SC's synesthetic experience of taste and smell: the left anterior insula and left superior parietal lobe. Anterior insula activation may reflect the synesthetic taste experience. The superior parietal lobe is proposed to be involved in binding sensory information across sub-types of synesthetes. We conclude that SC's synesthesia is genuine and reflected in her brain activation. The type of inducer (visual-lexical, auditory-lexical, and non-lexical auditory stimuli) could be differentiated based on patterns of brain activity. PMID:24167497

  4. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    PubMed

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  5. Temporal Characteristics of Gustatory Responses in Rat Parabrachial Neurons Vary by Stimulus and Chemosensitive Neuron Type

    PubMed Central

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of “sweet” (sucrose), “salty” (NaCl), “sour” (citric acid), and “bitter” (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs. PMID:24124597

  6. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.

    PubMed

    Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R

    2012-06-01

    Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.

  7. Testing aggressive behaviour in a feeding context: Importance of ethologically relevant stimuli.

    PubMed

    González, Daniel; Szenczi, Péter; Bánszegi, Oxána; Hudson, Robyn

    2018-05-01

    The choice of stimuli used in tests of animal behaviour can have a critical effect on the outcome. Here we report two experiments showing how different foods influenced aggressive behaviour in competition tests at weaning among littermates of the domestic cat. Whereas in Experiment 1 canned food elicited almost no overt competition, a piece of raw beef rib elicited clearly aggressive behaviour among littermates. In Experiment 2 the food stimuli were chosen to differ from raw beef rib in various combinations of taste/smell, texture and monopolizability. Kittens showed different levels of aggression in response to the five stimuli tested, which suggests that the strong effect of beef rib in eliciting aggressive behaviour was due to a complex combination of features. We suggest that using stimuli approximating the evolved, functional significance to the species concerned is more likely to result in robust, biologically relevant behaviours than more artificial stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    PubMed

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Molecular and Cellular Designs of Insect Taste Receptor System

    PubMed Central

    Isono, Kunio; Morita, Hiromi

    2010-01-01

    The insect gustatory receptors (GRs) are members of a large G-protein coupled receptor family distantly related to the insect olfactory receptors. They are phylogenetically different from taste receptors of most other animals. GRs are often coexpressed with other GRs in single receptor neurons. Taste receptors other than GRs are also expressed in some neurons. Recent molecular studies in the fruitfly Drosophila revealed that the insect taste receptor system not only covers a wide ligand spectrum of sugars, bitter substances or salts that are common to mammals but also includes reception of pheromone and somatosensory stimulants. However, the central mechanism to perceive and discriminate taste information is not yet elucidated. Analysis of the primary projection of taste neurons to the brain shows that the projection profiles depend basically on the peripheral locations of the neurons as well as the GRs that they express. These results suggest that both peripheral and central design principles of insect taste perception are different from those of olfactory perception. PMID:20617187

  10. [Smell and taste thresholds in older people].

    PubMed

    Thumfart, W; Plattig, K H; Schlicht, N

    1980-01-01

    The smell and taste ability of 105 persons at an age of 65 to 93 years was examined by adequate qualitative and semiquantitative chemical and electrogustometric methods. The basic levels of seniors were found above the levels of younger people. For the sense of smelling a significant connection of age and smell sensitivity could be measured. There was no difference between men and women using chemical test methods. With electrogustometry, however, women had a better taste sensitivity than men. At the age of 65 the taste levels are at a fix point. No higher levels could be realized in older persons. A significant reduction of smell ability was recognized in persons with reduction of cerebral blood flow and in smokers. The taste ability was disturbed in cases of diabetes, in persons using dental prostheses and selectively for "salty" in cases of hypertonia and "bitter" in smokers. Loss of taste was recognized in two women who used NaF-drugs, but also some other drugs were able to induce smell and taste alteration.

  11. An Elegant Mind: Learning and Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Ardiel, Evan L.; Rankin, Catharine H.

    2010-01-01

    This article reviews the literature on learning and memory in the soil-dwelling nematode "Caenorhabditis elegans." Paradigms include nonassociative learning, associative learning, and imprinting, as worms have been shown to habituate to mechanical and chemical stimuli, as well as learn the smells, tastes, temperatures, and oxygen levels that…

  12. Taste Quality Confusions: Influences of Age, Smoking, PTC Taster Status, and other Subject Characteristics.

    PubMed

    Doty, Richard L; Chen, Jonathan H; Overend, Jane

    2017-01-01

    Many persons misidentify the quality of taste stimuli, a phenomenon termed "taste confusion." In this study of 1000 persons, we examined the influences of age, sex, causes of chemosensory disturbances, and genetically determined phenylthiocarbamide (PTC) taster status on taste quality confusions for four tastants (sucrose, citric acid, sodium chloride, caffeine). Overall, sour-bitter confusions were most common (19.3%), followed by bitter-sour (11.4%), salty-bitter (7.3%), salty-sour (7.0%), bitter-salty (3.5%), bitter-sweet (3.4), and sour-salty (2.4%) confusions. Confusions for sweet were <1%. Asymmetries were common (e.g., bitter-sour confusions were less frequent than sour-bitter confusions). Women had fewer salty-bitter confusions than did men (5.7% vs. 11.4%). Overall, PTC tasters had fewer confusions than non-tasters except for salty-bitter confusions. Confusions typically increased monotonically with age. Current smokers exhibited more sour-bitter confusions than never smokers (48.9% vs. 32.2%), whereas past smokers had more bitter-sour confusions than never smokers (23.8% vs. 14.2%). Previous head trauma was associated with higher bitter-salty and salty-bitter confusions relative to those of some other etiologies. This study demonstrates, for the first time, that multiple subject factors influence taste confusions and, along with literature accounts, supports the view that there are both biological and psychological determinants of taste quality confusions.

  13. Temperature Affects Human Sweet Taste via At Least Two Mechanisms

    PubMed Central

    Nachtigal, Danielle

    2015-01-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5–41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5–12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2–T1R3 transduction cascade. PMID:25963040

  14. Predicting consumer liking and preference based on emotional responses and sensory perception: A study with basic taste solutions.

    PubMed

    Samant, Shilpa S; Chapko, Matthew J; Seo, Han-Seok

    2017-10-01

    Traditional methods of sensory testing focus on capturing information about multisensory perceptions, but do not necessarily measure emotions elicited by these food and beverages. The objective of this study was to develop an optimum model of predicting overall liking (rating) and preference (choice) based on taste intensity and evoked emotions. One hundred and two participants (51 females) were asked to taste water, sucrose, citric acid, salt, and caffeine solutions. Their emotional responses toward each sample were measured by a combination of a self-reported emotion questionnaire (EsSense25), facial expressions, and autonomic nervous system (ANS) responses. In addition, their perceived intensity and overall liking were measured. After a break, participants re-tasted the samples and ranked them according to their preference. The results showed that emotional responses measured using self-reported emotion questionnaire and facial expression analysis along with perceived taste intensity performed best to predict overall liking as well as preference, while ANS measures showed limited contribution. Contrary to some previous research, this study demonstrated that not only negative emotions, but also positive ones could help predict consumer liking and preference. In addition, since there were subtle differences in the prediction models of overall liking and preference, both aspects should be taken into account to understand consumer behavior. In conclusion, combination of evoked emotions along with sensory perception could help better understand consumer acceptance as well as preference toward basic taste solutions. Published by Elsevier Ltd.

  15. Taste acuity of the human palate. III. Studies with taste solutions on subjects in different age groups.

    PubMed

    Nilsson, B

    1979-01-01

    The taste acuity at the midline of the hard and soft palate near their junction and, for comparison, on representative areas of the tongue was determined in 80 subjects aged 11-79 years by applying test solutions of the four basic tastes. Twenty-one subjects (26%) could identify at least one taste on the hard palate but none could recognize all four tastes. Seventy subjects (87%) could identify at least one taste on the soft palate and 37 subjects (46%) could recognize all four tastes. Taste thresholds were much higher on the hard palate than on the tongue and were in most cases higher on the soft palate than on the tongue. The ability to recognize all four tastes was less frequent in older than in younger subjects and the difference was greatest on the soft palate and least at the foliate papillae. The differences were greatest for citric acid and least for sucrose. There was a tendency to lower thresholds for women compared to men for all four tastes on all areas examined which was most pronounced on the soft palate. No differences in taste thresholds were found between denture wearers and subjects with natural dentition. Smokers had higher thresholds than non-smokers only for salt on the soft palate and the base of the tongue.

  16. Taste in Art-Exposure to Histological Stains Shapes Abstract Art Preferences.

    PubMed

    Böthig, Antonia M; Hayn-Leichsenring, Gregor U

    2017-01-01

    Exposure to art increases the appreciation of artworks. Here, we showed that this effect is domain independent. After viewing images of histological stains in a lecture, ratings increased for restricted subsets of abstract art images. In contrast, a lecture on art history generally enhanced ratings for all art images presented, while a lecture on town history without any visual stimuli did not increase the ratings. Therefore, we found a domain-independent exposure effect of images of histological stains to particular abstract paintings. This finding suggests that the 'taste' for abstract art is altered by visual impressions that are presented outside of an artistic context.

  17. Sweet taste liking is associated with impulsive behaviors in humans

    PubMed Central

    Weafer, Jessica; Burkhardt, Anne; de Wit, Harriet

    2014-01-01

    Evidence from both human and animal studies suggests that sensitivity to rewarding stimuli is positively associated with impulsive behaviors, including both impulsive decision making and inhibitory control. The current study examined associations between the hedonic value of a sweet taste and two forms of impulsivity (impulsive choice and impulsive action) in healthy young adults (N = 100). Participants completed a sweet taste test in which they rated their liking of various sweetness concentrations. Subjects also completed measures of impulsive choice (delay discounting), and impulsive action (go/no-go task). Subjects who discounted more steeply (i.e., greater impulsive choice) liked the high sweetness concentration solutions more. By contrast, sweet liking was not related to impulsive action. These findings indicate that impulsive choice may be associated with heightened sensitivity to the hedonic value of a rewarding stimulus, and that these constructs might share common underlying neurobiological mechanisms. PMID:24987343

  18. Prefrontal cortex activity during swallowing in dysphagia patients.

    PubMed

    Lee, Jun; Yamate, Chisato; Taira, Masato; Shinoda, Masamichi; Urata, Kentaro; Maruno, Mitsuru; Ito, Reio; Saito, Hiroto; Gionhaku, Nobuhito; Iinuma, Toshimitsu; Iwata, Koichi

    2018-05-24

    Prefrontal cortex activity is modulated by flavor and taste stimuli and changes during swallowing. We hypothesized that changes in the modulation of prefrontal cortex activity by flavor and taste were associated with swallowing movement and evaluated brain activity during swallowing in patients with dysphagia. To evaluate prefrontal cortex activity in dysphagia patients during swallowing, change in oxidized hemoglobin (z-score) was measured with near-infrared spectroscopy while dysphagia patients and healthy controls swallowed sweetened/unsweetened and flavored/unflavored jelly. Total z-scores were positive during swallowing of flavored/unsweetened jelly and negative during swallowing of unflavored/sweetened jelly in controls but negative during swallowing of sweetened/unsweetened and flavored/unflavored jelly in dysphagia patients. These findings suggest that taste and flavor during food swallowing are associated with positive and negative z-scores, respectively. Change in negative and positive z-scores may be useful in evaluating brain activity of dysphagia patients during swallowing of sweetened and unsweetened food.

  19. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    PubMed

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general.

  20. Modulation of sweet responses of taste receptor cells.

    PubMed

    Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2013-03-01

    Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Astringent compounds suppress taste responses in gerbil.

    PubMed

    Schiffman, S S; Suggs, M S; Simon, S A

    1992-11-06

    Astringent tastes are generally considered those that induce long-lasting puckering and drying sensations on the tongue and membranes of the oral cavity. Electrophysiological recordings were made here from the whole chorda tympani nerve in gerbil to understand the interactive effect of astringent-tasting molecules with a broad spectrum of tastants including mono- and divalent salts, bitter compounds, acids, and sweeteners. The astringent tasting compounds were tannic acid (24 mM at pH's 2.9 and 5.5), aluminum ammonium sulfate (30 mM), aluminum potassium sulfate (10 mM) and gallic acid (30 mM). Hydrochloric acid (1 mM, pH 2.9) was also tested to control for acidity, since aqueous solutions of astringent-tasting compounds are acidic. Adaptation of the tongue to tannic acid (24 mM) at both pH 2.9 and 5.5 markedly inhibited responses elicited by salts, acids, sweeteners, and bitter-tasting compounds. The degree of the inhibition at these two pH values is about the same which suggests that tannic acid itself (as opposed to acidity) may produce this inhibition. Chorda tympani responses to sweeteners were completely suppressed by tannic acid; responses to KCl, NH4Cl, and urea were the least suppressed. The aluminum salts also inhibited the chorda tympani responses to all stimuli tested. Gallic acid, which is weakly astringent, had minimal effects on the chorda tympani responses to the test compounds. These data suggest that both tannic acid and the aluminum salts inhibit a variety of transport pathways and receptors in taste cells for a broad spectrum of tastants. The inhibition of some of these pathways may contribute to the astringent taste sensation.

  2. Mouse model of fragile X syndrome: behavioral and hormonal response to stressors.

    PubMed

    Nielsen, Darci M; Evans, Jeffrey J; Derber, William J; Johnston, Kenzie A; Laudenslager, Mark L; Crnic, Linda S; Maclean, Kenneth N

    2009-06-01

    Fragile X syndrome, a form of mental retardation caused by inadequate levels of fragile X mental retardation protein (FMRP), is characterized by extreme sensitivity to sensory stimuli and increased behavioral and hormonal reactivity to stressors. Fmr1 knockout mice lack FMRP and exhibit abnormal responses to auditory stimuli. This study sought to determine whether Fmr1 knockout mice on an F1 hybrid background are normal in their response to footshock. Knockout mice were also examined for signs of hyperexcitation across an extended trial range, and serum corticosterone levels were evaluated in response to various stressors. The ability to acquire conditioned taste aversion was also assessed. Knockout mice exhibited no impairment in associative aversive learning or memory, since they successfully expressed conditioned taste aversion. Footshock-sensitivity, freezing behavior, and corticosterone response to various stressors did not differ between knockout and wild-type mice. However, knockout mice exhibited significantly increased responses during the extended test. The knockout mice's increased responsiveness to footshock in the extended test may be an indication of increased vulnerability to stress or enhanced emotional reactivity. Copyright (c) 2009 APA, all rights reserved.

  3. Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens.

    PubMed

    Yoshida, Yuta; Kawabata, Fuminori; Kawabata, Yuko; Nishimura, Shotaro; Tabata, Shoji

    2018-07-01

    Umami taste is one of the five basic tastes (sweet, umami, bitter, sour, and salty), and is elicited by l-glutamate salts and 5'-ribonucleotides. In chickens, the elucidation of the umami taste sense is an important step in the production of new feedstuff for the animal industry. Although previous studies found that chickens show a preference for umami compounds in long-term behavioral tests, there are limitations to our understanding of the role of the umami taste sense in chicken oral tissues because the long-term tests partly reflected post-ingestive effects. Here, we performed a short-term test and observed agonists of chicken umami taste receptor, l-alanine and l-serine, affected the solution intakes of chickens. Using this method, we found that chickens could respond to umami solutions containing monosodium l-glutamate (MSG) + inosine 5'-monophosphate (IMP) within 5 min. We also demonstrated that chickens were successfully conditioned to avoid umami solution by the conditioned taste aversion test. It is noted that conditioning to umami solution was generalized to salty and sweet solutions. Thus, chickens may perceive umami taste as a salty- and sweet-like taste. In addition, we found that umami taste receptor candidates were differentially expressed in different regions of the chicken oral tissues. Taken together, the present results strongly suggest that chickens have a sense of umami taste and have umami taste receptors in their oral tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study.

    PubMed

    Seo, Han-Seok; Iannilli, Emilia; Hummel, Cornelia; Okazaki, Yoshiro; Buschhüter, Dorothee; Gerber, Johannes; Krammer, Gerhard E; van Lengerich, Bernhard; Hummel, Thomas

    2013-01-01

    Excessive intake of dietary salt (sodium chloride) may increase the risk of chronic diseases. Accordingly, various strategies to reduce salt intake have been conducted. This study aimed to investigate whether a salty-congruent odor can enhance saltiness on the basis of psychophysical (Experiment 1) and neuroanatomical levels (Experiment 2). In Experiment 1, after receiving one of six stimulus conditions: three odor conditions (odorless air, congruent, or incongruent odor) by two concentrations (low or high) of either salty or sweet taste solution, participants were asked to rate taste intensity and pleasantness. In Experiment 2, participants received the same stimuli during the functional magnetic resonance imaging scan. In Experiment 1, compared with an incongruent odor and/or odorless air, a congruent odor enhanced not only taste intensity but also either pleasantness of sweetness or unpleasantness of saltiness. In Experiment 2, a salty-congruent combination of odor and taste produced significantly higher neuronal activations in brain regions associated with odor-taste integration (e.g., insula, frontal operculum, anterior cingulate cortex, and orbitofrontal cortex) than an incongruent combination and/or odorless air with taste solution. In addition, the congruent odor-induced saltiness enhancement was more pronounced in the low-concentrated tastant than in the high-concentrated one. In conclusion, this study demonstrates the congruent odor-induced saltiness enhancement on the basis of psychophysical and neuroanatomical results. These findings support an alternative strategy to reduce excessive salt intake by adding salty-congruent aroma to sodium reduced food. However, there are open questions regarding the salty-congruent odor-induced taste unpleasantness. Copyright © 2011 Wiley Periodicals, Inc.

  5. Which characteristic of Natto: appearance, odor, or taste most affects preference for Natto

    PubMed Central

    2012-01-01

    Background In Japan, consumption of Natto, a fermented bean dish, is recommended because of its high quality protein, digestibility in the gut and its preventive effect on blood clot formation due to high vitamin K content. However, consumption of Natto in Kansai and the Chugoku area (the western part of Honshu) is less than that in the other areas of Japan probably because of a “food related cultural inhibition”. In this study, we determined which characteristic of Natto (appearance, odor or taste) most affect subjects’ perception of sensory attributes by observation of brain hemodynamics in relation to subjects’ preference for Natto. Findings In this experiment, we defined each subject’s changes in brain hemodynamics as (+) or (−) corresponding to an increase or a decrease in total hemoglobin concentration after stimuli compared to that before stimuli. As a result, there was no relation between preference for Natto and change in brain hemodynamics by the stimuli of “looking at” or “smelling”, while there was a significant relationship between preference and stimulus of “ingestion”; (+) : (−) = 21:15 in the subjects of the “favorite” group and (+):(−) = 30:7 in the subjects of the “non-favorite” group (P = 0.034). Conclusion This result indicated that characteristic “taste” of Natto most affects preference for Natto. PMID:22738664

  6. Orosensory responsiveness and alcohol behaviour.

    PubMed

    Thibodeau, Margaret; Bajec, Martha; Pickering, Gary

    2017-08-01

    Consumption of alcoholic beverages is widespread through much of the world, and significantly impacts human health and well-being. We sought to determine the contribution of orosensation ('taste') to several alcohol intake measures by examining general responsiveness to taste and somatosensory stimuli in a convenience sample of 435 adults recruited from six cohorts. Each cohort was divided into quantiles based on their responsiveness to sweet, sour, bitter, salty, umami, metallic, and astringent stimuli, and the resulting quantiles pooled for analysis (Kruskal-Wallis ANOVA). Responsiveness to bitter and astringent stimuli was associated in a non-linear fashion with intake of all alcoholic beverage types, with the highest consumption observed in middle quantiles. Sourness responsiveness tended to be inversely associated with all measures of alcohol consumption. Regardless of sensation, the most responsive quantiles tended to drink less, although sweetness showed little relationship between responsiveness and intake. For wine, increased umami and metallic responsiveness tended to predict lower total consumption and frequency. A limited examination of individuals who abstain from all alcohol indicated a tendency toward higher responsiveness than alcohol consumers to sweetness, sourness, bitterness, and saltiness (biserial correlation), suggesting that broadly-tuned orosensory responsiveness may be protective against alcohol use and possibly misuse. Overall, these findings confirm the importance of orosensory responsiveness in mediating consumption of alcohol, and indicate areas for further research. Copyright © 2017. Published by Elsevier Inc.

  7. Gustatory sensitivity and food acceptance in two phylogenetically closely related papilionid species: Papilio hospiton and Papilio machaon.

    PubMed

    Sollai, Giorgia; Tomassini Barbarossa, Iole; Masala, Carla; Solari, Paolo; Crnjar, Roberto

    2014-01-01

    In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range.

  8. Gustatory Sensitivity and Food Acceptance in Two Phylogenetically Closely Related Papilionid Species: Papilio hospiton and Papilio machaon

    PubMed Central

    Sollai, Giorgia; Tomassini Barbarossa, Iole; Masala, Carla; Solari, Paolo; Crnjar, Roberto

    2014-01-01

    In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range. PMID:24956387

  9. Why do we like sweet taste: A bitter tale?

    PubMed Central

    Beauchamp, Gary K.

    2016-01-01

    Sweet is widely considered to be one of a small number of basic or primary taste qualities. Liking for sweet tasting substances is innate, although postnatal experiences can shape responses. The power of sweet taste to induce consumption and to motivate behavior is profound, suggesting the importance of this sense for many species. Most investigators presume that the ability to identify sweet molecules through the sense of taste evolved to allow organisms to detect sources of readily available glucose from plants. Perhaps the best evidence supporting this presumption are recent discoveries in comparative biology demonstrating that species in the order Carnivora that do not consume plants also do not perceive sweet taste due to the pseudogenization of a component of the primary sweet taste receptor. However, arguing against this idea is the observation that the sweetness of a plant, or the amount of easily metabolizable sugars contained in the plant, provides little quantitative indication of the plant’s energy or broadly conceived food value. Here it is suggested that the perceptual ratio of sweet taste to bitter taste (a signal for toxicity) may be a better gauge of a plant’s broadly conceived food value than sweetness alone and that it is this ratio that helps guide selection or rejection of a potential plant food. PMID:27174610

  10. Taste quality decoding parallels taste sensations.

    PubMed

    Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin

    2015-03-30

    In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sweet taste enhancement through pulsatile stimulation depends on pulsation period not on conscious pulse perception.

    PubMed

    Burseg, Kerstin Martha Mensien; Brattinga, Celine; de Kok, Petrus Maria Theresia; Bult, Johannes Hendrikus Franciscus

    2010-06-16

    When aqueous NaCl solutions are tasted at continuously alternating concentrations, overall saltiness ratings exceed those observed for solutions with the same averaged, but non-alternating concentrations. In the present study, this effect is replicated for alternating aqueous sucrose solutions. We tested the hypothesis that enhancement depends on the conscious perception of intensity contrasts. High sucrose pulses were continuously alternated with low sucrose intervals at pulsation periods between 1.5s and 20s. Tastant pulsation enhanced sweetness intensity and this enhancement varied between 8 and 14%, peaking for periods from 4.5s to 6s (Study 1). This range coincided with the average pulsation period at which perceived taste pulses blended into a continuous stimulus, i.e. the taste fusion period (TFP). When comparing intensity ratings of sucrose solutions at individualized pulse periods of 0.5, 1.0 and 2.0 times TFP to ratings for continuous sucrose solutions of the same net concentration, pulsatile stimuli were perceived as significantly sweeter (p<0.01; Study 2). However, sweetness intensity enhancement was the same for all pulsation periods. It was shown that sweet taste enhancement peaks at pulsation periods ranging from 0.5 to 2.0 TFP and that the level of conscious pulsation perception does not affect taste enhancement. The results suggest the introduction of enhancement effects at pre-conscious stages of gustatory processing. Further mechanisms that may account for such pre-conscious effects are discussed. (c) 2010 Elsevier Inc. All rights reserved.

  12. Human sweet taste receptor mediates acid-induced sweetness of miraculin

    PubMed Central

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  13. Psychophysical Isolation of the Modality Responsible for Detecting Multimodal Stimuli: A Chemosensory Example

    ERIC Educational Resources Information Center

    Nagata, Hisanori; Dalton, Pamela; Doolittle, Nadine; Breslin, Paul A. S.

    2005-01-01

    Multiple sense modalities can be stimulated conjointly by a physically complex item, such as a predator, and also by a physically solitary stimulus that acts on multiple receptor classes. As a prime example of this latter group, l-menthol from mint stimulates taste, smell, and several somatosensory submodalities. In 6 experiments that used a…

  14. A comparison between taste avoidance and conditioned disgust reactions induced by ethanol and lithium chloride in preweanling rats.

    PubMed

    Arias, Carlos; Pautassi, Ricardo Marcos; Molina, Juan Carlos; Spear, Norman E

    2010-09-01

    Adult rats display taste avoidance and disgust reactions when stimulated with gustatory stimuli previously paired with aversive agents such as lithium chloride (LiCl). By the second postnatal week of life, preweanling rats also display specific behaviors in response to a tastant conditioned stimulus (CS) that predicts LiCl-induced malaise. The present study compared conditioned disgust reactions induced by LiCl or ethanol (EtOH) in preweanling rats. In Experiment 1 we determined doses of ethanol and LiCl that exert similar levels of conditioned taste avoidance. After having equated drug dosage in terms of conditioned taste avoidance, 13-day-old rats were given a single pairing of a novel taste (saccharin) and either LiCl or ethanol (2.5 g/kg; Experiment 2). Saccharin intake and emission of disgust reactions were assessed 24 and 48 hr after training. Pups given paired presentations of saccharin and the aversive agents (ethanol or LiCl) consumed less saccharin during the first testing day than controls. These pups also showed more aversive behavioral reactions to the gustatory CS than controls. Specifically, increased amounts of grooming, general activity, head shaking, and wall climbing as well as reduced mouthing were observed in response to the CS. Conditioned aversive reactions but not taste avoidance were still evident on the second testing day. In conclusion, a taste CS paired with postabsorptive effects of EtOH and LiCl elicited a similar pattern of conditioned rejection reactions in preweanling rats. These results suggest that similar mechanisms may be underlying CTAs induced by LiCl and a relatively high EtOH dose.

  15. Sour taste increases swallowing and prolongs hemodynamic responses in the cortical swallowing network

    PubMed Central

    Kamarunas, Erin; Ludlow, Christy L.

    2016-01-01

    Sour stimuli have been shown to upregulate swallowing in patients and in healthy volunteers. However, such changes may be dependent on taste-induced increases in salivary flow. Other mechanisms include genetic taster status (Bartoshuk LM, Duffy VB, Green BG, Hoffman HJ, Ko CW, Lucchina LA, Weiffenbach JM. Physiol Behav 82: 109–114, 2004) and differences between sour and other tastes. We investigated the effects of taste on swallowing frequency and cortical activation in the swallowing network and whether taster status affected responses. Three-milliliter boluses of sour, sour with slow infusion, sweet, water, and water with infusion were compared on swallowing frequency and hemodynamic responses. The sour conditions increased swallowing frequency, whereas sweet and water did not. Changes in cortical oxygenated hemoglobin (hemodynamic responses) measured by functional near-infrared spectroscopy were averaged over 30 trials for each condition per participant in the right and left motor cortex, S1 and supplementary motor area for 30 s following bolus onset. Motion artifact in the hemodynamic response occurred 0–2 s after bolus onset, when the majority of swallows occurred. The peak hemodynamic response 2–7 s after bolus onset did not differ by taste, hemisphere, or cortical location. The mean hemodynamic response 17–22 s after bolus onset was highest in the motor regions of both hemispheres, and greater in the sour and infusion condition than in the water condition. Genetic taster status did not alter changes in swallowing frequency or hemodynamic response. As sour taste significantly increased swallowing and cortical activation equally with and without slow infusion, increases in the cortical swallowing were due to sour taste. PMID:27489363

  16. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  17. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells.

    PubMed

    Oike, Hideaki; Wakamori, Minoru; Mori, Yasuo; Nakanishi, Hiroki; Taguchi, Ryo; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2006-09-01

    Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.

  18. Reward Systems in the Brain and Nutrition.

    PubMed

    Rolls, Edmund T

    2016-07-17

    The taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are combined by associative learning with olfactory and visual inputs for some neurons, and these neurons encode food reward value in that they respond to food only when hunger is present and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions and selective attention to affective value, modulate the representation of the reward value of taste, olfactory, and flavor stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex. These food reward representations are important in the control of appetite and food intake. Individual differences in reward representations may contribute to obesity, and there are age-related differences in these reward representations. Implications of how reward systems in the brain operate for understanding, preventing, and treating obesity are described.

  19. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    PubMed

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Discrimination of Mixed Taste Solutions using Ultrasonic Wave and Soft Computing

    NASA Astrophysics Data System (ADS)

    Kojima, Yohichiro; Kimura, Futoshi; Mikami, Tsuyoshi; Kitama, Masataka

    In this study, ultrasonic wave acoustic properties of mixed taste solutions were investigated, and the possibility of taste sensing based on the acoustical properties obtained was examined. In previous studies, properties of solutions were discriminated based on sound velocity, amplitude and frequency characteristics of ultrasonic waves propagating through the five basic taste solutions and marketed beverages. However, to make this method applicable to beverages that contain many taste substances, further studies are required. In this paper, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through mixed solutions composed of sweet and salty substance was measured. As a result, differences among solutions were clearly observed as differences in their properties. Furthermore, these mixed solutions were discriminated by a self-organizing neural network. The ratio of volume in their mixed solutions was estimated by a distance-type fuzzy reasoning method. Therefore, the possibility of taste sensing was shown by using ultrasonic wave acoustic properties and the soft computing, such as the self-organizing neural network and the distance-type fuzzy reasoning method.

  1. A pain in the bud? Implications of cross-modal sensitivity for pain experience.

    PubMed

    Perkins, Monica; de Bruyne, Marien; Giummarra, Melita J

    2016-11-01

    There is growing evidence that enhanced sensitivity to painful clinical procedures and chronic pain are related to greater sensitivity to other sensory inputs, such as bitter taste. We examined cross-modal sensitivities in two studies. Study 1 assessed associations between bitter taste sensitivity, pain tolerance, and fear of pain in 48 healthy young adults. Participants were classified as non-tasters, tasters and super-tasters using a bitter taste test (6-n-propythiouracil; PROP). The latter group had significantly higher fear of pain (Fear of Pain Questionnaire) than tasters (p=.036, effect size r = .48). There was only a trend for an association between bitter taste intensity ratings and intensity of pain at the point of pain tolerance in a cold pressor test (p=.04). In Study 2, 40 healthy young adults completed the Adolescent/Adult Sensory Profile before rating intensity and unpleasantness of innocuous (33 °C), moderate (41 °C), and high intensity (44 °C) thermal pain stimulations. The sensory-sensitivity subscale was positively correlated with both intensity and unpleasantness ratings. Canonical correlation showed that only sensitivity to audition and touch (not taste/smell) were associated with intensity of moderate and high (not innocuous) thermal stimuli. Together these findings suggest that there are cross-modal associations predominantly between sensitivity to exteroceptive inputs (i.e., taste, touch, sound) and the affective dimensions of pain, including noxious heat and intolerable cold pain, in healthy adults. These cross-modal sensitivities may arise due to greater psychological aversion to salient sensations, or from shared neural circuitry for processing disparate sensory modalities.

  2. Chronic Oral Capsaicin Exposure During Development Leads to Adult Rats with Reduced Taste Bud Volumes.

    PubMed

    Omelian, Jacquelyn M; Samson, Kaeli K; Sollars, Suzanne I

    2016-09-01

    Cross-sensory interaction between gustatory and trigeminal nerves occurs in the anterior tongue. Surgical manipulations have demonstrated that the strength of this relationship varies across development. Capsaicin is a neurotoxin that affects fibers of the somatosensory lingual nerve surrounding taste buds, but not fibers of the gustatory chorda tympani nerve which synapse with taste receptor cells. Since capsaicin is commonly consumed by many species, including humans, experimental use of this neurotoxin provides a naturalistic perturbation of the lingual trigeminal system. Neonatal or adults rats consumed oral capsaicin for 40 days and we examined the cross-sensory effect on the morphology of taste buds across development. Rats received moderate doses of oral capsaicin, with chronic treatments occurring either before or after taste system maturation. Tongue morphology was examined either 2 or 50 days after treatment cessation. Edema, which has been previously suggested as a cause of changes in capsaicin-related gustatory function, was also assessed. Reductions in taste bud volume occurred 50 days, but not 2 days post-treatment for rats treated as neonates. Adult rats at either time post-treatment were unaffected. Edema was not found to occur with the 5 ppm concentration of capsaicin we used. Results further elucidate the cooperative relationship between these discrete sensory systems and highlight the developmentally mediated aspect of this interaction. Chronic exposure to even moderate levels of noxious stimuli during development has the ability to impact the orosensory environment, and these changes may not be evident until long after exposure has ceased.

  3. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

    PubMed Central

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-01-01

    Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The results confirm previous results with P2X2/3 double knockout mice that ATP is required for transmission of all taste qualities, including sour and salty. Previously, ATP was confirmed to be required for bitter, sweet and umami tastes, but was questioned for salty and sour tastes due to pleomorphic deficits in the double knockout mice. The geniculate ganglion in mouse contains two populations of ganglion cells with different subunit composition of P2X2 and P2X3 receptors making them differently susceptible to pharmacological block and, presumably, desensitization. PMID:25524179

  4. Conditioned taste aversions: From poisons to pain to drugs of abuse.

    PubMed

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2017-04-01

    Learning what to eat and what not to eat is fundamental to our well-being, quality of life, and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations in which we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent nonhuman animal research, analyzing palatability shifts, has indicated that a wider range of stimuli than has been traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA and presents a novel conceptual analysis that is broader and more comprehensive than previous accounts of CTA learning.

  5. Conditioned taste aversions: From poisons to pain to drugs of abuse

    PubMed Central

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2018-01-01

    Learning what to eat and what not to eat is fundamental to our well-being, quality of life and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations where we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent non-human animal research, analyzing palatability shifts, indicates that a wider range of stimuli than traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA, and presents a novel conceptual analysis that is broader and more comprehensive than other accounts of CTA learning. PMID:27301407

  6. Dietary self-control is related to the speed with which health and taste attributes are processed

    PubMed Central

    Sullivan, Nicolette; Hutcherson, Cendri; Harris, Alison; Rangel, Antonio

    2015-01-01

    We propose that self-control failures, and variation across individuals in self-control abilities, are partly due to differences in the speed with which the decision-making circuitry processes basic attributes like taste, versus more abstract attributes such as health. We test these hypotheses by combining a dietary choice task with a novel form of mouse tracking that allows us to pinpoint when different attributes are being integrated into the choice process with millisecond temporal resolution. We find that, on average, taste attributes are processed about 195 ms earlier than health attributes during the choice process. We also find that 13 - 39% of observed individual differences in self-control ability can be explained by differences in the relative speed with which taste and health attributes are processed. PMID:25515527

  7. A crossmodal role for audition in taste perception.

    PubMed

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear. (c) 2015 APA, all rights reserved).

  8. Neural networks distinguish between taste qualities based on receptor cell population responses.

    PubMed

    Varkevisser, B; Peterson, D; Ogura, T; Kinnamon, S C

    2001-06-01

    Response features of taste receptor cell action potentials were examined using an artificial neural network to determine whether they contain information about taste quality. Using the loose patch technique to record from hamster taste buds in vivo we recorded population responses of single fungiform papillae to NaCl (100 mM), sucrose (200 mM) and the synthetic sweetener NC-00274-01 (NC-01) (200 microM). Features of each response describing both burst and inter-burst characteristics were then presented to an artificial neural network for pairwise classification of taste stimuli. Responses to NaCl could be distinguished from those to both NC-01 and sucrose with accuracies of up to 86%. In contrast, pairwise comparisons between sucrose and NC-01 were not successful, scoring at chance (50%). Also, comparisons between two different concentrations of NaCl, 0.01 and 0.005 M, scored at chance. Pairwise comparisons using only those features that relate to the inter-burst behavior of the response (i.e. bursting rate) did not hinder the performance of the neural network as both sweeteners versus NaCl received scores of 75--85%. Comparisons using features corresponding to each individual burst scored poorly, receiving scores only slightly above chance. We then compared the sweeteners with varying concentrations of NaCl (0.1, 0.01, 0.005 and 0.001 M) using only those features corresponding to bursting rate within a 1 s time window. The neural network was capable of distinguishing between NaCl and NC-01 at all concentrations tested; while comparisons between NaCl and sucrose received high scores at all concentrations except 0.001 M. These results show that two different taste qualities can be distinguished from each other based solely on the bursting rates of action potentials in single taste buds and that this distinction is independent of stimulation intensity down to 0.001 M NaCl. These data suggest that action potentials in taste receptor cells may play a role in taste quality coding.

  9. THE TASTE OF SUGARS

    PubMed Central

    McCaughey, Stuart A.

    2008-01-01

    Sugars evoke a distinctive perceptual quality (“sweetness” in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly-tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses. PMID:18499254

  10. Induction of Salivary Proteins Modifies Measures of Both Orosensory and Postingestive Feedback during Exposure to a Tannic Acid Diet

    PubMed Central

    Torregrossa, Ann-Marie; Nikonova, Larissa; Bales, Michelle B.; Villalobos Leal, Maria; Smith, James C.; Contreras, Robert J.; Eckel, Lisa A.

    2014-01-01

    There are hundreds of proteins in saliva. Although it has long been hypothesized that these proteins modulate taste by interacting with taste receptors or taste stimuli, the functional impact of these proteins on feeding remains relatively unexplored. We have developed a new technique for saliva collection that does not interfere with daily behavioral testing and allows us to explore the relationship between feeding behavior and salivary protein expression. First, we monitored the alterations in salivary protein expression while simultaneously monitoring the animals' feeding behavior and meal patterns on a custom control diet or on the same diet mixed with 3% tannic acid. We demonstrated that six protein bands increased in density with dietary tannic acid exposure. Several of these bands were significantly correlated with behaviors thought to represent both orosensory and postingestive signaling. In a follow-up experiment, unconditioned licking to 0.01–3% tannic acid solutions was measured during a brief-access taste test before and after exposure to the tannic acid diet. In this experiment, rats with salivary proteins upregulated found the tannin solution less aversive (i.e., licked more) than those in the control condition. These data suggest a role for salivary proteins in mediating changes in both orosensory and postingestive feedback. PMID:25162297

  11. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    PubMed

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Topographical difference in taste organ density and its sensitivity of frog tongue.

    PubMed

    Sato, T; Ohkusa, M; Okada, Y; Sasaki, M

    1983-01-01

    Distribution density of the taste disks of the fungiform papillae in the frog tongue was larger at the proximal portion than at the apical and middle portions. The number of myelinated afferent nerve fibres and taste cells per cm2 area of the tongue increased in the order of proximal greater than middle greater than apical portion. The amplitudes of gustatory neural responses for 0.5 M NaCl, 0.5 M KCl, 0.5 M NH4Cl, 0.05 M CaCl2, 1 mM acetic acid and 1 mM quinine-HCl (Q-HCl) were significantly larger with lingual stimulation of the proximal region than with the stimulation of the apical region. With these stimuli the mean ratio of the apical response to the proximal response was 1.00:1.54. On the other hand, this ration with deionized water was 1.00:5.00. The mean magnitudes of receptor potentials in taste cells for 1 mM acetic acid and 10 mM Q-HCl were the same among the apical, middle and proximal portions of the tongue. The mean magnitudes of receptor potentials for 0.5 M NaCl were significantly larger at the apical portion than at the other portions, whereas those for deionized water tended to be the largest at the proximal portion. It is concluded that the larger magnitude of the gustatory neural responses at the proximal portion of the tongue is due to morphological and physiological properties of the taste organ.

  13. The Procerebrum Is Necessary for Odor-Aversion Learning in the Terrestrial Slug "Limax Valentianus"

    ERIC Educational Resources Information Center

    Kasai, Yoko; Watanabe, Satoshi; Kirino, Yutaka; Matsuo, Ryota

    2006-01-01

    The terrestrial slug "Limax" has a highly developed ability to associate the odor of some foods (e.g., carrot juice) with aversive stimuli such as the bitter taste of quinidine solution. The procerebrum (PC) is a part of the slug's brain thought to be involved in odor-aversion learning, but direct evidence is still lacking. Here, the authors…

  14. BitterDB: a database of bitter compounds

    PubMed Central

    Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.

    2012-01-01

    Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398

  15. The Neural Basis of Taste-visual Modal Conflict Control in Appetitive and Aversive Gustatory Context.

    PubMed

    Xiao, Xiao; Dupuis-Roy, Nicolas; Jiang, Jun; Du, Xue; Zhang, Mingmin; Zhang, Qinglin

    2018-02-21

    The functional magnetic resonance imaging (fMRI) technique was used to investigate brain activations related to conflict control in a taste-visual cross-modal pairing task. On each trial, participants had to decide whether the taste of a gustatory stimulus matched or did not match the expected taste of the food item depicted in an image. There were four conditions: Negative match (NM; sour gustatory stimulus and image of sour food), negative mismatch (NMM; sour gustatory stimulus and image of sweet food), positive match (PM; sweet gustatory stimulus and image of sweet food), positive mismatch (PMM; sweet gustatory stimulus and image of sour food). Blood oxygenation level-dependent (BOLD) contrasts between the NMM and the NM conditions revealed an increased activity in the middle frontal gyrus (MFG) (BA 6), the lingual gyrus (LG) (BA 18), and the postcentral gyrus. Furthermore, the NMM minus NM BOLD differences observed in the MFG were correlated with the NMM minus NM differences in response time. These activations were specifically associated with conflict control during the aversive gustatory stimulation. BOLD contrasts between the PMM and the PM condition revealed no significant positive activation, which supported the hypothesis that the human brain is especially sensitive to aversive stimuli. Altogether, these results suggest that the MFG is associated with the taste-visual cross-modal conflict control. A possible role of the LG as an information conflict detector at an early perceptual stage is further discussed, along with a possible involvement of the postcentral gyrus in the processing of the taste-visual cross-modal sensory contrast. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Allelic Variation of the Tas1r3 Taste Receptor Gene Selectively Affects Behavioral and Neural Taste Responses to Sweeteners in the F2 Hybrids between C57BL/6ByJ and 129P3/J Mice

    PubMed Central

    Inoue, Masashi; Reed, Danielle R.; Li, Xia; Tordoff, Michael G.; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2006-01-01

    Recent studies have shown that the T1R3 receptor protein encoded by the Tas1r3 gene is involved in transduction of sweet taste. To assess ligand specificity of the T1R3 receptor, we analyzed the association of Tas1r3 allelic variants with taste responses in mice. In the F2 hybrids between the C57BL/6ByJ (B6) and 129P3/J (129) inbred mouse strains, we determined genotypes of markers on chromosome 4, where Tas1r3 resides, measured consumption of taste solutions presented in two-bottle preference tests, and recorded integrated responses of the chorda tympani gustatory nerve to lingual application of taste stimuli. For intakes and preferences, significant linkages to Tas1r3 were found for the sweeteners sucrose, saccharin, and d-phenylalanine but not glycine. For chorda tympani responses, significant linkages to Tas1r3 were found for the sweeteners sucrose, saccharin, d-phenylalanine, d-tryptophan, and SC-45647 but not glycine, l-proline, l-alanine, or l-glutamine. No linkages to distal chromosome 4 were detected for behavioral or neural responses to non-sweet quinine, citric acid, HCl, NaCl, KCl, monosodium glutamate, inosine 5′-monophosphate, or ammonium glutamate. These results demonstrate that allelic variation of the Tas1r3 gene affects gustatory neural and behavioral responses to some, but not all, sweeteners. This study describes the range of ligand sensitivity of the T1R3 receptor using an in vivo approach and, to our knowledge, is the first genetic mapping study of activity in gustatory nerves. PMID:14999080

  17. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster.

    PubMed

    Charlu, Sandhya; Wisotsky, Zev; Medina, Adriana; Dahanukar, Anupama

    2013-01-01

    Drosophila melanogaster can taste various compounds and separate them into few basic categories such as sweet, bitter and salt taste. Here we investigate mechanisms underlying acid detection in Drosophila and report that the fly displays strong taste aversion to common carboxylic acids. We find that acid tastants act by the activation of a subset of bitter neurons and inhibition of sweet neurons. Bitter neurons begin to respond at pH 5 and show an increase in spike frequency as the extracellular pH drops, which does not rely on previously identified chemoreceptors. Notably, sweet neuron activity depends on the balance of sugar and acid tastant concentrations. This is independent of bitter neuron firing, and allows the fly to avoid acid-laced food sources even in the absence of functional bitter neurons. The two mechanisms may allow the fly to better evaluate the risk of ingesting acidic foods and modulate its feeding decisions accordingly.

  18. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches.

    PubMed

    Iwaniak, Anna; Minkiewicz, Piotr; Darewicz, Małgorzata; Hrynkiewicz, Monika

    2016-11-01

    Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste peptides serving some biological functions is presented in the Supplement file. The information provided includes database resources, whereas peptide sequences are given with InChiKeys, which is aimed at facilitating the Google® search. Our collection of data regarding taste peptides may be supportive for the scientists working with the set of peptide data in the context of structure-function activity of peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The human sweet tooth.

    PubMed

    Reed, Danielle R; McDaniel, Amanda H

    2006-06-15

    Humans love the taste of sugar and the word "sweet" is used to describe not only this basic taste quality but also something that is desirable or pleasurable, e.g., la dolce vita. Although sugar or sweetened foods are generally among the most preferred choices, not everyone likes sugar, especially at high concentrations. The focus of my group's research is to understand why some people have a sweet tooth and others do not. We have used genetic and molecular techniques in humans, rats, mice, cats and primates to understand the origins of sweet taste perception. Our studies demonstrate that there are two sweet receptor genes (TAS1R2 and TAS1R3), and alleles of one of the two genes predict the avidity with which some mammals drink sweet solutions. We also find a relationship between sweet and bitter perception. Children who are genetically more sensitive to bitter compounds report that very sweet solutions are more pleasant and they prefer sweet carbonated beverages more than milk, relative to less bitter-sensitive peers. Overall, people differ in their ability to perceive the basic tastes, and particular constellations of genes and experience may drive some people, but not others, toward a caries-inducing sweet diet. Future studies will be designed to understand how a genetic preference for sweet food and drink might contribute to the development of dental caries.

  20. Palatability of tastes is associated with facial circulatory responses.

    PubMed

    Kashima, Hideaki; Hamada, Yuka; Hayashi, Naoyuki

    2014-03-01

    To examine whether various types of taste stimuli in the oral cavity elicit unique changes in facial skin blood flow (SkBF) according to the palatability perceived by an individual, the facial SkBF was observed by laser speckle flowgraphy in 15 healthy subjects (11 males and 4 females) before and during the ingestion of bitter tea, chilli sauce, coffee, orange juice, soup, and a water control. The heart rate, mean arterial pressure (MAP), and SkBF in the index finger were recorded continuously. Subjects reported their subjective palatability and taste intensity scores after each stimulus. The vascular conductance indexes (CIs) in the face and finger were calculated as ratios of SkBF to MAP. CI in the eyelid increased significantly in response to chilli sauce, orange juice, and soup, whereas CIs in the forehead, nose, and cheek decreased in response to bitter tea. There was a significant correlation between the palatability scores and CI values in the eyelid when changes induced by chilli sauce were excluded. These results suggest that the facial circulatory response reflects the degree of palatability of a foodstuff.

  1. Body mass is positively associated with neural response to sweet taste, but not alcohol, among drinkers.

    PubMed

    Gardiner, Casey K; YorkWilliams, Sophie L; Bryan, Angela D; Hutchison, Kent E

    2017-07-28

    Obesity is a large and growing public health concern, presenting enormous economic and health costs to individuals and society. A burgeoning literature demonstrates that overweight and obese individuals display different neural processing of rewarding stimuli, including caloric substances, as compared to healthy weight individuals. However, much extant research on the neurobiology of obesity has focused on addiction models, without highlighting potentially separable neural underpinnings of caloric intake versus substance use. The present research explores these differences by examining neural response to alcoholic beverages and a sweet non-alcoholic beverage, among a sample of individuals with varying weight status and patterns of alcohol use and misuse. Participants received tastes of a sweet beverage (litchi juice) and alcoholic beverages during fMRI scanning. When controlling for alcohol use, elevated weight status was associated with increased activation in response to sweet taste in regions including the cingulate cortex, hippocampus, precuneus, and fusiform gyrus. However, weight status was not associated with neural response to alcoholic beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    PubMed

    Shim, Jaewon; Son, Hee Jin; Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  3. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    PubMed Central

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  4. Identification and Modulation of the Key Amino Acid Residue Responsible for the pH Sensitivity of Neoculin, a Taste-Modifying Protein

    PubMed Central

    Nakajima, Ken-ichiro; Yokoyama, Kanako; Koizumi, Taichi; Koizumi, Ayako; Asakura, Tomiko; Terada, Tohru; Masuda, Katsuyoshi; Ito, Keisuke; Shimizu-Ibuka, Akiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS) and a neoculin basic subunit (NBS). Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s) responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor–taste substance in particular. PMID:21559382

  5. "I like the sound of that!" Wine descriptions influence consumers' expectations, liking, emotions and willingness to pay for Australian white wines.

    PubMed

    Danner, Lukas; Johnson, Trent E; Ristic, Renata; Meiselman, Herbert L; Bastian, Susan E P

    2017-09-01

    This study investigated how information, typically presented on wine back-labels or wine company websites, influences consumers' expected liking, informed liking, wine-evoked emotions and willingness to pay for Australian white wines. Regular white wine consumers (n=126) evaluated the same set of three commercially available white wines (mono-varietal Chardonnay, Riesling, Sauvignon Blanc) under three information levels. Session 1, blind tasting (no information provided) and Session 2, informed tasting (held at least 1week later) with both basic (sensory description of the wines) and elaborate (sensory plus high wine quality and favourable winery information) descriptions followed by liking, wine-evoked emotions (measured with the Australian Wine Evoked Emotions Lexicon (AWEEL)) and willingness to pay evaluations. Before tasting the wine in session 2, consumers also rated expected liking. Results showed that information level had a significant effect on all investigated variables. The elaborate information level evoked higher expectations before tasting the wines, plus resulted in higher liking ratings, elicitation of more intense positive (e.g. contented, happy and warm-hearted) and less intense negative emotions (e.g. embarrassed and unfulfilled), and a substantial increase in willingness to pay after tasting the wines compared to the blind condition, with the basic condition ranging in-between. These results were consistent across the three wine samples. Furthermore, if the liking rating after tasting the wines matched the expected liking or exceeded the expectations by 1 point on a 9-point hedonic scale, participants felt the most intense positive emotions and the least intense negative emotions. Whereas, if the expectations were not met or the actual liking exceeded the expectations by >2 points, participants felt less intense positive and more intense negative emotions. This highlights not only the importance of well written and accurate wine descriptions, but also that information can influence consumers' wine drinking experience and behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Responsiveness to 6-n-Propylthiouracil (PROP) Is Associated with Salivary Levels of Two Specific Basic Proline-Rich Proteins in Humans

    PubMed Central

    Cabras, Tiziana; Melis, Melania; Castagnola, Massimo; Padiglia, Alessandra; Tepper, Beverly J.; Messana, Irene; Tomassini Barbarossa, Iole

    2012-01-01

    Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y) to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the ‘taster’ variant (PAV haplotype) of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs) family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait. PMID:22312435

  7. Responsiveness to 6-n-propylthiouracil (PROP) is associated with salivary levels of two specific basic proline-rich proteins in humans.

    PubMed

    Cabras, Tiziana; Melis, Melania; Castagnola, Massimo; Padiglia, Alessandra; Tepper, Beverly J; Messana, Irene; Tomassini Barbarossa, Iole

    2012-01-01

    Thiourea tasting can be predictive of individual differences in bitter taste responses, general food preferences and eating behavior, and could be correlated with saliva chemical composition. We investigated the possible relationship between PROP bitter taste responsiveness and the salivary proteome in subjects genotyped for TAS2R38 and gustin gene polymorphisms. Taste perception intensity evoked by PROP and NaCl solutions was measured in sixty-three volunteers (21 males, 42 females, age 25±3 y) to establish their PROP taster status, and 24 PROP super-tasters and 21 nontasters were selected to participate in the study. TAS2R38 and gustin gene molecular analysis were performed using PCR techniques. Qualitative and quantitative determination of salivary proteins was performed by HPLC-ESI-MS before and after PROP taste stimulation. PROP super-tastings was strongly associated with the 'taster' variant (PAV haplotype) of TAS2R38 and the A allele of rs2274333 polymorphism in the gustin gene and nontasting was associated with the minor alleles at both loci. ANOVA revealed that basal levels of II-2 and Ps-1 proteins, belonging to the basic proline-rich protein (bPRPs) family, were significantly higher in PROP super-taster than in nontaster un-stimulated saliva, and that PROP stimulation elicited a rapid increase in the levels of these same proteins only in PROP super-taster saliva. These data show for the first time that responsiveness to PROP is associated with salivary levels of II-2 peptide and Ps-1 protein, which are products of the PRB1 gene. These findings suggest that PRB1, in addition to TAS2R38 and gustin, could contribute to individual differences in thiourea sensitivity, and the expression of the PROP phenotype as a complex genetic trait.

  8. The taste of music.

    PubMed

    Mesz, Bruno; Trevisan, Marcos A; Sigman, Mariano

    2011-01-01

    Zarlino, one of the most important music theorists of the XVI century, described the minor consonances as 'sweet' (dolci) and 'soft' (soavi) (Zarlino 1558/1983, in On the Modes New Haven, CT: Yale University Press, 1983). Hector Berlioz, in his Treatise on Modern Instrumentation and Orchestration (London: Novello, 1855), speaks about the 'small acid-sweet voice' of the oboe. In line with this tradition of describing musical concepts in terms of taste words, recent empirical studies have found reliable associations between taste perception and low-level sound and musical parameters, like pitch and phonetic features. Here we investigated whether taste words elicited consistent musical representations by asking trained musicians to improvise on the basis of the four canonical taste words: sweet, sour, bitter, and salty. Our results showed that, even in free improvisation, taste words elicited very reliable and consistent musical patterns:'bitter' improvisations are low-pitched and legato (without interruption between notes), 'salty' improvisations are staccato (notes sharply detached from each other), 'sour' improvisations are high-pitched and dissonant, and 'sweet' improvisations are consonant, slow, and soft. Interestingly, projections of the improvisations of taste words to musical space (a vector space defined by relevant musical parameters) revealed that, in musical space, improvisations based on different taste words were nearly orthogonal or opposite. Decoding methods could classify binary choices of improvisations (i.e., identify the improvisation word from the melody) at performance of around 80%--well above chance. In a second experiment we investigated the mapping from perception of music to taste words. Fifty-seven non-musical experts listened to a fraction of the improvisations. We found that listeners classified with high performance the taste word which had elicited the improvisation. Our results, furthermore, show that associations of taste and music go beyond basic sensory attributes into the domain of semantics, and open a new venue of investigation to understand the origins of these consistent taste-musical patterns.

  9. A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations.

    PubMed

    Zhang, Wei; Chen, Peihua; Zhou, Lianqun; Qin, Zhen; Gao, Keqiang; Yao, Jia; Li, Chuanyu; Wang, Ping

    2017-06-15

    The perception of sour taste in mammals is important for its basic modality properties and avoiding toxic substances. We explore a biomimetic bioelectronic tongue, which integrate MEA (microelectrode array) and taste receptor cell for acid detection as a switch. However, the acid-sensing mechanism and coding of the taste receptor cells in the periphery is not well understood, with long-standing debate. Therefore, we firstly construct a Hodgkin-Huxley type mathematical model of whole-cell acid-sensing taste receptor cells based on the electrophysiologic patch clamp recordings with different acid sensitive receptor expressing and different acidic stimulations. ASICs and PKDL channels are two most promising candidates for acidic sensation. ASICs channels contribute to the On response, and PKDL channels coding the Offset stimulations respectively, which function as a pair for switch. Therefore, with the advantage of effective and noninvasive detection for MEA, a sour taste biosensor based on MEA and taste receptor cells was designed and established to detect sour response from the elementary acid sensitive taste receptor cells during and after stimulus. From simulation and extracelluar potential recordings, we found the biomimetic bioelectronic tongue was acid-sensitive, as acid stimulation pH decrease, the firing frequency significantly increase. Furthermore, this reliable and effective MEA based bioelectronic tongue functioned as a switch for stimulation On and Off. This study provided a powerful platform to recognize sour stimulation and help elucidate the sour taste sensation and coding mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Analyses of sweet receptor gene (Tas1r2) and preference for sweet stimuli in species of Carnivora.

    PubMed

    Li, Xia; Glaser, Dieter; Li, Weihua; Johnson, Warren E; O'Brien, Stephen J; Beauchamp, Gary K; Brand, Joseph G

    2009-01-01

    The extent to which taste receptor specificity correlates with, or even predicts, diet choice is not known. We recently reported that the insensitivity to sweeteners shown by species of Felidae can be explained by their lacking of a functional Tas1r2 gene. To broaden our understanding of the relationship between the structure of the sweet receptors and preference for sugars and artificial sweeteners, we measured responses to 12 sweeteners in 6 species of Carnivora and sequenced the coding regions of Tas1r2 in these same or closely related species. The lion showed no preference for any of the 12 sweet compounds tested, and it possesses the pseudogenized Tas1r2. All other species preferred some of the natural sugars, and their Tas1r2 sequences, having complete open reading frames, predict functional sweet receptors. In addition to preferring natural sugars, the lesser panda also preferred 3 (neotame, sucralose, and aspartame) of the 6 artificial sweeteners. Heretofore, it had been reported that among vertebrates, only Old World simians could taste aspartame. The observation that the lesser panda highly preferred aspartame could be an example of evolutionary convergence in the identification of sweet stimuli.

  11. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    PubMed Central

    Smutzer, Gregory; Devassy, Roni K.

    2016-01-01

    Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition. PMID:26884754

  12. Altered sensitization patterns to sweet food stimuli in patients recovered from anorexia and bulimia nervosa.

    PubMed

    Wagner, Angela; Simmons, Alan N; Oberndorfer, Tyson A; Frank, Guido K W; McCurdy-McKinnon, Danyale; Fudge, Julie L; Yang, Tony T; Paulus, Martin P; Kaye, Walter H

    2015-12-30

    Recent studies show that higher-order appetitive neural circuitry may contribute to restricted eating in anorexia nervosa (AN) and overeating in bulimia nervosa (BN). The purpose of this study was to determine whether sensitization effects might underlie pathologic eating behavior when a taste stimulus is administered repeatedly. Recovered AN (RAN, n=14) and BN (RBN, n=15) subjects were studied in order to avoid the confounding effects of altered nutritional state. Functional magnetic resonance imaging (fMRI) measured higher-order brain response to repeated tastes of sucrose (caloric) and sucralose (non-caloric). To test sensitization, the neuronal response to the first and second administration was compared. RAN patients demonstrated a decreased sensitization to sucrose in contrast to RBN patients who displayed the opposite pattern, increased sensitization to sucrose. However, the latter was not as pronounced as in healthy control women (n=13). While both eating disorder subgroups showed increased sensitization to sucralose, the healthy controls revealed decreased sensitization. These findings could reflect on a neuronal level the high caloric intake of RBN during binges and the low energy intake for RAN. RAN seem to distinguish between high energy and low energy sweet stimuli while RBN do not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Analyses of Sweet Receptor Gene (Tas1r2) and Preference for Sweet Stimuli in Species of Carnivora

    PubMed Central

    Glaser, Dieter; Li, Weihua; Johnson, Warren E.; O'Brien, Stephen J.; Beauchamp, Gary K.; Brand, Joseph G.

    2009-01-01

    The extent to which taste receptor specificity correlates with, or even predicts, diet choice is not known. We recently reported that the insensitivity to sweeteners shown by species of Felidae can be explained by their lacking of a functional Tas1r2 gene. To broaden our understanding of the relationship between the structure of the sweet receptors and preference for sugars and artificial sweeteners, we measured responses to 12 sweeteners in 6 species of Carnivora and sequenced the coding regions of Tas1r2 in these same or closely related species. The lion showed no preference for any of the 12 sweet compounds tested, and it possesses the pseudogenized Tas1r2. All other species preferred some of the natural sugars, and their Tas1r2 sequences, having complete open reading frames, predict functional sweet receptors. In addition to preferring natural sugars, the lesser panda also preferred 3 (neotame, sucralose, and aspartame) of the 6 artificial sweeteners. Heretofore, it had been reported that among vertebrates, only Old World simians could taste aspartame. The observation that the lesser panda highly preferred aspartame could be an example of evolutionary convergence in the identification of sweet stimuli. PMID:19366814

  14. Affective forecasting in an orangutan: predicting the hedonic outcome of novel juice mixes.

    PubMed

    Sauciuc, Gabriela-Alina; Persson, Tomas; Bååth, Rasmus; Bobrowicz, Katarzyna; Osvath, Mathias

    2016-11-01

    Affective forecasting is an ability that allows the prediction of the hedonic outcome of never-before experienced situations, by mentally recombining elements of prior experiences into possible scenarios, and pre-experiencing what these might feel like. It has been hypothesised that this ability is uniquely human. For example, given prior experience with the ingredients, but in the absence of direct experience with the mixture, only humans are said to be able to predict that lemonade tastes better with sugar than without it. Non-human animals, on the other hand, are claimed to be confined to predicting-exclusively and inflexibly-the outcome of previously experienced situations. Relying on gustatory stimuli, we devised a non-verbal method for assessing affective forecasting and tested comparatively one Sumatran orangutan and ten human participants. Administered as binary choices, the test required the participants to mentally construct novel juice blends from familiar ingredients and to make hedonic predictions concerning the ensuing mixes. The orangutan's performance was within the range of that shown by the humans. Both species made consistent choices that reflected independently measured taste preferences for the stimuli. Statistical models fitted to the data confirmed the predictive accuracy of such a relationship. The orangutan, just like humans, thus seems to have been able to make hedonic predictions concerning never-before experienced events.

  15. pH- and ion-sensitive polymers for drug delivery

    PubMed Central

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  16. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case.

    PubMed

    Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2017-08-15

    Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.

  17. Low-fat and delicious: can we break the taste barrier?

    PubMed

    Kostas, G

    1997-07-01

    No matter how healthy a food or recipe might be, if it does not taste good, people will not eat it. The professional and personal challenge is to find ways to cook favorite foods in a low-fat and delicious style to maintain health while enjoying foods without guilt. A number of strategies can be employed to reach that goal, including ingredient choices, low-fat product substitutes, cookware, cooking techniques, seasonings, basic cooking and recipe modifications, and the creation of new recipes.

  18. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components.

    PubMed

    Glendinning, John I; Tang, Joyce; Morales Allende, Ana Paula; Bryant, Bruce P; Youngentob, Lisa; Youngentob, Steven L

    2017-08-01

    Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes. NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal chemosensory neurons. We found that FAE substantially reduced taste and trigeminal responsiveness to ethanol and its flavor components. Copyright © 2017 the American Physiological Society.

  19. How Does Food Taste in Anorexia and Bulimia Nervosa? A Protocol for a Quasi-Experimental, Cross-Sectional Design to Investigate Taste Aversion or Increased Hedonic Valence of Food in Eating Disorders

    PubMed Central

    Garcia-Burgos, David; Maglieri, Sabine; Vögele, Claus; Munsch, Simone

    2018-01-01

    Background: Despite on-going efforts to better understand dysregulated eating, the olfactory-gustatory deficits and food preferences in eating disorders (ED), and the mechanisms underlying the perception of and responses to food properties in anorexia nervosa (AN) and bulimia nervosa (BN) remain largely unknown; both during the course of the illness and compared to healthy populations. It is, therefore, necessary to systematically investigate the gustatory perception and hedonics of taste in patients with AN and BN. To this end, we will examine whether aversions to the taste of high-calorie food is related to the suppression of energy intake in restricting-type AN, and whether an increased hedonic valence of sweet, caloric-dense foods may be part of the mechanisms triggering binge-eating episodes in BN. In addition, the role of cognitions influencing these mechanisms will be examined. Method: In study 1, four mixtures of sweet-fat stimuli will be presented in a sensory two-alternative forced-choice test involving signal detection analysis. In study 2, a full-scale taste reactivity test will be carried out, including psychophysiological and behavioral measures to assess subtle and covert hedonic changes. We will compare the responses of currently-ill AN and BN patients to those who have recovered from AN and BN, and also to those of healthy normal-weight and underweight individuals without any eating disorder pathology. Discussion: If taste response profiles are differentially linked to ED types, then future studies should investigate whether taste responsiveness represents a useful diagnostic measure in the prevention, assessment and treatment of EDs. The expected results on cognitive mechanisms in the top-down processes of food hedonics will complement current models and contribute to the refinement of interventions to change cognitive aspects of taste aversions, to establish functional food preferences and to better manage food cravings associated with binge-eating episodes. No trial registration was required for this protocol, which was approved by the Swiss ethics committee (CER-VD, n° 2016-02150) and the Ethics Review Panel of the University of Luxembourg. PMID:29593595

  20. How Does Food Taste in Anorexia and Bulimia Nervosa? A Protocol for a Quasi-Experimental, Cross-Sectional Design to Investigate Taste Aversion or Increased Hedonic Valence of Food in Eating Disorders.

    PubMed

    Garcia-Burgos, David; Maglieri, Sabine; Vögele, Claus; Munsch, Simone

    2018-01-01

    Background: Despite on-going efforts to better understand dysregulated eating, the olfactory-gustatory deficits and food preferences in eating disorders (ED), and the mechanisms underlying the perception of and responses to food properties in anorexia nervosa (AN) and bulimia nervosa (BN) remain largely unknown; both during the course of the illness and compared to healthy populations. It is, therefore, necessary to systematically investigate the gustatory perception and hedonics of taste in patients with AN and BN. To this end, we will examine whether aversions to the taste of high-calorie food is related to the suppression of energy intake in restricting-type AN, and whether an increased hedonic valence of sweet, caloric-dense foods may be part of the mechanisms triggering binge-eating episodes in BN. In addition, the role of cognitions influencing these mechanisms will be examined. Method: In study 1, four mixtures of sweet-fat stimuli will be presented in a sensory two-alternative forced-choice test involving signal detection analysis. In study 2, a full-scale taste reactivity test will be carried out, including psychophysiological and behavioral measures to assess subtle and covert hedonic changes. We will compare the responses of currently-ill AN and BN patients to those who have recovered from AN and BN, and also to those of healthy normal-weight and underweight individuals without any eating disorder pathology. Discussion: If taste response profiles are differentially linked to ED types, then future studies should investigate whether taste responsiveness represents a useful diagnostic measure in the prevention, assessment and treatment of EDs. The expected results on cognitive mechanisms in the top-down processes of food hedonics will complement current models and contribute to the refinement of interventions to change cognitive aspects of taste aversions, to establish functional food preferences and to better manage food cravings associated with binge-eating episodes. No trial registration was required for this protocol, which was approved by the Swiss ethics committee (CER-VD, n° 2016-02150) and the Ethics Review Panel of the University of Luxembourg.

  1. Data on the sensory evaluation of potatoes (Solanum tuberosum) from different areas of Hokkaido, Japan, performed by untrained young adults.

    PubMed

    Sato, Hiroaki; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Itoyama, Ryuichi; Ichisawa, Megumi; Negishi, Junko; Sakuma, Rui; Furusho, Tadasu; Sagane, Yoshimasa; Takano, Katsumi

    2017-12-01

    This data article describes a sensory evaluation of potatoes used in food processing from the Tokachi, Kamikawa, and Abashiri geographic areas of Hokkaido, Japan, performed by untrained young adults. We gathered sensory data on potatoes from the four cultivars 'Toyoshiro,' 'Kitahime,' 'Snowden,' and 'Poroshiri.' The sensory evaluation was performed on steamed potatoes from each cultivar; these potatoes were harvested from each of the three geographic areas. Table 1 provides the data from the evaluation of the five basic tastes (sweet, salty, sour, bitter, and umami), as well as the evaluation of the egumi taste, which is a Japanese term indicating a taste that is acrid, astringent, and slightly bitter.

  2. Stimuli-responsive LbL capsules and nanoshells for drug delivery.

    PubMed

    Delcea, Mihaela; Möhwald, Helmuth; Skirtach, André G

    2011-08-14

    Review of basic principles and recent developments in the area of stimuli responsive polymeric capsules and nanoshells formed via layer-by-layer (LbL) is presented. The most essential attributes of the LbL approach are multifunctionality and responsiveness to a multitude of stimuli. The stimuli can be logically divided into three categories: physical (light, electric, magnetic, ultrasound, mechanical, and temperature), chemical (pH, ionic strength, solvent, and electrochemical) and biological (enzymes and receptors). Using these stimuli, numerous functionalities of nanoshells have been demonstrated: encapsulation, release including that inside living cells or in tissue, sensors, enzymatic reactions, enhancement of mechanical properties, and fusion. This review describes mechanisms and basic principles of stimuli effects, describes progress in the area, and gives an outlook on emerging trends such as theranostics and nanomedicine. Copyright © 2011. Published by Elsevier B.V.

  3. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    PubMed Central

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-01-01

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame. PMID:24763213

  4. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    PubMed

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  5. Taste receptors of the gut: emerging roles in health and disease.

    PubMed

    Depoortere, Inge

    2014-01-01

    Recent progress in unravelling the nutrient-sensing mechanisms in the taste buds of the tongue has triggered studies on the existence and role of chemosensory cells in the gut. Indeed, the gastrointestinal tract is the key interface between food and the human body and can sense basic tastes in much the same way as the tongue, through the use of similar G-protein-coupled taste receptors. These receptors 'taste' the luminal content and transmit signals that regulate nutrient transporter expression and nutrient uptake, and also the release of gut hormones and neurotransmitters involved in the regulation of energy and glucose homeostasis. Hence, they play a prominent role in the communication between the lumen, epithelium, smooth muscle cells, afferent nerve fibres and the brain to trigger adaptive responses that affect gastrointestinal function, food intake and glucose metabolism. This review summarises how sensing of nutrients by taste receptors along the gut plays a key role in the process of digestion, and how disturbances or adaptations of these chemosensory signalling pathways may contribute to the induction or resolution of a number of pathological conditions related to diabetes, obesity, or diet-induced symptom generation in irritable bowel syndrome. Targeting these receptors may represent a promising novel route for the treatment of a number of these diseases.

  6. A Comparison of Two Electric Taste Stimulation Devices

    PubMed Central

    McClure, Scott T.; Lawless, Harry T.

    2016-01-01

    Electrical stimulation of the tongue, commonly used in clinical evaluations of taste dysfunction, can produce a variety of sensations including reports of metallic taste. Two studies compared responses to a fabricated electrical stimulator (a 1.6 V battery, anode side exposed) and a clinical electrogustometer (Rion TR-06). Batteries placed on the anterior dorsal tongue surface produced sensations similar in intensity and quality to those produced by the clinical electrogustometer, with equal intensity on the tongue tip for the 1.6 V battery in the range of 33 – 56 µA from the electrogustometer. A second study examined responses on three areas of the tongue on each side. Responses declined for areas lower in fungiform papillae for both devices, but at different rates. Higher current levels were required to match the battery in lower density areas, indicating spatial summation for the larger battery surface area. A consistent pattern of lateral differences was seen in only one subject. Quality descriptions were similar in frequency whether or not a word list was provided, with metallic, sour, pain and bitter being the most frequently mentioned words for both electric stimuli. Similarities in response to the battery device and electrogustometer were evident in intensity, qualities evoked, lack of a laterality effect and decreasing response in areas with lower fungiform papillae density. The battery device may provide an inexpensive portable alternative to an electrogustometer for use in clinical testing of taste. PMID:17573078

  7. Perceptual Discrimination of Basic Object Features Is Not Facilitated When Priming Stimuli Are Prevented From Reaching Awareness by Means of Visual Masking

    PubMed Central

    Peel, Hayden J.; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A.

    2018-01-01

    Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features. PMID:29725292

  8. Perceptual Discrimination of Basic Object Features Is Not Facilitated When Priming Stimuli Are Prevented From Reaching Awareness by Means of Visual Masking.

    PubMed

    Peel, Hayden J; Sperandio, Irene; Laycock, Robin; Chouinard, Philippe A

    2018-01-01

    Our understanding of how form, orientation and size are processed within and outside of awareness is limited and requires further investigation. Therefore, we investigated whether or not the visual discrimination of basic object features can be influenced by subliminal processing of stimuli presented beforehand. Visual masking was used to render stimuli perceptually invisible. Three experiments examined if visible and invisible primes could facilitate the subsequent feature discrimination of visible targets. The experiments differed in the kind of perceptual discrimination that participants had to make. Namely, participants were asked to discriminate visual stimuli on the basis of their form, orientation, or size. In all three experiments, we demonstrated reliable priming effects when the primes were visible but not when the primes were made invisible. Our findings underscore the importance of conscious awareness in facilitating the perceptual discrimination of basic object features.

  9. Impact of Prior Consumption on Sour, Sweet, Salty, and Bitter Tastes.

    PubMed

    Christina, Josephine; Palma-Salgado, Sindy; Clark, Diana; Kahraman, Ozan; Lee, Soo-Yeun

    2016-02-01

    Food sensory tests generally require panelists to abstain from food or beverage consumption 30 min to an hour before a tasting session. However, investigators do not have a complete control over panelists' intentional or unintentional consumption prior to a tasting session. Currently, it is unclear how prior consumption impacts the results of the tasting session. The aim of this study was to determine the effects of temporary and lingering mouth irritation caused by the consumption of coffee, orange juice, and gum within 1, 15, or 30 min prior to the tasting session on the perception of 4 basic tastes: sweet, salty, sour, and bitter. Fifty-two panelists were served a beverage (orange juice, coffee, and water) or were asked to chew a piece of gum, and then, remained in the waiting room for 1, 15, or 30 min. They were then asked to report taste intensities using 15-cm unstructured line scales. Mean intensities of all tastes were not significantly different when orange juice was a primer at 1, 15, and 30 min when compared to water. Mean intensities of bitter were significantly lower when coffee was a primer at 1, 15, and 30 min than when water was a primer. Mean intensities of sweet were significantly lower when gum was a primer at 1 and 15 min than when water was a primer. The findings showed that it is necessary for 30 min or more waiting period of no food or beverage consumption prior to sensory testing. © 2015 Institute of Food Technologists®

  10. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine

    PubMed Central

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species. PMID:27479072

  11. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine.

    PubMed

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.

  12. Prediction error and somatosensory insula activation in women recovered from anorexia nervosa

    PubMed Central

    Frank, Guido K.W.; Collier, Shaleise; Shott, Megan E.; O’Reilly, Randall C.

    2016-01-01

    Background Previous research in patients with anorexia nervosa showed heightened brain response during a taste reward conditioning task and heightened sensitivity to rewarding and punishing stimuli. Here we tested the hypothesis that individuals recovered from anorexia nervosa would also experience greater brain activation during this task as well as higher sensitivity to salient stimuli than controls. Methods Women recovered from restricting-type anorexia nervosa and healthy control women underwent fMRI during application of a prediction error taste reward learning paradigm. Results Twenty-four women recovered from anorexia nervosa (mean age 30.3 ± 8.1 yr) and 24 control women (mean age 27.4 ± 6.3 yr) took part in this study. The recovered anorexia nervosa group showed greater left posterior insula activation for the prediction error model analysis than the control group (family-wise error– and small volume–corrected p < 0.05). A group × condition analysis found greater posterior insula response in women recovered from anorexia nervosa than controls for unexpected stimulus omission, but not for unexpected receipt. Sensitivity to punishment was elevated in women recovered from anorexia nervosa. Limitations This was a cross-sectional study, and the sample size was modest. Conclusion Anorexia nervosa after recovery is associated with heightened prediction error–related brain response in the posterior insula as well as greater response to unexpected reward stimulus omission. This finding, together with behaviourally increased sensitivity to punishment, could indicate that individuals recovered from anorexia nervosa are particularly responsive to punishment. The posterior insula processes somatosensory stimuli, including unexpected bodily states, and greater response could indicate altered perception or integration of unexpected or maybe unwanted bodily feelings. Whether those findings develop during the ill state or whether they are biological traits requires further study. PMID:26836623

  13. Prediction error and somatosensory insula activation in women recovered from anorexia nervosa.

    PubMed

    Frank, Guido K W; Collier, Shaleise; Shott, Megan E; O'Reilly, Randall C

    2016-08-01

    Previous research in patients with anorexia nervosa showed heightened brain response during a taste reward conditioning task and heightened sensitivity to rewarding and punishing stimuli. Here we tested the hypothesis that individuals recovered from anorexia nervosa would also experience greater brain activation during this task as well as higher sensitivity to salient stimuli than controls. Women recovered from restricting-type anorexia nervosa and healthy control women underwent fMRI during application of a prediction error taste reward learning paradigm. Twenty-four women recovered from anorexia nervosa (mean age 30.3 ± 8.1 yr) and 24 control women (mean age 27.4 ± 6.3 yr) took part in this study. The recovered anorexia nervosa group showed greater left posterior insula activation for the prediction error model analysis than the control group (family-wise error- and small volume-corrected p < 0.05). A group × condition analysis found greater posterior insula response in women recovered from anorexia nervosa than controls for unexpected stimulus omission, but not for unexpected receipt. Sensitivity to punishment was elevated in women recovered from anorexia nervosa. This was a cross-sectional study, and the sample size was modest. Anorexia nervosa after recovery is associated with heightened prediction error-related brain response in the posterior insula as well as greater response to unexpected reward stimulus omission. This finding, together with behaviourally increased sensitivity to punishment, could indicate that individuals recovered from anorexia nervosa are particularly responsive to punishment. The posterior insula processes somatosensory stimuli, including unexpected bodily states, and greater response could indicate altered perception or integration of unexpected or maybe unwanted bodily feelings. Whether those findings develop during the ill state or whether they are biological traits requires further study.

  14. What do love and jealousy taste like?

    PubMed

    Chan, Kai Qin; Tong, Eddie M W; Tan, Deborah H; Koh, Alethea H Q

    2013-12-01

    Metaphorical expressions linking love and jealousy to sweet, sour, and bitter tastes are common in normal language use and suggest that these emotions may influence perceptual taste judgments. Hence, we investigated whether the phenomenological experiences of love and jealousy are embodied in the taste sensations of sweetness, sourness, and bitterness. Studies 1A and 1B validated that these metaphors are widely endorsed. In three subsequent studies, participants induced to feel love rated a variety of tastants (sweet-sour candy, bitter-sweet chocolates, and distilled water) as sweeter than those who were induced to feel jealous, neutral, or happy. However, those induced to feel jealous did not differ from those induced to feel happy or neutral on bitter and sour ratings. These findings imply that emotions can influence basic perceptual judgments, but metaphors that refer to the body do not necessarily influence perceptual judgments the way they imply. We further suggest that future research in metaphoric social cognition and metaphor theory may benefit from investigating how such metaphors could have originated.

  15. Expectation or Sensorial Reality? An Empirical Investigation of the Biodynamic Calendar for Wine Drinkers

    PubMed Central

    Parr, Wendy V.; Valentin, Dominique; Reedman, Phil; Grose, Claire; Green, James A.

    2017-01-01

    The study’s aim was to investigate a central tenet of biodynamic philosophy as applied to wine tasting, namely that wines taste different in systematic ways on days determined by the lunar cycle. Nineteen New Zealand wine professionals tasted blind 12 Pinot noir wines at times determined within the biodynamic calendar for wine drinkers as being favourable (Fruit day) and unfavourable (Root day) for wine tasting. Tasters rated each wine four times, twice on a Fruit day and twice on a Root day, using 20 experimenter-provided descriptors. Wine descriptors spanned a range of varietal-relevant aroma, taste, and mouthfeel characteristics, and were selected with the aim of elucidating both qualitative and quantitative aspects of each wine’s perceived aromatic, taste, and structural aspects including overall wine quality and liking. A post-experimental questionnaire was completed by each participant to determine their degree of knowledge about the purpose of the study, and their awareness of the existence of the biodynamic wine drinkers’ calendar. Basic wine physico-chemical parameters were determined for the wines tasted on each of a Fruit day and a Root day. Results demonstrated that the wines were judged differentially on all attributes measured although type of day as determined by the biodynamic calendar for wine drinkers did not influence systematically any of the wine characteristics evaluated. The findings highlight the importance of testing experimentally practices that are based on anecdotal evidence but that lend themselves to empirical investigation. PMID:28046047

  16. Expectation or Sensorial Reality? An Empirical Investigation of the Biodynamic Calendar for Wine Drinkers.

    PubMed

    Parr, Wendy V; Valentin, Dominique; Reedman, Phil; Grose, Claire; Green, James A

    2017-01-01

    The study's aim was to investigate a central tenet of biodynamic philosophy as applied to wine tasting, namely that wines taste different in systematic ways on days determined by the lunar cycle. Nineteen New Zealand wine professionals tasted blind 12 Pinot noir wines at times determined within the biodynamic calendar for wine drinkers as being favourable (Fruit day) and unfavourable (Root day) for wine tasting. Tasters rated each wine four times, twice on a Fruit day and twice on a Root day, using 20 experimenter-provided descriptors. Wine descriptors spanned a range of varietal-relevant aroma, taste, and mouthfeel characteristics, and were selected with the aim of elucidating both qualitative and quantitative aspects of each wine's perceived aromatic, taste, and structural aspects including overall wine quality and liking. A post-experimental questionnaire was completed by each participant to determine their degree of knowledge about the purpose of the study, and their awareness of the existence of the biodynamic wine drinkers' calendar. Basic wine physico-chemical parameters were determined for the wines tasted on each of a Fruit day and a Root day. Results demonstrated that the wines were judged differentially on all attributes measured although type of day as determined by the biodynamic calendar for wine drinkers did not influence systematically any of the wine characteristics evaluated. The findings highlight the importance of testing experimentally practices that are based on anecdotal evidence but that lend themselves to empirical investigation.

  17. Latent constructs underlying sensory subtypes in children with autism: A preliminary study.

    PubMed

    Hand, Brittany N; Dennis, Simon; Lane, Alison E

    2017-08-01

    Recent reports identify sensory subtypes in ASD based on shared patterns of responses to daily sensory stimuli [Ausderau et al., 2014; Lane, Molloy, & Bishop, 2014]. Lane et al. propose that two broad sensory dimensions, sensory reactivity and multisensory integration, best explain the differences between subtypes, however this has yet to be tested. The present study tests this hypothesis by examining the latent constructs underlying Lane's sensory subtypes. Participants for this study were caregivers of children with autism spectrum disorder (ASD) aged 2-12 years. Caregiver responses on the Short Sensory Profile (SSP), used to establish Lane's sensory subtypes, were extracted from two existing datasets (total n = 287). Independent component analyses were conducted to test the fit and interpretability of a two-construct structure underlying the SSP, and therefore, the sensory subtypes. The first construct was largely comprised of the taste/smell sensitivity domain, which describes hyper-reactivity to taste and smell stimuli. The second construct had a significant contribution from the low energy/weak domain, which describes behaviors that may be indicative of difficulties with multisensory integration. Findings provide initial support for our hypothesis that sensory reactivity and multisensory integration underlie Lane's sensory subtypes in ASD. Autism Res 2017, 10: 1364-1371. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Taste and acceptance of pyrophosphates by rats and mice.

    PubMed

    McCaughey, Stuart A; Giza, Barbara K; Tordoff, Michael G

    2007-06-01

    The palatability and taste quality of pyrophosphates were evaluated in a series of behavioral and electrophysiological experiments. In two-bottle choice tests with water, rats strongly preferred some concentrations of Na3HP2O7 and Na4P2O7, moderately preferred some concentrations of K4P2O7 and Fe4(P2O7)3, and were indifferent to or avoided all concentrations of Ca2P2O7 and Na2H2P2O7. The contribution of sodium to the preference for sodium pyrophosphates was ascertained: 1) Rats with a choice between Na4P2O7 and NaCl preferred 1 mM Na4P2O7 to 4 mM NaCl but preferred 40 or 150 mM NaCl to 10 mM Na4P2O7, 2) blocking salt taste transduction by mixing Na4P2O7 with amiloride reduced preferences but did not eliminate them, and 3) three mouse strains (FVB/J, C57BL/6J, and CBA/J) known to differ in sodium preference had the same rank order of preferences for Na3HP2O7 and NaCl, but peak preferences were higher for Na3HP2O7 than for NaCl. The taste qualities of pyrophosphates were determined by measuring taste-evoked responses of neurons in the nucleus of the solitary tract of rats. Across-neuron patterns of activity for sodium pyrophosphates were similar to that of NaCl but the pattern of Na3HP2O7 plus amiloride was unique from those of sweet, salty, sour, bitter, and umami stimuli. Taken together, the results indicate that the high palatability of some concentrations of Na3HP2O7 and Na4P2O7 is due partially to their salty taste, but there must also be another cause, which may include a novel orosensory component distinct from the five major taste qualities.

  19. Taste intensities of ten vegetables commonly consumed in the Netherlands.

    PubMed

    van Stokkom, V L; Teo, P S; Mars, M; de Graaf, C; van Kooten, O; Stieger, M

    2016-09-01

    Bitterness has been suggested to be the main reason for the limited palatability of several vegetables. Vegetable acceptance has been associated with preparation method. However, the taste intensity of a variety of vegetables prepared by different methods has not been studied yet. The objective of this study is to assess the intensity of the five basic tastes and fattiness of ten vegetables commonly consumed in the Netherlands prepared by different methods using the modified Spectrum method. Intensities of sweetness, sourness, bitterness, umami, saltiness and fattiness were assessed for ten vegetables (cauliflower, broccoli, leek, carrot, onion, red bell pepper, French beans, tomato, cucumber and iceberg lettuce) by a panel (n=9) trained in a modified Spectrum method. Each vegetable was assessed prepared by different methods (raw, cooked, mashed and as a cold pressed juice). Spectrum based reference solutions were available with fixed reference points at 13.3mm (R1), 33.3mm (R2) and 66.7mm (R3) for each taste modality on a 100mm line scale. For saltiness, R1 and R3 differed (16.7mm and 56.7mm). Mean intensities of all taste modalities and fattiness for all vegetables were mostly below R1 (13.3mm). Significant differences (p<0.05) within vegetables between preparation methods were found. Sweetness was the most intensive taste, followed by sourness, bitterness, fattiness, umami and saltiness. In conclusion, all ten vegetables prepared by different methods showed low mean intensities of all taste modalities and fattiness. Preparation method affected taste and fattiness intensity and the effect differed by vegetable type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Heightened sour preferences during childhood.

    PubMed

    Liem, Djin Gie; Mennella, Julie A

    2003-02-01

    Basic research has revealed that the chemical sensory world of children is different from that of adults, as evidenced by their heightened preferences for sweet and salty tastes. However, little is known about the ontogeny of sour taste preferences, despite the growing market of extreme sour candies. The present study investigated whether the level of sourness most preferred in a food matrix and the ability to discriminate differences in sour intensity differed between 5- to 9-year-old children and their mothers, by using a rank-by-elimination procedure embedded in the context of a game. Mothers also completed a variety of questionnaires and children were asked several questions to assess whether children's temperament and food preferences and habits related to sour preferences. The results indicated that, although every mother and all but two of the children (92%) were able to rank the gelatins from most to least sour, more than one-third (35%) of the children, but virtually none of the adults, preferred the high levels of sour taste (0.25 M citric acid) in gelatin. Those children who preferred the extreme sour tastes were significantly less food neophobic (P < 0.05) and tended to experience a greater variety of fruits when compared with the remaining children (P = 0.11). Moreover, the children's preference for sour tastes generalized to other foods, such as candies and lemons, as reported by both children and mothers. These findings are the first experimental evidence to demonstrate that sour taste preferences are heightened during childhood and that such preferences are related to children's food habits and preferences. Further research is needed to unfold the relationship between the level of sour taste preferred and the actual consumption of sour-tasting foods and flavors in children.

  1. Heightened Sour Preferences During Childhood

    PubMed Central

    Liem, Djin Gie; Mennella, Julie A.

    2009-01-01

    Basic research has revealed that the chemical sensory world of children is different from that of adults, as evidenced by their heightened preferences for sweet and salty tastes. However, little is known about the ontogeny of sour taste preferences, despite the growing market of extreme sour candies. The present study investigated whether the level of sourness most preferred in a food matrix and the ability to discriminate differences in sour intensity differed between 5- to 9-year-old children and their mothers, by using a rank-by-elimination procedure embedded in the context of a game. Mothers also completed a variety of questionnaires and children were asked several questions to assess whether children’s temperament and food preferences and habits related to sour preferences. The results indicated that, although every mother and all but two of the children (92%) were able to rank the gelatins from most to least sour, more than one-third (35%) of the children, but virtually none of the adults, preferred the high levels of sour taste (0.25 M citric acid) in gelatin. Those children who preferred the extreme sour tastes were significantly less food neophobic (P < 0.05) and tended to experience a greater variety of fruits when compared with the remaining children (P = 0.11). Moreover, the children’s preference for sour tastes generalized to other foods, such as candies and lemons, as reported by both children and mothers. These findings are the first experimental evidence to demonstrate that sour taste preferences are heightened during childhood and that such preferences are related to children’s food habits and preferences. Further research is needed to unfold the relationship between the level of sour taste preferred and the actual consumption of sour-tasting foods and flavors in children. PMID:12588738

  2. Ontogeny of taste preferences: basic biology and implications for health12345

    PubMed Central

    Mennella, Julie A

    2014-01-01

    Health initiatives address childhood obesity in part by encouraging good nutrition early in life. This review highlights the science that shows that children naturally prefer higher levels of sweet and salty tastes and reject lower levels of bitter tastes than do adults. Thus, their basic biology does not predispose them to favor the recommended low-sugar, low-sodium, vegetable-rich diets and makes them especially vulnerable to our current food environment of foods high in salt and refined sugars. The good news is that sensory experiences, beginning early in life, can shape preferences. Mothers who consume diets rich in healthy foods can get children off to a good start because flavors are transmitted from the maternal diet to amniotic fluid and mother's milk, and breastfed infants are more accepting of these flavors. In contrast, infants fed formula learn to prefer its unique flavor profile and may have more difficulty initially accepting flavors not found in formula, such as those of fruit and vegetables. Regardless of early feeding mode, infants can learn through repeated exposure and dietary variety if caregivers focus on the child's willingness to consume a food and not just the facial expressions made during feeding. In addition, providing complementary foods low in salt and sugars may help protect the developing child from excess intake later in life. Early-life experiences with healthy tastes and flavors may go a long way toward promoting healthy eating, which could have a significant impact in addressing the many chronic illnesses associated with poor food choice. PMID:24452237

  3. Differential modulation of the lactisole ‘Sweet Water Taste’ by sweeteners

    PubMed Central

    Alvarado, Cynthia; Nachtigal, Danielle; Slack, Jay P.

    2017-01-01

    Pre-exposure to taste stimuli and certain chemicals can cause water to have a taste. Here we studied further the ‘sweet water taste’ (SWT) perceived after exposure to the sweet taste inhibitor lactisole. Experiment 1 investigated an incidental observation that presenting lactisole in mixture with sucrose reduced the intensity of the SWT. The results confirmed this observation and also showed that rinsing with sucrose after lactisole could completely eliminate the SWT. The generalizability of these findings was investigated in experiment 2 by presenting 5 additional sweeteners before, during, or after exposure to lactisole. The results found with sucrose were replicated with fructose and cyclamate, but the 3 other sweeteners were less effective suppressors of the SWT, and the 2 sweeteners having the highest potency initially enhanced it. A third experiment investigated these interactions on the tongue tip and found that the lactisole SWT was perceived only when water was actively flowed across the tongue. The same experiment yielded evidence against the possibility that suppression of the SWT following exposure to sweeteners is an aftereffect of receptor activation while providing additional support for a role of sweetener potency. Collectively these results provide new evidence that complex inhibitory and excitatory interactions occur between lactisole and agonists of the sweet taste receptor TAS1R2-TAS1R3. Receptor mechanisms that may be responsible for these interactions are discussed in the context of the current model of the SWT and the possible contribution of allosteric modulation. PMID:28700634

  4. Does acute or habitual protein deprivation influence liking for monosodium glutamate?

    PubMed

    Masic, Una; Yeomans, Martin R

    2017-03-15

    The umami flavour generated by monosodium glutamate (MSG) has been proposed as the marker for the presence of protein in foods. As protein is the most closely regulated macronutrient in the diet, the present study addressed whether acute protein deprivation, habitual protein intake or a combination of the two influenced liking for the taste of MSG. 24 low-restraint male participants (mean age: 22; BMI: 23) consumed either their habitual breakfast (baseline), a low protein breakfast (breakfast meal with low protein milk and milkshake) or a high protein breakfast (breakfast meal with high protein milk and milkshake) on three different days, and then evaluated the acceptability of umami (MSG), salty (NaCl) or sweet (Acesulphame K) tastes at low or high concentrations in a soup context at lunchtime. Participants also completed a habitual protein intake questionnaire (39-item protein Food Frequency Questionnaire). Liking for all tastes was higher on the low than on the high protein day, and NaCl and Acesulphame K were liked less on both protein manipulation days when compared to the no added flavour control. Habitual protein intake was not related to liking for MSG stimuli alone but habitual high protein consumers rated a high concentration of MSG as more pleasant than any other taste when in protein deficit. Overall, these findings suggest that liking for high MSG concentrations may be moderated by nutritional need in high protein consumers. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. The spike generator in the labellar taste receptors of the blowfly is differently affected by 4-aminopyridine and 5-hydroxytryptamine.

    PubMed

    Sollai, Giorgia; Solari, Paolo; Corda, Valentina; Masala, Carla; Crnjar, Roberto

    2012-12-01

    In taste chemoreception of invertebrates the interaction of taste stimuli with specific membrane receptors and/or ion channels located in the apical membrane of taste receptor cells results in the generation of a receptor potential which, in turn, activates the 'encoder' region to produce action potentials which propagate to the CNS. This study investigates, in the labellar chemosensilla of the blowfly, Protophormia terraenovae, the voltage-gated K(+) currents involved in the action potential repolarization and repetitive firing of the neurons by way of the K(v) channel inhibitors, 4-aminopyridine and 5-hydroxytryptamine. The receptor potential and the spike activity were simultaneously recorded from the 'salt', 'sugar' and 'deterrent' cells, by means of the extracellular side-wall technique, in response to 150 mM NaCl, 100 mM sucrose and 1 mM quinine HCl, before, 0÷10 min after apical administration of 4-AP (0.01-10 mM) or 5-HT (0.1-100 mM). The results show that the receptor potential in all three cells is neither affected by 4-AP nor by 5-HT. Instead, spike activity is significantly decreased, by way of blocking different K(v) channel types: an inactivating A-type K(+) current (KA) modulating repetitive firing of the cells and responsible for the after hyperpolarization, and a sustained K(+) current that resembles the delayed rectifier (DKR) and contributes to action potential repolarization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar

    PubMed Central

    Li, Xia; Li, Weihua; Wang, Hong; Cao, Jie; Maehashi, Kenji; Huang, Liquan; Bachmanov, Alexander A; Reed, Danielle R; Legrand-Defretin, Véronique; Beauchamp, Gary K; Brand, Joseph G

    2005-01-01

    Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and thus the cat lacks the receptor likely necessary for detection of sweet stimuli. This molecular change was very likely an important event in the evolution of the cat's carnivorous behavior. PMID:16103917

  7. Taste perception in kidney disease and relationship to dietary sodium intake.

    PubMed

    McMahon, Emma J; Campbell, Katrina L; Bauer, Judith D

    2014-12-01

    Taste abnormalities are prevalent in Chronic Kidney Disease (CKD) potentially affecting food palatability and intake, and nutrition status. The TASTE CKD study aimed to assess taste and explore the relationship of dietary sodium intake with taste disturbance in CKD subjects. This was a cross-sectional study of 91 adult stage 3-5 CKD participants (78% male) aged 65.9 ± 13.5 years with mean estimated glomerular filtration rate of 33.1 ± 12.7 ml/min/1.73 m(2), and 30 controls (47% male) aged 55.2 ± 7.4 years without kidney dysfunction. Taste assessment was performed in both groups, presenting five basic tastes (sweet, sour, salty, umami and bitter) in blinded 2 ml solution which the participants tasted, identified (identification) and rated perceived strength (intensity) on a 10 cm visual analogue scale. Sodium intake was measured in the CKD group using validated food frequency questionnaire to determine high or low sodium intake (cut-off 100 mmol sodium/day). Differences between groups (CKD vs controls; high vs low sodium intake) were analysed using chi-square for identification and t-test for intensity. Multivariate analysis was used to adjust for age and gender differences between CKD and controls. The control group identified mean 3.9 ± 1.0 tastants correctly compared with 3.0 ± 1.2 for CKD group (p < 0.001), which remained significant after adjustment for age and gender. After adjustment for age and gender, sour identification and intensity and salty and umami intensity were impaired in CKD compared with controls. Participants with low sodium intake were more likely to correctly identify salty and umami, and rated intensity of umami and bitter significantly higher than those with high sodium intake. These findings add to the body of evidence suggesting that taste changes occur with CKD, independent of age and gender differences, with specific impairment in sour, umami and salty tastes. Our finding that sodium intake is related to umami and bitter disturbance as well as salty taste warrants further investigation. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Differentiated adaptive evolution, episodic relaxation of selective constraints, and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates.

    PubMed

    Liu, Guangjian; Walter, Lutz; Tang, Suni; Tan, Xinxin; Shi, Fanglei; Pan, Huijuan; Roos, Christian; Liu, Zhijin; Li, Ming

    2014-01-01

    Umami and sweet tastes are two important basic taste perceptions that allow animals to recognize diets with nutritious carbohydrates and proteins, respectively. Until recently, analyses of umami and sweet taste were performed on various domestic and wild animals. While most of these studies focused on the pseudogenization of taste genes, which occur mostly in carnivores and species with absolute feeding specialization, omnivores and herbivores were more or less neglected. Catarrhine primates are a group of herbivorous animals (feeding mostly on plants) with significant divergence in dietary preference, especially the specialized folivorous Colobinae. Here, we conducted the most comprehensive investigation to date of selection pressure on sweet and umami taste genes (TAS1Rs) in catarrhine primates to test whether specific adaptive evolution occurred during their diversification, in association with particular plant diets. We documented significant relaxation of selective constraints on sweet taste gene TAS1R2 in the ancestral branch of Colobinae, which might correlate with their unique ingestion and digestion of leaves. Additionally, we identified positive selection acting on Cercopithecidae lineages for the umami taste gene TAS1R1, on the Cercopithecinae and extant Colobinae and Hylobatidae lineages for TAS1R2, and on Macaca lineages for TAS1R3. Our research further identified several site mutations in Cercopithecidae, Colobinae and Pygathrix, which were detected by previous studies altering the sensitivity of receptors. The positively selected sites were located mostly on the extra-cellular region of TAS1Rs. Among these positively selected sites, two vital sites for TAS1R1 and four vital sites for TAS1R2 in extra-cellular region were identified as being responsible for the binding of certain sweet and umami taste molecules through molecular modelling and docking. Our results suggest that episodic and differentiated adaptive evolution of TAS1Rs pervasively occurred in catarrhine primates, most concentrated upon the extra-cellular region of TAS1Rs.

  9. Molecular Mechanisms of Taste Recognition: Considerations about the Role of Saliva

    PubMed Central

    Fábián, Tibor Károly; Beck, Anita; Fejérdy, Pál; Hermann, Péter; Fábián, Gábor

    2015-01-01

    The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed. PMID:25782158

  10. Taste identification used as a potential discriminative test among depression and Alzheimer׳s disease in elderly: A pilot study.

    PubMed

    Naudin, Marine; Mondon, Karl; El-Hage, Wissam; Perriot, Elise; Boudjarane, Mohamed; Desmidt, Thomas; Lorette, Adrien; Belzung, Catherine; Hommet, Caroline; Atanasova, Boriana

    2015-08-15

    Major Depression and Alzheimer׳s disease (AD) are two diseases in the elderly characterized by an overlap of early symptoms including memory and emotional disorders. The identification of specific markers would facilitate their diagnosis. The aim of this study was to identify such markers by investigating gustatory function in depressed and AD patients. We included 20 patients with unipolar major depressive episodes (MDE), 20 patients with mild to moderate AD and 24 healthy individuals. We investigated the cognitive profile (depression, global cognitive efficiency and social/physical anhedonia) and gustatory function (ability to identify four basic tastes and to judge their intensity and hedonic value) in all participants. We found that AD patients performed worse than healthy participants in the taste identification test (for the analysis of all tastants together); however, this was not the case for depressed patients. We found no significant differences among the three groups in their ability to evaluate the intensity and hedonic value of the four tastes. Overall, our findings suggest that a taste identification test may be useful to distinguish AD and healthy controls but further investigation is required to conclude whether such a test can differentiate AD and depressed patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Higher sensitivity to sweet and salty taste in obese compared to lean individuals.

    PubMed

    Hardikar, Samyogita; Höchenberger, Richard; Villringer, Arno; Ohla, Kathrin

    2017-04-01

    Although putatively taste has been associated with obesity as one of the factors governing food intake, previous studies have failed to find a consistent link between taste perception and Body Mass Index (BMI). A comprehensive comparison of both thresholds and hedonics for four basic taste modalities (sweet, salty, sour, and bitter) has only been carried out with a very small sample size in adults. In the present exploratory study, we compared 23 obese (OB; BMI > 30), and 31 lean (LN; BMI < 25) individuals on three dimensions of taste perception - recognition thresholds, intensity, and pleasantness - using different concentrations of sucrose (sweet), sodium chloride (NaCl; salty), citric acid (sour), and quinine hydrochloride (bitter) dissolved in water. Recognition thresholds were estimated with an adaptive Bayesian staircase procedure (QUEST). Intensity and pleasantness ratings were acquired using visual analogue scales (VAS). It was found that OB had lower thresholds than LN for sucrose and NaCl, indicating a higher sensitivity to sweet and salty tastes. This effect was also reflected in ratings of intensity, which were significantly higher in the OB group for the lower concentrations of sweet, salty, and sour. Calculation of Bayes factors further corroborated the differences observed with null-hypothesis significance testing (NHST). Overall, the results suggest that OB are more sensitive to sweet and salty, and perceive sweet, salty, and sour more intensely than LN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Beauty Requires Thought.

    PubMed

    Brielmann, Aenne A; Pelli, Denis G

    2017-05-22

    The experience of beauty is a pleasure, but common sense and philosophy suggest that feeling beauty differs from sensuous pleasures such as eating or sex. Immanuel Kant [1, 2] claimed that experiencing beauty requires thought but that sensuous pleasure can be enjoyed without thought and cannot be beautiful. These venerable hypotheses persist in models of aesthetic processing [3-7] but have never been tested. Here, participants continuously rated the pleasure felt from a nominally beautiful or non-beautiful stimulus and then judged whether they had experienced beauty. The stimuli, which engage various senses, included seeing images, tasting candy, and touching a teddy bear. The observer reported the feelings that the stimulus evoked. The time course of pleasure, across stimuli, is well-fit by a model with one free parameter: pleasure amplitude. Pleasure amplitude increases linearly with the feeling of beauty. To test Kant's claim of a need for thought, we reduce cognitive capacity by adding a "two-back" task to distract the observer's thoughts. The distraction greatly reduces the beauty and pleasure experienced from stimuli that otherwise produce strong pleasure and spares that of less-pleasant stimuli. We also find that strong pleasure is always beautiful, whether produced reliably by beautiful stimuli or just occasionally by sensuous stimuli. In sum, we confirm Kant's claim that only the pleasure associated with feeling beauty requires thought and disprove his claim that sensuous pleasures cannot be beautiful. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Effects of Spatial and Selective Attention on Basic Multisensory Integration

    ERIC Educational Resources Information Center

    Gondan, Matthias; Blurton, Steven P.; Hughes, Flavia; Greenlee, Mark W.

    2011-01-01

    When participants respond to auditory and visual stimuli, responses to audiovisual stimuli are substantially faster than to unimodal stimuli (redundant signals effect, RSE). In such tasks, the RSE is usually higher than probability summation predicts, suggestive of specific integration mechanisms underlying the RSE. We investigated the role of…

  14. Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons

    ERIC Educational Resources Information Center

    Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.

    2011-01-01

    Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…

  15. Optimizing Oral Medications for Children

    PubMed Central

    Mennella, Julie A.; Beauchamp, Gary K.

    2009-01-01

    Background Active pharmaceutical ingredients that taste bitter and/or irritate the mouth and throat are aversive to children as well as many adults. Effective methods of avoiding unpleasant tastes for adults (eg, encapsulating the medicine in pill, capsule, or tablet form) are problematic because many children cannot or will not swallow these. The unpalatable flavor of the medicine can thwart the benefits of even the most powerful of drugs. Failure to consume medication may do the child harm and can even be life-threatening. Objectives This article provides an overview of the current knowledge of the sensory capabilities and preferences of children as it relates to flavor, defined here as the combined input of taste, smell, and chemical irritation. The methods used to evaluate flavor perception in children are reviewed. Recent scientific advances are summarized that shed light on why the bitter taste of oral pharmaceuticals is an ongoing formulation problem and how discoveries of novel flavor molecules and modulators of bitter tastes hold considerable promise for the future. Alternative methods for evaluation of the palatability of medicines are described. Methods The Eunice Kennedy Shriver National Institute of Child Health and Human Development sponsored a Pediatric Formulation Initiative workshop on December 6 and 7, 2005, in Bethesda, Maryland. Information for this article was gathered from literature reviews that were then discussed during this workshop as well as during several conference calls with the Taste and Flavor Working Group members. Terms for the MEDLINE search (1970-2007) included infant, children, taste, olfaction/smell, flavor, chemical senses, palatability, sensory testing, pharmaceutical, and medicines. Results Children have well-developed sensory systems for detecting tastes, smells, and chemical irritants, and their rejection of unpalatable medications is a reflection of their basic biology. Sugars, salt, and other substances reportedly reduce the bitterness of several pharmaceuticals. Adding pleasant flavor volatiles such as bubble gum may help induce children to consume a medicine, but such volatile compounds are not effective in suppressing the strong bitter tastes associated with some medications. Also, because individual experiences and culture mainly determine which odors are attractive, a universally appealing volatile flavoring agent may be difficult to identify. Sensory panelists who are sensitive to the pediatric palate, which is different from adults, and new techniques involving animal models, isolated parts of the receptor cells, and even electronic devices that detect taste and flavor are among the tools that may be used to evaluate the palatability of medications and predict compliance among pediatric populations. Conclusions Although there are no easy solutions to this dilemma, children’s acceptance of many medicines can be improved by applying the knowledge gleaned from basic research in the chemical senses. Further development and validation of sensory methods will provide a better understanding of the sensory world of the child. This understanding, combined with new technologies and results of animal model studies, will enhance drug acceptance and compliance in pediatric populations. A better understanding of the scientific basis for distaste and how to ameliorate it is a public health priority. PMID:19108800

  16. Umami taste components and their sources in Asian foods.

    PubMed

    Hajeb, P; Jinap, S

    2015-01-01

    Umami, the fifth basic taste, is the inimitable taste of Asian foods. Several traditional and locally prepared foods and condiments of Asia are rich in umami. In this part of world, umami is found in fermented animal-based products such as fermented and dried seafood, and plant-based products from beans and grains, dry and fresh mushrooms, and tea. In Southeast Asia, the most preferred seasonings containing umami are fish and seafood sauces, and also soybean sauces. In the East Asian region, soybean sauces are the main source of umami substance in the routine cooking. In Japan, the material used to obtain umami in dashi, the stock added to almost every Japanese soups and boiled dishes, is konbu or dried bonito. This review introduces foods and seasonings containing naturally high amount of umami substances of both animal and plant sources from different countries in Asia.

  17. Sensomics-Based Molecularization of the Taste of Pot-au-Feu, a Traditional Meat/Vegetable Broth.

    PubMed

    Kranz, Maximilian; Viton, Florian; Smarrito-Menozzi, Candice; Hofmann, Thomas

    2018-01-10

    Targeted quantification of 49 basic taste-active molecules, followed by the calculation of dose-over-threshold (DoT) factors, and taste re-engineering experiments revealed minerals, nucleotides/nucleosides, amino acids, organic acids, and carbohydrates as the key compounds of Pot-au-Feu, a traditional broth preparation from beef cuts and vegetables. Moreover, the dipeptide carnosine was identified to be the key inducer for the white-meaty and thick-sour orosensation of the broth, next to anserine and 1-deoxy-d-fructosyl-N-β-alanyl-l-histidine, the latter of which has been identified for the first time by means of a sensory-guided fractionation. Sensory studies revealed the threshold concentration of carnosine in model broth to decrease by a factor of 5 upon nonenzymatic glycosylation to reach 4.4 mmol/L for its Amadori product 1-deoxy-d-fructosyl-N-β-alanyl-l-histidine.

  18. Evidence for presence of nonesterified fatty acids as potential gustatory signaling molecules in humans.

    PubMed

    Kulkarni, Bhushan; Mattes, Richard

    2013-02-01

    Gustatory fatty acid signaling termed "fatty acid taste" is initiated when nonesterified fatty acids (NEFA) bind to putative fat receptors on taste receptor cells. However, the source and quantity of NEFA in the oral cavity of humans are unresolved. Dietary fat is comprised predominantly of triacylglycerol, and human lingual lipase is of questionable functionality. The objective of this study was to characterize the species of NEFA in saliva and quantify their individual concentrations during oral processing of high-fat foods. Participants chewed fixed amounts of almonds, coconut, walnuts, almond butter, and olive oil (stimuli that vary in physical state and fatty acid composition) for 1 min at the rate of 1 bite/s and expectorated. The salivary NEFA from the expectorant were quantitatively and qualitatively analyzed by gas chromatography-mass spectrometry. Palmitic, oleic, linoleic, and stearic acids were the 4 predominant salivary NEFA, reflecting their concentrations in the foods tested. Their significantly increased concentrations ranged from 20 to 60 µM. Previous animal electrophysiological studies suggest that these NEFA concentrations are sufficient to depolarize taste receptor cells. These data indicate NEFA concentrations likely to be sufficient to initiate gustatory signaling are present in the human oral cavity when masticating high-fat foods.

  19. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis.

    PubMed

    Popescu, Alexandra; Couton, Louise; Almaas, Tor-Jørgen; Rospars, Jean-Pierre; Wright, Geraldine A; Marion-Poll, Frédéric; Anton, Sylvia

    2013-05-01

    Chemosensory information is crucial for most insects to feed and reproduce. Olfactory signals are mainly used at a distance, whereas gustatory stimuli play an important role when insects directly contact chemical substrates. In noctuid moths, although the antennae are the main olfactory organ, they also bear taste sensilla. These taste sensilla detect sugars and hence are involved in appetitive learning but could also play an important role in food evaluation by detecting salts and bitter substances. To investigate this, we measured the responses of individual taste sensilla on the antennae of Spodoptera littoralis to sugars and salts using tip recordings. We also traced the projections of their neuronal axons into the brain. In each sensillum, we found one or two neurons responding to sugars: one NaCl-responsive and one water-sensitive neuron. Responses of these neurons were dose-dependent and similar across different locations on the antenna. Responses were dependent on the sex for sucrose and on both sex and location for glucose and fructose. We did not observe a spatial map for the projections from specific regions of the antennae to the deutocerebrum or the tritocerebrum/suboesophageal ganglion complex. In accordance with physiological recordings, back-fills from individual sensilla revealed up to four axons, in most cases targeting different projection zones.

  20. Lack of functional and morphological susceptibility of the greater superficial petrosal nerve to developmental dietary sodium restriction.

    PubMed

    Sollars, S I; Hill, D L

    2000-12-01

    Restriction of dietary sodium during gestation has major effects on taste function and anatomy in the offspring. The chorda tympani nerve of offspring that are maintained on sodium-reduced chow throughout life (NaDep) has reduced neurophysiological responses to sodium and altered morphology of its terminal field in the nucleus of the solitary tract. There are many anatomical and physiological similarities between the chorda tympani nerve that innervates taste buds on the anterior tongue and the greater superficial petrosal nerve (GSP) that innervates taste buds on the palate. To determine if the GSP is similarly susceptible to the effects of dietary sodium restriction, the present study examined neurophysiological responses and the terminal field of the GSP in NaDep and control rats. Neurophysiological responses of the GSP to a variety of sodium and non-sodium stimuli did not differ between NaDep and control rats. Furthermore, the volume and shape of the GSP terminal field in the nucleus of the solitary tract did not differ between the groups. Therefore, despite the high degree of functional and anatomical correspondence between the chorda tympani nerve and the GSP, the GSP does not appear to be susceptible to the effects of lifelong dietary sodium restriction.

  1. Soa genotype selectively affects mouse gustatory neural responses to sucrose octaacetate

    PubMed Central

    INOUE, MASASHI; LI, XIA; McCAUGHEY, STUART A.; BEAUCHAMP, GARY K.; BACHMANOV, ALEXANDER A.

    2013-01-01

    In mice, behavioral acceptance of the bitter compound sucrose octaacetate (SOA) depends on allelic variation of a single gene, Soa. The SW.B6-Soab congenic mouse strain has the genetic background of an “SOA taster” SWR/J strain and an Soa-containing donor chromosome fragment from an “SOA nontaster” C57BL/6J strain. Using microsatellite markers polymorphic between the two parental strains, we determined that the donor fragment spans 5–10 cM of distal chromosome 6. The SWR/J mice avoided SOA in two-bottle tests with water and had strong responses to SOA in two gustatory nerves, the chorda tympani (CT) and glossopharyngeal (GL). In contrast, the SW.B6-Soab mice were indifferent to SOA in two-bottle tests and had very weak responses to SOA in both of these nerves. The SWR/J and SW.B6-Soab mice did not differ in responses of either nerve to sucrose, NaCl, HCl, or the bitter-tasting stimuli quinine, denatonium, strychnine, 6-n-propylthiouracil, phenylthiocarbamide, and MgSO4. Thus the effect of the Soa genotype on SOA avoidance is mediated by peripheral taste responsiveness to SOA, involving taste receptor cells innervated by both the CT and GL nerves. PMID:11328963

  2. The impact of individual variations in taste sensitivity on coffee perceptions and preferences.

    PubMed

    Masi, Camilla; Dinnella, Caterina; Monteleone, Erminio; Prescott, John

    2015-01-01

    Despite a few relationships between fungiform papillae (FP) density and 6-n-propylthiouracil (PROP) taster status have been reported for sensory qualities within foods, the impact on preferences remains relatively unclear. The present study investigated responses of FP number and PROP taster groups to different bitter compounds and how these affect coffee perception, consumption and liking. Subjects (Ss) with higher FP numbers (HFP) gave higher liking ratings to coffee samples than those with lower FP numbers (LFP), but only for sweetened coffee. Moreover, HFP Ss added more sugar to the samples than LFP Ss. Significant differences between FP groups were also found for the sourness of the coffee samples, but not for bitterness and astringency. However, HFP Ss rated bitter taste stimuli as stronger than did LFP Ss. While coffee liking was unrelated to PROP status, PROP non-tasters (NTs) added more sugar to the coffee samples than did super-tasters (STs). In addition, STs rated sourness, bitterness and astringency as stronger than NTs, both in coffee and standard solutions. These results confirm that FP density and PROP status play a significant role in taste sensitivity for bitter compounds in general and also demonstrate that sugar use is partly a function of fundamental individual differences in physiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Taste-nutrient relationships in commonly consumed foods.

    PubMed

    van Dongen, Mirre Viskaal; van den Berg, Marjolijn C; Vink, Nicole; Kok, Frans J; de Graaf, Cees

    2012-07-14

    Taste is expected to represent a food's nutrient content. The objective was to investigate whether taste acts as nutrient-sensor, within the context of the current diet, which is high in processed foods. Intensities of the five basic tastes of fifty commonly consumed foods were rated by nineteen subjects (aged 21·0 (SD 1·7) years, BMI 21·5 (SD 2·0) kg/m(2)). Linear regression was used to test associations between taste and nutrient contents. Food groups based on taste were identified using cluster analysis; nutrient content was compared between food groups, using ANOVA. Sweetness was associated with mono- and disaccharides (R(2) 0·45, P < 0·01). Saltiness and savouriness were correlated, with r 0·92 (P < 0·01) and both were associated with Na (both: R(2) 0·33, P < 0·01) and protein (R(2) 0·27, P < 0·01 and R(2) 0·33, P < 0·01, respectively). Cluster analysis indicated four food groups: neutral, salty and savoury, sweet-sour and sweet foods. Mono- and disaccharide content was highest in sweet foods (P < 0·01). In salty and savoury foods, protein content (P = 0·01 with sweet-sour foods, not significant with neutral or sweet foods) and Na content (P < 0·05) were the highest. Associations were more pronounced in raw and moderately processed foods, than in highly processed foods. The findings suggest that sweetness, saltiness and savouriness signal nutrient content, particularly for simple sugars, protein and Na. In highly processed foods, however, the ability to sense nutrient content based on taste seems limited.

  4. Breast-feeding duration: influence on taste acceptance over the first year of life.

    PubMed

    Schwartz, Camille; Chabanet, Claire; Laval, Caroline; Issanchou, Sylvie; Nicklaus, Sophie

    2013-03-28

    Early feeding experiences, e.g. related to milk feeding, can affect later food and taste preferences. However, consequences of breast-feeding on taste acceptance are under-investigated. The objective of the present study was to examine the impact of exclusive breast-feeding duration (DEB) on taste acceptance at 6 and 12 months in the same infants (n 122). Mothers recorded the DEB. Acceptance of solutions of each of the five basic tastes relative to water was evaluated in the laboratory at 6 and 12 months by the ingestion ratio (IR). Kendall correlations were calculated between the DEB and the IR. Only 16 % completed at least 6 months of exclusive breast-feeding; 79 % had begun complementary feeding by 6 months. At 6 months, infants preferred sweet, salty and umami solutions over water and were indifferent to sour and bitter solutions. The longer an infant was breast-fed, the more s/he accepted the umami solution at 6 months. At 12 months, infants preferred sweet and salty solutions over water and were indifferent to sour, bitter and umami solutions. The relationship between the DEB and acceptance of the umami solution was not observed at 12 months. No relationship was observed between the DEB and sweet, salty, sour and bitter taste acceptance at 6 or 12 months. The association between the DEB and umami taste acceptance at 6 months may relate to the higher glutamate content of human milk compared with formula milk. Beyond the acknowledged metabolic benefits of breast-feeding, this suggests that prolonged breast-feeding could also be associated with an impact on sensory preference at the beginning of complementary feeding.

  5. Is There Any Effect on Smell and Taste Functions with Levothyroxine Treatment in Subclinical Hypothyroidism?

    PubMed

    Baskoy, Kamil; Ay, Seyid Ahmet; Altundag, Aytug; Kurt, Onuralp; Salihoglu, Murat; Deniz, Ferhat; Tekeli, Hakan; Yonem, Arif; Hummel, Thomas

    2016-01-01

    Subclinical hypothyroidism has been accused for coronary heart disease, lipid metabolism disorders, neuropsychiatric disorders, infertility or pregnancy related problems with various strength of evidence. Currently there is insufficient knowledge about olfaction and taste functions in subclinical hypothyroidism. Aim of the present study is to investigate the degree of smell and taste dysfunction in patients with subclinical hypothyroidism. 28 subclinical hypothyroid patients, and 31 controls enrolled in the prospective study in Istanbul, Turkey. Subclinical hypothyroid patients were treated with L-thyroxine for 3 months. Psychophysiological olfactory testing was performed using odor dispensers similar to felt-tip pens ("Sniffin' Sticks", Burghart, Wedel, Germany). Taste function tests were made using "Taste Strips" (Burghart, Wedel, Germany) which are basically tastant adsorbed filter paper strip. Patients scored lower on psychophysical olfactory tests than controls (odor thresholds:8.1±1.0 vs 8.9±1.1, p = 0.007; odor discrimination:12.4±1.3 vs 13.1±0.9, p = 0.016; odor identification:13.1±0.9 vs 14.0±1.1, p = 0.001; TDI score: 33.8±2.4 vs 36.9±2.1, p = 0.001). In contrast, results from psychophysical gustatory tests showed only a decreased score for "bitter" in patients, but not for other tastes (5.9±1.8 vs 6.6±1.0, p = 0.045). Three month after onset of treatment olfactory test scores already indicated improvement (odor thresholds:8.1±1.0 vs 8.6±0.6, p<0.001; odor discrimination:12.4±1.31 vs 12.9±0.8, p = 0.011; odor identification:13.1±0.9 vs 13.9±0.8, p<0.001; TDI scores:33.8±2.4 vs 35.5±1.7, p<0.001) respectively. Taste functions did not differ between groups for sweet, salty and, sour tastes but bitter taste was improved after 3 months of thyroxin substitution (patients:5.9±1.8 vs 6.6±1.2, p = 0.045). Correlation of changes in smell and taste, with thyroid function test were also evaluated. TSH, fT4 were found have no correlation with smell and taste changes with treatment. However bitter taste found positively correlated with T3 with treatment(r: 0.445, p: 0.018). Subclinical hypothyroid patients exhibited a significantly decreased olfactory sensitivity; in addition, bitter taste was significantly affected. Most importantly, these deficits can be remedied on average within 3 months with adequate treatment.

  6. Bias modification training can alter approach bias and chocolate consumption.

    PubMed

    Schumacher, Sophie E; Kemps, Eva; Tiggemann, Marika

    2016-01-01

    Recent evidence has demonstrated that bias modification training has potential to reduce cognitive biases for attractive targets and affect health behaviours. The present study investigated whether cognitive bias modification training could be applied to reduce approach bias for chocolate and affect subsequent chocolate consumption. A sample of 120 women (18-27 years) were randomly assigned to an approach-chocolate condition or avoid-chocolate condition, in which they were trained to approach or avoid pictorial chocolate stimuli, respectively. Training had the predicted effect on approach bias, such that participants trained to approach chocolate demonstrated an increased approach bias to chocolate stimuli whereas participants trained to avoid such stimuli showed a reduced bias. Further, participants trained to avoid chocolate ate significantly less of a chocolate muffin in a subsequent taste test than participants trained to approach chocolate. Theoretically, results provide support for the dual process model's conceptualisation of consumption as being driven by implicit processes such as approach bias. In practice, approach bias modification may be a useful component of interventions designed to curb the consumption of unhealthy foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sugar Detection Threshold After Laparoscopic Sleeve Gastrectomy in Adolescents.

    PubMed

    Abdeen, Ghalia N; Miras, Alexander D; Alqhatani, Aayed R; le Roux, Carel W

    2018-05-01

    Obesity in young people is one of the most serious public health problems worldwide. Moreover, the mechanisms preventing obese adolescents from losing and maintaining weight loss have been elusive. Laparoscopic sleeve gastrectomy (LSG) is successful at achieving long-term weight loss in patients across all age groups, including children and adolescents. Anecdotal clinical observation as well as evidence in rodents suggests that LSG induces a shift in preference of sugary foods. However, it is not known whether this shift is due to a change in the threshold for gustatory detection of sucrose, or whether LSG induces behavioral change without affecting the gustatory threshold for sugar. The objective of this study was to determine whether adolescents who undergo LSG experience a change in their threshold for detecting sweet taste. We studied the sucrose detection threshold of 14 obese adolescents (age 15.3 ± 0.5 years, range 12-18) who underwent LSG 2 weeks before surgery and at 12 and 52 weeks after surgery. Matched non-surgical subjects were tested on two occasions 12 weeks apart to control for potential learning of the test that may have confounded the results. Seven sucrose concentrations were used and were tested in eight blocks with each block consisting of a random seven sucrose and seven water stimuli. The subjects were asked to report whether the sample contained water or not after they tasted 15 ml of the fluid for 10 s. The bodyweight of the LSG group decreased from 136.7 ± 5.4 to 109.6 ± 5.1 and 86.5 ± 4.0 kg after 12 and 52 weeks, respectively (p < 0.001). There was no significant difference after surgery in taste detection threshold of patients after LSG (p = 0.60), and no difference was observed comparing the taste detection threshold of the LSG group with the non-surgical controls (p = 0.38). LSG did not affect the taste detection threshold for sucrose, suggesting that the shift in preference for sugary foods may be due to factors other than fundamental changes in taste sensitivity.

  8. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans

    PubMed Central

    Hilliard, Massimo A; Bergamasco, Carmela; Arbucci, Salvatore; Plasterk, Ronald HA; Bazzicalupo, Paolo

    2004-01-01

    An animal's ability to detect and avoid toxic compounds in the environment is crucial for survival. We show that the nematode Caenorhabditis elegans avoids many water-soluble substances that are toxic and that taste bitter to humans. We have used laser ablation and a genetic cell rescue strategy to identify sensory neurons involved in the avoidance of the bitter substance quinine, and found that ASH, a polymodal nociceptive neuron that senses many aversive stimuli, is the principal player in this response. Two G protein α subunits GPA-3 and ODR-3, expressed in ASH and in different, nonoverlapping sets of sensory neurons, are necessary for the response to quinine, although the effect of odr-3 can only be appreciated in the absence of gpa-3. We identified and cloned a new gene, qui-1, necessary for quinine and SDS avoidance. qui-1 codes for a novel protein with WD-40 domains and which is expressed in the avoidance sensory neurons ASH and ADL. PMID:14988722

  9. EFFECTS OF THREE DIFFERENT STIMULI ON THE CREATIVITY OF CHILDREN'S COMPOSITIONS.

    ERIC Educational Resources Information Center

    MAY, FRANK B.; TABACHNICK, B. ROBERT

    THIS STUDY BEGAN AN ATTEMPT TO DETERMINE THE BASIC CHARACTERISTICS OF EFFECTIVE MOTIVATING STIMULI FOR USE IN ELEMENTARY SCHOOL WRITING PROGRAMS. IN PARTICULAR, IT DEALT WITH THE EFFECTS OF ORGANIZED AND UNORGANIZED STIMULI ON THE CREATIVE WRITING ABILITY OF THIRD- AND SIXTH-GRADE STUDENTS. THE CHILDREN WERE DIVIDED INTO SIX GROUPS. ONE GROUP OF…

  10. Description of a Practitioner Model for Identifying Preferred Stimuli with Individuals with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Karsten, Amanda M.; Carr, James E.; Lepper, Tracy L.

    2011-01-01

    The rich technology of stimulus preference assessment (SPA) is a product of 40 years of experimental research. Basic principles of reinforcement and a modest empirical literature suggest that high-preference stimuli identified via SPA may enhance treatment efficacy and decrease problem behavior more effectively than less-preferred stimuli. SPAs…

  11. The "social" facilitation of eating without the presence of others: Self-reflection on eating makes food taste better and people eat more.

    PubMed

    Nakata, Ryuzaburo; Kawai, Nobuyuki

    2017-10-01

    Food tastes better and people eat more of it when eaten with company than alone. Although several explanations have been proposed for this social facilitation of eating, they share the basic assumption that this phenomenon is achieved by the existence of co-eating others. Here, we demonstrate a similar "social" facilitation of eating in the absence of other individuals. Elderly participants tasted a piece of popcorn alone while in front of a mirror (which reflects the participant themselves eating popcorn) or in front of a wall-reflecting monitor, and were found to eat more popcorn and rate it better tasting in the self-reflecting condition than in the monitor condition. Similar results were found for younger adults. The results suggest that the social facilitation of eating does not necessarily require the presence of another individual. Furthermore, we observed a similar "social" facilitation of eating even when participants ate a piece of popcorn in front of a static picture of themselves eating, suggesting that static visual information of "someone" eating food is sufficient to produce the "social" facilitation of eating. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  13. Laterality of basic auditory perception.

    PubMed

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  14. Laterality of Basic Auditory Perception

    PubMed Central

    Sininger, Yvonne S.; Bhatara, Anjali

    2010-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: 1) gap detection 2) frequency discrimination and 3) intensity discrimination. Stimuli included tones (500, 1000 and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was: processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by 1) spectral width, a narrow band noise (NBN) of 450 Hz bandwidth was evaluated using intensity discrimination and 2) stimulus duration, 200, 500 and 1000 ms duration tones were evaluated using frequency discrimination. Results A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterized as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli. PMID:22385138

  15. Eliciting conditioned taste aversion in lizards: Live toxic prey are more effective than scent and taste cues alone.

    PubMed

    Ward-Fear, Georgia; Thomas, Jai; Webb, Jonathan K; Pearson, David J; Shine, Richard

    2017-03-01

    Conditioned taste aversion (CTA) is an adaptive learning mechanism whereby a consumer associates the taste of a certain food with symptoms caused by a toxic substance, and thereafter avoids eating that type of food. Recently, wildlife researchers have employed CTA to discourage native fauna from ingesting toxic cane toads (Rhinella marina), a species that is invading tropical Australia. In this paper, we compare the results of 2 sets of CTA trials on large varanid lizards ("goannas," Varanus panoptes). One set of trials (described in this paper) exposed recently-captured lizards to sausages made from cane toad flesh, laced with a nausea-inducing chemical (lithium chloride) to reinforce the aversion response. The other trials (in a recently-published paper, reviewed herein) exposed free-ranging lizards to live juvenile cane toads. The effectiveness of the training was judged by how long a lizard survived in the wild before it was killed (fatally poisoned) by a cane toad. Both stimuli elicited rapid aversion to live toads, but the CTA response did not enhance survival rates of the sausage-trained goannas after they were released into the wild. In contrast, the goannas exposed to live juvenile toads exhibited higher long-term survival rates than did untrained conspecifics. Our results suggest that although it is relatively easy to elicit short-term aversion to toad cues in goannas, a biologically realistic stimulus (live toads, encountered by free-ranging predators) is most effective at buffering these reptiles from the impact of invasive toxic prey. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Sunship Earth: An Acclimatization Program for Outdoor Learning.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    This book describes a 5-day program of imaginative activities designed to help elementary school children learn how their world functions through seeing, smelling, tasting, touching, and hearing. The book is designed to help children understand energy flow, the cycles of basic materials, the diversity of life, natural communities, change,…

  17. Preference mapping of lemon lime carbonated beverages with regular and diet beverage consumers.

    PubMed

    Leksrisompong, P P; Lopetcharat, K; Guthrie, B; Drake, M A

    2013-02-01

    The drivers of liking of lemon-lime carbonated beverages were investigated with regular and diet beverage consumers. Ten beverages were selected from a category survey of commercial beverages using a D-optimal procedure. Beverages were subjected to consumer testing (n = 101 regular beverage consumers, n = 100 diet beverage consumers). Segmentation of consumers was performed on overall liking scores followed by external preference mapping of selected samples. Diet beverage consumers liked 2 diet beverages more than regular beverage consumers. There were no differences in the overall liking scores between diet and regular beverage consumers for other products except for a sparkling beverage sweetened with juice which was more liked by regular beverage consumers. Three subtle but distinct consumer preference clusters were identified. Two segments had evenly distributed diet and regular beverage consumers but one segment had a greater percentage of regular beverage consumers (P < 0.05). The 3 preference segments were named: cluster 1 (C1) sweet taste and carbonation mouthfeel lovers, cluster 2 (C2) carbonation mouthfeel lovers, sweet and bitter taste acceptors, and cluster 3 (C3) bitter taste avoiders, mouthfeel and sweet taste lovers. User status (diet or regular beverage consumers) did not have a large impact on carbonated beverage liking. Instead, mouthfeel attributes were major drivers of liking when these beverages were tested in a blind tasting. Preference mapping of lemon-lime carbonated beverage with diet and regular beverage consumers allowed the determination of drivers of liking of both populations. The understanding of how mouthfeel attributes, aromatics, and basic tastes impact liking or disliking of products was achieved. Preference drivers established in this study provide product developers of carbonated lemon-lime beverages with additional information to develop beverages that may be suitable for different groups of consumers. © 2013 Institute of Food Technologists®

  18. The effects of energy balance, obesity-proneness and sex on the neuronal response to sweet taste.

    PubMed

    Cornier, Marc-Andre; Shott, Megan E; Thomas, Elizabeth A; Bechtell, Jamie L; Bessesen, Daniel H; Tregellas, Jason R; Frank, Guido K

    2015-02-01

    We have previously shown that propensity for weight gain, energy balance state and sex are important determinants of the neuronal response to visual food cues. It is not clear, though, whether these factors also impact the neuronal response to taste. The objective of this study was to examine the neuronal response to sweet taste during energy imbalance in men and women recruited to be obesity-prone (OP) or obesity-resistant (OR). OP (13 men and 12 women) and OR (12 men and 12 women) subjects were studied after 1 day of eucaloric, overfed and underfed conditions in a randomized crossover design. On each test day, fMRI was performed in the respective acute fed state while subjects received in random order 60 trials each of 1M sucrose solution (SU), or artificial saliva (AS) following a visual cue predicting the taste. The neuronal response to SU versus AS expectation was significantly greater in the amygdala, orbitofrontal cortex, putamen and insula in OR versus OP; SU receipt was not different between groups. There were also sex-based differences with men having greater neuronal response to SU versus AS receipt in the caudate than women. The results, however, were not impacted by the state of energy balance. In summary, response to expectation but not receipt of basic sweet taste was different in OR compared to OP, highlighting the importance of learning and conditioning in the propensity to gain weight. Response to sucrose taste receipt was stronger in men than women, raising questions about the effect of sex hormones on brain response to food. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A new specific ageusia: some humans cannot taste L-glutamate.

    PubMed

    Lugaz, O; Pillias, A-M; Faurion, A

    2002-02-01

    A new specific ageusia was found in human subjects for monosodium L-glutamate (MSG). Four tests were successively applied to discriminate non-tasters and hypotasters from tasters. (i) NaCl and MSG thresholds, and (ii) suprathreshold sensitivity were evaluated using the up-and-down procedure. Only 73% of 109 subjects common to both tests demonstrated a sensitivity for MSG significantly higher than their sensitivity to NaCl, and hence a specific sensitivity to L-glutamate. The remaining 27% who showed no significant difference in sensitivity to MSG and NaCl solutions were considered as putative hypotasters. (iii) Perception profiles (time-intensity) for MSG and NaCl were tested in 58 subjects and appeared significantly different in 47 tasters (81%). This technique helped in identifying among putative hypotasters of tests 1 and 2 a few tasters who perceived equal intensity for isoconcentration of NaCl and MSG but who could discriminate isomolar solutions on other cues. Thus, 19% of subjects, for whom no significant differences were found between MSG and NaCl time-intensity profiles, remained in the hypotaster group. (iv) A discrimination task including 24 triangular presentations per subject of NaCl and MSG 29 mM applied to the eight most severe hypotasters showed that two subjects at least (two of 58; 3.5%) could not discriminate between both stimuli. Moreover, these subjects probably perceived identical sensations for MSG and NaCl solutions. The six other hypotasters (10.3%) could discriminate both stimuli at the limit of significance. None of these eight subjects were able to identify the typical umami taste in 29 mM MSG.

  1. New protocol for αAstree electronic tongue enabling full performance qualification according to ICH Q2.

    PubMed

    Pein, Miriam; Eckert, Carolin; Preis, Maren; Breitkreutz, Jörg

    2013-09-01

    Performance qualification (PQ) of taste sensing systems is mandatory for their use in pharmaceutical industry. According to ICH Q2 (R1) and a recent adaptation for taste sensing systems, non-specificity, log-linear relationships between the concentration of analytes and the sensor signal as well as a repeatability with relative standard deviation (RSD) values <4% were defined as basic requirements to pass a PQ. In the present work, the αAstree taste sensing system led to a successful PQ procedure by the use of recent sensor batches for pharmaceutical applications (sensor set #2) and a modified measurement protocol. Log-linear relationships between concentration and responses of each sensor were investigated for different bitter tasting active pharmaceutical ingredients (APIs). Using the new protocol, RSD values <2.1% were obtained in the repeatability study. Applying the visual evaluation approach, detection and quantitation limit could be determined for caffeine citrate with every sensor (LOD 0.05-0.5 mM, LOQ: 0.1-0.5 mM). In addition, the sensor set marketed for food applications (sensor set #5) was proven to show beneficial effects regarding the log-linear relationship between the concentration of quinine hydrochloride and the sensor signal. By the use of our proposed protocol, it is possible to implement the αAstree taste sensing system as a tool to assure quality control in the pharmaceutical industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Loss or major reduction of umami taste sensation in pinnipeds

    NASA Astrophysics Data System (ADS)

    Sato, Jun J.; Wolsan, Mieczyslaw

    2012-08-01

    Umami is one of basic tastes that humans and other vertebrates can perceive. This taste is elicited by L-amino acids and thus has a special role of detecting nutritious, protein-rich food. The T1R1 + T1R3 heterodimer acts as the principal umami receptor. The T1R1 protein is encoded by the Tas1r1 gene. We report multiple inactivating (pseudogenizing) mutations in exon 3 of this gene from four phocid and two otariid species (Pinnipedia). Jiang et al. (Proc Natl Acad Sci U S A 109:4956-4961, 2012) reported two inactivating mutations in exons 2 and 6 of this gene from another otariid species. These findings suggest lost or greatly reduced umami sensory capabilities in these species. The widespread occurrence of a nonfunctional Tas1r1 pseudogene in this clade of strictly carnivorous mammals is surprising. We hypothesize that factors underlying the pseudogenization of Tas1r1 in pinnipeds may be driven by the marine environment to which these carnivorans (Carnivora) have adapted and may include: the evolutionary change in diet from tetrapod prey to fish and cephalopods (because cephalopods and living fish contain little or no synergistic inosine 5'-monophosphate that greatly enhances umami taste), the feeding behavior of swallowing food whole without mastication (because the T1R1 + T1R3 receptor is distributed on the tongue and palate), and the saltiness of sea water (because a high concentration of sodium chloride masks umami taste).

  3. Similar taste-nutrient relationships in commonly consumed Dutch and Malaysian foods.

    PubMed

    Teo, Pey Sze; van Langeveld, Astrid W B; Pol, Korrie; Siebelink, Els; de Graaf, Cees; Yan, See Wan; Mars, Monica

    2018-06-01

    Three recent studies showed that taste intensity signals nutrient content. However, current data reflects only the food patterns in Western societies. No study has yet been performed in Asian culture. The Malaysian cuisine represents a mixture of Malay, Chinese and Indian foods. This study aimed to investigate the associations between taste intensity and nutrient content in commonly consumed Dutch (NL) and Malaysian (MY) foods. Perceived intensities of sweetness, sourness, bitterness, umami, saltiness and fat sensation were assessed for 469 Dutch and 423 Malaysian commonly consumed foods representing about 83% and 88% of an individual's average daily energy intake in each respective country. We used a trained Dutch (n = 15) and Malaysian panel (n = 20) with quantitative sensory Spectrum™ 100-point rating scales and reference solutions, R1 (13-point), R2 (33-point) and R3 (67-point). Dutch and Malaysian foods had relatively low mean sourness and bitterness (

  4. “A Spoonful of Sugar Helps the Medicine Go Down”: Bitter Masking by Sucrose Among Children and Adults

    PubMed Central

    Reed, Danielle R.; Mathew, Phoebe S.; Roberts, Kristi M.; Mansfield, Corrine J.

    2015-01-01

    Sweeteners are often added to liquid formulations of drugs but whether they merely make them better tasting or actually reduce the perception of bitterness remains unknown. In a group of children and adults, we determined whether adding sucrose to urea, caffeine, denatonium benzoate, propylthiouracil (PROP), and quinine would reduce their bitterness using a forced-choice method of paired comparisons. To better understand individual differences, adults also rated each solution using a more complex test (general Labeled Magnitude Scale [gLMS]) and were genotyped for the sweet taste receptor gene TAS1R3 and the bitter receptor TAS2R38. Sucrose suppressed the bitterness of each agent in children and adults. In adults, sucrose was effective in reducing the bitterness ratings from moderate to weak for all compounds tested, but those with the sensitive form of the sweet receptor reported greater reduction for caffeine and quinine. For PROP, sucrose was most effective for those who were genetically the most sensitive, although this did not attain statistical significance. Not only is the paired comparison method a valid tool to study how sucrose improves the taste of pediatric medicines among children but knowledge gleaned from basic research in bitter taste and how to alleviate it remains an important public health priority. PMID:25381313

  5. Orosensory responsiveness to and preference for hydroxide-containing salts in mice.

    PubMed

    St John, Steven J; Boughter, John D

    2009-07-01

    Historically, taste researchers have considered the possibility that the gustatory system detects basic compounds, such as those containing the hydroxide ion, but evidence for an "alkaline taste" has not been strong. We found that, in 48 h, 2-bottle preference tests, C3HeB/FeJ (C3) mice showed a preference for Ca(OH)(2), whereas SWR/J (SW) mice showed avoidance. Strain differences were also apparent to NaOH but not CaCl(2). Follow-up studies showed that the strain difference for Ca(OH)(2) was stable over time (Experiment 2) but that C3 and SW mice did not differ in their responses to Ca(OH)(2) or NaOH in brief-access tests, where both mice avoided high concentrations of these compounds (Experiment 3). In order to assess the perceived quality of Ca(OH)(2), mice were tested in 2 taste aversion generalization experiments (Experiments 4 and 5). Aversions to Ca(OH)(2) generalized to NaOH but not CaCl(2) in both strains, suggesting that the generalization was based on the hydroxide ion. Both strains also generalized aversions to quinine, suggesting the possibility that the hydroxide ion has a bitter taste quality to these mice, despite the preference shown by C3 mice to middle concentrations in long-term tests.

  6. The orbitofrontal cortex and beyond: from affect to decision-making.

    PubMed

    Rolls, Edmund T; Grabenhorst, Fabian

    2008-11-01

    The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.

  7. Food on Campus: A Recipe for Action.

    ERIC Educational Resources Information Center

    Kinsella, Susan

    Really good food can be served in any school, and this step-by-step guide contains the basics of understanding and reforming food service: detailed explanations of how food services are run; guidelines for rating the food service; the wholesome, good-tasting foods students really like to eat yet are affordable and manageable. Included are plans…

  8. Bitterness and antibacterial activities of constituents from Evodia rutaecarpa.

    PubMed

    Liang, Xiaoguang; Li, Bo; Wu, Fei; Li, Tingzhao; Wang, Youjie; Ma, Qiang; Liang, Shuang

    2017-03-29

    Bitter herbs are important in Traditional Chinese Medicine and the Electronic Tongue (e-Tongue) is an instrument that can be trained to evaluate bitterness of bitter herbs and their constituents. The aim of this research was to evaluate bitterness of limonoids and alkaloids from Evodia rutaecarpa to demonstrate that they are main bitter material basic of E. rutaecarpa. Nine compounds, including limonoids, indoloquinazoline alkaloids and quinolone alkaloids, were isolated, identified and analyzed by the e-Tongue. Additionally, the antibacterial activities of the nine compounds were evaluated against E. coli and S. aureus. All the nine compounds had bitter taste and antibacterial activities to some extent. Among them, limonoids, which were the bitterest compounds, had greater antibacterial activities than alkaloids. And there is a positive correlation between bitter taste and antibacterial activities. It was confirmed in our study that limonoids, indoloquinazoline alkaloids and quinolone alkaloids are main bitter material basic of E. rutaecarpa based on two evaluation methods of e-Tongue and antibacterial experiment. In addition, the e-Tongue technique is a suitable new method to measure bitter degree in herbs.

  9. Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Lyall, Vijay; Phan, Tam-Hao T; Ren, ZuoJun; Mummalaneni, Shobha; Melone, Pamela; Mahavadi, Sunila; Murthy, Karnam S; DeSimone, John A

    2010-03-01

    Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP(2)) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 x 10(-6) M; a specific ENaC blocker) and resiniferatoxin (RTX; 0-10 x 10(-6) M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 x 10(-6) and 1 x 10(-6) M. At concentrations >1 x 10(-6) M, RTX inhibited the CT response. An increase in PIP(2) by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP(2) (a short chain synthetic PIP(2)) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP(2) by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 x 10(-6) M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP(2). An increase in PIP(2) enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na(+) response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 x 10(-6) M) or in TRPV1 KO mice. We conclude that PIP(2) is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP(2) seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its taste receptor variant, TRPV1t.

  10. Effects of chemesthetic stimuli mixtures with barium on swallowing apnea duration.

    PubMed

    Todd, J Tee; Butler, Susan G; Plonk, Drew P; Grace-Martin, Karen; Pelletier, Cathy A

    2012-10-01

    This study tested the hypotheses that swallowing apnea duration (SAD) will increase given barium versus water, chemesthetic stimuli (i.e., water < ethanol, acid, and carbonation) mixed with barium, age (older > younger), and genetic taste differences (supertasters > nontasters). Prospective group design. University Medical Center. Eighty healthy women were identified as nontasters and supertasters, equally comprising two age groups: 18 to 35 years and 60+ years. The KayPentax Swallowing Signals Lab was used to acquire SAD via nasal cannula during individually randomized swallows of 5 mL barium, 2.7% w/v citric acid with barium, carbonation with barium, and 50:50 diluted ethanol with barium. Data were analyzed using path analysis, with the mediator of chemesthetic perception, adjusted for repeated measures. Significant main effects of age (P = .012) and chemesthetic stimuli (P = .014) were found, as well as a significant interaction between chemesthetic stimuli and age (P = .028). Older women had a significantly longer SAD than younger women. Post hoc analyses revealed that barium mixed with ethanol elicited a significantly longer SAD than other bolus conditions, regardless of age group. There were no significant differences in SAD between barium and water conditions, and no significant effect of chemesthetic perception (P > .05). Ethanol added to barium elicited longer SAD compared to plain barium, but not the other chemesthetic conditions. Older women had a longer SAD than younger women in all conditions. These findings may influence design of future studies examining effects of various stimuli on SAD. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. Preference for sucralose predicts behavioral responses to sweet and bittersweet tastants.

    PubMed

    Loney, Gregory C; Torregrossa, Ann-Marie; Carballo, Chris; Eckel, Lisa A

    2012-06-01

    Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent "bitter" side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose-QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03-1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing "bittersweet" or "sweet" taste qualities.

  12. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E

    2009-06-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.

  13. Sex versus sweet: opposite effects of opioid drugs on the reward of sucrose and sexual pheromones.

    PubMed

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2008-04-01

    Endogenous opioids mediate some reward processes involving both natural (food, sweet taste) and artificial (morphine, heroin) rewards. In contrast, sexual behavior (which is also reinforcing) is generally inhibited by opioids. To establish the role of endogenous opioids for a newly described natural reinforcer, namely male sexual pheromones for female mice, we checked the effects of systemic injections of the general opioid antagonist naloxone (1-10 mg/kg) and the agonist fentanyl (0.1- 0.5 mg/kg) in a number of behavioral tests. Naloxone affected neither the innate preference for male-soiled bedding (vs. female-soiled bedding) in 2-choice tests nor the induction of place conditioning using male pheromones as rewarding stimuli, although it effectively blocked the preference for consuming a sucrose solution. In contrast, fentanyl inhibited the preference for male chemosignals without altering sucrose preference. These results suggest that, in macrosmatic animals such as rodents, opioidergic inhibition of sexual behavior might be due, at least partially, to an impaired processing of pheromonal cues and that the hedonic value of sweet-tasting solutions and sexual pheromones are under different opioid modulation.

  14. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.

    2009-01-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects. PMID:19428502

  15. Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats.

    PubMed

    Hanamori, T; Kunitake, T; Kato, K; Kannan, H

    1998-02-23

    Extracellular unit responses to gustatory stimulation of the pharyngolaryngeal region, baroreceptor and chemoreceptor stimulation, and tail pinch were recorded from the insular cortex of anesthetized and paralyzed rats. Of the 32 neurons identified, 28 responded to at least one of the nine stimuli used in the present study. Of the 32 neurons, 11 showed an excitatory response to tail pinch, 13 showed an inhibitory response, and the remaining eight had no response. Of the 32 neurons, eight responded to baroreceptor stimulation by an intravenous (i.v.) injection of methoxamine hydrochloride (Mex), four were excitatory and four were inhibitory. Thirteen neurons were excited and six neurons were inhibited by an arterial chemoreceptor stimulation by an i.v. injection of sodium cyanide (NaCN). Twenty-two neurons were responsive to at least one of the gustatory stimuli (deionized water, 1.0 M NaCl, 30 mM HCl, 30 mM quinine HCl, and 1.0 M sucrose); five to 11 excitatory neurons and three to seven inhibitory neurons for each stimulus. A large number of the neurons (25/32) received converging inputs from more than one stimulus among the nine stimuli used in the present study. Most neurons (23/32) received converging inputs from different modalities (gustatory, visceral, and tail pinch). The neurons responded were located in the insular cortex between 2.0 mm anterior and 0.2 mm posterior to the anterior edge of the joining of the anterior commissure (AC); the mean location was 1.2 mm (n=28) anterior to the AC. This indicates that most of the neurons identified in the present study seem to be located in the region posterior to the taste area and anterior to the visceral area in the insular cortex. These results indicate that the insular cortex neurons distributing between the taste area and the visceral area receive convergent inputs from gustatory, baroreceptor, chemoreceptor, and nociceptive organs. Copyright 1998 Elsevier Science B.V.

  16. Comparison of the hedonic general Labeled Magnitude Scale with the hedonic 9-point scale.

    PubMed

    Kalva, Jaclyn J; Sims, Charles A; Puentes, Lorenzo A; Snyder, Derek J; Bartoshuk, Linda M

    2014-02-01

    The hedonic 9-point scale was designed to compare palatability among different food items; however, it has also been used occasionally to compare individuals and groups. Such comparisons can be invalid because scale labels (for example, "like extremely") can denote systematically different hedonic intensities across some groups. Addressing this problem, the hedonic general Labeled Magnitude Scale (gLMS) frames affective experience in terms of the strongest imaginable liking/disliking of any kind, which can yield valid group comparisons of food palatability provided extreme hedonic experiences are unrelated to food. For each scale, 200 panelists rated affect for remembered food products (including favorite and least favorite foods) and sampled foods; they also sampled taste stimuli (quinine, sucrose, NaCl, citric acid) and rated their intensity. Finally, subjects identified experiences representing the endpoints of the hedonic gLMS. Both scales were similar in their ability to detect within-subject hedonic differences across a range of food experiences, but group comparisons favored the hedonic gLMS. With the 9-point scale, extreme labels were strongly associated with extremes in food affect. In contrast, gLMS data showed that scale extremes referenced nonfood experiences. Perceived taste intensity significantly influenced differences in food liking/disliking (for example, those experiencing the most intense tastes, called supertasters, showed more extreme liking and disliking for their favorite and least favorite foods). Scales like the hedonic gLMS are suitable for across-group comparisons of food palatability. © 2014 Institute of Food Technologists®

  17. Personal Variation in Preference for Sweetness: Effects of Age and Obesity.

    PubMed

    Bobowski, Nuala; Mennella, Julie A

    2017-10-01

    Use of nonnutritive sweeteners (NNSs), which provide sweet taste with few to no calories, has increased, but data on whether children's hedonic responses to NNSs differ from nutritive sugars or from adults' hedonic responses are limited. Most preferred levels of sucrose and the NNS sucralose were determined via a forced-choice tracking procedure in 48 children, 7-14 years (mean = 10 years), and 34 adults. Each participant also rated the liking of these taste stimuli, as well as varying concentrations of aspartame on 3- and 5-point facial hedonic scales. Anthropometric measures were obtained, and motives for palatable food intake were assessed with the Palatable Eating Motives Scale (PEMS, adults) and Kids PEMS. While use of the 3-point scale showed no age-related differences in liking of sweeteners, the 5-point scale showed that more children than adults liked higher concentrations of sucrose, sucralose, and aspartame, and the tracking procedure showed that children most preferred higher concentrations of sucrose and sucralose than adults. Regardless of age, sweet preference did not differ between obese and nonobese participants and showed no association with motives for eating palatable foods. Children's body mass index z-scores were positively associated with social and conformity motive scores for eating palatable foods. Research should move beyond measures of variation in sweet taste hedonics to include identifying motives, and the physiological and psychological consequences of eating sweets, to shed light on what children are more vulnerable to develop unfavorable eating habits, increasing risk for obesity, and other diseases.

  18. Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure.

    PubMed

    Li, Qiang; Cui, Yuanting; Jin, Rongbing; Lang, Hongmei; Yu, Hao; Sun, Fang; He, Chengkang; Ma, Tianyi; Li, Yingsha; Zhou, Xunmei; Liu, Daoyan; Jia, Hongbo; Chen, Xiaowei; Zhu, Zhiming

    2017-12-01

    High salt intake is a major risk factor for hypertension and is associated with cardiovascular events. Most countries exhibit a traditionally high salt intake; thus, identification of an optimal strategy for salt reduction at the population level may have a major impact on public health. In this multicenter, random-order, double-blind observational and interventional study, subjects with a high spice preference had a lower salt intake and blood pressure than subjects who disliked spicy food. The enjoyment of spicy flavor enhanced salt sensitivity and reduced salt preference. Salt intake and salt preference were related to the regional metabolic activity in the insula and orbitofrontal cortex (OFC) of participants. Administration of capsaicin-the major spicy component of chili pepper-enhanced the insula and OFC metabolic activity in response to high-salt stimuli, which reversed the salt intensity-dependent differences in the metabolism of the insula and OFC. In animal study, OFC activity was closely associated with salt preference, and salty-taste information processed in the OFC was affected in the presence of capsaicin. Thus, interventions related to this region may alter the salt preference in mice through fiber fluorometry and optogenetic techniques. In conclusion, enjoyment of spicy foods may significantly reduce individual salt preference, daily salt intake, and blood pressure by modifying the neural processing of salty taste in the brain. Application of spicy flavor may be a promising behavioral intervention for reducing high salt intake and blood pressure. © 2017 American Heart Association, Inc.

  19. Using Prosopagnosia to Test and Modify Visual Recognition Theory.

    PubMed

    O'Brien, Alexander M

    2018-02-01

    Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.

  20. An Exemplary Case of Promotion Activities and Taste Panels from the Perspective of Tobacco Control

    PubMed Central

    Mutlu, Erdem İlker; Seydioğulları, Mustafa; Aslan, Dilek

    2015-01-01

    The Framework Convention on Tobacco Control is a multilateral international agreement which has been generated to protect the health of nationals and nations against the hazards/risks of tobacco and its products. All high contracting parties to the Convention undertake the international responsibility to fulfill all the requirements of the Convention’s articles in national legal systems. The Framework Convention on Tobacco Control has a considerable place among other international conventions on health. Within the self-executing desing/system of the Convention, a vital regulation focuses on banning the advertisement, promotion, and sponsorship of tobacco products. Because they are one of the various components of tobacco advertisement, promotion, and sponsorship, taste panels should be assessed within the content of the Convention. Thus, banning taste panel activities is an important step in tobacco control and it is one of the basic areas where medical and law sciences should collaborate. In this article, a comprehensive frame has been drawn to the issue and recommendations have been developed for the future. PMID:29404102

  1. Pencil Lettering; Commercial and Advertising Art--Basic: 9183.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline is offered as a guide to teach the student the proper procedure in Commercial and Advertising Art Pencil Hand Lettering as it applies to several of the most popular type faces. The student will first master pencil stroking methods and branch off to specific mastery of type faces. Natural talent and aptitude, inherent taste, an…

  2. The Impact of Changing Affluence on Diet and Demand Patterns for Agricultural Commodities. World Bank Staff Working Papers Number 785.

    ERIC Educational Resources Information Center

    Chaudhri, Rajiv; Timmer, C. Peter

    Demand for agricultural commodities, particularly for basic food-stuffs, depends on a household's income, competitive prices, and a set of unique household characteristics which include tastes, location, education, family composition, and farm status. This monograph reviews disaggregated evidence at the national level on the relative contribution…

  3. Emotional perception in eating disorders.

    PubMed

    Joos, Andreas A B; Cabrillac, Emmanuelle; Hartmann, Armin; Wirsching, Michael; Zeeck, Almut

    2009-05-01

    It remains an open question whether there are basic emotional perception and emotional processing deficits in eating disorders (ED). The aim of this study was to explore deficits in emotional perception in restrictive anorexia nervosa (AN-R) and bulimia nervosa (BN), using visual emotional stimuli. Thirty-four patients with ED (19 with BN and 15 with AN-R) were compared with 25 controls. Visual stimuli from the international affective picture system were used. Patients with AN-R showed increased fear when confronted with stimuli containing anger, whereas patients with BN showed a tendency towards decreased fear. There were no other fundamental differences in the emotional perception of fear, happiness, sadness, and anger. The finding of increased fear when exposed to the emotion of anger might be attributed to introversion and conflict avoidance of anorectic patients. No other basic deficiency of emotional perception was found.

  4. The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands.

    PubMed

    Born, Stephan; Levit, Anat; Niv, Masha Y; Meyerhof, Wolfgang; Behrens, Maik

    2013-01-02

    Bitter taste is a basic taste modality, required to safeguard animals against consuming toxic substances. Bitter compounds are recognized by G-protein-coupled bitter taste receptors (TAS2Rs). The human TAS2R10 responds to the toxic strychnine and numerous other compounds. The mechanism underlying the development of the broad tuning of some TAS2Rs is not understood. Using comparative modeling, site-directed mutagenesis, and functional assays, we identified residues involved in agonist-induced activation of TAS2R10, and investigated the effects of different substitutions on the receptor's response profile. Most interestingly, mutations in S85(3.29) and Q175(5.40) have differential impact on stimulation with different agonists. The fact that single point mutations lead to improved responses for some agonists and to decreased activation by others indicates that the binding site has evolved to optimally accommodate multiple agonists at the expense of reduced potency. TAS2R10 shares the agonist strychnine with TAS2R46, another broadly tuned receptor. Engineering the key determinants for TAS2R46 activation by strychnine in TAS2R10 caused a loss of response to strychnine, indicating that these paralog receptors display different strychnine-binding modes, which suggests independent acquisition of agonist specificities. This implies that the gene duplication event preceding primate speciation was accompanied by independent evolution of the strychnine-binding sites.

  5. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells.

    PubMed

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion, thereby highlighting the chemotherapeutic potential of bitter taste receptors.

  6. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells

    PubMed Central

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion, thereby highlighting the chemotherapeutic potential of bitter taste receptors. PMID:28467517

  7. Basic Emotions in the Nencki Affective Word List (NAWL BE): New Method of Classifying Emotional Stimuli.

    PubMed

    Wierzba, Małgorzata; Riegel, Monika; Wypych, Marek; Jednoróg, Katarzyna; Turnau, Paweł; Grabowska, Anna; Marchewka, Artur

    2015-01-01

    The Nencki Affective Word List (NAWL) has recently been introduced as a standardized database of Polish words suitable for studying various aspects of language and emotions. Though the NAWL was originally based on the most commonly used dimensional approach, it is not the only way of studying emotions. Another framework is based on discrete emotional categories. Since the two perspectives are recognized as complementary, the aim of the present study was to supplement the NAWL database by the addition of categories corresponding to basic emotions. Thus, 2902 Polish words from the NAWL were presented to 265 subjects, who were instructed to rate them according to the intensity of each of the five basic emotions: happiness, anger, sadness, fear and disgust. The general characteristics of the present word database, as well as the relationships between the studied variables are shown to be consistent with typical patterns found in previous studies using similar databases for different languages. Here we present the Basic Emotions in the Nencki Affective Word List (NAWL BE) as a database of verbal material suitable for highly controlled experimental research. To make the NAWL more convenient to use, we introduce a comprehensive method of classifying stimuli to basic emotion categories. We discuss the advantages of our method in comparison to other methods of classification. Additionally, we provide an interactive online tool (http://exp.lobi.nencki.gov.pl/nawl-analysis) to help researchers browse and interactively generate classes of stimuli to meet their specific requirements.

  8. Basic Emotions in the Nencki Affective Word List (NAWL BE): New Method of Classifying Emotional Stimuli

    PubMed Central

    Wierzba, Małgorzata; Riegel, Monika; Wypych, Marek; Jednoróg, Katarzyna; Turnau, Paweł; Grabowska, Anna; Marchewka, Artur

    2015-01-01

    The Nencki Affective Word List (NAWL) has recently been introduced as a standardized database of Polish words suitable for studying various aspects of language and emotions. Though the NAWL was originally based on the most commonly used dimensional approach, it is not the only way of studying emotions. Another framework is based on discrete emotional categories. Since the two perspectives are recognized as complementary, the aim of the present study was to supplement the NAWL database by the addition of categories corresponding to basic emotions. Thus, 2902 Polish words from the NAWL were presented to 265 subjects, who were instructed to rate them according to the intensity of each of the five basic emotions: happiness, anger, sadness, fear and disgust. The general characteristics of the present word database, as well as the relationships between the studied variables are shown to be consistent with typical patterns found in previous studies using similar databases for different languages. Here we present the Basic Emotions in the Nencki Affective Word List (NAWL BE) as a database of verbal material suitable for highly controlled experimental research. To make the NAWL more convenient to use, we introduce a comprehensive method of classifying stimuli to basic emotion categories. We discuss the advantages of our method in comparison to other methods of classification. Additionally, we provide an interactive online tool (http://exp.lobi.nencki.gov.pl/nawl-analysis) to help researchers browse and interactively generate classes of stimuli to meet their specific requirements. PMID:26148193

  9. Bitter-responsive brainstem neurons: characteristics and functions.

    PubMed

    Travers, Susan P; Geran, Laura C

    2009-07-14

    The sensation that humans describe as "bitter" is evoked by a large group of chemically diverse ligands. Bitter stimuli are avoided by a range of species and elicit reflex rejection, behaviors considered adaptations to the toxicity of many of these compounds. We review novel evidence for neurons that are narrowly tuned to bitter ligands at the initial stages of central processing. These "B-best" neurons in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) respond to multiple types of bitter stimuli and exhibit average responses to bitter tastants that are 6-8 times larger than to moderate concentrations of compounds representing other qualities. However, in the PBN B-best units are appreciably activated by intense salt and acid. Neurons broadly sensitive to salts and acids ("AN" neurons) also responded to bitter stimuli. This sensitivity appeared restricted to stronger intensities of ionic bitters, as cycloheximide remained ineffective across concentrations. In addition to chemosensitive profile, B-best neurons were also distinctive with regard to their posterior receptive fields, long latencies, slow firing rates and projection status. Compared to B-best NST cells, those in the PBN received increased convergence from anterior and posterior receptive fields and responded to a greater number of bitter stimuli. We conclude that B-best neurons likely contribute to pathways underlying gaping, aversive hedonic quality and taste coding. The differential responsiveness of B-best and AN neurons to ionic and nonionic bitter ligands also suggests a potential substrate for discrimination within this quality.

  10. [Flavouring estimation of quality of grape wines with use of methods of mathematical statistics].

    PubMed

    Yakuba, Yu F; Khalaphyan, A A; Temerdashev, Z A; Bessonov, V V; Malinkin, A D

    2016-01-01

    The questions of forming of wine's flavour integral estimation during the tasting are discussed, the advantages and disadvantages of the procedures are declared. As investigating materials we used the natural white and red wines of Russian manufactures, which were made with the traditional technologies from Vitis Vinifera, straight hybrids, blending and experimental wines (more than 300 different samples). The aim of the research was to set the correlation between the content of wine's nonvolatile matter and wine's tasting quality rating by mathematical statistics methods. The content of organic acids, amino acids and cations in wines were considered as the main factors influencing on the flavor. Basically, they define the beverage's quality. The determination of those components in wine's samples was done by the electrophoretic method «CAPEL». Together with the analytical checking of wine's samples quality the representative group of specialists simultaneously carried out wine's tasting estimation using 100 scores system. The possibility of statistical modelling of correlation of wine's tasting estimation based on analytical data of amino acids and cations determination reasonably describing the wine's flavour was examined. The statistical modelling of correlation between the wine's tasting estimation and the content of major cations (ammonium, potassium, sodium, magnesium, calcium), free amino acids (proline, threonine, arginine) and the taking into account the level of influence on flavour and analytical valuation within fixed limits of quality accordance were done with Statistica. Adequate statistical models which are able to predict tasting estimation that is to determine the wine's quality using the content of components forming the flavour properties have been constructed. It is emphasized that along with aromatic (volatile) substances the nonvolatile matter - mineral substances and organic substances - amino acids such as proline, threonine, arginine influence on wine's flavour properties. It has been shown the nonvolatile components contribute in organoleptic and flavour quality estimation of wines as aromatic volatile substances but they take part in forming the expert's evaluation.

  11. Newborns' Mooney-Face Perception

    ERIC Educational Resources Information Center

    Leo, Irene; Simion, Francesca

    2009-01-01

    The aim of this study is to investigate whether newborns detect a face on the basis of a Gestalt representation based on first-order relational information (i.e., the basic arrangement of face features) by using Mooney stimuli. The incomplete 2-tone Mooney stimuli were used because they preclude focusing both on the local features (i.e., the fine…

  12. Gastrophysics of the Oral Cavity.

    PubMed

    Mouritsen, Ole G

    2016-01-01

    Gastrophysics is the science that pertains to the physical and physico-chemical description of the empirical world of gastronomy, with focus on sensory perception in the oral cavity and how it is related to the materials properties of food and cooking processes. Flavor (taste and smell), mouthfeel, chemesthesis, and astringency are all related to the chemical properties and the texture of the food and how the food is transformed in the oral cavity. The present topical review will primarily focus attention on the somatosensory perception of food (mouthfeel or texture) and how it interacts with basic tastes (sour, bitter, sweet, salty, and umami) and chemesthetic action. Issues regarding diet, nutrition, and health will be put into an evolutionary perspective, and some mention will be made of umami and its importance for (oral) health.

  13. The Perception of Materials through Oral Sensation

    PubMed Central

    Howes, Philip D.; Wongsriruksa, Supinya; Laughlin, Zoe; Witchel, Harry J.; Miodownik, Mark

    2014-01-01

    This paper presents the results of a multimodal study of oral perception conducted with a set of material samples made from metals, polymers and woods, in which both the somatosensory and taste factors were examined. A multidimensional scaling analysis coupled with subjective attribute ratings was performed to assess these factors both qualitatively and quantitatively. The perceptual somatosensory factors of warmth, hardness and roughness dominated over the basic taste factors, and roughness was observed to be a less significant sensation compared to touch-only experiments. The perceptual somatosensory ratings were compared directly with physical property data in order to assess the correlation between the perceived properties and measured physical properties. In each case, a strong correlation was observed, suggesting that physical properties may be useful in industrial design for predicting oral perception. PMID:25136793

  14. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    PubMed

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  15. The Origins and Organization of Vertebrate Pavlovian Conditioning

    PubMed Central

    Fanselow, Michael S.; Wassum, Kate M.

    2016-01-01

    Pavlovian conditioning is the process by which we learn relationships between stimuli and thus constitutes a basic building block for how the brain constructs representations of the world. We first review the major concepts of Pavlovian conditioning and point out many of the pervasive misunderstandings about just what conditioning is. This brings us to a modern redefinition of conditioning as the process whereby experience with a conditional relationship between stimuli bestows these stimuli with the ability to promote adaptive behavior patterns that did not occur before the experience. Working from this framework, we provide an in-depth analysis of two examples, fear conditioning and food-based appetitive conditioning, which include a description of the only partially overlapping neural circuitry of each. We also describe how these circuits promote the basic characteristics that define Pavlovian conditioning, such as error-correction-driven regulation of learning. PMID:26552417

  16. A nanohybrid system for taste masking of sildenafil.

    PubMed

    Lee, Ji-Hee; Choi, Goeun; Oh, Yeon-Ji; Park, Je Won; Choy, Young Bin; Park, Mung Chul; Yoon, Yeo Joon; Lee, Hwa Jeong; Chang, Hee Chul; Choy, Jin-Ho

    2012-01-01

    A nanohybrid was prepared with an inorganic clay material, montmorillonite (MMT), for taste masking of sildenafil (SDN). To further improve the taste-masking efficiency and enhance the drug-release rate, we coated the nanohybrid of SDN-MMT with a basic polymer, polyvinylacetal diethylaminoacetate (AEA). Powder X-ray diffraction and Fourier transform infrared experiments showed that SDN was successfully intercalated into the interlayer space of MMT. The AEA-coated SDN-MMT nanohybrid showed drug release was much suppressed at neutral pH (release rate, 4.70 ± 0.53%), suggesting a potential for drug taste masking at the buccal cavity. We also performed in vitro drug release experiments in a simulated gastric fluid (pH = 1.2) and compared the drug-release profiles of AEA-coated SDN-MMT and Viagra(®), an approved dosage form of SDN. As a result, about 90% of SDN was released from the AEA-coated SDN-MMT during the first 2 hours while almost 100% of drug was released from Viagra(®). However, an in vivo experiment showed that the AEA-coated SDN-MMT exhibited higher drug exposure than Viagra(®). For the AEA-coated SDN-MMT, the area under the plasma concentration- time curve from 0 hours to infinity (AUC(0-∞)) and maximum concentration (C(max)) were 78.8 ± 2.32 μg · hour/mL and 12.4 ± 0.673 μg/mL, respectively, both of which were larger than those obtained with Viagra(®) (AUC(0-∞) = 69.2 ± 3.19 μg · hour/mL; C(max) = 10.5 ± 0.641 μg/mL). Therefore, we concluded that the MMT-based nanohybrid is a promising delivery system for taste masking of SDN with possibly improved drug exposure.

  17. A nanohybrid system for taste masking of sildenafil

    PubMed Central

    Lee, Ji-Hee; Choi, Goeun; Oh, Yeon-Ji; Park, Je Won; Choy, Young Bin; Park, Mung Chul; Yoon, Yeo Joon; Lee, Hwa Jeong; Chang, Hee Chul; Choy, Jin-Ho

    2012-01-01

    A nanohybrid was prepared with an inorganic clay material, montmorillonite (MMT), for taste masking of sildenafil (SDN). To further improve the taste-masking efficiency and enhance the drug-release rate, we coated the nanohybrid of SDN–MMT with a basic polymer, polyvinylacetal diethylaminoacetate (AEA). Powder X-ray diffraction and Fourier transform infrared experiments showed that SDN was successfully intercalated into the interlayer space of MMT. The AEA-coated SDN–MMT nanohybrid showed drug release was much suppressed at neutral pH (release rate, 4.70 ± 0.53%), suggesting a potential for drug taste masking at the buccal cavity. We also performed in vitro drug release experiments in a simulated gastric fluid (pH = 1.2) and compared the drug-release profiles of AEA-coated SDN–MMT and Viagra®, an approved dosage form of SDN. As a result, about 90% of SDN was released from the AEA-coated SDN–MMT during the first 2 hours while almost 100% of drug was released from Viagra®. However, an in vivo experiment showed that the AEA-coated SDN–MMT exhibited higher drug exposure than Viagra®. For the AEA-coated SDN–MMT, the area under the plasma concentration– time curve from 0 hours to infinity (AUC0-∞) and maximum concentration (Cmax) were 78.8 ± 2.32 μg · hour/mL and 12.4 ± 0.673 μg/mL, respectively, both of which were larger than those obtained with Viagra® (AUC0-∞ = 69.2 ± 3.19 μg · hour/mL; Cmax = 10.5 ± 0.641 μg/mL). Therefore, we concluded that the MMT-based nanohybrid is a promising delivery system for taste masking of SDN with possibly improved drug exposure. PMID:22619517

  18. Responses of cerebral GABA-containing CBM neuron to taste stimulation with seaweed extracts in Aplysia kurodai.

    PubMed

    Narusuye, Kenji; Kinugawa, Aiko; Nagahama, Tatsumi

    2005-11-01

    Aplysia kurodai distributed along Japan feeds well on Ulva pertusa but rejects Gelidium amansii with distinctive patterned movements of the jaws and radula. On the ventral side of the cerebral M cluster, four cell bodies of higher order neurons that send axons to the buccal ganglia are distributed (CBM neurons). We have previously shown that the dopaminergic CBM1 modulates basic feeding circuits in the buccal ganglia for rejection by firing at higher frequency after application of the aversive taste of seaweed such as Gelidium amansii. In the present experiments immunohistochemical techniques showed that the CBM3 exhibited gamma-aminobutyric acid (GABA)-like immunoreactivity. The CBM3 may be equivalent to the CBI-3 involved in changing the motor programs from rejection to ingestion in Aplysia californica. The responses of the CBM3 to taste stimulation of the lips with seaweed extracts were investigated by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically introduced into a cell body of the CBM3 using a microelectrode. Application of Ulva pertusa or Gelidium amansii extract induced different changes in fluorescence in the CBM3 cell body, indicating that taste of Ulva pertusa initially induced longer-lasting continuous spike responses at slightly higher frequency compared with that of Gelidium amansii. Considering a role of the CBM3 in the pattern selection, these results suggest that elongation of the initial firing response may be a major factor for the CBM3 to switch the buccal motor programs from rejection to ingestion after application of different tastes of seaweeds in Aplysia kurodai. (c) 2005 Wiley Periodicals, Inc.

  19. The taste of toxicity: A quantitative analysis of bitter and toxic molecules.

    PubMed

    Nissim, Ido; Dagan-Wiener, Ayana; Niv, Masha Y

    2017-12-01

    The role of bitter taste-one of the few basic taste modalities-is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD 50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD 50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938-946, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  20. A Taste of English: Nutrition Workbook for Adult ESL Students. Teacher's Manual.

    ERIC Educational Resources Information Center

    Association of Farmworker Opportunity Program, Arlington, VA.

    This workbook introduces basic concepts of nutrition and health to beginning adult students of English as a Second Language (ESL). The text may also be adapted for use with new readers. It is intended as a supplement to existing instructional materials. An introductory section offers teachers suggestions for use of the text and notes on the design…

  1. Forty-five years after Broadbent (1958): still no identification without attention

    NASA Technical Reports Server (NTRS)

    Lachter, Joel; Forster, Kenneth I.; Ruthruff, Eric

    2004-01-01

    According to D. E. Broadbent's (1958) selective filter theory, people do not process unattended stimuli beyond the analysis of basic physical properties. This theory was later rejected on the basis of numerous findings that people identify irrelevant (and supposedly unattended) stimuli. A careful review of this evidence, however, reveals strong reasons to doubt that these irrelevant stimuli were in fact unattended. This review exposed a clear need for new experiments with tight control over the locus of attention. The authors present 5 such experiments using a priming paradigm. When steps were taken to ensure that irrelevant stimuli were not attended, these stimuli produced no priming effects. Hence, the authors found no evidence that unattended stimuli can be identified. The results support a modern version of Broadbent's selective theory, updated to reflect recent research advances. 2004 APA.

  2. Age related decreases in neural sensitivity to NaCl in SHR-SP.

    PubMed

    Osada, Kazumi; Komai, Michio; Bryant, Bruce P; Suzuki, Hitoshi; Tsunoda, Kenji; Furukawa, Yuji

    2003-03-01

    To determine whether neurophysiological taste responses of young and old rats are different, recordings were made from the whole chorda tympani nerve which innervates taste buds on the anterior tongue. SHR-SP (Stroke-Prone Spontaneously Hypertensive Rats) in two age groups were studied. Chemical stimuli included single concentrations of 250 mM NH(4)Cl, 100 mM NaCl, 100 mM KCl, 500 mM sucrose, 20 mM quinine-hydrochloride, 10 mM HCl, 10 mM monosodium glutamate (MSG), 10 mM L- glutamic acid (L-Glu) and an NaCl concentration series. The magnitude of the neural response (response ratio) was calculated by dividing the amplitude of the integrated response by the amplitude of the spontaneous activity that preceded it. Substantial neural responses to all chemicals were obtained at both ages. The responses to KCl, sucrose, quinine-hydrochloride, HCl, monosodium glutamate (MSG) and glutamic acid (Glu) did not change with age, but the response to NaCl did decrease significantly. The profile of the response/concentration function for NaCl differed with age. In particular, the responses to solutions more concentrated than 100 mM NaCl were significantly weaker in aged than in young SHR-SPs. We also observed that recovery from amiloride treatment on the tongue of SHR-SPs was faster in aged rats than in young ones, suggesting that there is some functional difference in the sodium-specific channels on the taste cell. These results suggest that aged SHR-SP may be less able than young SHR-SPs to discriminate among higher concentrations of NaCl solutions.

  3. Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology.

    PubMed

    Rzepa, Ewelina; Fisk, Jennifer; McCabe, Ciara

    2017-03-01

    Neural reward function has been proposed as a possible biomarker for depression. However, how the neural response to reward and aversion might differ in young adolescents with current symptoms of depression is as yet unclear. Thirty-three adolescents were recruited, 17 scoring low on the Mood and Feelings Questionnaire (low risk group) and 16 scoring high (high risk group). Our functional magnetic resonance imaging task measured; anticipation (pleasant/unpleasant cue), effort (achieve a pleasant taste or avoid an unpleasant taste) and consummation (pleasant/unpleasant tastes) in regions of interest; ventral medial prefrontal cortex, pregenual cingulate cortex, the insula and ventral striatum. We also examined whole brain group differences. In the regions of interest analysis we found reduced activity in the high risk group in the pregenual cingulate cortex during anticipation and reduced pregenual cingulate cortex and ventral medial prefrontal cortex during effort and consummation. In the whole brain analysis we also found reduced activity in the high risk group in the prefrontal cortex and the precuneus during anticipation. We found reduced activity in the hippocampus during the effort phase and in the anterior cingulate/frontal pole during consummation in the high risk group. Increased anhedonia measures correlated with decreased pregenual cingulate cortex activity during consummation in the high risk group only. Our results are the first to show that adolescents with depression symptoms have blunted neural responses during the anticipation, effort and consummation of rewarding and aversive stimuli. This study suggests that interventions in young people at risk of depression, that can reverse blunted responses, might be beneficial as preventative strategies.

  4. Increased Subjective Distaste and Altered Insula Activity to Umami Tastant in Patients with Bulimia Nervosa

    PubMed Central

    Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko

    2017-01-01

    The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN (n = 18) and a group of HW participants (n = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients. PMID:28993739

  5. Increased Subjective Distaste and Altered Insula Activity to Umami Tastant in Patients with Bulimia Nervosa.

    PubMed

    Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko

    2017-01-01

    The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN ( n  = 18) and a group of HW participants ( n  = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients.

  6. Preference for Sucralose Predicts Behavioral Responses to Sweet and Bittersweet Tastants

    PubMed Central

    Loney, Gregory C.; Torregrossa, Ann-Marie; Carballo, Chris

    2012-01-01

    Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent “bitter” side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose–QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03–1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing “bittersweet” or “sweet” taste qualities. PMID:22281530

  7. Early feeding: setting the stage for healthy eating habits.

    PubMed

    Mennella, Julie A; Ventura, Alison K

    2011-01-01

    Food habits, an integral part of all cultures, have their beginnings during early life. This chapter reviews the development of the senses of taste and smell, which provide information on the flavor of foods, and discusses how children's innate predispositions interact with early-life feeding experiences to form dietary preferences and habits. Young children show heightened preferences for foods that taste sweet and salty and rejection of that which tastes bitter. These innate responses are salient during development since they likely evolved to encourage children to ingest that which is beneficial, containing needed calories or minerals, and to reject that which is harmful. Early childhood is also characterized by plasticity, partially evidenced by a sensitive period during early life when infants exhibit heightened acceptance of the flavors experienced in amniotic fluid and breast milk. While learning also occurs with flavors found in formulae, it is likely that this sensitive period formed to facilitate acceptance of and attraction to the flavors of foods eaten by the mother. A basic understanding of the development and functioning of the chemical senses during early childhood may assist in forming evidence-based strategies to improve children's diets. Copyright © 2011 S. Karger AG, Basel.

  8. "Smooth operator": Music modulates the perceived creaminess, sweetness, and bitterness of chocolate.

    PubMed

    Reinoso Carvalho, Felipe; Wang, Qian Janice; van Ee, Raymond; Persoone, Dominique; Spence, Charles

    2017-01-01

    There has been a recent growth of interest in determining whether sound (specifically music and soundscapes) can enhance not only the basic taste attributes associated with food and beverage items (such as sweetness, bitterness, sourness, etc.), but also other important components of the tasting experience, such as, for instance, crunchiness, creaminess, and/or carbonation. In the present study, participants evaluated the perceived creaminess of chocolate. Two contrasting soundtracks were produced with such texture-correspondences in mind, and validated by means of a pre-test. The participants tasted the same chocolate twice (without knowing that the chocolates were identical), each time listening to one of the soundtracks. The 'creamy' soundtrack enhanced the perceived creaminess and sweetness of the chocolates, as compared to the ratings given while listening to the 'rough' soundtrack. Moreover, while the participants preferred the creamy soundtrack, this difference did not appear to affect their overall enjoyment of the chocolates. Interestingly, and in contrast with previous similar studies, these results demonstrate that in certain cases, sounds can have a perceptual effect on gustatory food attributes without necessarily altering the hedonic experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  10. Affective Beliefs Influence the Experience of Eating Meat

    PubMed Central

    Anderson, Eric C.; Barrett, Lisa Feldman

    2016-01-01

    People believe they experience the world objectively, but research continually demonstrates that beliefs influence perception. Emerging research indicates that beliefs influence the experience of eating. In three studies, we test whether beliefs about how animals are raised can influence the experience of eating meat. Samples of meat were paired with descriptions of animals raised on factory farms or raised on humane farms. Importantly, the meat samples in both conditions were identical. However, participants experienced the samples differently: meat paired with factory farm descriptions looked, smelled, and tasted less pleasant. Even basic properties of flavor were influenced: factory farmed samples tasted more salty and greasy. Finally, actual behavior was influenced: participants consumed less when samples were paired with factory farm descriptions. These findings demonstrate that the experience of eating is not determined solely by physical properties of stimuli—beliefs also shape experience. PMID:27556643

  11. Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain’s Response to Fat123

    PubMed Central

    Eldeghaidy, Sally; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C

    2016-01-01

    Background: The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. Objective: We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. Methods: A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m2) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual’s plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level–dependent (BOLD) activation of brain regions. Results: Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual’s plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = −0.39; P < 0.05) and reward areas (ρ = −0.36; P < 0.05). Conclusions: Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain’s response to high-fat counterparts and guide future interventions to reduce obesity. PMID:27655761

  12. Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain's Response to Fat.

    PubMed

    Eldeghaidy, Sally; Marciani, Luca; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C; Gowland, Penny A; Francis, Susan T

    2016-11-01

    The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m 2 ) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual's plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level-dependent (BOLD) activation of brain regions. Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual's plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = -0.39; P < 0.05) and reward areas (ρ = -0.36; P < 0.05). Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain's response to high-fat counterparts and guide future interventions to reduce obesity.

  13. Neural Effects of Cannabinoid CB1 Neutral Antagonist Tetrahydrocannabivarin on Food Reward and Aversion in Healthy Volunteers

    PubMed Central

    Tudge, Luke; Williams, Clare; Cowen, Philip J.

    2015-01-01

    Background: Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. Methods: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. Results: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. PMID:25542687

  14. Neural effects of cannabinoid CB1 neutral antagonist tetrahydrocannabivarin on food reward and aversion in healthy volunteers.

    PubMed

    Tudge, Luke; Williams, Clare; Cowen, Philip J; McCabe, Ciara

    2014-12-25

    Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  15. Callous-unemotional traits are associated with deficits in recognizing complex emotions in preadolescent children.

    PubMed

    Sharp, Carla; Vanwoerden, Salome; Van Baardewijk, Y; Tackett, J L; Stegge, H

    2015-06-01

    The aims of the current study were to show that the affective component of psychopathy (callous-unemotional traits) is related to deficits in recognizing emotions over and above other psychopathy dimensions and to show that this relationship is driven by a specific deficit in recognizing complex emotions more so than basic emotions. The authors administered the Child Eyes Test to assess emotion recognition in a community sample of preadolescent children between the ages of 10 and 12 (N = 417; 53.6% boys). The task required children to identify a broad array of emotions from photographic stimuli depicting the eye region of the face. Stimuli were then divided into complex or basic emotions. Results demonstrated a unique association between callous-unemotional traits and complex emotions, with weaker associations with basic emotion recognition, over and above other dimensions of psychopathy.

  16. Pontine and Thalamic Influences on Fluid Rewards: II. Sucrose and Corn Oil Conditioned Aversions

    PubMed Central

    Liang, Nu-Chu; Grigson, Patricia S.; Norgren, Ralph

    2011-01-01

    In this study conditioned aversions were produced in sham feeding rats to limit postingestive feedback from the oral stimulus. All control rats learned an aversion to either 100% corn oil or 0.3M sucrose when ingestion of these stimuli was followed by an injection of lithium chloride (LiCl). Rats with lesions of the ventroposteromedial thalamus also learned to avoid either corn oil or sucrose. After 3 trials, rats with damage to the parabrachial nuclei (PBN) learned to avoid 100% corn oil, but failed to do so when the stimulus was 0.3M sucrose. These results support our hypothesis that the PBN is necessary to appropriately respond to a taste, but not an oil cue as a function of experience (i.e., pairings with LiCl). The results also are consistent with our results from operant tasks demonstrating that the trigeminal thalamus, the ventroposteromedial nucleus, is not required for responding to the rewarding properties of sucrose, oil, or for modifying the response to these stimuli as a function of experience. PMID:21699909

  17. Smiling faces and cash bonuses: Exploring common affective coding across positive and negative emotional and motivational stimuli using fMRI.

    PubMed

    Park, Haeme R P; Kostandyan, Mariam; Boehler, C Nico; Krebs, Ruth M

    2018-06-01

    Although it is clear that emotional and motivational manipulations yield a strong influence on cognition and behaviour, these domains have mostly been investigated in independent research lines. Therefore, it remains poorly understood how far these affective manipulations overlap in terms of their underlying neural activations, especially in light of previous findings that suggest a shared valence mechanism across multiple affective processing domains (e.g., monetary incentives, primary rewards, emotional events). This is particularly interesting considering the commonality between emotional and motivational constructs in terms of their basic affective nature (positive vs. negative), but dissociations in terms of instrumentality, in that only reward-related stimuli are typically associated with performance-contingent outcomes. Here, we aimed to examine potential common neural processes triggered by emotional and motivational stimuli in matched tasks within participants using functional magnetic resonance imaging (fMRI). Across tasks, we found shared valence effects in the ventromedial prefrontal cortex and left inferior frontal gyrus (part of dorsolateral prefrontal cortex), with increased activity for positive and negative stimuli, respectively. Despite this commonality, emotion and reward tasks featured differential behavioural patterns in that negative valence effects (performance costs) were exclusive to emotional stimuli, while positive valence effects (performance benefits) were only observed for reward-related stimuli. Overall, our data suggest a common affective coding mechanism across different task domains and support the idea that monetary incentives entail signed basic valence signals, above and beyond the instruction to perform both gain and loss trials as accurately as possible to maximise the outcome.

  18. Generalization of the disruptive effects of alternative stimuli when combined with target stimuli in extinction.

    PubMed

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila; Jonas Chan, C K; Bland, Vikki J; Bai, John Y H

    2017-09-01

    Differential-reinforcement treatments reduce target problem behavior in the short term but at the expense of making it more persistent long term. Basic and translational research based on behavioral momentum theory suggests that combining features of stimuli governing an alternative response with the stimuli governing target responding could make target responding less persistent. However, changes to the alternative stimulus context when combining alternative and target stimuli could diminish the effectiveness of the alternative stimulus in reducing target responding. In an animal model with pigeons, the present study reinforced responding in the presence of target and alternative stimuli. When combining the alternative and target stimuli during extinction, we altered the alternative stimulus through changes in line orientation. We found that (1) combining alternative and target stimuli in extinction more effectively decreased target responding than presenting the target stimulus on its own; (2) combining these stimuli was more effective in decreasing target responding trained with lower reinforcement rates; and (3) changing the alternative stimulus reduced its effectiveness when it was combined with the target stimulus. Therefore, changing alternative stimuli (e.g., therapist, clinical setting) during behavioral treatments that combine alternative and target stimuli could reduce the effectiveness of those treatments in disrupting problem behavior. © 2017 Society for the Experimental Analysis of Behavior.

  19. Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently.

    PubMed

    Kapaun, Camille L; Dando, Robin

    2017-03-01

    Flavor is an essential, rich and rewarding part of human life. We refer to both physical and chemical heat in similar terms; elevated temperature and capsaicin are both termed hot. Both influence our perception of flavor, however little research exists into the possibly divergent effect of chemical and physical heat on flavor. A human sensory panel was recruited to determine the equivalent level of capsaicin to match the heat of several physical temperatures. In a subsequent session, the intensities of multiple concentrations of tastant solutions were scaled by the same panel. Finally, panelists evaluated tastants plus equivalent chemical or physical "heat". All basic tastes aside from umami were influenced by heat, capsaicin, or both. Interestingly, capsaicin blocked bitter taste input much more powerfully than elevated temperature. This suggests that despite converging percepts, chemical and physical heat have a fundamentally different effect on the perception of flavor. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Taste and aroma of fresh and stored mandarins.

    PubMed

    Tietel, Zipora; Plotto, Anne; Fallik, Elazar; Lewinsohn, Efraim; Porat, Ron

    2011-01-15

    During the last decade there has been a continuous rise in consumption of fresh easy-to-peel mandarins. However, mandarins are much more perishable than other citrus fruit, mainly due to rapid deterioration in sensory acceptability after harvest. In the current review we discuss the biochemical components involved in forming the unique flavor of mandarins, and how postharvest storage operations influence taste and aroma and consequently consumer sensory acceptability. What we perceive as mandarin flavor is actually the combination of basic taste, aroma and mouth-feel. The taste of mandarins is principally governed by the levels of sugars and acids in the juice sacs and the relative ratios among them, whereas the aroma of mandarins is derived from a mixture of different aroma volatiles, including alcohols, aldehydes, ketones, terpenes/hydrocarbons and esters. During postharvest storage and marketing there is a gradual decrease in mandarin sensory acceptability, which has been attributed to decreases in acidity and typical mandarin flavor, paralleling an accumulation of off-flavor. Biochemical analysis of volatile and non-volatile constituents in mandarin juice demonstrated that these changes in sensory acceptability were concomitant with decreases in acidity and content of terpenes and aldehydes, which provide green, piney and citrus aroma on the one hand, and increases in ethanol fermentation metabolism products and esters on the other, which are likely to cause 'overripe' and off-flavors. Overall, we demonstrate the vast importance of the genetic background, maturity stage at harvest, commercial postharvest operation treatments, including curing, degreening and waxing, and storage duration on mandarin sensory quality. Copyright © 2010 Society of Chemical Industry.

  1. Smell and taste function in the visually impaired.

    PubMed

    Smith, R S; Doty, R L; Burlingame, G K; McKeown, D A

    1993-11-01

    Surprisingly few quantitative studies have addressed the question of whether visually impaired individuals evidence, perhaps in compensation for their loss of vision, increased acuteness in their other senses. In this experiment we sought to determine whether blind subjects outperform sighted subjects on a number of basic tests of chemosensory function. Over 50 blind and 75 sighted subjects were administered the following olfactory and gustatory tests: the University of Pennsylvania Smell Identification Test (UPSIT); a 16-item odor discrimination test; and a suprathreshold taste test in which measures of taste-quality identification and ratings of the perceived intensity and pleasantness of sucrose, citric acid, sodium chloride, and caffeine were obtained. In addition, 39 blind subjects and 77 sighted subjects were administered a single staircase phenyl ethyl alcohol (PEA) odor detection threshold test. Twenty-three of the sighted subjects were employed by the Philadelphia Water Department and trained to serve on its water quality evaluation panel. The primary findings of the study were that (a) the blind subjects did not outperform sighted subjects on any test of chemosensory function and (b) the trained subjects significantly outperformed the other two groups on the odor detection, odor discrimination, and taste identification tests, and nearly outperformed the blind subjects on the UPSIT. The citric acid concentrations received larger pleasantness ratings from the trained panel members than from the blind subjects, whose ratings did not differ significantly from those of the untrained sighted subjects. Overall, the data imply that blindness, per se, has little influence on chemosensory function and add further support to the notion that specialized training enhances performance on a number of chemosensory tasks.

  2. Glucose transporters are expressed in taste receptor cells

    PubMed Central

    Merigo, Flavia; Benati, Donatella; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2011-01-01

    In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism. PMID:21592100

  3. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.

    PubMed

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.

  4. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    PubMed Central

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  5. Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer.

    PubMed

    Smith, Kimberly R; Spector, Alan C

    2017-10-01

    Maltodextrins, such as Maltrin and Polycose, are glucose polymer mixtures of varying chain lengths that are palatable to rodents. Although glucose and other sugars activate the T1R2 + T1R3 "sweet" taste receptor, recent evidence from T1R2- or T1R3-knockout (KO) mice suggests that maltodextrins, despite their glucose polymer composition, activate a separate receptor mechanism to generate a taste percept qualitatively distinguishable from that of sweeteners. However, explicit discrimination of maltodextrins from prototypical sweeteners has not yet been psychophysically tested in any murine model. Therefore, mice lacking T1R2 + T1R3 and wild-type controls were tested in a two-response taste discrimination task to determine whether maltodextrins are 1 ) detectable when both receptor subunits are absent and 2 ) perceptually distinct from that of sucrose irrespective of viscosity, intensity, and hedonics. Most KO mice displayed similar Polycose sensitivity as controls. However, some KO mice were only sensitive to the higher Polycose concentrations, implicating potential allelic variation in the putative polysaccharide receptor or downstream pathways unmasked by the absence of T1R2 + T1R3. Varied Maltrin and sucrose concentrations of approximately matched viscosities were then presented to render the oral somatosensory features, intensity, and hedonic value of the solutions irrelevant. Although both genotypes competently discriminated Maltrin from sucrose, performance was apparently driven by the different orosensory percepts of the two stimuli in control mice and the presence of a Maltrin but not sucrose orosensory cue in KO mice. These data support the proposed presence of an orosensory receptor mechanism that gives rise to a qualitatively distinguishable sensation from that of sucrose. Copyright © 2017 the American Physiological Society.

  6. Assessment of the motivation to use artificial sweetener among individuals with an eating disorder.

    PubMed

    Schebendach, Janet; Klein, Diane A; Mayer, Laurel E S; Attia, Evelyn; Devlin, Michael J; Foltin, Richard W; Walsh, B Timothy

    2017-02-01

    Eating disorders are associated with a range of abnormalities in eating behavior. Some individuals consume large amounts of non-caloric artificial sweeteners, suggesting abnormalities in appetitive responding. The current study aimed to quantify hedonic and motivating effects of artificial sweetener in individuals with and without an eating disorder. Two laboratory studies were conducted. Hedonic preference was estimated using the number of artificial sweetener packets (0-10) added to unsweetened cherry flavored Kool-Aid (study 1). Motivation to obtain sweetener was assessed by a progressive ratio (PR) work task (study 2). Ninety-three participants (25 anorexia nervosa restricting type (AN-R), 23 AN binge/purge type (AN-B/P), 20 bulimia nervosa (BN), and 25 normal controls (NC)) completed the study. No significant difference in hedonic preference was found among participant groups. Work completed at the PR task ranged from 0 to 9500 key-board presses. The AN-B/P group had a significantly higher breakpoint and performed significantly more work for sweetener compared to the BN and NC groups. Among AN-B/P and AN-R participants, the preferred number of Equal packets was significantly correlated with the breakpoint and total work. The increased amount of work for sweetener among individuals with AN-B/P supports an enhanced reward value of sweet taste in this population, and suggests that the characteristic food avoidance in AN cannot be accounted for by decreased reward value of all taste-related stimuli. This study also supports the novel application of a PR ratio task to quantify the motivating effect of sweet taste among individuals with an eating disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of taste sensor system for differentiation of Indonesian herbal medicines

    NASA Astrophysics Data System (ADS)

    Kaltsum, U.; Triyana, K.; Siswanta, D.

    2014-09-01

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC), and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality control application in herbal medicine industries.

  8. Development of taste sensor system for differentiation of Indonesian herbal medicines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltsum, U., E-mail: um-mik@yahoo.co.id; Triyana, K., E-mail: triyana@ugm.ac.id; Siswanta, D., E-mail: triyana@ugm.ac.id

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC),more » and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality control application in herbal medicine industries.« less

  9. Atypical auditory refractory periods in children from lower socio-economic status backgrounds: ERP evidence for a role of selective attention.

    PubMed

    Stevens, Courtney; Paulsen, David; Yasen, Alia; Neville, Helen

    2015-02-01

    Previous neuroimaging studies indicate that lower socio-economic status (SES) is associated with reduced effects of selective attention on auditory processing. Here, we investigated whether lower SES is also associated with differences in a stimulus-driven aspect of auditory processing: the neural refractory period, or reduced amplitude response at faster rates of stimulus presentation. Thirty-two children aged 3 to 8 years participated, and were divided into two SES groups based on maternal education. Event-related brain potentials were recorded to probe stimuli presented at interstimulus intervals (ISIs) of 200, 500, or 1000 ms. These probes were superimposed on story narratives when attended and ignored, permitting a simultaneous experimental manipulation of selective attention. Results indicated that group differences in refractory periods differed as a function of attention condition. Children from higher SES backgrounds showed full neural recovery by 500 ms for attended stimuli, but required at least 1000 ms for unattended stimuli. In contrast, children from lower SES backgrounds showed similar refractory effects to attended and unattended stimuli, with full neural recovery by 500 ms. Thus, in higher SES children only, one functional consequence of selective attention is attenuation of the response to unattended stimuli, particularly at rapid ISIs, altering basic properties of the auditory refractory period. Together, these data indicate that differences in selective attention impact basic aspects of auditory processing in children from lower SES backgrounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Rational construction of gel-based supramolecular logic gates by using a functional gelator with multiple-stimuli responsive properties.

    PubMed

    Fan, Kaiqi; Yang, Jun; Wang, Xiaobo; Song, Jian

    2014-11-07

    A gelator containing a sorbitol moiety and a naphthalene-based salicylideneaniline group exhibits macroscopic gel-sol behavior in response to four complementary input stimuli: temperature, UV light, OH(-), and Cu(2+). On the basis of its multiple-stimuli responsive properties, we constructed a rational gel-based supramolecular logic gate that performed OR and INH types of reversible stimulus responsive gel-sol transition in the presence of various combinations of the four stimuli when the gel state was defined as an output. Moreover, a combination two-output logic gate was obtained, owing to the existence of the naked eye as an additional output. Hence, gelator 1 could construct not only a basic logic gate, but also a two-input-two-output logic gate because of its response to multiple chemical stimuli and multiple output signals, in which one input could erase the effect of another input.

  11. Beef flavor: a review from chemistry to consumer.

    PubMed

    Kerth, Chris R; Miller, Rhonda K

    2015-11-01

    This paper briefly reviews research that describes the sensation, generation and consumer acceptance of beef flavor. Humans sense the five basic tastes in their taste buds, and receptors in the nasal and sinus cavities sense aromas. Additionally, trigeminal senses such as metallic and astringent are sensed in the oral and nasal cavities and can have an effect on the flavor of beef. Flavors are generated from a complex interaction of tastes, tactile senses and aromas taken collectively throughout the tongue, nasal, sinus and oral cavities. Cooking beef generates compounds that contribute to these senses and result in beef flavor, and the factors that are involved in the cookery process determine the amount and type of these compounds and therefore the flavor generated. A low-heat, slow cooking method generates primarily lipid degradation products, while high-heat, fast cookery generates more Maillard reaction products. The science of consumer acceptance, cluster analyses and drawing relationships among all flavor determinants is a relatively new discipline in beef flavor. Consumers rate beef that has lipid degradation products generated from a low degree of doneness and Maillard flavor products from fast, hot cookery the highest in overall liking, and current research has shown that strong relationships exist between beef flavor and consumer acceptability, even more so than juiciness or tenderness. © 2015 Society of Chemical Industry.

  12. Tactile responses of hindpaw, forepaw and whisker neurons in the thalamic ventrobasal complex of anesthetized rats

    PubMed Central

    Aguilar, J; Morales-Botello, M L; Foffani, G

    2008-01-01

    The majority of studies investigating responses of thalamocortical neurons to tactile stimuli have focused on the whisker representation of the rat thalamus: the ventral–posterior–medial nucleus (VPM). To test whether the basic properties of thalamocortical responses to tactile stimuli could be extended to the entire ventrobasal complex, we recorded single neurons from the whisker, forepaw and hindpaw thalamic representations. We performed a systematic analysis of responses to stereotyped tactile stimuli − 500 ms pulses (i.e. ON–OFF stimuli) or 1 ms pulses (i.e. impulsive stimuli) − under two different anesthetics (pentobarbital or urethane). We obtained the following main results: (i) the tuning of cells to ON vs. OFF stimuli displayed a gradient across neurons, so that two-thirds of cells responded more to ON stimuli and one-third responded more to OFF stimuli; (ii) on average, response magnitudes did not differ between ON and OFF stimuli, whereas latencies of response to OFF stimuli were a few milliseconds longer; (iii) latencies of response to ON and OFF stimuli were highly correlated; (iv) responses to impulsive stimuli and ON stimuli showed a strong correlation, whereas the relationship between the responses to impulsive stimuli and OFF stimuli was subtler; (v) unlike ON responses, OFF responses did not decrease when stimuli were moved from the receptive field center to a close location in the excitatory surround. We obtained the same results for hindpaw, forepaw and whisker neurons. Our results support the view of a neurophysiologically homogeneous ventrobasal complex, in which OFF responses participate in the structure of the spatiotemporal receptive field of thalamocortical neurons for tactile stimuli. PMID:18190520

  13. Cycloheximide: No Ordinary Bitter Stimulus

    PubMed Central

    Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.

    2007-01-01

    Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304

  14. Expecting yoghurt drinks to taste sweet or pleasant increases liking.

    PubMed

    Kuenzel, Johanna; Zandstra, Elizabeth H; El Deredy, Wael; Blanchette, Isabelle; Thomas, Anna

    2011-02-01

    This experiment studied the effect of cues on liking of yoghurt drinks. We examined how hedonic (degrees of like/dislike) and sensory (level of sweetness/saltiness) cues affected liking ratings. In the learning phase, thirty-nine participants learned to associate cues with yoghurt drinks. Cues were learned for mildly and highly salty and sweet yoghurts. Sweet yoghurts were used as liked, salty yoghurts as disliked stimuli. Half the participants associated the cues with yoghurt liking (i.e. hedonic cues), the other half with the sweetness or saltiness of the yoghurt drink (i.e. sensory cues). In the test phase a cue was presented to participants subliminally (20 ms) or supraliminally (500 ms) before they tasted and rated liking of one of three yoghurt drinks in each category. The three yoghurt drinks consisted of the trained samples and a new third drink situated approximately half-way in between. The cue-drink combination was either congruent (the cued drink was given) or incongruent (two degrees of incongruence). For sweet yoghurt drinks cue-following assimilation effects were found for the supraliminal but not the subliminal cue presentations. For salty yoghurts, no effects of cue were found. This indicates that the nature of the drinks itself plays a critical role in modulating assimilation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Does recall of a past music event invoke a reminiscence bump in young adults?

    PubMed

    Schubert, Emery

    2016-08-01

    Many studies of the reminiscence bump (RB) in music invoke memories from different autobiographical times by using stimulus specific prompts (SSPs). This study investigated the utility of a non-SSP paradigm to determine whether the RB would emerge when participants were asked to recall a single memorable musical event from "a time long ago". The presence of a RB in response to music has not been obtained in such a manner for younger participants. Eighty-eight 20-22 year olds reported music episodes that peaked when their autobiographical age was 13-14 years. Self-selected stimuli included a range of musical styles, including classical and non-Western pop forms, such as J-pop and K-pop, as well as generational pop music, such as the Beatles. However, most participants reported pop/rock music that was contemporaneous with encoding age, providing support for the utility of published SSP paradigms using pop music. Implications for and limitations of SSP paradigms are discussed. Participants were also asked to relate the selected musical piece to current musical tastes. Most participants liked the music that they selected, with many continuing to like the music, but most also reported a general broadening of their taste, consistent with developmental literature on open-earedness.

  16. The role of injection cues in the production of the morphine preexposure effect in taste aversion learning.

    PubMed

    Davis, Catherine M; de Brugada, Isabel; Riley, Anthony L

    2010-05-01

    The attenuation of an LiCl-induced conditioned taste aversion (CTA) by LiCl preexposure is mediated primarily by associative blocking via injection-related cues. Given that preexposure to morphine attenuates morphine-induced CTAs, it was of interest to determine whether injection cues also mediate this effect. Certain morphine-induced behaviors such as analgesic tolerance are controlled associatively, via injection-related cues. Accordingly, animals in the present experiments were preexposed to morphine (or vehicle) every other day for five total exposures, followed by an extinction phase, in which the subjects were given saline injections (or no treatment) for 8 (Experiment 1) or 16 (Experiment 2) consecutive days. All of the animals then received five CTA trials with morphine (or vehicle). The morphine-preexposed animals in Experiment 1 displayed an attenuation of the morphine CTA that was unaffected by extinction saline injections, suggesting that blocking by injection cues during morphine preexposure does not mediate this effect. All of the morphine-preexposed subjects in Experiment 2 displayed a weakened preexposure effect, an effect inconsistent with a selective extinction of drug-associated stimuli. The attenuating effects of morphine preexposure in aversion learning are most likely controlled by nonassociative mechanisms, like drug tolerance.

  17. Lightness and Hue Perception: The Bezold-Brucke Effect and Colour Basic Categories

    ERIC Educational Resources Information Center

    Lillo, Julio; Aguado, Luis; Moreira, Humberto; Davies, Ian

    2004-01-01

    Using surface colours as stimuli, the present research was aimed at the two following goals: (1) To determine the chromatic angles related to categorical effects type B-B (Bezold-Brucke). (2) To determine the colourimetric characteristics compatible with each Spanish colour basic category. To get these goals the full set of tiles included in the…

  18. Motor planning of goal-directed action is tuned by the emotional valence of the stimulus: a kinematic study.

    PubMed

    Esteves, P O; Oliveira, L A S; Nogueira-Campos, A A; Saunier, G; Pozzo, T; Oliveira, J M; Rodrigues, E C; Volchan, E; Vargas, C D

    2016-07-01

    The basic underpinnings of homeostatic behavior include interacting with positive items and avoiding negative ones. As the planning aspects of goal-directed actions can be inferred from their movement features, we investigated the kinematics of interacting with emotion-laden stimuli. Participants were instructed to grasp emotion-laden stimuli and bring them toward their bodies while the kinematics of their wrist movement was measured. The results showed that the time to peak velocity increased for bringing pleasant stimuli towards the body compared to unpleasant and neutral ones, suggesting higher easiness in undertaking the task with pleasant stimuli. Furthermore, bringing unpleasant stimuli towards the body increased movement time in comparison with both pleasant and neutral ones while the time to peak velocity for unpleasant stimuli was the same as for that of neutral stimuli. There was no change in the trajectory length among emotional categories. We conclude that during the "reach-to-grasp" and "bring-to-the-body" movements, the valence of the stimuli affects the temporal but not the spatial kinematic features of motion. To the best of our knowledge, we show for the first time that the kinematic features of a goal-directed action are tuned by the emotional valence of the stimuli.

  19. Molecular Mechanism of TRP Channels

    PubMed Central

    Zheng, Jie

    2013-01-01

    Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation. PMID:23720286

  20. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    PubMed

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

Top