Basic mechanisms governing solar-cell efficiency
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.; Sah, C. T.
1976-01-01
The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.
Evaluation of the BioVapor Model
The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...
BioVapor Model Evaluation (St. Louis, MO)
The BioVapor model addresses transport and biodegradation of petroleum vapors in the subsurface. This presentation describes basic background on the nature and scientific basis of environmental transport models. It then describes a series of parameter uncertainty runs of the Bi...
NASA Technical Reports Server (NTRS)
1978-01-01
A unified framework for comparing intercity passenger and freight transportation systems is presented. Composite measures for cost, service/demand, energy, and environmental impact were determined. A set of 14 basic measures were articulated to form the foundation for computing the composite measures. A parameter dependency diagram, constructed to explicitly interrelate the composite and basic measures is discussed. Ground rules and methodology for developing the values of the basic measures are provided and the use of the framework with existing cost and service data is illustrated for various freight systems.
Analysis of sediment particle velocity in wave motion based on wave flume experiments
NASA Astrophysics Data System (ADS)
Krupiński, Adam
2012-10-01
The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.
SDMProjectBuilder: SWAT Simulation and Calibration for Nutrient Fate and Transport
This tutorial reviews screens, icons, and basic functions for downloading flow, sediment, and nutrient observations for a watershed of interest; how to prepare SWAT-CUP input files for SWAT parameter calibration; and how to perform SWAT parameter calibration with SWAT-CUP. It dem...
Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri
Tracer-Test Planning Using the Efficient Hydrologic Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be
EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to
Beam transport program for FEL project
NASA Astrophysics Data System (ADS)
Sugimoto, Masayoshi; Takao, Masaru
1992-07-01
A beam transport program is developed to design the beam transport line of the free electron laser system at JAERI and to assist the beam diagnosis. The program traces a beam matrix through the elements in the beam transport line and the accelerators. The graphical user interface is employed to access the parameters and to represent the results. The basic computational method is based on the LANL-TRACE program and it is rewritten for personal computers in Pascal.
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
An overload behavior detection system for engineering transport vehicles based on deep learning
NASA Astrophysics Data System (ADS)
Zhou, Libo; Wu, Gang
2018-04-01
This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as `dirt truck') in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model's false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of the basic ITMD system.
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2005)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Heterojunction Solid-State Devices for Millimeter-Wave Sources.
1983-10-01
technology such as MBE and/or OK-CVD will be required. Our large-signal, numerical WATT device simulations are the first to predict from basic transport...results are due to an improved method for determining semiconductor material parameters. We use a theoretical Monte Carlo materials simulation ... simulations . These calculations have helped provide insight into velocity overshoot and ballistic transport phenomena. We find that ballistic or near
Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando
2014-05-09
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.
Elements affecting runway traction
NASA Technical Reports Server (NTRS)
Horne, W. B.
1974-01-01
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
NASA Astrophysics Data System (ADS)
KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert
2016-12-01
The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowl...
Experimental investigation of two-phase heat transfer in a porous matrix.
NASA Technical Reports Server (NTRS)
Von Reth, R.; Frost, W.
1972-01-01
One-dimensional two-phase flow transpiration cooling through porous metal is studied experimentally. The experimental data is compared with a previous one-dimensional analysis. Good agreement with calculated temperature distribution is obtained as long as the basic assumptions of the analytical model are satisfied. Deviations from the basic assumptions are caused by nonhomogeneous and oscillating flow conditions. Preliminary derivation of nondimensional parameters which characterize the stable and unstable flow conditions is given. Superheated liquid droplets observed sputtering from the heated surface indicated incomplete evaporation at heat fluxes well in access of the latent energy transport. A parameter is developed to account for the nonequilibrium thermodynamic effects. Measured and calculated pressure drops show contradicting trends which are attributed to capillary forces.
Applications of asymmetric nanotextured parylene surface using its wetting and transport properties
NASA Astrophysics Data System (ADS)
Sekeroglu, Koray
In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter, thus changing the angle provided the surface with essential wetting properties. This adjustment on the nano-PPX surface exhibited excellent control on water droplet transport as well as guided the droplets from desired points to targets. The results demonstrated that it is possible to create railroad-like paths to manipulate the droplet movements by deforming the nano-PPX surface. Controlling physical properties of the surface granted the inspiration for fabricating basic fluidic devices to sort and mix droplets. These devices are promising for assembly purposes in terms of using microgels in engineering applications (i.e. building blocks for bioengineering). The surface has potential for further development to achieve the directed assembly of microgels into close proximity.
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Phillips, W. M.; Hsieh, T.
1976-01-01
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.
Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando
2014-01-01
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292
Sustainable Transportation Basics | Transportation Research | NREL
Transportation Basics Sustainable Transportation Basics Compare Vehicle Technologies 3-D introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen
NASA Technical Reports Server (NTRS)
Wolf, M.
1981-01-01
It is noted that in the case of low-level injection, space-charge quasi-neutrality, and spatially constant material parameters (including an electrostatic field), the individual layer can be treated analytically and the basic solar cell performance parameters can be evaluated from three equations. The first equation represents the transformation of the transport velocity across the layer from the other layer boundary. The second establishes the light-generated current output from the layer interface, under the influence of the transport velocities and minority-carrier density at both layer boundaries and of bulk recombination. The third equation describes the flow of these carriers across other layers. The power of the approach is considered to lie in its facility for analysis of the solar cell's performance layer by layer, giving a clear picture of the individual layer's influence on cell efficiency.
Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1.
Steel, A; Nussberger, S; Romero, M F; Boron, W F; Boyd, C A; Hediger, M A
1997-02-01
1. The intestinal H(+)-coupled peptide transporter PepT1, displays a broad substrate specificity and accepts most charged and neutral di- and tripeptides. To study the proton-to-peptide stoichiometry and the dependence of the kinetic parameters on extracellular pH (pHo), rabbit PepT1 was expressed in Xenopus laevis oocytes and used for uptake studies of radiolabelled neutral and charged dipeptides, voltage-clamp analysis and intracellular pH measurements. 2. PepT1 did not display the substrate-gated anion conductances that have been found to be characteristic of members of the Na(+)- and H(+)-coupled high-affinity glutamate transporter family. In conjunction with previous data on the ion dependence of PepT1, it can therefore be concluded that peptide-evoked charge fluxes of PepT1 are entirely due to H+ movement. 3. Neutral, acidic and basic dipeptides induced intracellular acidification. The rate of acidification, the initial rates of the uptake of radiolabelled peptides and the associated charge fluxes gave proton-substrate coupling ratios of 1:1, 2:1 and 1:1 for neutral, acidic and basic dipeptides, respectively. 4. Maximal transport of the neutral and charged dipeptides Gly-Leu, Gly-Glu, Gly-Lys and Ala-Lys occurred at pHo 5.5, 5.2, 6.2 and 5.8, respectively. The Imax values were relatively pHo independent but the apparent affinity (Km(app) values for these peptides were shown to be highly pHo dependent. 5. Our data show that at physiological pH (pHo 5.5-6.0) PepT1 prefers neutral and acidic peptides. The shift in transport maximum for the acidic peptide Gly-Glu to a lower pH value suggests that acidic dipeptides are transported in the protonated form. The shift in the transport maxima of the basic dipeptides to higher pH values may involve titration of a side-chain on the transporter molecule (e.g. protonation of a histidine group). These considerations have led us to propose a model for coupled transport of neutral, acidic and basic dipeptides.
Matiushichev, V B; Shamratova, V G; Krapivko, Iu K
2009-12-01
Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.
Scaling Law of Urban Ride Sharing.
Tachet, R; Sagarra, O; Santi, P; Resta, G; Szell, M; Strogatz, S H; Ratti, C
2017-03-06
Sharing rides could drastically improve the efficiency of car and taxi transportation. Unleashing such potential, however, requires understanding how urban parameters affect the fraction of individual trips that can be shared, a quantity that we call shareability. Using data on millions of taxi trips in New York City, San Francisco, Singapore, and Vienna, we compute the shareability curves for each city, and find that a natural rescaling collapses them onto a single, universal curve. We explain this scaling law theoretically with a simple model that predicts the potential for ride sharing in any city, using a few basic urban quantities and no adjustable parameters. Accurate extrapolations of this type will help planners, transportation companies, and society at large to shape a sustainable path for urban growth.
A mathematical model of electrolyte and fluid transport across corneal endothelium.
Fischbarg, J; Diecke, F P J
2005-01-01
To predict the behavior of a transporting epithelium by intuitive means can be complex and frustrating. As the number of parameters to be considered increases beyond a few, the task can be termed impossible. The alternative is to model epithelial behavior by mathematical means. For that to be feasible, it has been presumed that a large amount of experimental information is required, so as to be able to use known values for the majority of kinetic parameters. However, in the present case, we are modeling corneal endothelial behavior beginning with experimental values for only five of eleven parameters. The remaining parameter values are calculated assuming cellular steady state and using algebraic software. With that as base, as in preceding treatments but with a distribution of channels/transporters suited to the endothelium, temporal cell and tissue behavior are computed by a program written in Basic that monitors changes in chemical and electrical driving forces across cell membranes and the paracellular pathway. We find that the program reproduces quite well the behaviors experimentally observed for the translayer electrical potential difference and rate of fluid transport, (a) in the steady state, (b) after perturbations by changes in ambient conditions HCO3-, Na+, and Cl- concentrations), and (c) after challenge by inhibitors (ouabain, DIDS, Na+- and Cl(-)-channel inhibitors). In addition, we have used the program to compare predictions of translayer fluid transport by two competing theories, electro-osmosis and local osmosis. Only predictions using electro-osmosis fit all the experimental data.
Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment
NASA Astrophysics Data System (ADS)
Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert
2018-05-01
The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.; Maggs, James E.
The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events,more » i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.« less
Journal: A Review of Some Tracer-Test Design Equations for ...
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-
Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.
NASA Astrophysics Data System (ADS)
Zierenberg, Jennifer R.
2005-11-01
The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 <=A<= 0.75, α = 0.25, 0.4, and Schmidt number, Sc = 1000. Vortices attached downstream of the cylinder are found to oscillate in size and strength as α and A are varied. Mass transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship
Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing
NASA Astrophysics Data System (ADS)
Datta, D.
2010-10-01
Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.
Preface: cardiac control pathways: signaling and transport phenomena.
Sideman, Samuel
2008-03-01
Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.
NASA Astrophysics Data System (ADS)
Chandra, A.
2013-07-01
Synthesis and ion transport characterization of a new Ag+ ion conducting glass-polymer electrolyte (GPE) films: (1- x) PEO: x [0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)], where 0 < x < 50 wt%, are reported. The composition: 70PEO: 30[0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)] with conductivity ( σ) 7.7 × 10-7 Ω-1 cm-1 is identified as highest conducting composition referred to as the optimum conducting composition (OCC). Approximately two and half orders of conductivity enhancement have been achieved in OCC from that of the pure polymer poly(ethylene oxide). The glass-polymer complexation is confirmed by the XRD, FTIR, DSC and TGA techniques. The ion transport behavior has been reported on the basis of experimental measurements on some basic ionic parameters. A solid state polymeric battery has been fabricated by using GPE OCC as an electrolyte and their important cell parameters have been also calculated from the discharge profiles.
NASA Astrophysics Data System (ADS)
Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.
2017-07-01
GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.
Matsui, Kazuki; Tsume, Yasuhiro; Takeuchi, Susumu; Searls, Amanda; Amidon, Gordon L
2017-04-03
Weakly basic drugs exhibit a pH-dependent dissolution profile in the gastrointestinal (GI) tract, which makes it difficult to predict their oral absorption profile. The aim of this study was to investigate the utility of the gastrointestinal simulator (GIS), a novel in vivo predictive dissolution (iPD) methodology, in predicting the in vivo behavior of the weakly basic drug dipyridamole when coupled with in silico analysis. The GIS is a multicompartmental dissolution apparatus, which represents physiological gastric emptying in the fasted state. Kinetic parameters for drug dissolution and precipitation were optimized by fitting a curve to the dissolved drug amount-time profiles in the United States Pharmacopeia apparatus II and GIS. Optimized parameters were incorporated into mathematical equations to describe the mass transport kinetics of dipyridamole in the GI tract. By using this in silico model, intraluminal drug concentration-time profile was simulated. The predicted profile of dipyridamole in the duodenal compartment adequately captured observed data. In addition, the plasma concentration-time profile was also predicted using pharmacokinetic parameters following intravenous administration. On the basis of the comparison with observed data, the in silico approach coupled with the GIS successfully predicted in vivo pharmacokinetic profiles. Although further investigations are still required to generalize, these results indicated that incorporating GIS data into mathematical equations improves the predictability of in vivo behavior of weakly basic drugs like dipyridamole.
Mohammadi, Mohammad Hossein; Vanclooster, Marnik
2012-05-01
Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μ(t), increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ²(t) first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μ(t) estimated from the conceptual model performed much better as compared to predictions with μ(t) and σ²(t) estimated from calibration of solute transport at shallow soil depths. The use of μ(t) estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammadi, Mohammad Hossein; Vanclooster, Marnik
2012-05-01
Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μt, increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ2t first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μt estimated from the conceptual model performed much better as compared to predictions with μt and σ2t estimated from calibration of solute transport at shallow soil depths. The use of μt estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales.
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Lee, J. M.; Frederking, T. H. K.
1988-01-01
The turbulent transport mode of vapor liquid phase separators (VLPS) for He II has been investigated comparing passive porous plug separators with active phase separators (APS) using slits of variable flow paths within a common frame of reference. It is concluded that the basic transport regimes in both devices are identical. An integrated Gorter-Mellink (1949) equation, found previously to predict VLPS results of porous plugs, is employed to analyze APS data published in the literature. It is found that the Gorter-Mellink flow rate parameter for 9-micron and 14-micron APS slit widths are relatively independent of the slit width, having a rate constant of about 9 + or - 10 percent. This agrees with the early heat flow results for He II entropy transport at zero net mass flow in wide capillaries and slits.
Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz
2016-04-27
This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production.
High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Robert; Lewis, Brett B.; Fowlkes, Jason Davidson
While 3D-printing is currently experiencing significant growth and having a significant impact on science and technology, the expansion into the nanoworld is still a highly challenging task. Among the increasing number of approaches, focused electron-beam-induced deposition (FEBID) was recently demonstrated to be a viable candidate toward a generic direct-write fabrication technology with spatial nanometer accuracy for complex shaped 3D-nanoarchitectures. In this comprehensive study, we explore the parameter space for 3D-FEBID and investigate the implications of individual and interdependent parameters on freestanding nanosegments, which act as a fundamental building block for complex 3D-structures. In particular, the study provides new basic insightsmore » such as precursor transport limitations and angle dependent growth rates, both essential for high-fidelity fabrication. In conclusion, complemented by practical aspects, we provide both basic insights in 3D-growth dynamics and technical guidance for specific process adaption to enable predictable and reliable direct-write synthesis of freestanding 3D-nanoarchitectures.« less
High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
Winkler, Robert; Lewis, Brett B.; Fowlkes, Jason Davidson; ...
2018-02-14
While 3D-printing is currently experiencing significant growth and having a significant impact on science and technology, the expansion into the nanoworld is still a highly challenging task. Among the increasing number of approaches, focused electron-beam-induced deposition (FEBID) was recently demonstrated to be a viable candidate toward a generic direct-write fabrication technology with spatial nanometer accuracy for complex shaped 3D-nanoarchitectures. In this comprehensive study, we explore the parameter space for 3D-FEBID and investigate the implications of individual and interdependent parameters on freestanding nanosegments, which act as a fundamental building block for complex 3D-structures. In particular, the study provides new basic insightsmore » such as precursor transport limitations and angle dependent growth rates, both essential for high-fidelity fabrication. In conclusion, complemented by practical aspects, we provide both basic insights in 3D-growth dynamics and technical guidance for specific process adaption to enable predictable and reliable direct-write synthesis of freestanding 3D-nanoarchitectures.« less
Solid metabolic waste transport and stowage investigation
NASA Technical Reports Server (NTRS)
Burt, R. A.; Koesterer, M. G.; Hunt, S. R., Jr.
1974-01-01
The basic Waste Collection System (WCS) design under consideration utilized air flow to separate the stool from the WCS user and to transport the fecal material to a slinger device for subsequent deposition on a storage bowel. The major parameters governing stool separation and transport were found to be the area of the air inlet orifices, the configuration of the air inlet orifice and the transport air flow. Separation force and transport velocity of the stool were studied. The developed inlet orifice configuration was found to be an effective design for providing fecal separation and transport. Simulated urine tests and female user tests in zero gravity established air flow rates between 0.08 and 0.25 cu sm/min (3 and 9 scfm) as satisfactory for entrapment, containment and transport of urine using an urinal. The investigation of air drying of fecal material as a substitute for vacuum drying in a WCS breadboard system showed that using baseline conditions anticipated for the shuttle cabin ambient atmosphere, flow rates of 0.14 cu sm/min (5 cfm) were adequate for drying and maintaining biological stability of the fecal material.
Macroeconomic analysis of road vehicles related environmental pollution in Hungary
NASA Astrophysics Data System (ADS)
Török, Árpád; Török, Ádám
2014-06-01
The article aims to examine the relationship between road transport and macro economy, especially the use of fossil energy in transport sector. Nowadays environmental pollution is a key issue on the EU level as well as in Hungary. Lots of effort have been already done in order to decrease emissions in road transport, but a lot more need to be done. The article aims to prove that the only possible solution is technological innovation in order to reach emission reduction target without decline of the GDP. The basic idea is to ensure sustainable development, to decrease environmental pollution in road transport without harming the economy. In the EU and in Hungary road vehicles are powered by fossil fuelled internal combustion engines. This paper aims to analyse the role of the fossil fuel-based road transport sector within the economy with the usage of constant elasticity substitution (CES) production functions. Authors have built CES production function for Hungary. Parameters were calculated based on the validated model.
Drift-based scrape-off particle width in X-point geometry
NASA Astrophysics Data System (ADS)
Reiser, D.; Eich, T.
2017-04-01
The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.
Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz
2016-01-01
This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production. PMID:28773442
Ω and ϕ in Au + Au collisions at and 11.5 GeV from a multiphase transport model
NASA Astrophysics Data System (ADS)
Ye, Y. J.; Chen, J. H.; Ma, Y. G.; Zhang, S.; Zhong, C.
2017-08-01
Within the framework of a multiphase transport model, we study the production and properties of Ω and ϕ in Au + Au collisions with a new set of parameters for and with the original set of parameters for . The AMPT model with string melting provides a reasonable description at , while the default AMPT model describes the data well at . This indicates that the system created at top RHIC energy is dominated by partonic interactions, while hadronic interactions become important at lower beam energy, such as . The comparison of N(Ω++Ω-)/[2N(ϕ)] ratio between data and calculations further supports the argument. Our calculations can generally describe the data of nuclear modification factor as well as elliptic flow. Supported by National Natural Science Foundation of China (11421505, 11520101004, 11220101005, 11275250, 11322547), Major State Basic Research Development Program in China (2014CB845400, 2015CB856904) and Key Research Program of Frontier Sciences of CAS (QYZDJSSW-SLH002)
Effect of rotation on fingering convection in stellar and planetary interiors
NASA Astrophysics Data System (ADS)
Sengupta, Sutirtha; Garaud, Pascale
2018-01-01
We study the effects of global rotation on the growth and saturation of the fingering (double-diffusive) instability at low Prandtl numbers and estimate the compositional transport rates as a function of the relevant non-dimensional parameters - the Taylor number, Ta^* (defined in terms of the rotation rate, Ω, thermal diffusivity κ_T and associated finger length scale d) and density ratio through direct numerical simulations. Within our explored range of parameters, we find rotation to have very little effect on vertical transport apart for an exceptional case where a cyclonic large scale vortex (LSV) is observed at low density ratio and fairly high Taylor number. The LSV leads to significant enhancement in the fingering transport rates by concentrating high composition fluid at its core which moves downward. The formation of such LSVs is of particular interest for solving the missing mixing problem in the astrophysical context of RGB stars though the parameter regime in which we observe the emergence of this LSV seems to be quite far from the stellar scenario. However, understanding the basic mechanism driving such large scale structures as observed frequently in polar regions of planets (e.g. those seen by Juno near the poles of Jupiter) is important in general for studies of rotating turbulence and its applications to stellar and planetary interior studies, and will be investigated in further detail in a forthcoming work.
Basic framework of urban design based on natural resources
NASA Astrophysics Data System (ADS)
Lubis, Irwar; Nasution, Mahyuddin K. M.; Maulina, Maudy
2018-03-01
To establishment of the city always begins because the availability of natural resources that meet the basic needs of its inhabitants, but after that the city relies on the sustainability of those basic need, which is primarily dependent on transportation. Transportation becomes the main needs of the city. Transportation, however, results in the potential for the city’s discomfort with noise and pollution, which mixes with the frenetic city life. Therefore, this paper reveals a basic framework using natural resources to reduce the noise and the pollution.
NASA Astrophysics Data System (ADS)
Koptev, V. Yu
2017-02-01
The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.
NASA Astrophysics Data System (ADS)
Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian
2012-10-01
TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.
Application of oil spill model to marine pollution and risk control problems
NASA Astrophysics Data System (ADS)
Aseev, Nikita; Agoshkov, Valery; Sheloput, Tatyana
2017-04-01
Oil transportation by sea induces challenging problems of environmental control. Millions of tonnes of oil are yearly released during routine ship operations, not to mention vast spills due to different accidents (e.g. tanker collisions, grounding, etc.). Oil pollution is dangerous to marine organisms such as plants, fish and mammals, leading to widespread damage to our planet. In turn, fishery and travel agencies can lose money and clients, and ship operators are obliged to pay huge penalties for environmental pollution. In this work we present the method of accessing oil pollution of marine environment using recently developed oil spill model. The model describes basic processes of the oil slick evolution: oil transport due to currents, drift under the action of wind, spreading on the surface, evaporation, emulsification and dispersion. Such parameters as slick location, mass, density of oil, water content, viscosity and density of "water-in-oil" emulsion can be calculated. We demonstrate how to apply the model to damage calculation problems using a concept of average damage to particular marine area. We also formulate the problem of oil spill risk control, when some accident parameters are not known, but their probability distribution is given. We propose a new algorithm to solve such problems and show results of our model simulations. The work can be interesting to broad environmental, physics and mathematics community. The work is supported by Russian Foundation for Basic Research grant 16-31-00510.
NASA Astrophysics Data System (ADS)
Kessels, W.; Wuttke, M. W.
2007-05-01
A single well technique to determine groundwater flow values and transport parameters is presented. Multielectrode arrays are placed at the filtered casing depth by an inflatable packer or are installed on the borehole wall behind the casing.Tracer water with a higher or lower specific electrical conductivity (salinity) which is injected between the electrodes. This tracer plume then moves into the natural groundwater flow field. The observation of this movement by geoelectric logging enables the determination of the groundwater velocity and salinity. The transport parameters "effective porosity" and "dispersion length" can also be derived. The geoelectric logging uses n borehole electrodes and two grounding electrodes. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be conducted to obtain a full set of geoelectric measurements. This set is used to derive all electrode combinations by applying the law of superposition and reciprocity. The tracer distribution around the borehole during and after injection depends on the hydraulic and transport parameters of the aquifer and the filter sand. The transport parameter "porosity" plus the total injected tracer volume determines the tracer distribution around the borehole. The transport parameter "dispersivity" determines the abruptness of the tracer front. The method was tested by undertaking measurements in a lab aquifer filled with sand. The results are discussed and the limitations of the method are shown. Multielectrode installations behind casing were tested in situ in the two scientific boreholes CAT-LUD-1 and CAT- LUD-1A drilled in the northern part of Germany. A multielectrode packer system was designed, built and tested in these boreholes. The results are compared with colloid observations in the borehole and hydraulic triangulation in surrounded observation wells. Here, the interpretation of these in situ measurements is mainly restricted to two point geoelectric measurements and vertical four point electrode interpretations. The transport equation for NaCl-tracered water is the basic rule to determine the groundwater transport velocity. Numerical calculations to simulate the measurement are carried out with the program FEFLOW. Due to the density contrast, the tracer undergoes vertical movement. Kessels, W., Zoth, G.(1998): Doppelmantel - Packer mit geoelektrischer Meßtechnik zur Bestimmung der Abstandsgeschwindigkeit des Grundwassers, Patent Az:19855048.0, GGA-Institut, Germany, Hannover. KESSELS, W., RIFAI, H., THORENZ, C., ZOTH, G.(2002): Multi Electrode Geoelectric on the Borehole Wall- Determination of groundwater velocity and dispersion parameters, AGU spring meeting, Washington KESSELS, W., ZOTH, G., WONIK, T., FULDA, C. (1999): THE USE OF SALT CARTRIDGES FOR FLUID LOGGING. XXIV GENERAL ASSEMBLY OF E.G.S. THE HAGUE, THE NETHERLANDS PANTELEIT,B., KESSELS, W., BINOT, F (2006): MUD TRACER TEST DURING SOFT ROCK DRILLING; W.R.R., VOL. 42, W11415, DOI:10.1029/2005WR004487
Yu, L; Li, Y P; Huang, G H; Shan, B G
2017-09-01
Contradictions of sustainable transportation development and environmental issues have been aggravated significantly and been one of the major concerns for energy systems planning and management. A heavy emphasis is placed on stimulation of electric vehicles (EVs) to handle these problems associated with various complexities and uncertainties in municipal energy system (MES). In this study, an interval-possibilistic basic-flexible programming (IPBFP) method is proposed for planning MES of Qingdao, where uncertainties expressed as interval-flexible variables and interval-possibilistic parameters can be effectively reflected. Support vector regression (SVR) is used for predicting electricity demand of the city under various scenarios. Solutions of EVs stimulation levels and satisfaction levels in association with flexible constraints and predetermined necessity degrees are analyzed, which can help identify the optimized energy-supply patterns that could plunk for improvement of air quality and hedge against violation of soft constraints. Results disclose that largely developing EVs can help facilitate the city's energy system with an environment-effective way. However, compared to the rapid growth of transportation, the EVs' contribution of improving the city's air quality is limited. It is desired that, to achieve an environmentally sustainable MES, more concerns should be focused on the integration of increasing renewable energy resources, stimulating EVs as well as improving energy transmission, transport and storage. Copyright © 2017 Elsevier B.V. All rights reserved.
Haupt, Erhard T K; Wontorra, Claudia; Rehder, Dieter; Müller, Achim
2005-08-21
Insight into basic principles of cation transport through "molecular channels", and especially details of the related fundamental H2O vehicle function, could be obtained via7Li NMR studies of the Li+ uptake/release processes by the unique porous nanocapsule [{(MoVI)MoVI5O21(H2O)6}12{MoV2O4(SO4)}30]72- which behaves as a semi-permeable inorganic membrane open for H2O and small cations; channel traffic as well as internal cavity distribution processes show a strong dependence on "environmental" effects such as exerted by solvent properties, the amount of water present, and competing complexing ligands, and end up in a complex equilibrium situation as in biological leak channels.
The solar power satellite concepts: The past decade and the next decade
NASA Technical Reports Server (NTRS)
Kraft, C. C., Jr.
1979-01-01
Results of studies on the solar power satellite concept are summarized. The basic advantages are near continuous access to sunlight and freedom from atmospheric effects and cloud cover. The systems definition studies consider photovoltaic and thermal energy conversion systems and find both to be technically feasible, with the photovoltaic approach preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles are defined for the transportation of construction materials, with the shuttle expected to provide low cost transportation to and from space. A reference system is outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.
49 CFR 23.41 - What is the basic overall goal requirement for recipients?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false What is the basic overall goal requirement for recipients? 23.41 Section 23.41 Transportation Office of the Secretary of Transportation PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Goals, Good Faith Efforts, and Counting § 23.41 What is...
49 CFR 23.41 - What is the basic overall goal requirement for recipients?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false What is the basic overall goal requirement for recipients? 23.41 Section 23.41 Transportation Office of the Secretary of Transportation PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Goals, Good Faith Efforts, and Counting § 23.41 What is...
49 CFR 23.41 - What is the basic overall goal requirement for recipients?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false What is the basic overall goal requirement for recipients? 23.41 Section 23.41 Transportation Office of the Secretary of Transportation PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Goals, Good Faith Efforts, and Counting § 23.41 What is...
49 CFR 23.41 - What is the basic overall goal requirement for recipients?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false What is the basic overall goal requirement for recipients? 23.41 Section 23.41 Transportation Office of the Secretary of Transportation PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Goals, Good Faith Efforts, and Counting § 23.41 What is...
49 CFR 23.41 - What is the basic overall goal requirement for recipients?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false What is the basic overall goal requirement for recipients? 23.41 Section 23.41 Transportation Office of the Secretary of Transportation PARTICIPATION OF DISADVANTAGED BUSINESS ENTERPRISE IN AIRPORT CONCESSIONS Goals, Good Faith Efforts, and Counting § 23.41 What is...
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
Investigation of methods for calculating duration of lightsignal regulation cycle
NASA Astrophysics Data System (ADS)
Dorokhin, S. V.; Novikov, A. N.; Zelikov, V. A.; Strukov, Y. V.; Novikov, I. A.; Shevtsova, A. G.; Likhachev, D. V.
2018-05-01
The research objective is development of a new approach to determining of mode operation of traffic lights taking into consideration advanced characteristics of traffic flow. It will allow one to decrease transport delay significantly while a vehicle on the way and, using signal control, to increase main parameters on the whole, such as fuel consumption, travel time and traffic speed. The research shows that basic approaches, which are applied nowadays to determine main parameters of traffic lights, do not allow one to take into consideration a number of characteristics of traffic flow, so it leads to many challenges that appear as ineffective using of traffic lights. There is critical transport delay at many controlled crossroads so it can lead to emergence of traffic accidents. The research contributes to the knowledge, studying the experience of using these approaches and, on the basis of their improvement and development of new approaches, allowing one to reduce risks to a minimum. The study also provides an opportunity to expand the scope of further research in this area, combining and applying lessons learned.
Li, Jun; Shen, Jinni; Ma, Zuju; Wu, Kechen
2017-08-21
The thermoelectric conversion efficiency of a material relies on a dimensionless parameter (ZT = S 2 σT/κ). It is a great challenge in enhancing the ZT value basically due to that the related transport factors of most of the bulk materials are inter-conditioned to each other, making it very difficult to simultaneously optimize these parameters. In this report, the negative correlation between power factor and thermal conductivity of nano-scaled SnS 2 multilayers is predicted by high-level first-principle computations combined with Boltzmann transport theory. By diminishing the thickness of SnS 2 nanosheet to about 3 L, the S and σ along a direction simultaneously increase whereas κ decreases, achieving a high ZT value of 1.87 at 800 K. The microscopic mechanisms for this unusual negative correlation in nano-scaled two dimensional (2D) material are elucidated and attributed to the quantum confinement effect. The results may open a way to explore the high ZT thermoelectric nano-devices for the practical thermoelectric applications.
A critical evaluation of phosphate retardation and leaching in Hapludults
NASA Astrophysics Data System (ADS)
Dao, Thanh
2016-04-01
Nutrients used in production agriculture, in particular bioactive phosphorus (P), continue to present challenges in trying to reverse the degradation of fragile aquatic ecosystems. Soils treated with large amounts of nutrient-enriched animal manure have elevated P levels in regions of intensive animal agriculture and the residual effects of past large P additions were found to be long-lived. Mathematical models are increasingly used in the evaluation and development of mitigation strategies and sustainable management practices. A large number of predictive tools are currently used in the U.S. for simulating phosphorus environmental fate, including models such AGNPS (Agricultural Non-Point Source), FHANTM Field Hydrologic And Nutrient Transport Model (Field Hydrologic And Nutrient Transport Model), SWAT (Soil & Water Assessment Tool), or APEX (Agric. Policy/Environmental EXtender). The P routines in these models have had limited changes in spite of the advances in our understanding of speciation and transport of various P forms in soil and water systems that have occurred over the last three decades. We conducted soil sorption isotherm experiments that yielded basic information for estimating the Phosphorus Sorption coefficient (PSP) a key parameter used to allocate mineral P into soil labile, active, and stable pools. We compare these coefficients to parameters derived from breakthrough curves (BTC) for determining the extent of retardation and transport of phosphate supplied as KH2PO4 under a constant hydraulic head. Sigmoidal and multi-reaction rate models were observed in the BTCs of the anion, which undermine the rationale for using an overall simple partition coefficient to describe the transport and dispersal of phosphate in soil. Minimizing such generalities used in estimating nutrient availability and transport gives a more accurate picture of status of P in soil to conserve nutrients and minimize loss of excess P inputs to the environment.
Effect of doping on all TMC vertical heterointerfaces
NASA Astrophysics Data System (ADS)
Nair, Salil; Joy, Jolly; Patel, K. D.; Pataniya, Pratik; Solanki, G. K.; Pathak, V. M.; Sumesh, C. K.
2018-05-01
The present work reports the growth and basic characterizations of GeSePbx (x=0, 0.02, 0.04) layered mono chalcogenide single crystal substrates for preparation of heterojunction devices. These crystals are grown by Direct Vapour Transport (DVT) Technique [1,2]. Heterojunction interfaces on these substrates are prepared using thermal evaporation of nanocrystalline SnSe thin films having 5kÅ thickness. The electrical characterizations reveal the rectifying behavior of the devices based on which its ideality factor, barrier height, saturation current, series resistance etc. have been determined using thermionic emission model [3,4]. The device parameters have been determined and analyzed by three different methods viz. LnI-V, Cheung's method and Norde method [5]. The variation in the device parameters in light of doping is reported in the present work.
Basic problems and new potentials in monitoring sediment transport using Japanese pipe type geophone
NASA Astrophysics Data System (ADS)
Sakajo, Saiichi
2016-04-01
The authors have conducted a lot of series of monitoring of sediment transport by pipe type geophone in a model hydrological channel with various gradients and water discharge, using the various size of particles from 2 to 21 mm in the diameter. In the case of casting soils particle by particle into the water channel, 1,000 test cases were conducted. In the case of casting all soils at a breath into the water channel, 100 test cases were conducted. The all test results were totally analyzed by the conventional method, with visible judgement by video pictures. Then several important basic problems were found in estimating the volume and particle distributions by the conventional method, which was not found in the past similar studies. It was because the past studies did not consider the types of collisions between sediment particle and pipe. Based on these experiments, the authors have firstly implemented this idea into the old formula to estimate the amount of sediment transport. In the formula, two factors of 1) the rate of sensing in a single collision and 2) the rate of collided particles to a cast all soil particles were concretely considered. The parameters of these factors could be determined from the experimental results and it was found that the obtained formula could estimate grain size distribution. In this paper, they explain the prototype formula to estimate a set of volume and distribution of sediment transport. Another finding in this study is to propose a single collision as a river index to recognize its characteristics of sediment transport. This result could characterize the risk ranking of sediment transport in the rivers and mudflow in the mountainous rivers. Furthermore, in this paper the authors explain how the preciseness of the pipe geophone to sense the smaller sediment particles shall be improved, which has never been able to be sensed.
Utah Department of Transportation traffic operation center operator training.
DOT National Transportation Integrated Search
2010-11-01
This paper is a summary of work performed by the Utah Traffic Lab (UTL) to develop training programs for the Utah Department of Transportation (UDOT) Traffic Operations Center (TOC) operators at both the basic and advanced levels. The basic training ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, O J
1978-01-01
The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less
Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A; Yu, Jing-Yu; Lim, Dong Hyun; Rosania, Gus R
2013-08-01
We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in the extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types.
Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A.; Yu, Jing-yu; Lim, Dong Hyun; Rosania, Gus R.
2013-01-01
Purpose We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Methods Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Results Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Conclusion Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types. PMID:23708857
Electronic processes in TTF-derived complexes studied by IR spectroscopy
NASA Astrophysics Data System (ADS)
Graja, Andrzej
2001-09-01
We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.
NASA Technical Reports Server (NTRS)
Choudhury, A. K.; Djalali, M.
1975-01-01
In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.
Assessment of Driver's Reaction Times in Diverisified Research Environments
NASA Astrophysics Data System (ADS)
Guzek, Marek; Lozia, Zbigniew; Zdanowicz, Piotr; Jurecki, Rafał S.; Stańczyk, Tomasz L.; Pieniążek, Wiesław
2012-06-01
Reaction time is one of the basic parameters that characterize the driver and very important in the analysis of accident situations in road traffic. This paper describes research studies on the reaction time evaluation as conducted in three environments: on a typical device used in the transport psychology labs (the so-called reflexometer), in the driving simulator (autoPW) and on the driving test track (the Kielce Test Track). In all environments, the tests were performed for the same group of drivers. The article presents the characteristics of research in each environment as well as shows and compares exemplary results.
Simplified contaminant source depletion models as analogs of multiphase simulators
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.
2008-04-01
Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.
Simplified contaminant source depletion models as analogs of multiphase simulators.
Basu, Nandita B; Fure, Adrian D; Jawitz, James W
2008-04-28
Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field=0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.
Simulation of a high-efficiency silicon-based heterojunction solar cell
NASA Astrophysics Data System (ADS)
Jian, Liu; Shihua, Huang; Lü, He
2015-04-01
The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
Transport in a field-aligned magnetized plasma and neutral gas boundary: the end of the plasma
NASA Astrophysics Data System (ADS)
Cooper, Christopher; Gekelman, Walter
2012-10-01
A series of experiments at the Enormous Toroidal Plasma Device (ETPD) at UCLA study the Neutral Boundary Layer (NBL) between a magnetized plasma and a neutral gas in the direction of the confining field. A lanthanum hexaboride (LaB6) cathode and semi-transparent anode create a current-free, weakly ionized (ne/nn<5%), helium plasma (B˜250 G, Rplasma=10cm, ne<10^12cm^3, Te<3eV, and Ti˜Tn) that terminates on helium gas without touching any walls. Probes inserted into the plasma measure the basic plasma parameters in the NBL. The NBL begins where the plasma and neutral gas pressures equilibrate and the electrons and ions come to rest through collisions with the neutral gas. A field-aligned electric field (δφ/kTe˜1) is established self-consistently to maintain a current-free termination and dominates transport in the NBL, similar to a sheath but with a length L˜10λei˜10^2λen˜10^5λD. A two-fluid weakly-ionized transport model describes the system. A generalized Ohm's Law correctly predicts the electric field observed. The pressure balance criteria and magnitude of the termination electric field are confirmed over a scaling of parameters. The model can also be used to describe the atmospheric termination of aurora or fully detached gaseous divertors.
Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi
2010-01-01
A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.
NASA Technical Reports Server (NTRS)
1978-01-01
The possible degradation of optical samples exposed to the effluent gases and particulate matter emanating from the payload of the space transportation system during orbital operations may be determined by measuring two optical parameters for five samples exposed to this environment, namely transmittance and diffuse reflectance. Any changes detected in these parameters as a function of time during the mission are then attributable to surface contamination or to increased material absorption. These basic functions are attained in the optical effects module by virtue of the following subsystems which are described: module enclosure; light source with collimator and modulator; sample wheel with holders and rotary drive; photomultipliers for radiation detection; processing and sequencing electronic circuitry; and power conditioning interfaces. The functions of these subsystems are reviewed and specified.
A conceptual network model of the air transportation system. the basic level 1 model.
DOT National Transportation Integrated Search
1971-04-01
A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...
NASA Astrophysics Data System (ADS)
Yoon, H.; McKenna, S. A.; Hart, D. B.
2010-12-01
Heterogeneity plays an important role in groundwater flow and contaminant transport in natural systems. Since it is impossible to directly measure spatial variability of hydraulic conductivity, predictions of solute transport based on mathematical models are always uncertain. While in most cases groundwater flow and tracer transport problems are investigated in two-dimensional (2D) systems, it is important to study more realistic and well-controlled 3D systems to fully evaluate inverse parameter estimation techniques and evaluate uncertainty in the resulting estimates. We used tracer concentration breakthrough curves (BTCs) obtained from a magnetic resonance imaging (MRI) technique in a small flow cell (14 x 8 x 8 cm) that was packed with a known pattern of five different sands (i.e., zones) having cm-scale variability. In contrast to typical inversion systems with head, conductivity and concentration measurements at limited points, the MRI data included BTCs measured at a voxel scale (~0.2 cm in each dimension) over 13 x 8 x 8 cm with a well controlled boundary condition, but did not have direct measurements of head and conductivity. Hydraulic conductivity and porosity were conceptualized as spatial random fields and estimated using pilot points along layers of the 3D medium. The steady state water flow and solute transport were solved using MODFLOW and MODPATH. The inversion problem was solved with a nonlinear parameter estimation package - PEST. Two approaches to parameterization of the spatial fields are evaluated: 1) The detailed zone information was used as prior information to constrain the spatial impact of the pilot points and reduce the number of parameters; and 2) highly parameterized inversion at cm scale (e.g., 1664 parameters) using singular value decomposition (SVD) methodology to significantly reduce the run-time demands. Both results will be compared to measured BTCs. With MRI, it is easy to change the averaging scale of the observed concentration from point to cross-section. This comparison allows us to evaluate which method best matches experimental results at different scales. To evaluate the uncertainty in parameter estimation, the null space Monte Carlo method will be used to reduce computational burden of the development of calibration-constrained Monte Carlo based parameter fields. This study will illustrate how accurately a well-calibrated model can predict contaminant transport. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security (CFSES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
HMPT: Basic Radioactive Material Transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hypes, Philip A.
2016-02-29
Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2016-01-01
During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21-87) years; median time on PD 19 (3-100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters--rather than solute transport parameters--are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.
Multilayer coatings for flexible high-barrier materials
NASA Astrophysics Data System (ADS)
Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike
2009-06-01
A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.
Electron transport in the two-dimensional channel material - zinc oxide nanoflake
NASA Astrophysics Data System (ADS)
Lai, Jian-Jhong; Jian, Dunliang; Lin, Yen-Fu; Ku, Ming-Ming; Jian, Wen-Bin
2018-03-01
ZnO nanoflakes of 3-5 μm in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.
The solar power satellite concept - The past decade and the next decade
NASA Technical Reports Server (NTRS)
Kraft, C. C., Jr.
1979-01-01
Results of studies on the solar power satellite concept, currently under evaluation by NASA and the Department of Energy, are summarized. The basic advantages provided by the concept are the near-continuous access to sunlight and the freedom from atmospheric effects and cloud cover. The systems definition studies have considered photovoltaic and thermal energy conversion systems and found both to be technically feasible, with the photovoltaic approach being currently preferred. A microwave test program is under way which will provide quantitative data on critical parameters, including beam forming and steering accuracy. Ballistic and winged launch vehicles have been defined for the transportation of construction materials, with the Shuttle expected to provide low-cost transportation to and from space. A reference system has been outlined for evaluating the concept in terms of environmental and other considerations. Preliminary estimates of natural resource requirements and energy payback intervals are encouraging.
NASA Astrophysics Data System (ADS)
Cermak, P.; Ruleova, P.; Holy, V.; Prokleska, J.; Kucek, V.; Palka, K.; Benes, L.; Drasar, C.
2018-02-01
Thermoelectric effects are one of the promising ways to utilize waste heat. Novel approaches have appeared in recent decades aiming to enhance thermoelectric conversion. The theory of energy filtering of free carriers by inclusions is among the latest developed methods. Although the basic idea is clear, experimental evidence of this phenomenon is rare. Based on this concept, we searched suitable systems with stable structures showing energy filtering. Here, we report on the anomalous behavior of Cr-doped single-crystal Bi2Se3 that indicates energy filtering. The solubility of chromium in Bi2Se3 was studied, which is the key parameter in the formation process of inclusions. We present recent results on the effect of Cr-doping on the transport coefficients on a wide set of single crystalline samples. Magnetic measurements were used to corroborate the conclusions drawn from the transport and X-ray measurements.
Monitoring of fluvial transport in small upland catchments - methods and preliminary results
NASA Astrophysics Data System (ADS)
Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa
2014-06-01
In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order
Estimation of the viscosities of liquid binary alloys
NASA Astrophysics Data System (ADS)
Wu, Min; Su, Xiang-Yu
2018-01-01
As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.
Modeling Boulder Transport by Smooth Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Karpytchev, M.
2017-12-01
Large coastal boulders are often believed to have been transported by strong tsunami andstorm waves. Understanding and quantifying the boulder transport processes is, therefore,crucial for evaluation of strength and timing of the past tsunamis and storms. Over the last10-15 year, a series of studies have obtained estimates of basic wave parameters neededto set in motion a boulder of given size, shape and mass by using simplified paramaterizationsof fluid-particle interactions. Although, parameterizing the principal hydraulic forces drivingboulder transport was succefull in reproducing effects of several historical tsunamis, someimportant details about initiation of boulder motion and the contribution of coastal wavetransformations as well as of suspended sediment to enhancing coastal currents are still lacking.These essentially non-linear processes can be particularly important for distingushing, in everyparticular case, whether it is a storm wave or a tsunami (or both) that was capable to transportspecific boulder to a given site.In this study, we employ the Smooth Particle Hydrodynamics (SPH) method in orderto get new insights on interaction of waves with boulders in the nearshore area.We first compare the SPH predictions with available laboratory experiments and thenexplore the effects of realistic 3D coastal bathymetry, non-linear behaviour of coastal waves,boulders shape and the impact of bedload and suspended sediment on dislodgement and initiationof boulder transport.
Berezhkovskiy, Leonid M
2011-11-01
The influence of hepatic uptake and efflux, which includes passive diffusion and transporter-mediated component, on drug distribution volumes [steady-state volume of distribution (V(ss)) and terminal volume of distribution (V(β))], mean residence time (MRT), clearance, and terminal half-life is considered using a simplified physiologically based pharmacokinetic model. To account for hepatic uptake, liver is treated as two-compartmental unit with drug transfer from extracellular water into hepatocytes. The exactly calculated distribution volumes and MRT are compared with that obtained by the traditional equations based on the assumption of central elimination. It was found that V(ss) may increase more than 10-fold and V(β) more than 100-fold due to the contribution of transporter-mediated uptake. The terminal half-life may be substantially shortened (more than 100-fold) due to transporters. It may also decrease significantly due to the increase of intrinsic hepatic clearance (CL(int)), whereas hepatic clearance has already reached saturation (and stays close to the possible maximum value). It is shown that in case of transporter-mediated uptake of compound into hepatocytes, in the absence of efflux and passive diffusion (unidirectional uptake), hepatic clearance is independent of CL(int) and is determined by hepatic blood flow and uptake rate constant. The effects of transporter-mediated uptake are mostly pronounced for hydrophilic acidic compounds and moderately lipophilic neutral compounds. For basic compounds and lipophilic neutral compounds the change of distribution volumes due to transporters is rather unlikely. It was found that the traditional equations provide very accurate values of V(ss), V(β), and MRT in the absence of transporter action even for very low rates of passive diffusion. On the other hand, the traditional equations fail to provide the correct values of these parameters when the increase of distribution volumes due to transporters takes place, and actually yield the values substantially smaller than the true ones (up to an order of magnitude for V(ss) and MRT, and three orders of magnitude for V(β)). Copyright © 2011 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Henne, P. A.; Dahlin, J. A.; Peavey, C. C.; Gerren, D. S.
1982-01-01
The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded.
On contemporary sedimentation at the titanic survey area
NASA Astrophysics Data System (ADS)
Lukashin, V. N.
2009-12-01
The basic parameters of the sedimentation environment are considered: the Western Boundary Deep Current that transports sedimentary material and distributes it on the survey area; the nepheloid layer, its features, and the distribution of the concentrations and particulate standing crop in it; the distribution of the horizontal and vertical fluxes of the sedimentary material; and the bottom sediments and their absolute masses. The comparison of the vertical fluxes of the particulate matter and the absolute masses of the sediments showed that the contemporary fluxes of sedimentary material to the bottom provided the distribution of the absolute masses of the sediments in the survey area during the Holocene.
Arita, Chikashi; Foulaadvand, M Ebrahim; Santen, Ludger
2017-03-01
We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.
Experimental Demonstration of xor Operation in Graphene Magnetologic Gates at Room Temperature
NASA Astrophysics Data System (ADS)
Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Žutić, Igor; Krivorotov, Ilya; Sham, L. J.; Kawakami, Roland K.
2016-04-01
We report the experimental demonstration of a magnetologic gate built on graphene at room temperature. This magnetologic gate consists of three ferromagnetic electrodes contacting a single-layer graphene spin channel and relies on spin injection and spin transport in the graphene. We utilize electrical bias tuning of spin injection to balance the inputs and achieve "exclusive or" (xor) logic operation. Furthermore, a simulation of the device performance shows that substantial improvement towards spintronic applications can be achieved by optimizing the device parameters such as the device dimensions. This advance holds promise as a basic building block for spin-based information processing.
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Foulaadvand, M. Ebrahim; Santen, Ludger
2017-03-01
We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.
Basic Transportation Economics
NASA Technical Reports Server (NTRS)
Kneafsey, J. T.
1972-01-01
Transportation economics is an integral part of all transportation activities. Refined, detailed, and careful economic analyses consider conduct-performance methodology and the specifications of production, cost and demand functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn
2015-10-15
Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around themore » number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.« less
Modeling bed load transport and step-pool morphology with a reduced-complexity approach
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo
2016-04-01
Steep mountain channels are complex fluvial systems, where classical methods developed for lowland streams fail to capture the dynamics of sediment transport and bed morphology. Estimations of sediment transport based on average conditions have more than one order of magnitude of uncertainty because of the wide grain-size distribution of the bed material, the small relative submergence of coarse grains, the episodic character of sediment supply, and the complex boundary conditions. Most notably, bed load transport is modulated by the structure of the bed, where grains are imbricated in steps and similar bedforms and, therefore, they are much more stable then predicted. In this work we propose a new model based on a reduced-complexity (RC) approach focused on the reproduction of the step-pool morphology. In our 2-D cellular-automaton model entrainment, transport and deposition of particles are considered via intuitive rules based on physical principles. A parsimonious set of parameters allows the control of the behavior of the system, and the basic processes can be considered in a deterministic or stochastic way. The probability of entrainment of grains (and, as a consequence, particle travel distances and resting times) is a function of flow conditions and bed topography. Sediment input is fed at the upper boundary of the channel at a constant or variable rate. Our model yields realistic results in terms of longitudinal bed profiles and sediment transport trends. Phases of aggradation and degradation can be observed in the channel even under a constant input and the memory of the morphology can be quantified with long-range persistence indicators. Sediment yield at the channel outlet shows intermittency as observed in natural streams. Steps are self-formed in the channel and their stability is tested against the model parameters. Our results show the potential of RC models as complementary tools to more sophisticated models. They provide a realistic description of complex morphological systems and help to better identify the key physical principles that rule their dynamics.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Transportation enhancement guidelines : Colorado supplement
DOT National Transportation Integrated Search
2000-10-10
Under the Transportation Equity Act for the 21st Century (TEA-21), the states were given funds to enhance their transportation infrastructures, following basic guidelines set up in the law. The Colorado Department of Transportation (CDOT) developed t...
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
Environment parameters and basic functions for floating-point computation
NASA Technical Reports Server (NTRS)
Brown, W. S.; Feldman, S. I.
1978-01-01
A language-independent proposal for environment parameters and basic functions for floating-point computation is presented. Basic functions are proposed to analyze, synthesize, and scale floating-point numbers. The model provides a small set of parameters and a small set of axioms along with sharp measures of roundoff error. The parameters and functions can be used to write portable and robust codes that deal intimately with the floating-point representation. Subject to underflow and overflow constraints, a number can be scaled by a power of the floating-point radix inexpensively and without loss of precision. A specific representation for FORTRAN is included.
NASA Astrophysics Data System (ADS)
Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian
2014-10-01
Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.
NASA Astrophysics Data System (ADS)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej
2017-11-01
Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...
2017-11-13
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less
The Canadian elder standard - pricing the cost of basic needs for the Canadian elderly.
MacDonald, Bonnie-Jeanne; Andrews, Doug; Brown, Robert L
2010-03-01
We determined the after-tax income required to finance basic needs for Canadian elders living with different circumstances in terms of age, gender, city of residence, household size, homeowner or renter status, means of transportation, and health status. Using 2001 as our base year, we priced the typical expenses for food, shelter, medical, transportation, miscellaneous basic living items and home-based long-term care for elders living in five Canadian cities. This is the first Canadian study of basic living expenses tailored to elders instead of adults in general, prepared on an absolute rather than a relative basis. We also accounted for an individual's unique life circumstances and established the varying effect that they have on the cost of basic expenses, particularly for home care. We found that the maximum Guaranteed Income Supplement and Old Age Security benefit did not meet the cost of basic needs for an elder living in poor circumstances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Amiya K.
The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficultmore » and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.« less
The nature of the sunspot phenomenon. I - Solutions of the heat transport equation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.
Wen, Jessica; Koo, Soh Myoung; Lape, Nancy
2018-02-01
While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.
Thermoelectric properties of La3Cu3X4 (X = P, As, Sb, and Bi) compounds are examined using first-principles density functional theory and Boltzmann transport calculations. It is well known that the lattice thermal conductivity (κl) of bulk materials typically decreases with increasing atomic masses of the constituent elements. In this study, however, we observe contrary behavior: lighter mass, larger sound velocity La3Cu3P4 and La3Cu3As4 systems have lower κl than heavier mass, smaller sound velocity La3Cu3Sb4 and La3Cu3Bi4 systems. Analysis of three phonon scattering rates and other phonon properties demonstrate that the trend in κl behavior is governed by Grüneisen parameters, a measure of phonon anharmonicity. The Grüneisen parameters and lower κl of the P and As compounds are closely related to an avoided crossing between the lowest optical branches and the longitudinal acoustic branch, which results in abrupt changes in Grüneisen parameters. Additionally, electronic structure calculations show heavy and light bands near the band edges, which lead to large power factors important for good thermoelectric performance. T. P, C. A. P, L. L. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.
Smith, Kyle C; Weaver, James C
2011-08-19
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.
Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses
Smith, Kyle C.; Weaver, James C.
2012-01-01
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (~16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. PMID:21756883
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Time Variations in Forecasts and Occurrences of Large Solar Energetic Particle Events
NASA Astrophysics Data System (ADS)
Kahler, S. W.
2015-12-01
The onsets and development of large solar energetic (E > 10 MeV) particle (SEP) events have been characterized in many studies. The statistics of SEP event onset delay times from associated solar flares and coronal mass ejections (CMEs), which depend on solar source longitudes, can be used to provide better predictions of whether a SEP event will occur following a large flare or fast CME. In addition, size distributions of peak SEP event intensities provide a means for a probabilistic forecast of peak intensities attained in observed SEP increases. SEP event peak intensities have been compared with their rise and decay times for insight into the acceleration and transport processes. These two time scales are generally treated as independent parameters describing the development of a SEP event, but we can invoke an alternative two-parameter description based on the assumption that decay times exceed rise times for all events. These two parameters, from the well known Weibull distribution, provide an event description in terms of its basic shape and duration. We apply this distribution to several large SEP events and ask what the characteristic parameters and their dependence on source longitudes can tell us about the origins of these important events.
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2016-01-01
During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
NASA Technical Reports Server (NTRS)
Sohn, R. A.; Stroup, J. W.
1990-01-01
The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles.
Combining Deterministic structures and stochastic heterogeneity for transport modeling
NASA Astrophysics Data System (ADS)
Zech, Alraune; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg
2017-04-01
Contaminant transport in highly heterogeneous aquifers is extremely challenging and subject of current scientific debate. Tracer plumes often show non-symmetric but highly skewed plume shapes. Predicting such transport behavior using the classical advection-dispersion-equation (ADE) in combination with a stochastic description of aquifer properties requires a dense measurement network. This is in contrast to the available information for most aquifers. A new conceptual aquifer structure model is presented which combines large-scale deterministic information and the stochastic approach for incorporating sub-scale heterogeneity. The conceptual model is designed to allow for a goal-oriented, site specific transport analysis making use of as few data as possible. Thereby the basic idea is to reproduce highly skewed tracer plumes in heterogeneous media by incorporating deterministic contrasts and effects of connectivity instead of using unimodal heterogeneous models with high variances. The conceptual model consists of deterministic blocks of mean hydraulic conductivity which might be measured by pumping tests indicating values differing in orders of magnitudes. A sub-scale heterogeneity is introduced within every block. This heterogeneity can be modeled as bimodal or log-normal distributed. The impact of input parameters, structure and conductivity contrasts is investigated in a systematic manor. Furthermore, some first successful implementation of the model was achieved for the well known MADE site.
Development of Sediment Deposition Height Capacity Equation in Sewer Networks
NASA Astrophysics Data System (ADS)
Song, Yangho; Jo, Deokjun; Lee, Jungho
2017-04-01
Sediment characteristics and transport processes in sewers are markedly different from river. There is a wide range of particle densities and smaller particle size variation in sewers. Sediment supply and the available erodible material are more limited in sewers, and the diverse hydraulic characteristics in sewer systems are more unsteady. Prevention of sewer sediment accumulation, which can cause major sewer operational problems, is imperative and has been an immense concern for engineers. The effects of sediment formation in sewer systems, an appropriate sediment transport modelling with the ability to determine the location and depth of sediment deposit is needed. It is necessary to design efficiently considering the transfer and settling phenomena of the sediment coming into the sewer systems. During transport in the sewer, the minimum shear flow velocity and possible shear stress at which the sediment is transported smoothly. However, the interaction of sediment and fluid within the sewer systems has been very complex and the rigorous theoretical handling of this problem has not been developed. It is derived from the empirical values obtained from the river bed. The basic theory that particles float is based on the balance between sedimentation of particles by gravity and turbulent diffusion of fluids. There are many variables related. Representative parameters include complex phenomena due to collisions between particles, particles and fluids, and interactions between particles and tube walls. In general, the main parameters that form the boundary between the main transport and sediment are particle size, density, volume fraction, pipe diameter and gravity. As the particle size and volume concentration increase, the minimum feed rate increases and the same tendency is observed for the change of the capillary diameter. Based on this tendency, this study has developed a sediment deposition height capacity formula to take into consideration the sewer discharge capacity. The main objective in undertaking this research is the assessment of the sediment scouring and transporting capacity of the discharged. Acknowledgements This research was supported by a grant(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
An Extension of the Partial Credit Model with an Application to the Measurement of Change.
ERIC Educational Resources Information Center
Fischer, Gerhard H.; Ponocny, Ivo
1994-01-01
An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)
Cornelius, Talea; Jones, Maranda; Merly, Cynthia; Welles, Brandi; Kalichman, Moira O; Kalichman, Seth C
2017-04-01
Antiretroviral therapy (ART) has transformed HIV into a manageable illness. However, high levels of adherence must be maintained. Lack of access to basic resources (food, transportation, and housing) has been consistently associated with suboptimal ART adherence. Moving beyond such direct effects, this study takes a hierarchical resources approach in which the effects of access to basic resources on ART adherence are mediated through interpersonal resources (social support and care services) and personal resources (self-efficacy). Participants were 915 HIV-positive men and women living in Atlanta, GA, recruited from community centers and infectious disease clinics. Participants answered baseline questionnaires, and provided prospective data on ART adherence. Across a series of nested models, a consistent pattern emerged whereby lack of access to basic resources had indirect, negative effects on adherence, mediated through both lack of access to social support and services, and through lower treatment self-efficacy. There was also a significant direct effect of lack of access to transportation on adherence. Lack of access to basic resources negatively impacts ART adherence. Effects for housing instability and food insecurity were fully mediated through social support, access to services, and self-efficacy, highlighting these as important targets for intervention. Targeting service supports could be especially beneficial due to the potential to both promote adherence and to link clients with other services to supplement food, housing, and transportation. Inability to access transportation had a direct negative effect on adherence, suggesting that free or reduced cost transportation could positively impact ART adherence among disadvantaged populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, J.K.; Smith, C.L.
The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more thanmore » one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.« less
Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.
Tejeda-Mansir, A; Montesinos, R M; Guzmán, R
2001-10-30
The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.
ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms
NASA Astrophysics Data System (ADS)
Beltrán, José L.; Pignatello, Joseph J.; Teixidó, Marc
2016-09-01
Geochemists and soil chemists commonly use parametrized sorption data to assess transport and impact of pollutants in the environment. However, this evaluation is often hampered by a lack of detailed sorption data analysis, which implies further non-accurate transport modeling. To this end, we present a novel software tool to precisely analyze and interpret sorption isotherm data. Our developed tool, coded in Visual Basic for Applications (VBA), operates embedded within the Microsoft Excel™ environment. It consists of a user-defined function named ISOT_Calc, followed by a supplementary optimization Excel macro (Ref_GN_LM). The ISOT_Calc function estimates the solute equilibrium concentration in the aqueous and solid phases (Ce and q, respectively). Hence, it represents a very flexible way in the optimization of the sorption isotherm parameters, as it can be carried out over the residuals of q, Ce, or both simultaneously (i.e., orthogonal distance regression). The developed function includes the most usual sorption isotherm models, as predefined equations, as well as the possibility to easily introduce custom-defined ones. Regarding the Ref_GN_LM macro, it allows the parameter optimization by using a Levenberg-Marquardt modified Gauss-Newton iterative procedure. In order to evaluate the performance of the presented tool, both function and optimization macro have been applied to different sorption data examples described in the literature. Results showed that the optimization of the isotherm parameters was successfully achieved in all cases, indicating the robustness and reliability of the developed tool. Thus, the presented software tool, available to researchers and students for free, has proven to be a user-friendly and an interesting alternative to conventional fitting tools used in sorption data analysis.
Laboratory experimental investigation of heat transport in fractured media
NASA Astrophysics Data System (ADS)
Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria
2017-01-01
Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of Tang's solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimensionless parameters have permitted a better understanding of the dynamics of heat transport and the efficiency of heat exchange between the fractures and the matrix. The results have been compared with the previous experimental studies on solute transport.
Transportation systems evaluation methodology development and applications, phase 3
NASA Technical Reports Server (NTRS)
Kuhlthau, A. R.; Jacobson, I. D.; Richards, L. C.
1981-01-01
Transportation systems or proposed changes in current systems are evaluated. Four principal evaluation criteria are incorporated in the process, operating performance characteristics as viewed by potential users, decisions based on the perceived impacts of the system, estimating what is required to reduce the system to practice; and predicting the ability of the concept to attract financial support. A series of matrix multiplications in which the various matrices represent evaluations in a logical sequence of the various discrete steps in a management decision process is used. One or more alternatives are compared with the current situation, and the result provides a numerical rating which determines the desirability of each alternative relative to the norm and to each other. The steps in the decision process are isolated so that contributions of each to the final result are readily analyzed. The ability to protect against bias on the part of the evaluators, and the fact that system parameters which are basically qualitative in nature can be easily included are advantageous.
NASA Astrophysics Data System (ADS)
Gualtieri, Carlo; Filizola, Naziano; de Oliveira, Marco; Santos, Andrè Martinelli; Ianniruberto, Marco
2018-01-01
Confluences are a common feature of riverine systems, where are located converging flow streamlines and potential mixing of separate flows. The confluence of the Negro and Solimões Rivers ranks among the largest on Earth and its study may provide some general insights into large confluence dynamics and processes. An investigation was recently conducted about that confluence in both low and high-flow conditions using acoustic Doppler velocity profiling (ADCP), water quality sampling and high-resolution seismic data. First, the study gained insights into the characterization of the basic hydrodynamics parameters about the confluence as well as of those affecting sediments transport. Second, the analysis of the results showed that common hydrodynamic features noted in previous confluence studies were herein observed. Finally, some differences between low-flow and relatively high-flow conditions about the transfer of momentum from the Solimões to the Negro side of the Amazon Channel were identified.
A comparison of thermoelectric phenomena in diverse alloy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Bruce
1999-01-01
The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems inmore » order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.« less
Synthesis and characterization of Ag+ ion conducting glassy electrolytes
NASA Astrophysics Data System (ADS)
Chandra, Angesh; Bhatt, Alok; Chandra, Archana
2013-07-01
Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.
The input variables for a numerical model of reactive solute transport in groundwater include both transport parameters, such as hydraulic conductivity and infiltration, and reaction parameters that describe the important chemical and biological processes in the system. These pa...
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2017-10-27
Sequential peritoneal equilibration test (sPET) is based on the consecutive performance of the peritoneal equilibration test (PET, 4-hour, glucose 2.27%) and the mini-PET (1-hour, glucose 3.86%), and the estimation of peritoneal transport parameters with the 2-pore model. It enables the assessment of the functional transport barrier for fluid and small solutes. The objective of this study was to check whether the estimated model parameters can serve as better and earlier indicators of the changes in the peritoneal transport characteristics than directly measured transport indices that depend on several transport processes. 17 patients were examined using sPET twice with the interval of about 8 months (230 ± 60 days). There was no difference between the observational parameters measured in the 2 examinations. The indices for solute transport, but not net UF, were well correlated between the examinations. Among the estimated parameters, a significant decrease between the 2 examinations was found only for hydraulic permeability LpS, and osmotic conductance for glucose, whereas the other parameters remained unchanged. These fluid transport parameters did not correlate with D/P for creatinine, although the decrease in LpS values between the examinations was observed mostly for patients with low D/P for creatinine. We conclude that changes in fluid transport parameters, hydraulic permeability and osmotic conductance for glucose, as assessed by the pore model, may precede the changes in small solute transport. The systematic assessment of fluid transport status needs specific clinical and mathematical tools beside the standard PET tests.
DOT National Transportation Integrated Search
1977-04-01
The Urban Mass Transportation Administration carries out research and developmet on Areawide Demand Responsive Transportation (AWDRT) systems as part of the Bus and Paratransit Technoloy activities. AWDRT systems are basically the interation of flexi...
Finite element analysis of ion transport in solid state nuclear waste form materials
NASA Astrophysics Data System (ADS)
Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.
2017-09-01
Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.
Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2013-10-01
In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.
On Estimating End-to-End Network Path Properties
NASA Technical Reports Server (NTRS)
Allman, Mark; Paxson, Vern
1999-01-01
The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements per-formed by the connection endpoints. We consider two basic transport estimation problems: determining the setting of the retransmission timer (RTO) for are reliable protocol, and estimating the bandwidth available to a connection as it begins. We look at both of these problems in the context of TCP, using a large TCP measurement set [Pax97b] for trace-driven simulations. For RTO estimation, we evaluate a number of different algorithms, finding that the performance of the estimators is dominated by their minimum values, and to a lesser extent, the timer granularity, while being virtually unaffected by how often round-trip time measurements are made or the settings of the parameters in the exponentially-weighted moving average estimators commonly used. For bandwidth estimation, we explore techniques previously sketched in the literature [Hoe96, AD98] and find that in practice they perform less well than anticipated. We then develop a receiver-side algorithm that performs significantly better.
Very-large-area CCD image sensors: concept and cost-effective research
NASA Astrophysics Data System (ADS)
Bogaart, E. W.; Peters, I. M.; Kleimann, A. C.; Manoury, E. J. P.; Klaassens, W.; de Laat, W. T. F. M.; Draijer, C.; Frost, R.; Bosiers, J. T.
2009-01-01
A new-generation full-frame 36x48 mm2 48Mp CCD image sensor with vertical anti-blooming for professional digital still camera applications is developed by means of the so-called building block concept. The 48Mp devices are formed by stitching 1kx1k building blocks with 6.0 µm pixel pitch in 6x8 (hxv) format. This concept allows us to design four large-area (48Mp) and sixty-two basic (1Mp) devices per 6" wafer. The basic image sensor is relatively small in order to obtain data from many devices. Evaluation of the basic parameters such as the image pixel and on-chip amplifier provides us statistical data using a limited number of wafers. Whereas the large-area devices are evaluated for aspects typical to large-sensor operation and performance, such as the charge transport efficiency. Combined with the usability of multi-layer reticles, the sensor development is cost effective for prototyping. Optimisation of the sensor design and technology has resulted in a pixel charge capacity of 58 ke- and significantly reduced readout noise (12 electrons at 25 MHz pixel rate, after CDS). Hence, a dynamic range of 73 dB is obtained. Microlens and stack optimisation resulted in an excellent angular response that meets with the wide-angle photography demands.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD-2013 0037] Requested Administrative Waiver of the Coastwise Trade Laws: Vessel BASIC INSTINCT; Invitation for Public Comments AGENCY... BASIC INSTINCT is: Intended Commercial Use Of Vessel: Charters for day excursions. Geographic Region...
49 CFR 130.31 - Response plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Response plans. 130.31 Section 130.31... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.31 Response plans. (a) No person may transport oil subject to this part unless that person has a current basic...
49 CFR 130.31 - Response plans.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Response plans. 130.31 Section 130.31... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.31 Response plans. (a) No person may transport oil subject to this part unless that person has a current basic...
49 CFR 130.31 - Response plans.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Response plans. 130.31 Section 130.31... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.31 Response plans. (a) No person may transport oil subject to this part unless that person has a current basic...
49 CFR 130.31 - Response plans.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Response plans. 130.31 Section 130.31... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.31 Response plans. (a) No person may transport oil subject to this part unless that person has a current basic...
NASA Technical Reports Server (NTRS)
1983-01-01
An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
14 CFR 91.155 - Basic VFR weather minimums.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...
Gomes, P; Soares-da-Silva, P
2002-03-15
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.
NASA Technical Reports Server (NTRS)
Kuhlthau, A. R. (Editor)
1976-01-01
The workshop was organized around the study of the three basic transfer functions required to evaluate and/or predict passenger acceptance of transportation systems: These are the vehicle, passenger, and value transfer functions. For the purpose of establishing working groups corresponding to the basic transfer functions, it was decided to split the vehicle transfer function into two distinct groups studying surface vehicles and air/marine vehicles, respectively.
Two-dimensional advective transport in ground-water flow parameter estimation
Anderman, E.R.; Hill, M.C.; Poeter, E.P.
1996-01-01
Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.
BEARKIMPE-2: A VBA Excel program for characterizing granular iron in treatability studies
NASA Astrophysics Data System (ADS)
Firdous, R.; Devlin, J. F.
2014-02-01
The selection of a suitable kinetic model to investigate the reaction rate of a contaminant with granular iron (GI) is essential to optimize the permeable reactive barrier (PRB) performance in terms of its reactivity. The newly developed Kinetic Iron Model (KIM) determines the surface rate constant (k) and sorption parameters (Cmax &J) which were not possible to uniquely identify previously. The code was written in Visual Basic (VBA), within Microsoft Excel, was adapted from earlier command line FORTRAN codes, BEARPE and KIMPE. The program is organized with several user interface screens (UserForms) that guide the user step by step through the analysis. BEARKIMPE-2 uses a non-linear optimization algorithm to calculate transport and chemical kinetic parameters. Both reactive and non-reactive sites are considered. A demonstration of the functionality of BEARKIMPE-2, with three nitroaromatic compounds showed that the differences in reaction rates for these compounds could be attributed to differences in their sorption behavior rather than their propensities to accept electrons in the reduction process.
NASA Technical Reports Server (NTRS)
Collis, R. T. H.
1969-01-01
Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.
Basselin, M; Lipscomb, K J; Qiu, Y H; Kaneshiro, E S
2001-04-02
In order to improve culture media and to discover potential drug targets, uptake of an acidic, a basic, and an aromatic amino acid were investigated. Current culture systems, axenic or co-cultivation with mammalian cells, do not provide either the quantity or quality of cells needed for biochemical studies of this organism. Insight into nutrient acquisition can be expected to lead to improved culture media and improved culture growth. Aspartic acid uptake was directly related to substrate concentration, Q(10) was 1.10 at pH 7.4. Hence the organism acquired this acidic amino acid by simple diffusion. Uptake of the basic amino acid arginine and the aromatic amino acid tyrosine exhibited saturation kinetics consistent with carrier-mediated mechanisms. Kinetic parameters indicated two carriers (K(m)=22.8+/-2.5 microM and K(m)=3.6+/-0.3 mM) for arginine and a single carrier for tyrosine (K(m)=284+/-23 microM). The effects of other L-amino acids showed that the tyrosine carrier was distinct from the arginine carriers. Tyrosine and arginine transport were independent of sodium and potassium ions, and did not appear to require energy from ATP or a proton motive force. Thus facilitated diffusion was identified as the mechanism of uptake. After 30 min of incubation, these amino acids were incorporated into total lipids and the sedimentable material following lipid extraction; more than 90% was in the cellular soluble fraction.
The HelCat basic plasma science device
NASA Astrophysics Data System (ADS)
Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.
2015-01-01
The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1975-01-01
A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained showed no significant difference between service and new materials.
Digital Microwave System Design Guide.
1984-02-01
traffic analysis is a continuous effort, setting parameters for subsequent stages of expansion after the system design is finished. 2.1.3 Quality of...operational structure of the user for whom he is providing service. 2.2.3 Quality of Service. In digital communications, the basic performance parameter ...the basic interpretation of system performance is measured in terms of a single parameter , throughput. Throughput can be defined as the number of
Sekito, Takayuki; Chardwiriyapreecha, Soracom; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi
2014-01-01
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James
1994-01-01
The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.
The physiological determinants of drug-induced lysosomal stress resistance
Woldemichael, Tehetina; Rosania, Gus R.
2017-01-01
Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress. With this approach, parameters that are either directly involved in lysosomal ion transportation or lysosomal morphology were transiently altered to investigate their downstream effects on lysosomal physiology reflected by the changes they induce in lysosomal pH, chloride, and membrane potential. In addition, combinations of parameters were simultaneously altered to assess which parameter was most critical for recovery of normal lysosomal physiology. Lastly, to explore the relationship between organelle morphology and induced stress, we investigated the effects of parameters controlling organelle geometry on the restoration of normal lysosomal physiology following a transient perturbation. Collectively, our results indicate a key, interdependent role of V-ATPase number and membrane proton permeability in lysosomal stress tolerance. This suggests that the cell-type dependent regulation of V-ATPase subunit expression and turnover, together with the proton permeability properties of the lysosomal membrane, is critical to understand the differential sensitivity or resistance of different cell types to the toxic effects of lysosomotropic drugs. PMID:29117253
Henke, Adam; Kovalyova, Yekaterina; Dunn, Matthew; Dreier, Dominik; Gubernator, Niko G; Dincheva, Iva; Hwu, Christopher; Šebej, Peter; Ansorge, Mark S; Sulzer, David; Sames, Dalibor
2018-05-16
Ongoing efforts in our laboratories focus on design of optical reporters known as fluorescent false neurotransmitters (FFNs) that enable the visualization of uptake into, packaging within, and release from individual monoaminergic neurons and presynaptic sites in the brain. Here, we introduce the molecular probe FFN246 as an expansion of the FFN platform to the serotonergic system. Combining the acridone fluorophore with the ethylamine recognition element of serotonin, we identified FFN54 and FFN246 as substrates for both the serotonin transporter and the vesicular monoamine transporter 2 (VMAT2). A systematic structure-activity study revealed the basic structural chemotype of aminoalkyl acridones required for serotonin transporter (SERT) activity and enabled lowering the background labeling of these probes while maintaining SERT activity, which proved essential for obtaining sufficient signal in the brain tissue (FFN246). We demonstrate the utility of FFN246 for direct examination of SERT activity and SERT inhibitors in 96-well cell culture assays, as well as specific labeling of serotonergic neurons of the dorsal raphe nucleus in the living tissue of acute mouse brain slices. While we found only minor FFN246 accumulation in serotonergic axons in murine brain tissue, FFN246 effectively traces serotonin uptake and packaging in the soma of serotonergic neurons with improved photophysical properties and loading parameters compared to known serotonin-based fluorescent tracers.
Integrated design and manufacturing for the high speed civil transport
NASA Technical Reports Server (NTRS)
1993-01-01
In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT configuration. AE6352: Aerospace Systems Design Two was a continuation of Aerospace Systems Design One in which wing concepts were researched and analyzed in more detail. FLOPS and ACSYNT were again used at the system level while other off-the-shelf computer codes were used for more detailed wing disciplinary analysis and optimization. The culmination of all efforts and submission of this report conclude the first year's efforts of Georgia Tech's NASA USRA ADP. It will hopefully provide the foundation for next year's efforts concerning continuous improvement of integrated design and manufacturing for the HSCT.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Purpose. 1.21 Section 1.21 Transportation Office of the Secretary of Transportation ORGANIZATION AND DELEGATION OF POWERS AND DUTIES Office of the Secretary § 1.21 Purpose. This subpart establishes the basic organizational structure, spheres of primary...
How the Department of Transportation Supports the DOD
2016-03-09
launch rocket system onto a railroad car in Avon Park , Florida, in prepa- ration to transport the system to Fort Stewart, Georgia, for annual...graduate of the Transportation Officer Basic Course, the Combined Logistics Captains Ca- reer Course, and the Command and General Staff Officers
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Kanemaru, A.; Okumura, M.; Tohno, S.
2008-12-01
Biogenic VOC (BVOC) has comparably large contribution to generation of secondary air pollutants, such as photochemical oxidant or urban aerosol. In this study a BVOC emission inventory in the Kansai area, which is located in the central part of Japan, based on the field observation was developed. Some validations of the inventory were conducted by estimating the concentration distribution of oxidants with this developed and an existing BVOC emission inventory in Kansai area by meteorological model MM5 and atmospheric chemical transport model CMAQ. In the development of BVOC emission, the vegetation map by the Biodiversity Center of Japan which had been arranged as basic information on natural environmental preservation in a regional standard mesh (the third mesh) in 1999 was used. In this study isoprene and the mono-terpene were taken up as BVOC. Quercus crispula and Quercus serrata were selected as the source of isoprene, and Cryptomeria japonica, Chamaecyparis obtuse, Quercus phillyraeoides, Pinus densiflora, and Pinus thunbergii were selected as sources of mono-terpene. The parameter of the basic emission rate included in the model was decided by arranging the result of the observation in Kansai Research Center of Forestry and Forest Products Research Institute in each season. This emission flux from each species were calculated by G93 model by Guenther et al. and meteorological fields for the model, such as temperatures and sunlight intensities, were renewed hour by hour, therefore, this emission inventory has a high time resolution according to the season and time. In calculating meteorological fields, meteorological model MM5 Ver.3.7 was conducted in Japanese standard mesh in the selected five days of April, July, and October in 2004, and January 2005 respectively, and taking out the result of wind velocities and temperatures for substituting to the G93 model. Then atmospheric chemical transport model CMAQ Ver.4.6 with the emission inventories and meteorological fields was used for estimating secondary produced compounds concentration in the Kansai region. While the emission amount data of BVOC is also included in the EAGrid-Japan database, constructed by A. Kannari et al., another simulation with this existing BVOC emission inventory was conducted. As for other emission inventories of precursors, EAGrid-Japan was also used in both simulations. According to the result of estimation of BVOC emission, the total amount of BVOC is almost same as that of EAGrid-Japan, however, the ratio of isoprene to total BVOC emission is quite low in our estimation, due to the used vegetation map in this study, and the configuration of basic emission parameter in Autumn and Winter which is set to zero. According to the result of atmospheric chemical transport simulation with this developed BVOC inventory, oxidant concentrations are lower than observed values. This result suggests that the amount of isoprene emission strongly affected on the concentrations of oxidants, therefore, more accurate vegetation map data as a basis of BVOC emissions should be developed.
NASA Astrophysics Data System (ADS)
Sylus, K. J.; H., Ramesh
2018-04-01
In the coastal aquifer, seawater intrusion considered the major problem which contaminates freshwater and reduces its quality for domestic use. In order to find seawater intrusion, the groundwater quality analysis for the different chemical parameter was considered as the basic method to find out contamination. This analysis was carried out as per Bureau of Indian standards (2012) and World Health Organisations (1996). In this study, Bicarbonate parameter was considered for groundwater quality analysis which ranges the permissible limit in between 200-600 mg/l. The groundwater system was modelled using Groundwater modelling software (GMS) in which the FEMWATER package used for flow and transport. The FEMWATER package works in the principle of finite element method. The base input data of model include elevation, Groundwater head, First bottom and second bottom of the study area. The modelling results show the spatial occurrence of contamination in the study area of Netravathi and Gurpur river confluence at the various time period. Further, the results of the modelling also show that the contamination occurs up to a distance of 519m towards the freshwater zone of the study area.
ENHANCED BIODEGRADATION THROUGH IN-SITU AERATION
This presentation provided an overview of enhanced aerobic bioremediation using in-situ aeration or venting. The following topics were covered: (1) Basic discussion on biodegradation and respiration testing; (2) Basic discussion on volatilization, rate-limited mass transport, an...
Telecommunications handbook for transportation professionals : the basics of telecommunications.
DOT National Transportation Integrated Search
2004-08-01
This handbook was created to provide individuals responsible for managing and implementing Traffic : Signal, and Freeway Management programs with an understand of the basic technologies of : telecommunications. The handbook provides a brief look at t...
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
Proton transfer in organic scaffolds
NASA Astrophysics Data System (ADS)
Basak, Dipankar
This dissertation focuses on the fundamental understanding of the proton transfer process and translating the knowledge into design/development of new organic materials for efficient non-aqueous proton transport. For example, what controls the shuttling of a proton between two basic sites? a) Distance between two groups? or b) the basicity? c) What is the impact of protonation on molecular conformation when the basic sites are attached to rigid scaffolds? For this purpose, we developed several tunable proton sponges and studied proton transfer in these scaffolds theoretically as well as experimentally. Next we moved our attention to understand long-range proton conduction or proton transport. We introduced liquid crystalline (LC) proton conductor based on triphenylene molecule and established that activation energy barrier for proton transport is lower in the LC phase compared to the crystalline phase. Furthermore, we investigated the impact of several critical factors: the choice of the proton transferring groups, mobility of the charge carriers, intrinsic vs. extrinsic charge carrier concentrations and the molecular architectures on long-range proton transport. The outcome of this research will lead to a deeper understanding of non-aqueous proton transfer process and aid the design of next generation proton exchange membrane (PEM) for fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-02-01
Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).
Supervisor's Guide for Transporting Children with Special Health Needs.
ERIC Educational Resources Information Center
Maryland State Dept. of Health and Mental Hygiene, Baltimore.
This guide is intended to provide local school district supervisors of transportation in Maryland with a ready reference on the transportation of children with special health care needs. An introduction offers decision guidelines and legal definitions under Maryland regulations. Basic information on the following conditions are then summarized:…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi
2014-12-15
Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases monotonously with increasing WO{sub 3} content. • Interaction parameter decreases monotonously with increasing WO{sub 3} content. • Glasses with high WO{sub 3}contents is regarded as a floppy network system.« less
Rubin, Jacob
1983-01-01
Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.
Ochi, Takehiro; Yamada, Azusa; Naganuma, Yuki; Nishina, Noriko; Koyama, Hironari
2016-06-01
To determine the effect of long-distance (approximately 600 km) road transportation on the blood biochemistry of laboratory animals, we investigated the changes in serum biochemical parameters in healthy cynomolgus monkeys and beagle dogs transported by truck from Osaka to Tsukuba, Japan. The concentrations of serum cortisol, total bilirubin and aspartate aminotransferase in monkeys increased during transportation. Serum cortisol and total bilirubin levels in dogs also increased during transportation, but serum triglyceride decreased. Serum parameter values in truck-transported monkeys and dogs returned to baseline levels within two weeks following arrival. Taken together, these results suggest that a two-week acclimation period is the minimum duration required for adaptation following road transportation.
Transportation Planning with Immune System Derived Approach
NASA Astrophysics Data System (ADS)
Sugiyama, Kenji; Yaji, Yasuhito; Ootsuki, John Takuya; Fujimoto, Yasutaka; Sekiguchi, Takashi
This paper presents an immune system derived approach for planning transportation of materials between manufacturing processes in the factory. Transportation operations are modeled by Petri Net, and divided into submodels. Transportation orders are derived from the firing sequences of those submodels through convergence calculation by the immune system derived excitation and suppression operations. Basic evaluation of this approach is conducted by simulation-based investigation.
Particle transport through hydrogels is charge asymmetric.
Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E
2015-02-03
Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Danilov, Nikolay; Lyagaeva, Julia; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis
2017-08-16
The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed. To this purpose, a SOFC based on a recently developed BaCe 0.5 Zr 0.3 Dy 0.2 O 3-δ proton-conducting ceramic material was fabricated and tested. The basis of the strategy consists of the use of traditional SOFC testing techniques combined with the current interruption method and electromotive force measurements with a modified polarization-correction assessment. This allows one to determine simultaneously such important parameters as maximal power density; ohmic and polarization resistances; average ion transport numbers; and total, ionic, and electronic film conductivities and their activation energies. The proposed experimental procedure is expected to expand both fundamental and applied basics that could be further adopted to improve the technology of electrochemical devices based on proton-conducting electrolytes.
Modelling of radiation field around spent fuel container.
Kryuchkov, E F; Opalovsky, V A; Tikhomirov, G V
2005-01-01
Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiation properties of SNF. Information about SNF radiation properties is required at all stages of SNF management. In order to reach more effective utilisation of nuclear materials, new fuel cycles are under development based on uranium-plutonium, uranium-thorium and some other types of nuclear fuel. These promising types of nuclear fuel are characterised by quite different radiation properties at all the stages of nuclear fuel cycle (NFC) listed above. So, comparative analysis is required for radiation properties of different nuclear fuel types at different NFC stages. The results presented here were obtained from the numerical analysis of the radiation field around transport containers of different SNF types and in SNF storage. The calculations are carried out with the application of the computer code packages SCALE-4.3 and MCNP-4C. Comparison of the dose parameters obtained for different models of the transport container with experimental data allowed us to make certain conclusions about the errors of numerical results caused by the approximate geometrical description of the transport container.
The Merensky Reef in the Chineisky Pluton (Siberia)? A myth or a reality?
NASA Astrophysics Data System (ADS)
Zhitova, L.; Sharapov, V.; Zhukova, I.
2006-12-01
It is a dream of each geologist to find a `Merensky Reef' in each layered basic intrusion. Scientists have been trying many various techniques to come this dream to reality. The most perspective way to do so is probably a combination of physicochemical and computer modeling of layered basic intrusion crystallization together with fluid and melt inclusions studies in situ. This combination allows us to do the following: 1. To study boundary conditions for separation of low density gas phase and salt melt from the crystallizing primary basic melt in large magma chamber. 2. To determine correct quantitative parameters for formation of residual fluid-bearing brines extracting high metal concentrations. 3. To compute critical levels for substance differentiation at phase, geochemical and other `barriers' in those basic mantle-crust ore magmatic systems. 4. To model metal extraction, transportation and deposition at these `barriers' for systems of various `silicate melt - residual salt brines' ratios under the conditions of continental lithosphere. Comparison of real and modeled data allows us to conclude if a formation of a narrow zone of high metal concentration is possible at those critical levels (phase and geochemical `barriers'). The above-mentioned algorithm has been used for the Chineisky Pluton (the Transbaikal region, Siberia). Fortunately we have found our own `Merensky Reef', which happened to be a PGE enrichment marginal zone of the Chineisky Pluton due to specific fluid regime of crystallization! This work was supported by the Ministry for Russian Science and Education, Grant #DSP.2.1.1.702.
A kinetics database and scripts for PHREEQC
NASA Astrophysics Data System (ADS)
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
Gibboni, Robert R; Zimmerman, Prisca E; Gothard, Katalin M
2009-01-01
Scanpaths (the succession of fixations and saccades during spontaneous viewing) contain information about the image but also about the viewer. To determine the viewer-dependent factors in the scanpaths of monkeys, we trained three adult males (Macaca mulatta) to look for 3 s at images of conspecific facial expressions with either direct or averted gaze. The subjects showed significant differences on four basic scanpath parameters (number of fixations, fixation duration, saccade length, and total scanpath length) when viewing the same facial expression/gaze direction combinations. Furthermore, we found differences between monkeys in feature preference and in the temporal order in which features were visited on different facial expressions. Overall, the between-subject variability was larger than the within- subject variability, suggesting that scanpaths reflect individual preferences in allocating visual attention to various features in aggressive, neutral, and appeasing facial expressions. Individual scanpath characteristics were brought into register with the genotype for the serotonin transporter regulatory gene (5-HTTLPR) and with behavioral characteristics such as expression of anticipatory anxiety and impulsiveness/hesitation in approaching food in the presence of a potentially dangerous object.
Barth, Gilbert R.; Hill, M.C.
2005-01-01
This paper evaluates the importance of seven types of parameters to virus transport: hydraulic conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing physical-chemical filtration), and in-solution and adsorbed inactivation (representing virus inactivation). The first three parameters relate to subsurface transport in general while the last four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates, represent the interaction of viruses with the porous medium and their ability to persist. The importance of four types of observations to estimate the virus-transport parameters are evaluated: hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus concentrations. The evaluations are conducted using one- and two-dimensional homogeneous simulations, designed from published field experiments, and recently developed sensitivity-analysis methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption are most important to virus-transport predictions. Most observation types provide substantial information about hydraulic conductivity and porosity; only virus-concentration observations provide information about sorption and inactivation. The observations are not sufficient to estimate these important parameters uniquely. Even with all observation types, there is extreme parameter correlation between porosity and hydraulic conductivity and between the sorption rate and in-solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-solution inactivation.
Boisvert, Maude; Bouchard-Lévesque, Véronique; Fernandes, Sandra
2014-01-01
ABSTRACT Nuclear targeting of capsid proteins (VPs) is important for genome delivery and precedes assembly in the replication cycle of porcine parvovirus (PPV). Clusters of basic amino acids, corresponding to potential nuclear localization signals (NLS), were found only in the unique region of VP1 (VP1up, for VP1 unique part). Of the five identified basic regions (BR), three were important for nuclear localization of VP1up: BR1 was a classic Pat7 NLS, and the combination of BR4 and BR5 was a classic bipartite NLS. These NLS were essential for viral replication. VP2, the major capsid protein, lacked these NLS and contained no region with more than two basic amino acids in proximity. However, three regions of basic clusters were identified in the folded protein, assembled into a trimeric structure. Mutagenesis experiments showed that only one of these three regions was involved in VP2 transport to the nucleus. This structural NLS, termed the nuclear localization motif (NLM), is located inside the assembled capsid and thus can be used to transport trimers to the nucleus in late steps of infection but not for virions in initial infection steps. The two NLS of VP1up are located in the N-terminal part of the protein, externalized from the capsid during endosomal transit, exposing them for nuclear targeting during early steps of infection. Globally, the determinants of nuclear transport of structural proteins of PPV were different from those of closely related parvoviruses. IMPORTANCE Most DNA viruses use the nucleus for their replication cycle. Thus, structural proteins need to be targeted to this cellular compartment at two distinct steps of the infection: in early steps to deliver viral genomes to the nucleus and in late steps to assemble new viruses. Nuclear targeting of proteins depends on the recognition of a stretch of basic amino acids by cellular transport proteins. This study reports the identification of two classic nuclear localization signals in the minor capsid protein (VP1) of porcine parvovirus. The major protein (VP2) nuclear localization was shown to depend on a complex structural motif. This motif can be used as a strategy by the virus to avoid transport of incorrectly folded proteins and to selectively import assembled trimers into the nucleus. Structural nuclear localization motifs can also be important for nuclear proteins without a classic basic amino acid stretch, including multimeric cellular proteins. PMID:25078698
Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming
NASA Astrophysics Data System (ADS)
Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali
2018-03-01
Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.
1987-01-01
The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
NASA Astrophysics Data System (ADS)
Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.
2018-01-01
We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.
A simulator study of the interaction of pilot workload with errors, vigilance, and decisions
NASA Technical Reports Server (NTRS)
Smith, H. P. R.
1979-01-01
A full mission simulation of a civil air transport scenario that had two levels of workload was used to observe the actions of the crews and the basic aircraft parameters and to record heart rates. The results showed that the number of errors was very variable among crews but the mean increased in the higher workload case. The increase in errors was not related to rise in heart rate but was associated with vigilance times as well as the days since the last flight. The recorded data also made it possible to investigate decision time and decision order. These also varied among crews and seemed related to the ability of captains to manage the resources available to them on the flight deck.
Variable-Speed Power-Turbine for the Large Civil Tilt Rotor
NASA Technical Reports Server (NTRS)
Suchezky, Mark; Cruzen, G. Scott
2012-01-01
Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.
48 CFR 252.247-7023 - Transportation of supplies by sea.
Code of Federal Regulations, 2014 CFR
2014-10-01
... by sea. 252.247-7023 Section 252.247-7023 Federal Acquisition Regulations System DEFENSE ACQUISITION... of Provisions And Clauses 252.247-7023 Transportation of supplies by sea. As prescribed in 247.574(b.... Transportation of Supplies by Sea—Basic (APR 2014) (a) Definitions. As used in this clause— Components means...
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This guide is intended for use in teaching a course in transportation systems. The course, which has been designed for students in grades 9 and 10, is intended to provide a basic understanding of transportation systems and the role of energy systems in transportation. The first two sections discuss the guide's development within the framework of…
How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?
NASA Astrophysics Data System (ADS)
Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.
2017-12-01
Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (<30 second) for each of the 25 events. We use both datasets to test the most basic model available for turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here we use mooring data to deduce observation-based relations that can replace the previous assumptions. This improvement will significantly enhance the model predictions and allow us to better constrain the behaviour of turbidity currents.
Innovative educational modules for the next generation of transportation professionals.
DOT National Transportation Integrated Search
2012-07-01
Basic science and mathematics competence, including awareness of engineering careers, gained in grades K12 forms the foundation of an educated, capable, and technical future transportation workforce. This project developed a series of educational ...
Internet starter kit update 1997
DOT National Transportation Integrated Search
1997-01-01
The Bureau of Transportation Statistics (BTS) established an Internet site in 1995, and also produced an Internet Starter Kit not only to assist transportation professionals in accessing the new Internet site but also to give them a basic overview of...
Acclimatization of rats after ground transportation to a new animal facility.
Capdevila, S; Giral, M; Ruiz de la Torre, J L; Russell, R J; Kramer, K
2007-04-01
This study aimed to assess the time needed by rats, which had not been previously transported, to acclimate to a new environment after 5 h of van transport, using physiological parameters as measures of acclimatization. Animal shipping boxes and transport van conditions were standardized to minimize stress factors that could be associated with transport. Heart rate (HR), body temperature and activity levels were measured in the rats before and after transport using previously implanted radio-telemetry transmitters. Body weight was also recorded. All parameters were changed significantly except for body temperature. Results suggest that rats take three days to acclimate to a new environment, as measured by the physiological parameters of body weight, HR and activity.
Differences between evolution of Titan's and Earth's rivers - further conclusions
NASA Astrophysics Data System (ADS)
Misiura, Katarzyna; Czechowski, Leszek
2014-05-01
Titan is the only celestial body, beside the Earth, where liquid is present on the surface. Liquid forms a number of lakes and rivers. In our research we use numerical model of the river to determine differences of evolution of rivers on the Earth and on Titan. We have found that transport of sediments on Titan is more effective than on Earth for the same river geometry and discharge. We have found also the theoretical explanations for this conclusion. 2.Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This paper is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Basic equations of our model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. 4. Parameters of the model We considered our model for a few kinds of liquid found on Titan. The liquid that falls as a rain (75% methane, 25% nitrogen) has different properties than the fluid forming lakes (74% ethane, 10% methane, 7% propane, 8.5% butane, 0.5% nitrogen). Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that transport of material by Titan's rivers is more efficient than by terrestrial rivers of the same geometry parameters. We also distinguish that suspended load is the main way of transport in simulated Titan's conditions. In future we will do the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653).
Thermophysical properties of hydrophobised lime plaster - Experimental analysis of moisture effect
NASA Astrophysics Data System (ADS)
Pavlíková, Milena; Pernicová, Radka; Pavlík, Zbyšek
2016-07-01
Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.
Air transportation noise technology overview
NASA Technical Reports Server (NTRS)
Maggin, B.; Chestnutt, D.
1973-01-01
The NASA and DOT technology program planning for quieter air transportation systems is reviewed. To put this planning in context, the nature of the noise problem and the projected nature of the air transportation fleet are identified. The technology program planning reviewed here is discussed in relation to the following areas of activity: systems analysis, community acceptance, basic research and technology, and the various classes of civil aircraft, i.e. existing and advanced transports, powered-lift transports, and general aviation.
Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido
2009-01-01
Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.
NASA Technical Reports Server (NTRS)
Suit, W. T.; Batterson, J. G.
1986-01-01
The aerodynamics of the basic F-106B were determined at selected points in the flight envelope. The test aircraft and flight procedures were presented. Aircraft instrumentation and the data system were discussed. The parameter extraction procedure was presented along with a discussion of the test flight results. The results were used to predict the aircraft motions for maneuvers that were not used to determine the vehicle aerodynamics. The control inputs used to maneuver the aircraft to get data for the determination of the aerodynamic parameters were discussed in the flight test procedures. The results from the current flight tests were compared with the results from wind tunnel test of the basic F-106B.
Thermophysical properties of hydrophobised lime plasters - The influence of ageing
NASA Astrophysics Data System (ADS)
Pavlíková, Milena; Zemanová, Lucie; Pavlík, Zbyšek
2017-07-01
The building envelope is a principal responsible for buildings energy loses. Lime plasters as the most popular finishing materials of historical buildings and culture monuments influence the thermal behaviour as well as construction material of masonry. On this account, the effect of ageing on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime plaster is tested. The ageing is accelerated with controlled carbonation process to simulate the final plasters properties. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity are experimentally assessed using a transient impulse method. The obtained data revealed the significant changes of the both studied thermal parameters in the dependence on plasters composition and age. The assessed material parameters will be stored in a material database, where will find use as an input data for computational modelling of heat transport in this type of porous building materials and evaluation of energy-savings and sustainability issues.
Modelling of hydrogen permeability of membranes for high-purity hydrogen production
NASA Astrophysics Data System (ADS)
Zaika, Yury V.; Rodchenkova, Natalia I.
2017-11-01
High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).
Improving mobility and transportation options for Michigan's rural seniors : research spotlight.
DOT National Transportation Integrated Search
2012-12-01
Mobility challenges faced by older adults in : rural Michigan include long travel distances to obtain basic services or medical : care, and the limited availability of public, : private or volunteer transportation providers. Because of these challeng...
Transportation needs of disadvantaged populations : where, when, and how?
DOT National Transportation Integrated Search
2013-02-01
Transportation needs of disadvantaged populations (persons with disabilities, older adults, and the poor) are explored, and a methodology to address transit markets is examined to determine where, when, and how to provide for basic mobility needs ass...
Kinematic parameters of second-mode internal waves in the South China Sea
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Talipova, Tatiana; Kurkin, Andrey; Naumov, Alexander; Rybin, Artem
2017-04-01
Kinematic parameters of second-mode internal waves (in the framework of weakly nonlinear model of the Gardner equation) are calculated for the region of the South China Sea on a base of GDEM climatology. The prognostic parameters of the model include phase speed of long linear waves, coefficients of dispersion, quadratic and cubic nonlinearity, location (in vertical) of minimum, zero and maximum of the second vertical baroclinic mode and the ratio of its maximal and minimal values. All the parameters are presented in the form of geographical maps for winter (January) and summer (July) seasons. Frequence (in the sense of occurrence) histograms and scatter plots with depth are also given for all the parameters. Special attention is paid to the conditions of normalizing for internal waves of the second mode, as it possesses two extremes. Here some freedom exists, but for correct further modeling of internal waves within the Gardner model one has to fix and keep the same normalization (at maximum or at minimum) for whole a basin. Constructed arrays of prognostic parameters of second-mode internal waves are necessary for the estimations of shape and width (at fixed amplitude) of internal solitary and breather-like waves, limiting amplitudes of internal solitary waves of different families, for assessment of near-bed and near-surface flows induced by such waves, and for evaluation of transport distance for dissolved and suspended matter. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-05-00049.
Visual Basic programs for spreadsheet analysis.
Hunt, Bruce
2005-01-01
A collection of Visual Basic programs, entitled Function.xls, has been written for ground water spreadsheet calculations. This collection includes programs for calculating mathematical functions and for evaluating analytical solutions in ground water hydraulics and contaminant transport. Several spreadsheet examples are given to illustrate their use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poludniowski, Gavin G.; Evans, Philip M.
2013-04-15
Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii)more » suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size and emission wavelength. For a phosphor screen structure with a distribution in grain sizes and a spectrum of emission, only the average trend of Mie theory is likely to be important. This average behavior is well predicted by the more sophisticated of the geometrical optics models (GODM+) and in approximate agreement for the simplest (GODM). The root-mean-square differences obtained between predicted MTF and experimental measurements, using all three models (GODM, GODM+, Mie), were within 0.03 for both Lanex screens in all cases. This is excellent agreement in view of the uncertainties in screen composition and optical properties. Conclusions: If Mie theory is used for calculating transport parameters for light scattering and absorption in powdered-phosphor screens, care should be taken to average out the fine-structure in the parameter predictions. However, for visible emission wavelengths ({lambda} < 1.0 {mu}m) and grain radii (a > 0.5 {mu}m), geometrical optics models for transport parameters are an alternative to Mie theory. These geometrical optics models are simpler and lead to no substantial loss in accuracy.« less
A new multistage groundwater transport inverse method: presentation, evaluation, and implications
Anderman, Evan R.; Hill, Mary C.
1999-01-01
More computationally efficient methods of using concentration data are needed to estimate groundwater flow and transport parameters. This work introduces and evaluates a three‐stage nonlinear‐regression‐based iterative procedure in which trial advective‐front locations link decoupled flow and transport models. Method accuracy and efficiency are evaluated by comparing results to those obtained when flow‐ and transport‐model parameters are estimated simultaneously. The new method is evaluated as conclusively as possible by using a simple test case that includes distinct flow and transport parameters, but does not include any approximations that are problem dependent. The test case is analytical; the only flow parameter is a constant velocity, and the transport parameters are longitudinal and transverse dispersivity. Any difficulties detected using the new method in this ideal situation are likely to be exacerbated in practical problems. Monte‐Carlo analysis of observation error ensures that no specific error realization obscures the results. Results indicate that, while this, and probably other, multistage methods do not always produce optimal parameter estimates, the computational advantage may make them useful in some circumstances, perhaps as a precursor to using a simultaneous method.
49 CFR Appendix C to Part 192 - Qualification of Welders for Low Stress Level Pipe
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Qualification of Welders for Low Stress Level Pipe C Appendix C to Part 192 Transportation Other Regulations Relating to Transportation (Continued.... C Appendix C to Part 192—Qualification of Welders for Low Stress Level Pipe I. Basic test. The test...
49 CFR Appendix C to Part 192 - Qualification of Welders for Low Stress Level Pipe
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Qualification of Welders for Low Stress Level Pipe C Appendix C to Part 192 Transportation Other Regulations Relating to Transportation (Continued.... C Appendix C to Part 192—Qualification of Welders for Low Stress Level Pipe I. Basic test. The test...
49 CFR Appendix C to Part 192 - Qualification of Welders for Low Stress Level Pipe
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Qualification of Welders for Low Stress Level Pipe C Appendix C to Part 192 Transportation Other Regulations Relating to Transportation (Continued.... C Appendix C to Part 192—Qualification of Welders for Low Stress Level Pipe I. Basic test. The test...
49 CFR Appendix C to Part 192 - Qualification of Welders for Low Stress Level Pipe
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Qualification of Welders for Low Stress Level Pipe C Appendix C to Part 192 Transportation Other Regulations Relating to Transportation (Continued.... C Appendix C to Part 192—Qualification of Welders for Low Stress Level Pipe I. Basic test. The test...
49 CFR Appendix C to Part 192 - Qualification of Welders for Low Stress Level Pipe
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Qualification of Welders for Low Stress Level Pipe C Appendix C to Part 192 Transportation Other Regulations Relating to Transportation (Continued.... C Appendix C to Part 192—Qualification of Welders for Low Stress Level Pipe I. Basic test. The test...
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Educational Management Services.
Intended to be used as part of the existing school bus driver training program in New York State, the guide sets forth responsibilities and suggestions for transporting students with handicapping conditions. School district and BOCES (Board of Cooperative Educational Services) responsibilities for transportation are outlined. General guidelines…
Getting to High School in Baltimore: Student Commuting and Public Transportation
ERIC Educational Resources Information Center
Stein, Marc L.; Grigg, Jeffrey; Cronister, Curt; Chavis, Celeste; Connolly, Faith
2017-01-01
This report is the first publication of a multi-year project examining the relationship between student commutes using public transportation and on-time arrival and absenteeism. This report begins to develop a basic understanding of how students commute to high school in Baltimore with a focus on those using public transportation. The report is…
Seychelles Fisheries Connectivity and Transport Pathways
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Seychelles Fisheries Connectivity and Transport Pathways...Plateau. • Identification of physical oceanographic controls on mass and momentum transport on scales that are relevant to local ecology and fisheries and...Development of basic regional modeling capacity that Seychelles managers and fisheries can use to guide decisions and improve community outreach and
Technology assessment of future intercity passenger transporation systems. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1976-01-01
Technical, economic, environmental, and sociopolitical issues associated with future intercity transportation system options were assured. Technology assessment was used as a tool to assist in the identification of basic research and technology development tasks that should be undertaken. The emphasis was on domestic passenger transportation, but interfaces with freight and international transportation were considered.
ERIC Educational Resources Information Center
Oregon Univ., Eugene. Coll. of Business Administration.
The handbook accents the nature of transportation and related domestic and international business activities. Its objective is to provide basic information for the newcomer to the field. Chapters 2 and 3 describe assistance available from public and private agencies, as well as regulatory requirements for foreign traders and a resume of the…
Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.
2005-01-01
The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juxiu Tong; Bill X. Hu; Hai Huang
2014-03-01
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less
NASA Astrophysics Data System (ADS)
Amiruddin
2018-03-01
This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.
Arts, Johanna W M; Kramer, Klaas; Arndt, Saskia S; Ohl, Frauke
2012-01-01
Transportation of laboratory rodents unavoidably causes stress. Nevertheless, very little is known about the effects of transportation and how long it takes for the animal to recuperate. In the present study, we investigated physiological and behavioral parameters before and after transportation in both transported and nontransported animals. We took blood samples to analyze plasma corticosterone and creatine kinase, and performed physiological measurements by means of telemetry, measuring heart rate, blood pressure, and activity. Behavior was measured by means of home cage observations. This study revealed that plasma corticosterone levels increased at least up to 16 days after transportation, blood pressure and heart rate showed a lasting decrease after transportation, grooming increased, and social interactions and locomotor activity decreased after transportation. With these data we demonstrate that there is a long-lasting effect of transportation on physiological and behavioral parameters. Our results show that the stressful impact of transportation embraces all parts of the procedure, including for example the packing of the animals. Researchers must be aware of this impact and provide a sufficient acclimatization period to allow for the (re-)stabilization of parameters. Insufficient acclimatization periods endanger not only the reliability of research results but also the welfare of the animal used.
National Waterways Study: Findings and Conclusions (from Contractor Study Effort).
1982-05-01
basic process by which decisions are made by the Congress on the allocation of investments in the navigation system and the levels of funding for...waterways structures anticipates no significant change in the basic navigation technology in the foreseeable future* However, better management of the...other products discussed in this section. " As a result, water transportation handles only about one quarter of all basic and intermediate industrial
Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics.
Pandey, Parth Pratim; Jain, Sanjay
2016-09-01
Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as 'growth laws'. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three population variables: an amino acid pool, a pool of enzymes that transport an external nutrient and produce the amino acids, and ribosomes that catalyze their own and the enzymes' production from the amino acids. We assume that the cell allocates its resources between the enzyme sector and the ribosomal sector to maximize its growth rate. We show that the empirical growth laws follow from this assumption and derive analytic expressions for the phenomenological parameters in terms of the more basic model parameters. Interestingly, the maximization of the growth rate of the cell as a whole implies that the cell allocates resources to the enzyme and ribosomal sectors in inverse proportion to their respective 'efficiencies'. The work introduces a mathematical scheme in which the cellular growth rate can be explicitly determined and shows that two large parameters, the number of amino acid residues per enzyme and per ribosome, are useful for making approximations.
NASA Astrophysics Data System (ADS)
Satra, P.; Carsky, J.
2018-04-01
Our research is looking at the travel behaviour from a macroscopic view, taking one municipality as a basic unit. The travel behaviour of one municipality as a whole is becoming one piece of a data in the research of travel behaviour of a larger area, perhaps a country. A data pre-processing is used to cluster the municipalities in groups, which show similarities in their travel behaviour. Such groups can be then researched for reasons of their prevailing pattern of travel behaviour without any distortion caused by municipalities with a different pattern. This paper deals with actual settings of the clustering process, which is based on Bayesian statistics, particularly the mixture model. An optimization of the settings parameters based on correlation of pointer model parameters and relative number of data in clusters is helpful, however not fully reliable method. Thus, method for graphic representation of clusters needs to be developed in order to check their quality. A training of the setting parameters in 2D has proven to be a beneficial method, because it allows visual control of the produced clusters. The clustering better be applied on separate groups of municipalities, where competition of only identical transport modes can be found.
The Beauty and Biology of Pollen.
ERIC Educational Resources Information Center
Clay-Poole, Scott T.; Slesnick, Irwin L.
1983-01-01
Describes: basic features of pollen grains (shapes, apertures, layering of wall, exine sculpturing); strategies for pollination (anemophily--wind transported, zoophily--animal transported); and the structures specialized for each process. Gives instructions for using scanning electron microscope photographs and for collecting, identifying, and…
Transportation Conformity : A Basic Guide for State and Local Officials
DOT National Transportation Integrated Search
2013-03-01
This document describes the Concept of Operations (ConOps) for five connected vehicle vehicle-to-infrastructure (V2I) safety applications, and the underlying connected vehicle system, for crash avoidance for the U.S. Department of Transportation (USD...
Analysis of time series of Cs-137 concentration in sewage sludge at Fukushima City
NASA Astrophysics Data System (ADS)
Fischer, Helmut W.; Mack, Majvor; Shikano, Yudai; Yokoo, Yoshiyuki
2015-04-01
Daily routine radioisotope measurements of sewage sludge at the sewage plant of Fukushima City starting in 2011 have provided a detailed data set for the isotopes Cs-137, Cs-134 and I-131. The long-term trend for the Cs isotopes is comparable to data sets from Central Europe caused by the Chernobyl emissions in 1986 - the average Cs-137 concentration decreases faster in the first year (T1/2 < 1 yr) and slower in later years (T1/2 > 1 yr). Absolute values at Fukushima City are comparably low (mostly below 1 kBq/kg dry mass), due to the existence of separate wastewater and rainwater sewer systems, with only a small portion of rainwater and erosion products reaching the purification plant. Cs-134 data decay faster due to the shorter radioactive half-life. I-131 appears even years after the NPP releases and is assumed to originate from the common medical usage of the isotope for thyroid treatment. Short-term Cs data show a clear dependence on rainfall: each significant rainfall event causes a concentration increase in sludge of up to a factor of ten. Therefore the time series exhibits high short-term variability. Here we attempt to numerically analyse the detailed Cs-137 data set, using two separate approaches: The first method tries to connect parameters like the local surface deposition density, surface types (sealed/unsealed), rainfall statistics, rainfall-induced erosion rate, leakage rate from rainwater to wastewater sewer, transport time in the sewer and residence time in the purification plant for a basically physical approach. As not all parameters are known, values have to be assumed or can be extracted in the course of the fitting process. The second approach is purely heuristic, based on a water surface runoff and transport model. Whilst there is no ad-hoc physical meaning in the extracted parameters, they can possibly be interpreted as such when compared with physical modeling results. The combination of both methods is expected to give a deeper insight into the transport dynamics of radioisotopes in contaminated areas, helping to identify important sources and sinks and to predict long-term behaviour.
49 CFR 633.21 - Basic requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.21 Basic requirement. (a) If a project meets the definition of major capital project, the recipient shall submit a project management plan prepared in accordance with § 633.25 of this part, as a condition of Federal financial...
49 CFR 633.21 - Basic requirement.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.21 Basic requirement. (a) If a project meets the definition of major capital project, the recipient shall submit a project management plan prepared in accordance with § 633.25 of this part, as a condition of Federal financial...
49 CFR 633.21 - Basic requirement.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.21 Basic requirement. (a) If a project meets the definition of major capital project, the recipient shall submit a project management plan prepared in accordance with § 633.25 of this part, as a condition of Federal financial...
49 CFR 633.21 - Basic requirement.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.21 Basic requirement. (a) If a project meets the definition of major capital project, the recipient shall submit a project management plan prepared in accordance with § 633.25 of this part, as a condition of Federal financial...
49 CFR 633.21 - Basic requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.21 Basic requirement. (a) If a project meets the definition of major capital project, the recipient shall submit a project management plan prepared in accordance with § 633.25 of this part, as a condition of Federal financial...
Basic concepts of quantum interference and electron transport in single-molecule electronics.
Lambert, C J
2015-02-21
This tutorial outlines the basic theoretical concepts and tools which underpin the fundamentals of phase-coherent electron transport through single molecules. The key quantity of interest is the transmission coefficient T(E), which yields the electrical conductance, current-voltage relations, the thermopower S and the thermoelectric figure of merit ZT of single-molecule devices. Since T(E) is strongly affected by quantum interference (QI), three manifestations of QI in single-molecules are discussed, namely Mach-Zehnder interferometry, Breit-Wigner resonances and Fano resonances. A simple MATLAB code is provided, which allows the novice reader to explore QI in multi-branched structures described by a tight-binding (Hückel) Hamiltonian. More generally, the strengths and limitations of materials-specific transport modelling based on density functional theory are discussed.
The FTA Method And A Possibility Of Its Application In The Area Of Road Freight Transport
NASA Astrophysics Data System (ADS)
Poliaková, Adela
2015-06-01
The Fault Tree process utilizes logic diagrams to portray and analyse potentially hazardous events. Three basic symbols (logic gates) are adequate for diagramming any fault tree. However, additional recently developed symbols can be used to reduce the time and effort required for analysis. A fault tree is a graphical representation of the relationship between certain specific events and the ultimate undesired event (2). This paper deals to method of Fault Tree Analysis basic description and provides a practical view on possibility of application by quality improvement in road freight transport company.
Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-01-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John McCord
2007-09-01
This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of thismore » document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.« less
Wang, Wei; van Veen, Hendrik W.
2012-01-01
Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H+(Na+) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by components of the proton-motive force, the mutations also influence the energetics of transport. PMID:22761697
ERIC Educational Resources Information Center
Kiesner, Eileen
In this colorfully illustrated kindergarten activity, students read (and re-read) "My Blue Suitcase" (Sharon Katz), as an introduction to traveling. The book uses all of the basic forms of transportation and forms the transportation lesson outline. The activity gives the students the task of learning about each mode of transportation:…
Tornado-like transport in a magnetized plasma
NASA Astrophysics Data System (ADS)
Poulos, Matthew; van Compernolle, Bart; Morales, George
2017-10-01
Recent heat transport experiments conducted in the LAPD device at UCLA in which avalanche events have been previously documented have also lead to the identification of a new tornado-like transport phenomenon. These tornados occur much earlier than the avalanches events, essentially in the interval following the application of the bias voltage that causes the injection of an electron beam from a ring-shaped LaB6 cathode into the afterglow of a cold, magnetized plasma. The tornados exhibit a low-frequency (4 kHz) (much lower than drift-waves), spiraling, global eigenmode whose transient behavior is responsible for significant radial transport well outside the heated region. Detailed experimental observations are compared with a Braginskii transport code that includes the effects of ExB convection induced by the spiraling global eigenmode. New insights are gained into the necessary modifications of classical transport to accurately simulate the spiraling effects and the possible interaction with avalanches. This work is supported by the NSF/DOE partnership in basic plasma science and engineering, Grant Number 1619505, and is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF. Sponsored by DOE/NSF at BaPSF and NSF 1619505.
3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"
NASA Technical Reports Server (NTRS)
Douglass, A.
2005-01-01
The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.
DOT National Transportation Integrated Search
2004-01-09
This manual is a guide to the basic concepts involved and issues to be addressed in acquiring and maintaining vehicles, supporting infrastructure, and personnel needed for alternative transportation systems to serve visitors to national parks, recrea...
A Primer for Agent-Based Simulation and Modeling in Transportation Applications
DOT National Transportation Integrated Search
2013-11-01
Agent-based modeling and simulation (ABMS) methods have been applied in a spectrum of research domains. This primer focuses on ABMS in the transportation interdisciplinary domain, describes the basic concepts of ABMS and the recent progress of ABMS i...
The State of Intelligent Transportation Systems in the National Park System.
DOT National Transportation Integrated Search
2001-05-25
This paper was written to provide basic information in advance of the National Workshop to : Develop an Intelligent Transportation Systems Program Strategy for the National Park : Service, June 19-20, 2001, to be held at the Central Federal Lan...
14 CFR Appendix C to Part 23 - Basic Landing Conditions
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Basic Landing Conditions C Appendix C to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... extension (hydraulic shock absorber) Note (2) Note (2) Note (2) Note (2) Note (2). Shock absorber deflection...
ERIC Educational Resources Information Center
Scorer, Richard S.
The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…
Red Cell Properties after Different Modes of Blood Transportation
Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P.; Mañú-Pereira, María del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars
2016-01-01
Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca2+ handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na+, K+, Ca2+) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to the specialized laboratories may be the only option for some groups of patients with highly unstable RBCs. PMID:27471472
Magnetization and transport properties of single RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb)
NASA Astrophysics Data System (ADS)
Drachuck, Gil; Boehmer, Anna; Bud'Ko, Sergey L.; Canfield, Paul
Single crystals of RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb) were grown using a self-flux method and were characterized by room-temperature powder X-ray diffraction, anisotropic temperature and field dependent magnetization and temperature dependent in-plane resistivity. Anisotropic magnetic properties, arising mostly from crystal electric field (CEF) effects, were observed for most magnetic rare earths. The experimentally estimated CEF parameters B02 were calculated from the anisotropic paramagnetic θab and θcvalues. Ordering temperatures, as well as the polycrystalline averaged paramagnetic Curie-Weiss temperature, θave, were extracted from magnetization and resistivity measurements. Work done at Ames Laboratory was supported by US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH111358.
2010-11-01
hypovolemia in the prehospital environment. Photoplethysmogram waveforms and basic vital signs were recorded in trauma patients during prehospital...transport. Retrospectively, we used automated algorithms to select patient records with all five basic vital signs and 45 s or longer continuous, clean PPG... basic vital signs by applying multivariate regression. In 344 patients, RIWV max-min yielded areas under the ROC curves (AUCs) not significantly better
Morrissey, Kari M.; Stocker, Sophie L.; Chen, Eugene C.; Castro, Richard A.; Brett, Claire M.; Giacomini, Kathleen M.
2015-01-01
Background and Objectives In the proximal tubule, basic drugs are transported from the renal cells to the tubule lumen through the concerted action of the H+/organic cation antiporters, multidrug and toxin extrusion 1 (MATE1) and 2K (MATE2K). Dual inhibitors of the MATE transporters have been shown to have a clinically relevant effect on the pharmacokinetics of concomitantly administered basic drugs. However, the clinical impact of selective renal organic cation transport inhibition on the pharmacokinetics and pharmacodynamics of basic drugs, such as metformin, is unknown. This study sought to identify a selective MATE2K inhibitor in vitro and to determine its clinical impact on the pharmacokinetics and pharmacodynamics of metformin in healthy subjects. Methods A strategic cell-based screen of 71 U.S. Food and Drug Administration (FDA)-approved medications was conducted to identify selective inhibitors of renal organic cation transporters that are capable of inhibiting at clinically relevant concentrations. From this screen, nizatidine was identified and predicted to be a clinically potent and selective inhibitor of MATE2K-mediated transport. The effect of nizatidine on the pharmacokinetics and pharmacodynamics of metformin was evaluated in 12 healthy volunteers in an open-label, randomized, two-phase crossover drug-drug interaction (DDI) study. Results In healthy volunteers, the MATE2K-selective inhibitor, nizatidine, significantly increased the apparent volume of distribution, half-life and hypoglycemic activity of metformin. However, despite achieving unbound maximum concentrations greater than the in vitro inhibition potency (IC50) of MATE2K-mediated transport, nizatidine did not affect the renal clearance or net secretory clearance of metformin. Conclusion This study demonstrates that a selective inhibition of MATE2K by nizatidine, affected the apparent volume of distribution, tissue levels and peripheral effects of metformin. However, nizatidine did not alter systemic concentrations or the renal clearance of metformin, suggesting that specific MATE2K inhibition may not be sufficient to cause renal DDIs with basic drugs. PMID:26507723
Multiperiod planning tool for multisite pig production systems.
Nadal-Roig, E; Plà, L M
2014-09-01
This paper presents a multiperiod planning tool for multisite pig production systems based on Linear Programming (LP). The aim of the model is to help pig managers of multisite systems in making short-term decisions (mainly related to pig transfers between farms and batch management in fattening units) and mid-term or long-term decisions (according to company targets and expansion strategy). The model skeleton follows the structure of a three-site system that can be adapted to any multisite system present in the modern pig industry. There are three basic phases, namely, piglet production, rearing pigs, and fattening. Each phase involves a different set of farms; therefore, transportation between farms and delivering of pigs to the abattoir are under consideration. The model maximizes the total gross margin calculated from the income of sales to the abattoir and the production costs over the time horizon considered. Production cost depends on each type of farm involved in the process. Parameters like number of farms per phase and distance, farm capacity, reproduction management policies, feeding and veterinary expenses, and transportation costs are taken into account. The model also provides a schedule of transfers between farms in terms of animals to be transported and number of trucks involved. The use of the model is illustrated with a case study based on a real instance of a company located in Catalonia (Spain).
Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River
NASA Astrophysics Data System (ADS)
Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.
2016-07-01
Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.
Reactive solute transport in streams: 2. Simulation of a pH modification experiment
Runkel, Robert L.; McKnight, Diane M.; Bencala, Kenneth E.; Chapra, Steven C.
1996-01-01
We present an application of an equilibrium-based solute transport model to a pH-modification experiment conducted on the Snake River, an acidic, metal-rich stream located in the Rocky Mountains of Colorado. During the experiment, instream pH decreased from 4.2 to 3.2, causing a marked increase in dissolved iron concentrations. Model application requires specification of several parameters that are estimated using tracer techniques, mass balance calculations, and geochemical data. Two basic questions are addressed through model application: (1) What are the processes responsible for the observed increase in dissolved iron concentrations? (2) Can the identified processes be represented within the equilibrium-based transport model? Simulation results indicate that the increase in iron was due to the dissolution of hydrous iron oxides and the photoreduction of ferric iron. Dissolution from the streambed is represented by considering a trace compartment consisting of freshly precipitated hydrous iron oxide and an abundant compartment consisting of aged precipitates that are less soluble. Spatial variability in the solubility of hydrous iron oxide is attributed to heterogeneity in the streambed sediments, temperature effects, and/or variability in the effects of photoreduction. Solubility products estimated via simulation fall within a narrow range (pKsp from 40.2 to 40.8) relative to the 6 order of magnitude variation reported for laboratory experiments (pKsp from 37.3 to 43.3). Results also support the use of an equilibrium-based transport model as the predominate features of the iron and pH profiles are reproduced. The model provides a valuable tool for quantifying the nature and extent of pH-dependent processes within the context of hydrologic transport.
CIRMIS Data system. Volume 2. Program listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less
Reactive Solute Transport in Streams: 2. Simulation of a pH Modification Experiment
NASA Astrophysics Data System (ADS)
Runkel, Robert L.; McKnight, Diane M.; Bencala, Kenneth E.; Chapra, Steven C.
1996-02-01
We present an application of an equilibrium-based solute transport model to a pH-modification experiment conducted on the Snake River, an acidic, metal-rich stream located in the Rocky Mountains of Colorado. During the experiment, instream pH decreased from 4.2 to 3.2, causing a marked increase in dissolved iron concentrations. Model application requires specification of several parameters that are estimated using tracer techniques, mass balance calculations, and geochemical data. Two basic questions are addressed through model application: (1) What are the processes responsible for the observed increase in dissolved iron concentrations? (2) Can the identified processes be represented within the equilibrium-based transport model? Simulation results indicate that the increase in iron was due to the dissolution of hydrous iron oxides and the photoreduction of ferric iron. Dissolution from the streambed is represented by considering a trace compartment consisting of freshly precipitated hydrous iron oxide and an abundant compartment consisting of aged precipitates that are less soluble. Spatial variability in the solubility of hydrous iron oxide is attributed to heterogeneity in the streambed sediments, temperature effects, and/or variability in the effects of photoreduction. Solubility products estimated via simulation fall within a narrow range (pKsp from 40.2 to 40.8) relative to the 6 order of magnitude variation reported for laboratory experiments (pKsp from 37.3 to 43.3). Results also support the use of an equilibrium-based transport model as the predominate features of the iron and pH profiles are reproduced. The model provides a valuable tool for quantifying the nature and extent of pH-dependent processes within the context of hydrologic transport.
Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data
NASA Technical Reports Server (NTRS)
Hess, R. A.
1986-01-01
A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.
Improving Bedload Transport Predictions by Incorporating Hysteresis
NASA Astrophysics Data System (ADS)
Crowe Curran, J.; Gaeuman, D.
2015-12-01
The importance of unsteady flow on sediment transport rates has long been recognized. However, the majority of sediment transport models were developed under steady flow conditions that did not account for changing bed morphologies and sediment transport during flood events. More recent research has used laboratory data and field data to quantify the influence of hysteresis on bedload transport and adjust transport models. In this research, these new methods are combined to improve further the accuracy of bedload transport rate quantification and prediction. The first approach defined reference shear stresses for hydrograph rising and falling limbs, and used these values to predict total and fractional transport rates during a hydrograph. From this research, a parameter for improving transport predictions during unsteady flows was developed. The second approach applied a maximum likelihood procedure to fit a bedload rating curve to measurements from a number of different coarse bed rivers. Parameters defining the rating curve were optimized for values that maximized the conditional probability of producing the measured bedload transport rate. Bedload sample magnitude was fit to a gamma distribution, and the probability of collecting N particles in a sampler during a given time step was described with a Poisson probability density function. Both approaches improved estimates of total transport during large flow events when compared to existing methods and transport models. Recognizing and accounting for the changes in transport parameters over time frames on the order of a flood or flood sequence influences the choice of method for parameter calculation in sediment transport calculations. Those methods that more tightly link the changing flow rate and bed mobility have the potential to improve bedload transport rates.
Scaling and pedotransfer in numerical simulations of flow and transport in soils
USDA-ARS?s Scientific Manuscript database
Flow and transport parameters of soils in numerical simulations need to be defined at the support scale of computational grid cells. Such support scale can substantially differ from the support scale in laboratory or field measurements of flow and transport parameters. The scale-dependence of flow a...
Zamek-Gliszczynski, MJ; Lee, CA; Poirier, A; Bentz, J; Chu, X; Ellens, H; Ishikawa, T; Jamei, M; Kalvass, JC; Nagar, S; Pang, KS; Korzekwa, K; Swaan, PW; Taub, ME; Zhao, P; Galetin, A
2013-01-01
This white paper provides a critical analysis of methods for estimating transporter kinetics and recommendations on proper parameter calculation in various experimental systems. Rational interpretation of transporter-knockout animal findings and application of static and dynamic physiologically based modeling approaches for prediction of human transporter-mediated pharmacokinetics and drug–drug interactions (DDIs) are presented. The objective is to provide appropriate guidance for the use of in vitro, in vivo, and modeling tools in translational transporter science. PMID:23588311
da Costa, Bernardo M; Del Peso, Gloria; Bajo, Maria Auxiliadora; Carreño, Gilda; Ferreira, Marta; Ferreira, Carina; Selgas, Rafael
2017-05-29
In peritoneal dialysis (PD) patients, body fluid homeostasis is dependent on peritoneal elimination of water and solutes. Patients with less favorable peritoneal transport parameters should be more overhydrated. Despite this, the association between faster transport and overhydration (OH) is weak, and the factors that influence hydration status are still poorly characterized. Modified peritoneal equilibration tests (PET) offer us new parameters that might correlate better with hydration status, like free water transport (FWT). The aim of this study was thus to establish the relationships between new peritoneal transport parameters and body composition parameters estimated by bioimpedance spectroscopy (BIS). Prospective observational study on incident PD patients with a baseline and 1-year follow-up evaluation. 61 patients were included in the baseline evaluation, 19 of whom had a 1-year follow-up evaluation; 67.2% were fluid overloaded. There was a negative correlation between D/P creatinine and FWT (r = -0.598, p = 0.000). The fraction of FWT was negatively correlated with OH (r = -0.302, p = 0.018). Peritoneal protein losses (PPL) were also correlated with OH (r = 0.287, p = 0.028). There were no significant differences in OH according to small-solute transport status or fluid output parameters. After 1 year, we observed a significant worsening of renal function and an improvement in 24-hour ultrafiltration (UF) and hydration status, but we detected no differences in peritoneal transport of water or solutes that could explain these changes. There is a poor relationship between kidney/peritoneal function parameters and body composition parameters. The fraction of FWT and PPL may be underestimated markers of peritoneal health and of its contribution to the hydration status.
DOT National Transportation Integrated Search
2014-11-01
This document was developed for transportation professionals responsible for project : development and has three basic goals: : 1. Define project consistency and identify the causes of project inconsistencies and the : critical junctures in the proje...
ERIC Educational Resources Information Center
George Washington Univ., Washington, DC.
THIS HISTORICAL REVIEW OF TRANSPORTATION REPRESENTS AN EXPERIMENTAL BOOKLET OF ILLUSTRATIONS AND SINGLE TEXT FOR USE BY TEACHERS TO STIMULATE INTEREST IN READING AND IN RELATED MECHANICAL SUBJECT MATTER AREAS. IT AIMS TO HELP YOUNG PEOPLE LEARN BASIC PRINCIPLES AND CONCEPTS OF MECHANICS AND TECHNOLOGY. PHOTOGRAPHS AND ILLUSTRATIONS, SELECTED FROM…
A simulation of water pollution model parameter estimation
NASA Technical Reports Server (NTRS)
Kibler, J. F.
1976-01-01
A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György
2017-04-01
Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.
Alcalde, M J; Suárez, M D; Rodero, E; Álvarez, R; Sáez, M I; Martínez, T F
2017-09-01
Studies aimed to assess up to what extent farming and transport previous to slaughtering might affect physiology and meat quality in young goat kids are needed, with the ultimate purpose of promoting practices that minimize stress in these animals. In this regard the effects of on-farm management and transport duration on some physiological responses and meat quality parameters in goat kids were assessed. Two farms representing 'high' and 'low' welfare-friendly management practices were selected. In total, 32 suckling kids were withdrawn from each farm, transported by road for 2 or 6 h, and then slaughtered. Blood samples were collected both on-farm and in the slaughterhouse, and biochemistry, cell counts and haematocrit were determined. After slaughtering, carcass quality parameters were measured. Longissimus dorsi muscle was dissected and pH, colour parameters, water holding capacity and shear force were measured throughout 8-day ageing period. Results indicate that, regardless its duration, transport caused significant effects on some blood parameters suggesting stress in live animals, like glucose, cortisol or creatine kinase. Despite the marked stress status in animals, this condition was not decisively reflected on L. dorsi quality parameters, but some effects were observed regarding fat cover in carcasses and colour parameters. The results suggest that postmortem changes throughout ageing were more decisive in terms of meat quality than stressful management either on-farm or during transport.
Pet-Armacost, J J; Sepulveda, J; Sakude, M
1999-12-01
The US Department of Transportation was interested in the risks associated with transporting Hydrazine in tanks with and without relief devices. Hydrazine is both highly toxic and flammable, as well as corrosive. Consequently, there was a conflict as to whether a relief device should be used or not. Data were not available on the impact of relief devices on release probabilities or the impact of Hydrazine on the likelihood of fires and explosions. In this paper, a Monte Carlo sensitivity analysis of the unknown parameters was used to assess the risks associated with highway transport of Hydrazine. To help determine whether or not relief devices should be used, fault trees and event trees were used to model the sequences of events that could lead to adverse consequences during transport of Hydrazine. The event probabilities in the event trees were derived as functions of the parameters whose effects were not known. The impacts of these parameters on the risk of toxic exposures, fires, and explosions were analyzed through a Monte Carlo sensitivity analysis and analyzed statistically through an analysis of variance. The analysis allowed the determination of which of the unknown parameters had a significant impact on the risks. It also provided the necessary support to a critical transportation decision even though the values of several key parameters were not known.
Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael
2014-01-01
For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue
2018-06-01
Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.
Radiation Parameters of High Dose Rate Iridium -192 Sources
NASA Astrophysics Data System (ADS)
Podgorsak, Matthew B.
A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.
2015-01-01
Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1974-01-01
Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.
NASA Technical Reports Server (NTRS)
Pallmann, A. J.; Dannevik, W. P.; Frisella, S. P.
1973-01-01
Radiative-conductive heat transfer has been investigated for the ground-atmosphere system of the planet Mars. The basic goal was the quantitative determination of time dependent vertical distributions of temperature and static stability for Southern-Hemispheric summer season and middle and polar latitudes, for both dust-free and dust-laden atmospheric conditions. The numerical algorithm which models at high spatial and temporal resolution the thermal energy transports in the dual ground-atmosphere system, is based on solution of the applicable heating rate equation, including radiative and molecular-conductive heat transport terms. The two subsystems are coupled by an internal thermal boundary condition applied at the ground-atmosphere interface level. Initial data and input parameters are based on Mariner 4, 6, 7, and 9 measurements and the JPL Mars Scientific Model. Numerical experiments were run for dust-free and dust-laden conditions in the midlatitudes, as well as ice-free and ice-covered polar regions. Representative results and their interpretation are presented. Finally, the theoretical framework of the generalized problem with nonconservative Mie scattering and explicit thermal-convective heat transfer is formulated, and applicable solution algorithms are outlined.
A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.
Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A
2011-11-01
Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.
Parameters estimation for reactive transport: A way to test the validity of a reactive model
NASA Astrophysics Data System (ADS)
Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme
The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.
Monitoring population and environmental parameters of invasive mosquito species in Europe
2014-01-01
To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334
Shah, Ankur J; Donovan, Maureen D
2007-04-20
The purpose of this research was to compare the viscoelastic properties of several neutral and anionic polysaccharide polymers with their mucociliary transport rates (MTR) across explants of ciliated bovine tracheal tissue to identify rheologic parameters capable of predicting the extent of reduction in mucociliary transport. The viscoelastic properties of the polymer gels and gels mixed with mucus were quantified using controlled stress rheometry. In general, the anionic polysaccharides were more efficient at decreasing the mucociliary transport rate than were the neutral polymers, and a concentration threshold, where no further decreases in mucociliary transport occurred with increasing polymer concentration, was observed for several of the neutral polysaccharides. No single rheologic parameter (eta, G', G'', tan delta, G*) was a good predictor of the extent of mucociliary transport reduction, but a combination of the apparent viscosity (eta), tangent to the phase angle (tan delta), and complex modulus (G*) was found to be useful in the identification of formulations capable of decreasing MTR. The relative values of each of the rheologic parameters were unique for each polymer, yet once the relationships between the rheologic parameters and mucociliary transport rate reduction were determined, formulations capable of resisting mucociliary clearance could be rapidly optimized.
Similarity Theory and Dimensionless Numbers in Heat Transfer
ERIC Educational Resources Information Center
Marin, E.; Calderon, A.; Delgado-Vasallo, O.
2009-01-01
We present basic concepts underlying the so-called similarity theory that in our opinion should be explained in basic undergraduate general physics courses when dealing with heat transport problems, in particular with those involving natural or free convection. A simple example is described that can be useful in showing a criterion for neglecting…
Adult Basic Education Curriculum Guide for ABE Programs Serving Psychiatrically Ill Adult Students.
ERIC Educational Resources Information Center
Collier, Ezma V.
This curriculum guide is designed for use in adult basic education (ABE) programs serving psychiatrically ill adult students. Covered in the individual units are the following topics: personal hygiene and grooming, nutrition and health, money and money management, transportation and safety, government and law, values clarification, and…
DOT National Transportation Integrated Search
1979-01-01
The Standard Light Rail Vehicle (SLRV) is a 71-foot vehicle, articulated to negotiate curves down to 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operatin...
Modeling the complex shape evolution of sedimenting particle swarms in fractures
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Nitsche, L.; Pyrak-Nolte, L. J.
2016-12-01
The flow of micro- and nano-particles through subsurface systems can occur in several environments, such as hydraulic fracturing or enhanced oil recovery. Computer simulations were performed to advance our understanding of the complexity of subsurface particle swarm transport in fractures. Previous experiments observed that particle swarms in fractures with uniform apertures exhibit enhanced transport speeds and suppressed bifurcations for an optimal range of apertures. Numerical simulations were performed for low Reynolds number, no interfacial tension and uniform viscosity conditions with particulate swarms represented by point-particles that mutually interact through their (regularized) Stokeslet fields. A P3 M technique accelerates the summations for swarms exceeding 105 particles. Fracture wall effects were incorporated using a least-squares variant of the method of fundamental solutions, with grid mapping of the surface force and source elements within the fast-summation scheme. The numerical study was executed on the basis of dimensionless variables and parameters, in the interest of examining the fundamental behavior and relationships of particle swarms in the presence of uniform apertures. Model parameters were representative of particle swarms experiments to enable direct comparison of the results with the experimental observations. The simulations confirmed that the principal phenomena observed in the experiments can be explained within the realm of Stokes flow. The numerical investigation effectively replicated swarm evolution in a uniform fracture and captured the coalescence, torus and tail formation, and ultimate breakup of the particle swarm as it fell under gravity in a quiescent fluid. The rate of swarm evolution depended on the number of particles in a swarm. When an ideal number of particles was used, swarm transport was characterized by an enhanced velocity regime as observed in the laboratory data. Understanding the physics particle swarms in fractured media will improve the ability to perform controlled micro-particulate transport through rock. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.
2013-11-01
Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
1974-06-01
RESEARCH IN TRANSPORTATION NOISE (2ND), HELD AT NORTH CAROLINA STATE UNIVERSITY, RALEIGH, ON JUNE 5-7, 1974 BOOK OF PROCEEDINGS, VOLUME II NORTH... Research in Transportation Noise, Vol. II ?. Recipient. Accession No. 5. Report Dire June 5-7, 1974 6. 7. Aurhor(s> 8. Performing...Interagency Symposium on University Research in Transportation Noise was to continue to focus attention on university research in basic and applied
Knopman, Debra S.; Voss, Clifford I.
1988-01-01
Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
Desmet, Gert
2013-11-01
The finite length parallel zone (FPZ)-model is proposed as an alternative model for the axial- or eddy-dispersion caused by the occurrence of local velocity biases or flow heterogeneities in porous media such as those used in liquid chromatography columns. The mathematical plate height expression evolving from the model shows that the A- and C-term band broadening effects that can originate from a given velocity bias should be coupled in an exponentially decaying way instead of harmonically as proposed in Giddings' coupling theory. In the low and high velocity limit both models converge, while a 12% difference can be observed in the (practically most relevant) intermediate range of reduced velocities. Explicit expressions for the A- and C-constants appearing in the exponential decay-based plate height expression have been derived for each of the different possible velocity bias levels (single through-pore and particle level, multi-particle level and trans-column level). These expressions allow to directly relate the band broadening originating from these different levels to the local fundamental transport parameters, hence offering the possibility to include a velocity-dependent and, if, needed retention factor-dependent transversal dispersion coefficient. Having developed the mathematics for the general case wherein a difference in retention equilibrium establishes between the two parallel zones, the effect of any possible local variations in packing density and/or retention capacity on the eddy-dispersion can be explicitly accounted for as well. It is furthermore also shown that, whereas the lumped transport parameter model used in the basic variant of the FPZ-model only provides a first approximation of the true decay constant, the model can be extended by introducing a constant correction factor to correctly account for the continuous transversal dispersion transport in the velocity bias zones. Copyright © 2013 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
1979-02-01
The SLRV (Standard Light Rail Vehicle) is a 71-foot vehicle, articulated to negotiate curves down to a 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operat...
Oxygen Transport: A Simple Model for Study and Examination.
ERIC Educational Resources Information Center
Gaar, Kermit A., Jr.
1985-01-01
Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…
Effects of energy-related activities on the Atlantic Continental Shelf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manowitz, B
1975-01-01
Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)
ERIC Educational Resources Information Center
Leeds, Robin L.
1999-01-01
Administrators looking for budget relief might look for cost savings in pupil transportation. The basic school bus that meets federal standards, with no optional equipment, is the safest vehicle on the road. The best investment in a transportation program is driver training. Route and schedule changes might lead to an increase in efficiency…
DOT National Transportation Integrated Search
1979-02-01
The SLRV (Standard Light Rail Vehicle) is a 71-foot vehicle, articulated to negotiate curves down to 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operatin...
DOT National Transportation Integrated Search
2003-06-01
The purpose of this report is to share information regarding the types of public transportation data that can be provided via 511 and the issues associated with this provision [...] The rationale for this report is to produce a "511 basics" guide for...
SDMProjectBuilder: SWAT Setup for Nutrient Fate and Transport
This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) and explains how one uses SDMPB output to populate the Soil and Water Assessment Tool (SWAT) input files for nutrient fate and transport modeling in the Salt River Basin. It dem...
49 CFR Appendix to Part 380 - LCV Driver Training Programs, Required Knowledge and Skills
Code of Federal Regulations, 2012 CFR
2012-10-01
...-wheel training designed to provide an opportunity to develop the skills outlined under the Proficiency... Maneuvers; and Turning, Steering and Tracking units. A series of basic exercises is practiced at off-highway... Security, Transportation Security Administration; the U.S. Department of Transportation, Research and...
49 CFR Appendix to Part 380 - LCV Driver Training Programs, Required Knowledge and Skills
Code of Federal Regulations, 2011 CFR
2011-10-01
...-wheel training designed to provide an opportunity to develop the skills outlined under the Proficiency... Maneuvers; and Turning, Steering and Tracking units. A series of basic exercises is practiced at off-highway... Security, Transportation Security Administration; the U.S. Department of Transportation, Research and...
49 CFR Appendix to Part 380 - LCV Driver Training Programs, Required Knowledge and Skills
Code of Federal Regulations, 2010 CFR
2010-10-01
...-wheel training designed to provide an opportunity to develop the skills outlined under the Proficiency... Maneuvers; and Turning, Steering and Tracking units. A series of basic exercises is practiced at off-highway... Security, Transportation Security Administration; the U.S. Department of Transportation, Research and...
Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…
Energy Conservation in School Transportation Systems. Energy Conservation Guidelines 4.
ERIC Educational Resources Information Center
Giesguth, John, Ed.; Scheingold, Edward, Ed.
Fourth in a series of four publications on energy conservation, this booklet offers basic guidelines for sound fuel reduction in school transportation. The pamphlet suggests ways to implement energy-saving practices, guidelines for preventive maintenance of school vehicles, a definition of the drivers' and superintendents' roles, school policies…
Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations
NASA Astrophysics Data System (ADS)
Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo
2007-11-01
Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.
Blinov, N N
2000-01-01
Specifications for the main element of a modern X-ray diagnostic device an X-ray feeder are formulated. There is evidence for choosing its parameters. The new rational routine of X-ray study and the layout of a X-ray room are proposed. Information on the up-to-date commercially manufactured basic medium-frequency general-purpose X-ray feeder "URP-30 SCh Amico" is given.
Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling
NASA Astrophysics Data System (ADS)
Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.
2009-09-01
Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.
Transport Properties for Combustion Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.J.; Bastein, L.; Price, P.N.
This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecularmore » forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules and (6) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, which is important in predicting flame development.« less
Scale-Dependent Solute Dispersion in Variably Saturated Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockhold, Mark L.; Zhang, Z. F.; Bott, Yi-Ju
2016-03-29
This work was performed to support performance assessment (PA) calculations for the Integrated Disposal Facility (IDF) at the Hanford Site. PA calculations require defensible estimates of physical, hydraulic, and transport parameters to simulate subsurface water flow and contaminant transport in both the near- and far-field environments. Dispersivity is one of the required transport parameters.
USDA-ARS?s Scientific Manuscript database
Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of mi...
An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction
NASA Technical Reports Server (NTRS)
Juang, J. N.; Pappa, R. S.
1985-01-01
A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.
Yoshida, Kenta; Zhao, Ping; Zhang, Lei; Abernethy, Darrell R; Rekić, Dinko; Reynolds, Kellie S; Galetin, Aleksandra; Huang, Shiew-Mei
2017-09-01
Evaluation of drug-drug interaction (DDI) risk is vital to establish benefit-risk profiles of investigational new drugs during drug development. In vitro experiments are routinely conducted as an important first step to assess metabolism- and transporter-mediated DDI potential of investigational new drugs. Results from these experiments are interpreted, often with the aid of in vitro-in vivo extrapolation methods, to determine whether and how DDI should be evaluated clinically to provide the basis for proper DDI management strategies, including dosing recommendations, alternative therapies, or contraindications under various DDI scenarios and in different patient population. This article provides an overview of currently available in vitro experimental systems and basic in vitro-in vivo extrapolation methodologies for metabolism- and transporter-mediated DDIs. Published by Elsevier Inc.
Melt transport - a personal cashing-up
NASA Astrophysics Data System (ADS)
Renner, J.
2005-12-01
The flow of fluids through rocks transports heat and material and changes bulk composition. The large-scale chemical differentiation of the Earth is related to flow of partial melts. From the perspective of current understanding of tectonic processes, prominent examples of such transport processes are the formation of oceanic crust from ascending basic melts at mid-ocean ridges, melt segregation involved in the solidification of the Earth's core, and dissolution-precipitation creep in subduction channels. Transport and deformation cannot be separated for partially molten aggregates. Permeability is only defined as an instantaneous parameter in the sense that Darcy's law is assumed to be valid; it is not an explicit parameter in the fundamental mechanical conservation laws but can be derived from them in certain circumstances as a result of averaging schemes. The governing, explicit physical properties in the mechanical equations are the shear and bulk viscosities of the solid framework and the fluid viscosity and compressibility. Constraints on the magnitude of these properties are available today from experiments at specific loading configurations, i.e., more or less well constrained initial and boundary conditions. The melt pressure remains the least controlled parameter. While the fluid viscosity is often much lower than the solid's the two-phase aggregate may exhibit considerable strength owing to the difficulty of moving the fluid through the branched pore network. The extremes in behavior depend on the time scale of loading, as known from daily live experiences (spounge, Danish coffee-pot, human tissue between neighboring bones). Several theoretical approaches attempted to formulate mechanical constitutive equations for two-phase aggregates. An important issue is the handling of internal variables in these equations. At experimental conditions, grain size, melt pocket orientation and crystallographic orientation -prime candidates for internal variables- change considerably and potentially contribute significantly to the total dissipation of the external work. Theoretically founded evolution equations for these internal variables are lacking. In experiments, both the kinetics of grain growth but also the resultant shape of grains is affected by the presence of melt. The latter is linked to the alignment of melt pockets with the maximum principle stress. Thus, the melt redistribution causes direct anisotropy but also indirect through a shape-preferred orientation of solid grains. Notably, the foliation is parallel to the maximum principle stress in contrast to deformation controlled by crystal defects alone. Extremum principles developed for dissipation potentials in the framework of irreversible thermodynamics may allow us to postulate evolution equations. Owing to their significant effect on aggregate viscosities understanding the evolution of internal variables is mandatory for substantial large-scale modeling.
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1993-01-01
The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.
Developments in the kinetic theories of ion and electron swarms in the 1960s and 70s
NASA Astrophysics Data System (ADS)
Skullerud, H. R.
2017-04-01
The two decades between 1960 to 1980 saw quite a fantastic development in diverse areas in physics, and so also in the quantitative theoretical treatment and deeper understanding of the behaviour of isolated electrons and ions in gases—that is ‘charged particle swarm physics’. The evolution in swarm theory was strongly correlated with the contemporary advances in computer technology and the emergence of new and accurate experimental methods for finding charged particle transport parameters, as drift velocities, diffusion coefficients and reaction rates, and also with developments in neighbouring fields as plasma physics and the physics of electronic and molecular collisions. In 1960, low energy electron behaviour could already be calculated with reasonable accuracy in the so-called two-term approximation, while ion behaviour could only be treated at weak electric fields. By 1980, reasonably complete theories had been developed for perhaps most cases in interest—which is reflected in a number of reviews, books and journal articles published in the early 1980s. We will present a journey through the developments in this period and the basic theories behind the Boltzmann equation and Maxwell’s transfer equations. We will also indicate how the interaction between different studies of the same basic processes have led to the elimination of shortcomings and a better understanding.
Alternative Fuels Characterization | Transportation Research | NREL
. Research at NREL focuses on the basic properties of these fuels and what levels of oxygen can be tolerated conventional cars and on understanding the performance of flex-fuel vehicles that can operate on ethanol levels basic properties of these fuels, as well as determining what levels of oxygen can be tolerated in drop
Electromechanical properties of superconducting MgB2 wire
NASA Astrophysics Data System (ADS)
Salama, K.; Zhou, Y. X.; Hanna, M.; Alessandrini, M.; Putman, P. T.; Fang, H.
2005-12-01
The current-carrying capability of superconducting wires is degraded by stress. Therefore electromechanical properties are one of the key feedback parameters needed for progress in conductor applications. In this work, uniaxial tensile stresses and bending stresses were applied to Fe /MgB2 wires at room temperature, followed by measurement of critical current using a transport method at 4.2 K. Basic mechanical properties were calculated from the measured stress-strain characteristics. The irreversible tensile strain at which the critical current density of MgB2 wire starts to degrade was found to be 0.5%. In addition, the degradation of Ic with decreasing bending diameters was found to be very rapid for wires that were deformed after the heat treatment that forms the MgB2 compound, while not much degradation of Ic was found for wires that were bent before being annealed. SEM observations confirmed that cracks could be healed by post-annealing.
Li, Yuqin; Wang, Hao; Jia, Baoxiu; Liu, Caihong; Liu, Ke; Qi, Yongxiu; Hu, Zhide
2013-01-01
The mechanism of interaction between deoxynivalenol (DON) and human serum albumin (HSA) was studied using spectroscopic methods including fluorescence spectra, UV-VIS, Fourier transform infrared (FT-IR) and circular dichroism (CD). The quenching mechanism was investigated in terms of the association constants, number of binding sites and basic thermodynamic parameters. The distance between the HSA donor and the acceptor DON was 2.80 nm as derived from fluorescence resonance energy transfer. The secondary structure compositions of free HSA and its DON complexes were estimated by the FT-IR spectra. Alteration of the secondary protein structure in the presence of DON was confirmed by UV-VIS and CD spectroscopy. Molecular modelling revealed that a DON-protein complex was stabilised by hydrophobic forces and hydrogen bonding. It was potentially useful for elucidating the toxigenicity of DON when combined with biomolecular function effect, transmembrane transport, toxicological testing and the other experiments.
Marshall N. Rosenbluth Outstanding Doctoral Thesis Award: Magnetorotational turbulence and dynamo
NASA Astrophysics Data System (ADS)
Squire, Jonathan
2017-10-01
Accretion disks are ubiquitous in astrophysics and power some of the most luminous sources in the universe. In many disks, the transport of angular momentum, and thus the mass accretion itself, is thought to be caused by the magnetorotational instability (MRI). As the MRI saturates into strong turbulence, it also generates ordered magnetic fields, acting as a magnetic dynamo powered by the background shear flow. However, despite its importance for astrophysical accretion processes, basic aspects of MRI turbulence-including its saturation amplitude-remain poorly understood. In this talk, I will outline progress towards improving this situation, focusing in particular on the nonlinear shear dynamo and how this controls the turbulence. I will discuss how novel statistical simulation methods can be used to better understand this shear dynamo, in particular the distinct mechanisms that may play a role in MRI turbulence and how these depend on important physical parameters.
del Valle, J C; García Blanco, F; Catalán, J
2015-04-02
The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures. From the multiparameter approach using the four pure solvent scales one can draw the conclusion that (a) the solvent influence of [BMIM][BF4] parallels that of formamide at 293 K, both of them miscible with water; (b) [BMIM][PF6] shows a set of solvatochromic parameters similar to that of chloroacetonitrile, both of them water insoluble; and (c) that the corresponding solvent acidity and basicity of the ionic liquids can be explained to a great extent from the cation species by comparing the empirical parameters of [BMIM](+) with those of the solvent 1-methylimidazole. The insolubility of [BMIM][PF6] in water as compared to [BMIM][BF4] is tentatively connected to some extent to the larger molar volume of the anion [PF6](-), and to the difference in basicity of [PF6](-) and [BF4](-).
Zhang, Hubao; Schwartz, Frank W.; Wood, Warren W.; Garabedian, S.P.; LeBlanc, D.R.
1998-01-01
A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br−), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br− and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br− plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br−. The maximum extent of downward transport of the Li+ plume was less than that of the Br− plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could be much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br− plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.
Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.
Chen, Duan; Wei, Guo-Wei
2013-01-01
Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.
City electric transport preferences and motives of the Russian students
NASA Astrophysics Data System (ADS)
Romanova, Elena
2017-10-01
The share of electric transport in Russia is very small. Many cities refuse operation of urban electric passenger transportation. Basic reasons of it are high cost value and expensive operation. In Moscow the emphasis is placed on development of rail electric transport. It provides fast movement and pollutes the city environment less. The Moscow students understand that for an urban transportation ecological compatibility and safety are important but they choose buses and individual cars with the internal combustion engine for daily use. The main criteria of the choice are the speed and comfort. Ecological compatibility of the individual transport costs on one of the last places.
Galach, Magda; Antosiewicz, Stefan; Baczynski, Daniel; Wankowicz, Zofia; Waniewski, Jacek
2013-02-01
In spite of many peritoneal tests proposed, there is still a need for a simple and reliable new approach for deriving detailed information about peritoneal membrane characteristics, especially those related to fluid transport. The sequential peritoneal equilibration test (sPET) that includes PET (glucose 2.27%, 4 h) followed by miniPET (glucose 3.86%, 1 h) was performed in 27 stable continuous ambulatory peritoneal dialysis patients. Ultrafiltration volumes, glucose absorption, ratio of concentration in dialysis fluid to concentration in plasma (D/P), sodium dip (Dip D/P Sodium), free water fraction (FWF60) and the ultrafiltration passing through small pores at 60 min (UFSP60), were calculated using clinical data. Peritoneal transport parameters were estimated using the three-pore model (3p model) and clinical data. Osmotic conductance for glucose was calculated from the parameters of the model. D/P creatinine correlated with diffusive mass transport parameters for all considered solutes, but not with fluid transport characteristics. Hydraulic permeability (L(p)S) correlated with net ultrafiltration from miniPET, UFSP60, FWF60 and sodium dip. The fraction of ultrasmall pores correlated with FWF60 and sodium dip. The sequential PET described and interpreted mechanisms of ultrafiltration and solute transport. Fluid transport parameters from the 3p model were independent of the PET D/P creatinine, but correlated with fluid transport characteristics from PET and miniPET.
Characterization of chemical agent transport in paints.
Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent
2013-09-15
A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.
Jiang, Fangming; Peng, Peng
2016-01-01
Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
NASA Astrophysics Data System (ADS)
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.
Diversity in ABC transporters: Type I, II and III importers
Rice, Austin J.; Park, Aekyung
2014-01-01
ATP-binding cassette transporters are multi-subunit membrane pumps that transport substrates across membranes. While significant in the transport process, transporter architecture exhibits a range of diversity that we are only beginning to recognize. This divergence may provide insight into the mechanisms of substrate transport and homeostasis. Until recently, ABC importers have been classified into two types, but with the emergence of energy-coupling factor (ECF) transporters there are potentially three types of ABC importers. In this review, we summarize an expansive body of research on the three types of importers with an emphasis on the basics that underlie ABC importers, such as structure, subunit composition and mechanism. PMID:25155087
Effects of varying the step particle distribution on a probabilistic transport model
NASA Astrophysics Data System (ADS)
Bouzat, S.; Farengo, R.
2005-12-01
The consequences of varying the step particle distribution on a probabilistic transport model, which captures the basic features of transport in plasmas and was recently introduced in Ref. 1 [B. Ph. van Milligen et al., Phys. Plasmas 11, 2272 (2004)], are studied. Different superdiffusive transport mechanisms generated by a family of distributions with algebraic decays (Tsallis distributions) are considered. It is observed that the possibility of changing the superdiffusive transport mechanism improves the flexibility of the model for describing different situations. The use of the model to describe the low (L) and high (H) confinement modes is also analyzed.
Adaptive changes in renal mitochondrial redox status in diabetic nephropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu
2012-01-15
Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox statusmore » in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter. ►Oxidatively modified proteins in renal mitochondria from diabetic rats.« less
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A
2016-07-01
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.
Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald
2014-09-01
Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.
NASA Astrophysics Data System (ADS)
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-03-01
A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.
NASA Astrophysics Data System (ADS)
Rüegg, Andreas; Pilgram, Sebastian; Sigrist, Manfred
2008-06-01
We investigate the low-temperature electrical and thermal transport properties in atomically precise metallic heterostructures involving strongly correlated electron systems. The model of the Mott-insulator/band-insulator superlattice was discussed in the framework of the slave-boson mean-field approximation and transport quantities were derived by use of the Boltzmann transport equation in the relaxation-time approximation. The results for the optical conductivity are in good agreement with recently published experimental data on (LaTiO3)N/(SrTiO3)M superlattices and allow us to estimate the values of key parameters of the model. Furthermore, predictions for the thermoelectric response were made and the dependence of the Seebeck coefficient on model parameters was studied in detail. The width of the Mott-insulating material was identified as the most relevant parameter, in particular, this parameter provides a way to optimize the thermoelectric power factor at low temperatures.
DOT National Transportation Integrated Search
1979-02-01
The SLRV (Standard Light Rail Vehicle) is a 71-foot vehicle, articulated to negotiate curves down to a 32-foot radius and designed to operate at speeds up to 50 mph. Although the basic configuration and performance is standardized, the current operat...
Transportation Management. A Major Occupational Group in the Public Service Cluster.
ERIC Educational Resources Information Center
Gwinnett County Schools, GA.
Part of a course designed to acquaint high school students with basic information concerning careers in public service, this student guide is one of nine (each with accompaning teacher's manual) which constitute a course entitled "Orientation to Public Service." Focus in the units covered by the guide is on transportation management, one…
Plant Demands Require Reliable Instrumentation.
ERIC Educational Resources Information Center
McClain, Terry L.; Goswami, Santosh R.
1979-01-01
Listed are available control parameters including basic definitions and concepts and methods of measurement. The application of these parameters to the control of water and wastewater treatment plants is also outlined. (CS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.; Argo, R.S.
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the first of four volumes of the description of the CIRMIS Data System.« less
Spatially-protected Topology and Group Cohomology in Band Insulators
NASA Astrophysics Data System (ADS)
Alexandradinata, A.
This thesis investigates band topologies which rely fundamentally on spatial symmetries. A basic geometric property that distinguishes spatial symmetry regards their transformation of the spatial origin. Point groups consist of spatial transformations that preserve the spatial origin, while un-split extensions of the point groups by spatial translations are referred to as nonsymmorphic space groups. The first part of the thesis addresses topological phases with discretely-robust surface properties: we introduce theories for the Cnv point groups, as well as certain nonsymmorphic groups that involve glide reflections. These band insulators admit a powerful characterization through the geometry of quasimomentum space; parallel transport in this space is represented by the Wilson loop. The non-symmorphic topology we study is naturally described by a further extension of the nonsymmorphic space group by quasimomentum translations (the Wilson loop), thus placing real and quasimomentum space on equal footing -- here, we introduce the language of group cohomology into the theory of band insulators. The second part of the thesis addresses topological phases without surface properties -- their only known physical consequences are discrete signatures in parallel transport. We provide two such case studies with spatial-inversion and discrete-rotational symmetries respectively. One lesson learned here regards the choice of parameter loops in which we carry out transport -- the loop must be chosen to exploit the symmetry that protects the topology. While straight loops are popular for their connection with the geometric theory of polarization, we show that bent loops also have utility in topological band theory.
NASA Astrophysics Data System (ADS)
Popczyk, Marcin
2017-11-01
Polish hard coal mines commonly use hydromixtures in their fire prevention practices. The mixtures are usually prepared based on mass-produced power production wastes, namely the ashes resulting from power production [1]. Such hydromixtures are introduced to the caving area which is formed due to the advancement of a longwall. The first part of the article presents theoretical fundamentals of determining the parameters of gravitational hydraulic transport of water and ash hydromixtures used in the mining pipeline systems. Each hydromixture produced based on fine-grained wastes is characterized by specified rheological parameters that have a direct impact on the future flow parameters of a given pipeline system. Additionally, the gravitational character of the hydraulic transport generates certain limitations concerning the so-called correct hydraulic profile of the system in relation to the applied hydromixture characterized by required rheological parameters that should ensure safe flow at a correct efficiency [2]. The paper includes an example of a gravitational hydraulic transport system and an assessment of the correctness of its hydraulic profile as well as the assessment of the impact of rheological parameters of fine-grained hydromixtures (water and ash) produced based on laboratory tests, depending on the specified flow parameters (efficiency) of the hydromixture in the analyzed system.
Parameters of Solidifying Mixtures Transporting at Underground Ore Mining
NASA Astrophysics Data System (ADS)
Golik, Vladimir; Dmitrak, Yury
2017-11-01
The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.
A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less
Toward Understanding the Outer Membrane Uptake of Small Molecules by Pseudomonas aeruginosa*
Eren, Elif; Parkin, Jamie; Adelanwa, Ayodele; Cheneke, Belete; Movileanu, Liviu; Khalid, Syma; van den Berg, Bert
2013-01-01
Because small molecules enter Gram-negative bacteria via outer membrane (OM) channels, understanding OM transport is essential for the rational design of improved and new antibiotics. In the human pathogen Pseudomonas aeruginosa, most small molecules are taken up by outer membrane carboxylate channel (Occ) proteins, which can be divided into two distinct subfamilies, OccD and OccK. Here we characterize substrate transport mediated by Occ proteins belonging to both subfamilies. Based on the determination of the OccK2-glucuronate co-crystal structure, we identify the channel residues that are essential for substrate transport. We further show that the pore regions of the channels are rigid in the OccK subfamily and highly dynamic in the OccD subfamily. We also demonstrate that the substrate carboxylate group interacts with central residues of the basic ladder, a row of arginine and lysine residues that leads to and away from the binding site at the channel constriction. Moreover, the importance of the basic ladder residues corresponds to their degree of conservation. Finally, we apply the generated insights by converting the archetype of the entire family, OccD1, from a basic amino acid-specific channel into a channel with a preference for negatively charged amino acids. PMID:23467408
[Therapeutic bacterial vaccine Immunovac in complex treatment of patients with chronic pyoderma].
Sorokina, E V; Masiukova, S A; Kurbatova, E A; Egorova, N B
2010-01-01
Assessment of therapeutic effect and immunologic parameters during use of Immunovac vaccine for complex treatment of chronic forms of pyoderma. Ninety-five patients with different clinical forms of chronic pyoderma (furunculosis, hydradenitis, chronic ulcerative and ulcerative-vegetans pyoderma, folliculitis, impetigo etc.) were studied. Fifty-nine patients received immunotherapy with Immunovac vaccine together with basic therapy and 36 patients comprised control group treated only with basic therapy. Studied immunologic parameters were as follows: assessment of functional activity of lymphocytes, determination of lymphocyte subpopulations by flow cytometry, total immunoglobulins classes A, G, M by radial immunoduffusion, affinity of antibodies by enzyme immunoassay, levels of IFNalpha and IFNgamma. Use of Immunovac vaccine in complex treatment of patients with chronic forms of pyoderma enhanced clinical effect of basic therapy, which expressed in decrease of severity and frequency of disease relapses irrespective to clinical form and severity of pyoderma. Therapeutic effect during use of Immunovac vaccine amounted 84.7%, whereas in control group it was 41.6% after 12 months of follow-up. Increase of functional activity of neutrophils, subpopulation of lymphocytes with markers CD4+, CD8+, CD72+, affinity of antibodies as well as induced production of IFNalpha and IFNgamma was revealed. Correction of immunologic parameters correlated with positive results of patients treatment. Inclusion of bacterial polycomponent vaccine Immunovac in complex treatment of patients with chronic pyoderma promotes enhancement of therapeutic effect of basic therapy and correction of immunologic parameters.
NASA Astrophysics Data System (ADS)
Sawada, A.; Takebe, A.; Sakamoto, K.
2006-12-01
Quantitative evaluation of the groundwater velocity in the fractures is a key part of contaminants transport assessment especially in the radioactive waste disposal programs. In a hydrogeological model such as the discrete fracture network model, the transport aperture of water conducting fracture is one of the important parameters for evaluating groundwater velocity. Tracer tests that measure velocity (or transport aperture) are few compared with flow tests that measure transmissivity (or hydraulic aperture). Thus it is useful to estimate transport properties from flow properties. It is commonly assumed that flow and transport aperture are the same, and that aperture is related to the cube root of transmissivity by the parallel-plate analog. Actual field experiments, however, show transport and hydraulic apertures are not always the same, and that transport aperture relates to an empirical constant times the square root of transmissivity. Compared with these field results, the cubic law underestimates transport aperture and overestimates velocity. A possible source of this discrepancy is in-plane heterogeneity of aperture and transmissivity. To study this behavior, numerical simulations using MAFIC were conducted for a single fracture model with a heterogeneous aperture distribution. The simulations varied three parameters - the mean geometrical aperture, JRC (Joint Roughness Coefficient), and the contact area ratio (fracture contact area divided by total fracture area). For each model we determined the equivalent transmissivity and cubic-law aperture under steady flow conditions. Then we simulated mass transport using particle tracking through the same fracture. The transport aperture was estimated from the particle peak arrival time at the downstream boundary. The results show that the mean geometrical aperture is the most sensitive parameter among the three variable parameters in this study. It is also found that the contact area ratio affects transmissivity more than the JRC, and while the JRC strongly affects the velocity and transport aperture. Based on these results, a correlation between the transmissivity, the hydraulic conductivity and the transport aperture will be discussed.
Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.
2017-01-01
Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.
Rosenholm, Jarl B
2017-09-01
Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces
NASA Astrophysics Data System (ADS)
Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.
2018-04-01
Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.
NASA Astrophysics Data System (ADS)
Khe Sun, Pak; Vorona-Slivinskaya, Lubov; Voskresenskay, Elena
2017-10-01
The article highlights the necessity of a complex approach to assess economic security of municipalities, which would consider municipal management specifics. The approach allows comparing the economic security level of municipalities, but it does not describe parameter differences between compared municipalities. Therefore, there is a second method suggested: parameter rank order method. Applying these methods allowed to figure out the leaders and outsiders of the economic security among municipalities and rank all economic security parameters according to the significance level. Complex assessment of the economic security of municipalities, based on the combination of the two approaches, allowed to assess the security level more accurate. In order to assure economic security and equalize its threshold values, one should pay special attention to transportation system development in municipalities. Strategic aims of projects in the area of transportation infrastructure development in municipalities include the following issues: contribution into creating and elaborating transportation logistics and manufacture transport complexes, development of transportation infrastructure with account of internal and external functions of the region, public transport development, improvement of transport security and reducing its negative influence on the environment.
NASA Astrophysics Data System (ADS)
Brusseau, Mark L.; Xie, Lily H.; Li, Li
1999-04-01
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.
Overview of Dust Model Inter-comparison (DMIP) in East Asia
NASA Astrophysics Data System (ADS)
Uno, I.
2004-12-01
Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.« less
NASA Astrophysics Data System (ADS)
Vlasov, V. M.; Novikov, A. N.; Novikov, I. A.; Shevtsova, A. G.
2018-03-01
In the environment of highly developed urban agglomerations, one of the main problems arises - inability of the road network to reach a high level of motorization. The introduction of intelligent transport systems allows solving this problem, but the main issue in their implementation remains open: to what extent this or that method of improving the transport network will be effective and whether it is able to solve the problem of vehicle growth especially for the long-term period. The main goal of this work was the development of an approach to forecasting the increase in the intensity of traffic flow for a long-term period using the population and the level of motorization. The developed approach made it possible to determine the projected population and, taking into account the level of motorization, to determine the growth factor of the traffic flow intensity, which allows calculating the intensity value for a long-term period with high accuracy. The analysis of the main methods for predicting the characteristics of the transport stream is performed. The basic values and parameters necessary for their use are established. The analysis of the urban settlement is carried out and the level of motorization characteristic for the given locality is determined. A new approach to predicting the intensity of the traffic flow has been developed, which makes it possible to predict the change in the transport situation in the long term in high accuracy. Calculations of the magnitude of the intensity increase on the basis of the developed forecasting method are made and the errors in the data obtained are determined. The main recommendations on the use of the developed forecasting approach for the long-term functioning of the road network are formulated.
NASA Astrophysics Data System (ADS)
Jankovic, I.; Maghrebi, M.; Fiori, A.; Dagan, G.
2017-02-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the univariate PDF f(Y) and autocorrelation ρY. Solute transport is analyzed through the Breakthrough Curve (BTC) at planes at distance x from the injection plane. The study examines the impact of permeability structures sharing same f(Y) and ρY, but differing in higher order statistics (integral scales of variograms of Y classes) upon the numerical solution of flow and transport. Flow and transport are solved for 3D structures, rather than the 2D models adopted in most of previous works. We considered a few permeability structures, including the widely employed multi-Gaussian, the connected and disconnected fields introduced by Zinn and Harvey [2003] and a model characterized by equipartition of the correlation scale among Y values. We also consider the impact of statistical anisotropy of Y, the shape of ρY and local diffusion. The main finding is that unlike 2D, the prediction of the BTC of ergodic plumes by numerical and analytical models for different structures is quite robust, displaying a seemingly universal behavior, and can be used with confidence in applications. However, as a prerequisite the basic parameters KG (the geometric mean), σY2 (the logconductivity variance) and I (the horizontal integral scale of ρY) have to be identified from field data. The results suggest that narrowing down the gap between the BTCs in applications can be achieved by obtaining Kef (the effective conductivity) or U independently (e.g. by pumping tests), rather than attempting to characterize the permeability structure beyond f(Y) and ρY.
The circulation dynamics associated with a northern Benguela upwelling filament during October 2010
NASA Astrophysics Data System (ADS)
Muller, Annethea A.; Mohrholz, Volker; Schmidt, Martin
2013-07-01
Upwelling filaments, a common feature in all the major upwelling systems, are also regularly observed in the Benguela upwelling system and are thought to provide an effective mechanism for the exchange of matter between the shelf and the open ocean. The mesoscale dynamics of a northern Benguela upwelling filament located at approximately 18.5°S were examined and the associated transport was quantified. The development of the filament was tracked using optimal interpolated SST satellite data and two transects were consequently sampled across the feature using a towed undulating CTD (ScanFish). Additional hydrographic, nutrient and biological parameters were investigated at several stations along each transect. Following 7 days of strong upwelling favorable winds, sampling coincided with a period of relative wind relaxation and the filament was presumably in a decaying state. The basic mesoscale structure of the investigated filament corresponded well to what had previously been described for filaments from other eastern boundary current systems. The cross-shore transport associated with the filament was found to be significantly greater than the integrated Ekman transport in the region. With the combination of the high resolution dataset and a MOM-4 ecosystem model the complex mesoscale flow field associated with the feature could be observed and the counterbalancing onshore transport, associated with subsurface dipole eddies, was revealed within the filament. The results further suggest that an interaction between the offshore bending of flow at the Angola-Benguela Front (ABF), the detachment of the strong poleward flow from the coast as the thermal front meanders and the observed dipole eddies may be driving filament occurrence in the region off Cape Frio.
NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft
NASA Technical Reports Server (NTRS)
1981-01-01
Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.
Recoupment of Transportation Costs Incurred on Foreign Military Sales Cases
1990-02-23
We are providing this final report on the Audit of Recoupment of Transportation Costs Incurred on Foreign Military Sales (FMS) Cases for your review...and comment. The audit was made during the period December 1988 through March 1989. The primary objectives of the audit were to determine whether...subject area. During FY’s 1987 and 1988, FMS transportation billings to foreign customers amounted to $30.5 million. The audit showed that basic procedures
Anthology of the Development of Radiation Transport Tools as Applied to Single Event Effects
NASA Astrophysics Data System (ADS)
Reed, R. A.; Weller, R. A.; Akkerman, A.; Barak, J.; Culpepper, W.; Duzellier, S.; Foster, C.; Gaillardin, M.; Hubert, G.; Jordan, T.; Jun, I.; Koontz, S.; Lei, F.; McNulty, P.; Mendenhall, M. H.; Murat, M.; Nieminen, P.; O'Neill, P.; Raine, M.; Reddell, B.; Saigné, F.; Santin, G.; Sihver, L.; Tang, H. H. K.; Truscott, P. R.; Wrobel, F.
2013-06-01
This anthology contains contributions from eleven different groups, each developing and/or applying Monte Carlo-based radiation transport tools to simulate a variety of effects that result from energy transferred to a semiconductor material by a single particle event. The topics span from basic mechanisms for single-particle induced failures to applied tasks like developing websites to predict on-orbit single event failure rates using Monte Carlo radiation transport tools.
Diagnosis of dynamic process over rainband of landfall typhoon
NASA Astrophysics Data System (ADS)
Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li
2010-07-01
This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.
FLUKA: A Multi-Particle Transport Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan
2005-12-14
This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.
ERIC Educational Resources Information Center
Gwinnett County Schools, GA.
Part of a course designed to acquaint high school students with basic information concerning careers in public service, this teacher's manual is one of nine (each with accompanying student guide) which constitute a course entitled "Orientation to Public Service." Focus in the units covered by the manual is on transportation management,…
Overcoming Roadblocks on the Way to Work. Bridges to Work Field Report. Field Report Series.
ERIC Educational Resources Information Center
Elliott, Mark; Palubinsky, Beth; Tierney, Joseph
Five programs in the Bridges to Work demonstration have functioned as a labor market exchange--with the main services being job matching and transportation coordination--for job-ready inner-city workers and suburban employment. The logistics of transportation have been simple; the basics of employment have been an ongoing challenge. Sites have…
NASA Technical Reports Server (NTRS)
1979-01-01
Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.
2015-11-04
Coastal Inlets Research Program Coastal Modeling System The work unit develops the Coastal Modeling System ( CMS ) and conducts basic research to...further understanding of sediment transport under mixed oceanic and atmospheric forcing. The CMS is a suite of coupled two-dimensional numerical...models for simulations of waves, hydrodynamics, salinity and sediment transport, and morphology change. The CMS was identified by the USACE Hydraulics
Sealed reticulocyte ghosts. An experimental model for the study of Fe2+ transport.
Núñez, M T; Escobar, A; Ahumada, A; Gonzalez-Sepulveda, M
1992-06-05
Sealed right-side-out reticulocyte ghosts transported and accumulated iron offered as 59Fe(2+)-ascorbate (Km = 1.1 microM). The uptake of iron by ghosts presented the characteristics of a transporter-mediated process: it responded to osmotic challenge, the rate of transport increased when iron was present in the opposing side, and the transport rate showed the temperature dependence typical of membrane-mediated processes. The transport of iron was dependent on an associated influx of Cl- in order to keep electroneutrality. Other transition metals, such as Cu2+, Zn2+, and Co2+, inhibited the transport of Fe2+. The overall characteristics of the system make reticulocyte sealed ghosts a very useful model in determining the basic mechanisms of membrane iron transport.
NASA Technical Reports Server (NTRS)
Haefner, L. E.
1975-01-01
Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.
Chamber transport for heavy ion fusion
NASA Astrophysics Data System (ADS)
Olson, Craig L.
2014-01-01
A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.
Zhang, Jin; Zhang, Ai-Min; Zhang, Zong-Mei; Jia, Jin-Lin; Sui, Xin-Xin; Yu, Lu-Rui; Liu, Hai-Tao
2017-10-01
In this study, we aimed to investigate the efficacy of combined orthodontic-periodontic treatment in the treatment of patients with periodontitis and its effects on the levels of inflammatory cytokines. A total of 117 patients with periodontitis were randomly assigned to the basic group (receiving basic periodontic treatment, n = 58) and the combined group (receiving combined orthodontic-periodontic treatment, n = 59). In addition, 52 healthy people without periodontal disease were selected as the normal group. Probing depth, tooth mobility, plaque index, clinical attachment level, and sulcus bleeding index were recorded. ELISA was applied to detect gingival crevicular fluid (GCF) and serum levels of inflammatory cytokines. A 2-year clinical follow-up was conducted. Before treatment, the periodontal parameters (probing depth, tooth mobility, plaque index, clinical attachement level, and sulcus bleeding index) and GCF and serum levels of inflammatory cytokines (high-sensitivity C-reactive protein, interleukin-1β, interleukin-5, interleukin-6, interleukin-8, tumor necrosis factor-α, and prostaglandin E2) in the combined and basic groups were higher than those in the normal group. After 6 and 18 months of treatment, the periodontal parameters and GCF and serum levels of inflammatory cytokines decreased in the combined and basic groups. The periodontal parameters and the GCF and serum levels of inflammatory cytokines in the combined group were significantly lower than those in the basic group after 18 months of treatment. The combined group had a lower recurrence rate compared with the basic group. Combined orthodontic-periodontic treatment had good clinical efficacy in the treatment of periodontitis and could effectively decrease the levels of inflammatory cytokines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
NASA Astrophysics Data System (ADS)
Sanford, Ward E.; Niel Plummer, L.; Casile, Gerolamo; Busenberg, Ed; Nelms, David L.; Schlosser, Peter
2017-06-01
Dual-domain transport is an alternative conceptual and mathematical paradigm to advection-dispersion for describing the movement of dissolved constituents in groundwater. Here we test the use of a dual-domain algorithm combined with advective pathline tracking to help reconcile environmental tracer concentrations measured in springs within the Shenandoah Valley, USA. The approach also allows for the estimation of the three dual-domain parameters: mobile porosity, immobile porosity, and a domain exchange rate constant. Concentrations of CFC-113, SF6, 3H, and 3He were measured at 28 springs emanating from carbonate rocks. The different tracers give three different mean composite piston-flow ages for all the springs that vary from 5 to 18 years. Here we compare four algorithms that interpret the tracer concentrations in terms of groundwater age: piston flow, old-fraction mixing, advective-flow path modeling, and dual-domain modeling. Whereas the second two algorithms made slight improvements over piston flow at reconciling the disparate piston-flow age estimates, the dual-domain algorithm gave a very marked improvement. Optimal values for the three transport parameters were also obtained, although the immobile porosity value was not well constrained. Parameter correlation and sensitivities were calculated to help quantify the uncertainty. Although some correlation exists between the three parameters being estimated, a watershed simulation of a pollutant breakthrough to a local stream illustrates that the estimated transport parameters can still substantially help to constrain and predict the nature and timing of solute transport. The combined use of multiple environmental tracers with this dual-domain approach could be applicable in a wide variety of fractured-rock settings.
NASA Astrophysics Data System (ADS)
Finchenko, V. S.; Ivankov, A. A.; Shmatov, S. I.; Mordvinkin, A. S.
2015-12-01
The article presents the initial data for the ExoMars landing module aerothermodynamic calculations, used calculation methods, the calculation results of aerodynamic characteristics of the landing module shape and structural parameters of thermal protection selected during the conceptual design phase. Also, the test results of the destruction of the thermal protection material and comparison of the basic characteristics of the landing module with a front shield in the form of a cone and a spherical segment are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Fedotov, A.; Gassner, D.
The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.
NASA Astrophysics Data System (ADS)
Brinzari, V.; Nika, D. L.; Damaskin, I.; Cho, B. K.; Korotcenkov, G.
2016-07-01
In this work, an approach to the numerical study of the thermoelectric parameters of nanoscale indium tin oxide (ITO, Sn content<10 at%) based on an electron filtering model (EFM) was developed. Potential barriers at grain boundaries were assumed to be responsible for a filtering effect. In the case of the dominant inelastic scattering of electrons, the maximal distance between potential barriers was limited in this modified model. The algorithm for such characteristic length calculation was proposed, and its value was evaluated for ITO. In addition, the contributions of different scattering mechanisms (SMs) in electron transport were examined. It was confirmed that in bulk ITO, the scattering on polar optical phonons (POPs) and ionized impurities dominates, limiting electron transport. In the framework of the filtering model, the basic thermoelectric parameters (i.e., electrical conductivity, mobility, Seebeck coefficient, and power factor (PF)) were calculated for ITO in the temperature range of 100-500 °C as a function of potential barrier height. The results demonstrated a sufficient rise of the Seebeck coefficient with an increase in barrier height and specific behavior of PF. It was found that PF is very sensitive to barrier height, and at its optimal value for granular ITO, it may exceed the PF for bulk ITO by 3-5 times. The PF maximum was achieved by band bending, slightly exceeding Fermi energy. The nature of surface potential barriers in nano-granular ITO with specific grains is due to the oxygen chemisorption effect, and this can be observed despite of the degeneracy of the conduction band (CB). This hypothesis and the corresponding calculations are in good agreement with recent experimental studies [Brinzari et al. Thin Solid Films 552 (2014) 225].
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
NASA Astrophysics Data System (ADS)
Wang, Lei; Qian, Ju; Qi, Wen-Yan; Li, Sheng-Shuang; Chen, Jian-Long
2018-04-01
In this paper, changes of sediment yield and sediment transport were assessed using the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information Systems (GIS). This model was based on the integrated use of precipitation data, Landsat images in 2000, 2005 and 2010, terrain parameters (slope gradient and slope length) and soil composition in Zhifanggou watershed, Gansu Province, Northwestern China. The obtained results were basically consistent with the measured values. The results showed that the mean modulus of soil erosion is 1224, 1118 and 875 t km-2 yr-1 and annual soil loss is 23 130, 21 130 and 16 536 in 2000, 2005 and 2010 respectively. The measured mean erosion modulus were 1581 and 1377 t km-2 yr-1, and the measured annual soil loss were 29 872 and 26 022 t in 2000 and 2005. From 2000 to 2010, the amount of soil erosion was reduced yearly. Very low erosion and low erosion dominated the soil loss status in the three periods, and moderate erosion followed. The zones classified as very low erosion were increasing, whereas the zones with low or moderate erosion were decreasing. In 2010, no zones were classified as high or very high soil erosion.
Groundwater flow and transport modeling
Konikow, Leonard F.; Mercer, J.W.
1988-01-01
Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.
77 FR 75254 - Notice of Final Federal Agency Action on Proposed Transportation Project in Illinois
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... Expressway/Thorndale Avenue corridor to a toll road with three basic lanes in each direction and space... (known as the West Bypass) with two basic lanes in each direction and space reserved on the east side of... U.S.C. 470(f) et seq]. 6. Water Resources: Safe Drinking Water Act [42 U.S.C. 300(f)- 300(j)(6...
Management Training, Yes! Excellence?
ERIC Educational Resources Information Center
Davis, Gary E.
1990-01-01
Management training programs are a necessity for transportation supervisors. Basic and advanced training programs are available through associations for business officials and university fleet management training programs. (MLF)
Peritoneal fluid transport in CAPD patients with different transport rates of small solutes.
Sobiecka, Danuta; Waniewski, Jacek; Weryński, Andrzej; Lindholm, Bengt
2004-01-01
Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. 44 CAPD patients were placed in low (n = 6), low-average (n = 13), high-average (n = 19), and high (n = 6) transport groups according to a modified peritoneal equilibration test (PET). The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker.The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: (1) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; (2) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and (3) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (K(BD)) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb-Randerson-Farrell model. The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher K(BD) for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded unrealistic values of fluid transport parameters that differed from those estimated by models OS and P. The K(BD) values for small solutes were significantly different among the groups, and did not correlate with fluid transport parameters for model OS. The difference in fluid transport between the different transport groups was due only to the differences in the rate of disappearance of the overall osmotic pressure of the dialysate, which was a combined result of the transport rate of glucose and other small solutes. Although the glucose gradient is the major factor influencing ultrafiltration rate, other solutes, such as urea, are also of importance. The counteractive effect of plasma small solutes on transcapillary ultrafiltration was found to be especially notable in low transport patients. Thus, glucose gradient alone should not be considered the only force that shapes the ultrafiltration profile during peritoneal dialysis. We did not find any correlations between diffusive mass transport coefficients for small solutes and fluid transport parameters such as osmotic conductance or fluid and volume marker absorption. We may thus conclude that the pathway(s) for fluid transport appears to be partly independent from the pathway(s) for small solute transport, which supports the hypothesis of different pore types for fluid and solute transport.
SENSITIVE PARAMETER EVALUATION FOR A VADOSE ZONE FATE AND TRANSPORT MODEL
This report presents information pertaining to quantitative evaluation of the potential impact of selected parameters on output of vadose zone transport and fate models used to describe the behavior of hazardous chemicals in soil. The Vadose 2one Interactive Processes (VIP) model...
NASA Astrophysics Data System (ADS)
Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.
2017-12-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.
Determination of the atrazine migration parameters in Vertisol
NASA Astrophysics Data System (ADS)
Raymundo-Raymundo, E.; Hernandez-Vargas, J.; Nikol'Skii, Yu. N.; Guber, A. K.; Gavi-Reyes, F.; Prado-Pano, B. L.; Figueroa-Sandoval, B.; Mendosa-Hernandez, J. R.
2010-05-01
The parameters of the atrazine migration in columns with undisturbed Vertisol sampled from an irrigated plot in Guanajuato, Mexico were determined. A model of the convection-dispersion transport of the chemical compounds accounting for the decomposition and equilibrium adsorption, which is widely applied for assessing the risk of contamination of natural waters with pesticides, was used. The model parameters were obtained by solving the inverse problem of the transport equation on the basis of laboratory experiments on the transport of the 18O isotope and atrazine in soil columns with an undisturbed structure at three filtration velocities. The model adequately described the experimental data at the individual selection of the parameters for each output curve. Physically unsubstantiated parameters of the atrazine adsorption and degradation were obtained when the parameter of the hydrodynamic dispersion was determined from the data on the 18O migration. The simulation also showed that the use of parameters obtained at water content close to saturation in the calculations for an unsaturated soil resulted in the overestimation of the leaching rate and the maximum concentration of atrazine in the output curve compared to the experimental data.
Army Logistician. Volume 34, Issue 6, November-December 2002
2002-12-01
management from Pennsylvania State University. He is a graduate of the Infantry Officer Basic Course, the Airborne and Ranger Schools, the...it was estimated that, with an Air Force crew to help load the planes, the airfield could sustain a flow of 20 or more C–5 Galaxy transports a day...Transportation Office to cre- ate air load plans. The load plans identified a require- ment for 19 C–5 Galaxy transports to deploy the equip- ment and 5
Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport
NASA Astrophysics Data System (ADS)
Weaver, C. M.; Wiggs, G.
2007-12-01
Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).
Parametric study of a canard-configured transport using conceptual design optimization
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.
1985-01-01
Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.
Simultaneous measurement of glucose transport and utilization in the human brain
Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.
2011-01-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622
A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.
Abazari, Alireza; Elliott, Janet A W; Law, Garson K; McGann, Locksley E; Jomha, Nadr M
2009-12-16
Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach.
A Biomechanical Triphasic Approach to the Transport of Nondilute Solutions in Articular Cartilage
Abazari, Alireza; Elliott, Janet A.W.; Law, Garson K.; McGann, Locksley E.; Jomha, Nadr M.
2009-01-01
Abstract Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach. PMID:20006942
Kipp, K.L.
1987-01-01
The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Mass and Magnetic Field Dependence of Electrostatic Particle Transport and Turbulence in LAPD-U
NASA Astrophysics Data System (ADS)
Crocker, N. A.; Gilmore, M.; Peebles, W. A.; Will, S.; Nguyen, X. V.; Carter, T. A.
2003-10-01
The scaling of particle transport with ion mass and magnetic field strength remains an open question in plasma research. Direct comparison of experiment with theory is often complicated by inability to significantly vary critical parameters such as ion mass, pressure gradient, ion gyro-radius, etc. The LAPD-U magnetized, linear plasma at UCLA provides the ideal platform for such studies, allowing large parameter variation. The magnetic field in LAPD-U can be varied over a range of 500 - 1500 G, while ion species can be varied to change mass by a factor of at least 10. In addition, ion gyro-radii are small compared to the plasma diameter ( 1 m). Cross-field transport in LAPD-U is thought to be caused by electrostatic turbulence, also a leading candidate for transport in fusion plasmas. It is planned, therefore, to investigate turbulence and transport characteristics as a function of parameter space. In particular, measurement of the mass and magnetic field dependence of electrostatic particle transport and turbulence characteristics in LAPD-U will be presented.
Bencala, Kenneth E.
1984-01-01
Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.
Parés-Pollán, L; Gonzalez-Quintana, A; Docampo-Cordeiro, J; Vargas-Gallego, C; García-Álvarez, G; Ramos-Rodríguez, V; Diaz Rubio-García, M P
2014-01-01
Owing to the decrease in values of biochemical glucose parameter in some samples from external extraction centres, and the risk this implies to patient safety; it was decided to apply an adaptation of the «Health Services Failure Mode and Effects Analysis» (HFMEA) to manage risk during the pre-analytical phase of sample transportation from external centres to clinical laboratories. A retrospective study of glucose parameter was conducted during two consecutive months. The analysis was performed in its different phases: to define the HFMEA topic, assemble the team, graphically describe the process, conduct a hazard analysis, design the intervention and indicators, and identify a person to be responsible for ensuring completion of each action. The results of glucose parameter in one of the transport routes, were significantly lower (P=.006). The errors and potential causes of this problem were analysed, and criteria of criticality and detectability were applied (score≥8) in the decision tree. It was decided to: develop a document management system; reorganise extractions and transport routes in some centres; quality control of the sample container ice-packs, and the time and temperature during transportation. This work proposes quality indicators for controlling time and temperature of transported samples in the pre-analytical phase. Periodic review of certain laboratory parameters can help to detect problems in transporting samples. The HFMEA technique is useful for the clinical laboratory. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.
Using "The Transporters DVD" as a Learning Tool for Children with Autism Spectrum Disorders (ASD)
ERIC Educational Resources Information Center
Young, Robyn L.; Posselt, Miriam
2012-01-01
Data from two groups of children who were randomly allocated to those groups showed that the ability of children with ASD to identify and label basic and complex facial expressions following a 3-week home based DVD intervention significantly improved when viewing "The Transporters" DVD. Improvements in emotion recognition appear related to the…
Chapter 8: Demographic characteristics and population modeling
Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge
2000-01-01
An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
Measurement of carrier transport and recombination parameter in heavily doped silicon
NASA Technical Reports Server (NTRS)
Swanson, Richard M.
1986-01-01
The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.
Effect of UV light on different structural and transport parameters of cellophane membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benavente, J.; Vazquez, M.I.; De Abajo, J.
1996-01-01
A comparative study of UV light influence on structural and transport parameters of cellophane membranes was made. Changes in the chemical structure and electrical behavior of cellophane membranes were considered by determining the hydraulic permeability, salt diffusion coefficient, and resistance values, as well as some geometrical parameters, for an untreated membrane and two differently UV-treated cellophane membranes. Differences in the characteristic parameters for the three samples showed that radiation mainly affected the membrane structure, while only small changes in membrane electrical behavior were determined.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2017-05-01
GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas
Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less
NASA Astrophysics Data System (ADS)
Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.
2009-08-01
A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.
NASA Technical Reports Server (NTRS)
Dow, Marvin B.
1987-01-01
Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft.
Evaluation of anthropogenic influence in probabilistic forecasting of coastal change
NASA Astrophysics Data System (ADS)
Hapke, C. J.; Wilson, K.; Adams, P. N.
2014-12-01
Prediction of large scale coastal behavior is especially challenging in areas of pervasive human activity. Many coastal zones on the Gulf and Atlantic coasts are moderately to highly modified through the use of soft sediment and hard stabilization techniques. These practices have the potential to alter sediment transport and availability, as well as reshape the beach profile, ultimately transforming the natural evolution of the coastal system. We present the results of a series of probabilistic models, designed to predict the observed geomorphic response to high wave events at Fire Island, New York. The island comprises a variety of land use types, including inhabited communities with modified beaches, where beach nourishment and artificial dune construction (scraping) occur, unmodified zones, and protected national seashore. This variation in land use presents an opportunity for comparison of model accuracy across highly modified and rarely modified stretches of coastline. Eight models with basic and expanded structures were developed, resulting in sixteen models, informed with observational data from Fire Island. The basic model type does not include anthropogenic modification. The expanded model includes records of nourishment and scraping, designed to quantify the improved accuracy when anthropogenic activity is represented. Modification was included as frequency of occurrence divided by the time since the most recent event, to distinguish between recent and historic events. All but one model reported improved predictive accuracy from the basic to expanded form. The addition of nourishment and scraping parameters resulted in a maximum reduction in predictive error of 36%. The seven improved models reported an average 23% reduction in error. These results indicate that it is advantageous to incorporate the human forcing into a coastal hazards probability model framework.
Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.
1993-01-01
Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.
The Role of Thermal Properties in Periodic Time-Varying Phenomena
ERIC Educational Resources Information Center
Marin, E.
2007-01-01
The role played by physical parameters governing the transport of heat in periodical time-varying phenomena within solids is discussed. Starting with a brief look at the conduction heat transport mechanism, the equations governing heat conduction under static, stationary and non-stationary conditions, and the physical parameters involved, are…
NASA Astrophysics Data System (ADS)
Miharja, M.; Priadi, Y. N.
2018-05-01
Promoting a better public transport is a key strategy to cope with urban transport problems which are mostly caused by a huge private vehicle usage. A better public transport service quality not only focuses on one type of public transport mode, but also concerns on inter modes service integration. Fragmented inter mode public transport service leads to a longer trip chain as well as average travel time which would result in its failure to compete with a private vehicle. This paper examines the optimation process of operation system integration between Trans Jakarta Bus as the main public transport mode and Kopaja Bus as feeder public transport service in Jakarta. Using scoring-interview method combined with standard parameters in operation system integration, this paper identifies the key factors that determine the success of the two public transport operation system integrations. The study found that some key integration parameters, such as the cancellation of “system setoran”, passenger get in-get out at official stop points, and systematic payment, positively contribute to a better service integration. However, some parameters such as fine system, time and changing point reliability, and information system reliability are among those which need improvement. These findings are very useful for the authority to set the right strategy to improve operation system integration between Trans Jakarta and Kopaja Bus services.
Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model
NASA Astrophysics Data System (ADS)
Toro, J.; Padilla, I. Y.
2017-12-01
Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.
Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L
2013-07-01
Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.
Control of optical transport parameters of 'porous medium – supercritical fluid' systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A
2015-11-30
The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less
Vázquez, M I; de Lara, R; Benavente, J
2008-12-15
A comparison of NaCl transport across two dense cellulosic membranes from different suppliers is presented. Hydraulic and diffusional permeabilities were determined from volume flow-applied pressure and concentration-time relationships, while cation transport number and membrane conductivity were determined from electromotrice force and impedance spectroscopy measurements, respectively. Chemical surface differences between both membranes are correlated to transport parameters and morphology, but differences in elastic properties of both membranes might also be considered in order to get a more complete picture of membrane behaviors and to obtain structural-transport parameters correlations.
2017-01-01
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164
Moving to continuous facial expression space using the MPEG-4 facial definition parameter (FDP) set
NASA Astrophysics Data System (ADS)
Karpouzis, Kostas; Tsapatsoulis, Nicolas; Kollias, Stefanos D.
2000-06-01
Research in facial expression has concluded that at least six emotions, conveyed by human faces, are universally associated with distinct expressions. Sadness, anger, joy, fear, disgust and surprise are categories of expressions that are recognizable across cultures. In this work we form a relation between the description of the universal expressions and the MPEG-4 Facial Definition Parameter Set (FDP). We also investigate the relation between the movement of basic FDPs and the parameters that describe emotion-related words according to some classical psychological studies. In particular Whissel suggested that emotions are points in a space, which seem to occupy two dimensions: activation and evaluation. We show that some of the MPEG-4 Facial Animation Parameters (FAPs), approximated by the motion of the corresponding FDPs, can be combined by means of a fuzzy rule system to estimate the activation parameter. In this way variations of the six archetypal emotions can be achieved. Moreover, Plutchik concluded that emotion terms are unevenly distributed through the space defined by dimensions like Whissel's; instead they tend to form an approximately circular pattern, called 'emotion wheel,' modeled using an angular measure. The 'emotion wheel' can be defined as a reference for creating intermediate expressions from the universal ones, by interpolating the movement of dominant FDP points between neighboring basic expressions. By exploiting the relation between the movement of the basic FDP point and the activation and angular parameters we can model more emotions than the primary ones and achieve efficient recognition in video sequences.
Ballestros Peña, Sendoa; Lorrio Palomino, Sergio; Ariz Zubiaur, Mónica
2012-11-01
BASICS: A Prehospital Care and Transfer Recording (PCTR) is an out-of-hospital medical recording. This paper was made to assess and compare the level of fulfillment of the basic parameters of the PCTR developed by the Life Support Units with nurses (Life Support Units with Nurse, LSUwN and without nurses (Basic Life Support Units, BLSU) from SAMUR Bilbao in 2010. A descriptive, retrospective and comparative study was performed by analysing a randomized sample of 660 PCTR (precision 3%), aiming to check the fulfillment of the basic data. 98.33% of total recordings were readable. In overall, fulfillment rate was 90.31% (CI 89.24- 97.3 71%) of all basic parameters for LSUwN PCTR and 84.81% (CI 83.56 to 86%) for BLSU. 34.1% of PCTR were completely and correctly fulfilled. The LSUwN scored significantly better (p < 0.000). There were recording failures in "date and time", "address" and "physical examination". There were differences between the recording of clinical and administrative information (88.64% vs 86.72%, p = 0.02). In order to consider a parameter has optimal, it has to reach 100% of fulfillment. If it doesn't, and its score reaches no more than 80%, it should be reviewed. In this case, the results would be considered acceptable, but the administrative items of BLSU records, and allergies in both units should be strengthened. LSUwN has obtained better scores. The need of recording clinical information must be instilled as evidence of quality care.
Interferometric reflection moire
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Combell, Olivier
1995-06-01
A new reflection moire technique is introduced in this paper. The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the system are derived. The sensitivity and accuracy of the method are discussed. Examples of application to the study of silicon wafers and electronic chips are given.
Renes, Johan; de Vries, Elisabeth G E; Nienhuis, Edith F; Jansen, Peter L M; Müller, Michael
1999-01-01
The present study was performed to investigate the ability of the multidrug resistance protein (MRP1) to transport different cationic substrates in comparison with MDR1-P-glycoprotein (MDR1). Transport studies were performed with isolated membrane vesicles from in vitro selected multidrug resistant cell lines overexpressing MDR1 (A2780AD) or MRP1 (GLC4/Adr) and a MRP1-transfected cell line (S1(MRP)). As substrates we used 3H-labelled derivatives of the hydrophilic monoquaternary cation N-(4′,4′-azo-n-pentyl)-21-deoxy-ajmalinium (APDA), the basic drug vincristine and the more hydrophobic basic drug daunorubicin. All three are known MDR1-substrates. MRP1 did not mediate transport of these substrates per se. In the presence of reduced glutathione (GSH), there was an ATP-dependent uptake of vincristine and daunorubicin, but not of APDA, into GLC4/Adr and S1(MRP) membrane vesicles which could be inhibited by the MRP1-inhibitor MK571. ATP- and GSH-dependent transport of daunorubicin and vincristine into GLC4/Adr membrane vesicles was inhibited by the MRP1-specific monoclonal antibody QCRL-3. MRP1-mediated daunorubicin transport rates were dependent on the concentration of GSH and were maximal at concentrations ⩾10 mM. The apparent KM value for GSH was 2.7 mM. Transport of daunorubicin in the presence of 10 mM GSH was inhibited by MK571 with an IC50 of 0.4 μM. In conclusion, these results demonstrate that MRP1 transports vincristine and daunorubicin in an ATP- and GSH-dependent manner. APDA is not a substrate for MRP1. PMID:10188979
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.
NASA Astrophysics Data System (ADS)
Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten
2016-09-01
For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.
NASA Astrophysics Data System (ADS)
Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.
2018-05-01
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.
The role of solitons in charge and energy transfer in 1D molecular chains
NASA Astrophysics Data System (ADS)
Ivić , Zoran
1998-03-01
The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.
Gaussian content as a laser beam quality parameter.
Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal
2011-08-01
We propose the Gaussian content (GC) as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is especially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode laser and a single-mode fiber are elaborated as application examples. The measurement of the GC and its conservation upon propagation are experimentally confirmed.
NASA Astrophysics Data System (ADS)
Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.
2016-09-01
A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.
renewable liquid transportation fuels available. Biomass energy supports U.S. agricultural and forest soybeans (for biodiesel). In the near future-and with NREL-developed technology-agricultural residues such
49 CFR 212.211 - Apprentice signal and train control inspector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State... to use electrical test equipment in direct current and alternating current circuits; and (2) A basic...
Dendrite and Axon Specific Geometrical Transformation in Neurite Development
Mironov, Vasily I.; Semyanov, Alexey V.; Kazantsev, Victor B.
2016-01-01
We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size. PMID:26858635
Scaling of flow and transport behavior in heterogeneous groundwater systems
NASA Astrophysics Data System (ADS)
Scheibe, Timothy; Yabusaki, Steven
1998-11-01
Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on mean values. It provides motivation for continued research into upscaling methods for transport that directly address advection in heterogeneous porous media. An electronic version of this article is available online at the journal's homepage at http://www.elsevier.nl/locate/advwatres or http://www.elsevier.com/locate/advwatres (see "Special section on vizualization". The online version contains additional supporting information, graphics, and a 3D animation of simulated particle movement. Limited. All rights reserved
Section 3. The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation
Schwarz, G.E.; Hoos, A.B.; Alexander, R.B.; Smith, R.A.
2006-01-01
SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling technique for relating water-quality measurements made at a network of monitoring stations to attributes of the watersheds containing the stations. The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and diffuse sources on land to rivers and through the stream and river network. The model predicts contaminant flux, concentration, and yield in streams and has been used to evaluate alternative hypotheses about the important contaminant sources and watershed properties that control transport over large spatial scales. This report provides documentation for the SPARROW modeling technique and computer software to guide users in constructing and applying basic SPARROW models. The documentation gives details of the SPARROW software, including the input data and installation requirements, and guidance in the specification, calibration, and application of basic SPARROW models, as well as descriptions of the model output and its interpretation. The documentation is intended for both researchers and water-resource managers with interest in using the results of existing models and developing and applying new SPARROW models. The documentation of the model is presented in two parts. Part 1 provides a theoretical and practical introduction to SPARROW modeling techniques, which includes a discussion of the objectives, conceptual attributes, and model infrastructure of SPARROW. Part 1 also includes background on the commonly used model specifications and the methods for estimating and evaluating parameters, evaluating model fit, and generating water-quality predictions and measures of uncertainty. Part 2 provides a user's guide to SPARROW, which includes a discussion of the software architecture and details of the model input requirements and output files, graphs, and maps. The text documentation and computer software are available on the Web at http://usgs.er.gov/sparrow/sparrow-mod/.
Stoot, Lauren J.; Cairns, Nicholas A.; Cull, Felicia; Taylor, Jessica J.; Jeffrey, Jennifer D.; Morin, Félix; Mandelman, John W.; Clark, Timothy D.; Cooke, Steven J.
2014-01-01
Non-human vertebrate blood is commonly collected and assayed for a variety of applications, including veterinary diagnostics and physiological research. Small, often non-lethal samples enable the assessment and monitoring of the physiological state and health of the individual. Traditionally, studies that rely on blood physiology have focused on captive animals or, in studies conducted in remote settings, have required the preservation and transport of samples for later analysis. In either situation, large, laboratory-bound equipment and traditional assays and analytical protocols are required. The use of point-of-care (POC) devices to measure various secondary blood physiological parameters, such as metabolites, blood gases and ions, has become increasingly popular recently, due to immediate results and their portability, which allows the freedom to study organisms in the wild. Here, we review the current uses of POC devices and their applicability to basic and applied studies on a variety of non-domesticated species. We located 79 individual studies that focused on non-domesticated vertebrates, including validation and application of POC tools. Studies focused on a wide spectrum of taxa, including mammals, birds and herptiles, although the majority of studies focused on fish, and typical variables measured included blood glucose, lactate and pH. We found that calibrations for species-specific blood physiology values are necessary, because ranges can vary within and among taxa and are sometimes outside the measurable range of the devices. In addition, although POC devices are portable and robust, most require durable cases, they are seldom waterproof/water-resistant, and factors such as humidity and temperature can affect the performance of the device. Overall, most studies concluded that POC devices are suitable alternatives to traditional laboratory devices and eliminate the need for transport of samples; however, there is a need for greater emphasis on rigorous calibration and validation of these units and appreciation of their limitations. PMID:27293632
Simultaneous measurement of glucose transport and utilization in the human brain.
Shestov, Alexander A; Emir, Uzay E; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R; Öz, Gülin
2011-11-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.
NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010
Dan; Arvizu; Barbara; Goodman; Robert; McCormick; Tony; Markel; Matt; Keyser; Sreekant; Narumanchi; Rob; Farrington
2017-12-09
We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles.
Invariant-Based Inverse Engineering of Crane Control Parameters
NASA Astrophysics Data System (ADS)
González-Resines, S.; Guéry-Odelin, D.; Tobalina, A.; Lizuain, I.; Torrontegui, E.; Muga, J. G.
2017-11-01
By applying invariant-based inverse engineering in the small-oscillation regime, we design the time dependence of the control parameters of an overhead crane (trolley displacement and rope length) to transport a load between two positions at different heights with minimal final-energy excitation for a microcanonical ensemble of initial conditions. The analogy between ion transport in multisegmented traps or neutral-atom transport in moving optical lattices and load manipulation by cranes opens a route for a useful transfer of techniques among very different fields.
New thermodynamical force in plasma phase space that controls turbulence and turbulent transport.
Itoh, Sanae-I; Itoh, Kimitaka
2012-01-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.
Transport parameter estimation from lymph measurements and the Patlak equation.
Watson, P D; Wolf, M B
1992-01-01
Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.
New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport
Itoh, Sanae-I.; Itoh, Kimitaka
2012-01-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481
New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport
NASA Astrophysics Data System (ADS)
Itoh, Sanae-I.; Itoh, Kimitaka
2012-11-01
Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.
Rappold, Joseph F; Hollenbach, Kathryn A; Santora, Thomas A; Beadle, Dania; Dauer, Elizabeth D; Sjoholm, Lars O; Pathak, Abhijit; Goldberg, Amy J
2015-09-01
Controversy remains over the ideal way to transport penetrating trauma victims in an urban environment. Both advance life support (ALS) and basic life support (BLS) transports are used in most urban centers. A retrospective cohort study was conducted at an urban Level I trauma center. Victims of penetrating trauma transported by ALS, BLS, or police from January 1, 2008, to November 31, 2013, were identified. Patient survival by mode of transport and by level of care received was analyzed using logistic regression. During the study period, 1,490 penetrating trauma patients were transported by ALS (44.8%), BLS (15.6%), or police (39.6%) personnel. The majority of injuries were gunshot wounds (72.9% for ALS, 66.8% for BLS, 90% for police). Median transport minutes were significantly longer for ALS (16 minutes) than for BLS (14.5 minutes) transports (p = 0.012). After adjusting for transport time and Injury Severity Score (ISS), among victims with an ISS of 0 to 30, there was a 2.4-fold increased odds of death (95% confidence interval [CI], 1.3-4.4) if transported by ALS as compared with BLS. With an ISS of greater than 30, this relationship did not exist (odds ratio, 0.9; 95% CI, 0.3-2.7). When examined by type of care provided, patients with an ISS of 0 to 30 given ALS support were 3.7 times more likely to die than those who received BLS support (95% CI, 2.0-6.8). Among those with an ISS of greater than 30, no relationship was evident (odds ratio, 0.9; 95% CI, 0.3-2.7). Among penetrating trauma victims with an ISS of 30 or lower, an increased odds of death was identified for those treated and/or transported by ALS personnel. For those with an ISS of greater than 30, no survival advantage was identified with ALS transport or care. Results suggest that rapid transport may be more important than increased interventions. Therapeutic study, level IV.
Virtual laboratory for the study of transport processes in surface waterflows
NASA Astrophysics Data System (ADS)
Aguilar, C.; Egüen, M.; Contreras, E.; Polo, M. J.
2012-04-01
The equations involved in the study of transport processes depend on the spatial and temporal scale of the study and according to the required level of detail can become very difficult to solve analytically. Besides, experimentation of processes with any transport phenomena involved is complex due to their natural or forced occurrence in the environment (eg. Rainfall-runoff, sediment yield, controlled and uncontrolled pollutant loadings, etc.) and the great diversity of substances and components with an specific chemical behavior. However, due to the numerous fields of application of transport phenomena (basic and applied research, hydrology and associated fluxes, sediment transport, pollutant loadings to water flows, industrial processes, soil and water quality, atmospheric emissions, legislation, etc.), realistic studies of transport processes are required. In this context, case study application, an active methodology according to the structural implications of the European Higher Education Area (EHEA), with the aid of computer tools constitute an interactive, instantaneous and flexible method with a new interplay between students and lecturers. Case studies allow the lecturer to design significant activities that generate knowledge in the students and motivates them to look for information, discuss, and be autonomous. This work presents the development of a graphical interface for the solution of different case studies for the acquisition of capacities and abilities in the autonomous apprenticeship of courses related to transport processes in Environmental Hydraulics. The interactive tool helps to develop and improve abilities in mixing and transport in surface water related courses. Thus, students clarify theoretical concepts and visualize processes with negative effects for the environment and that therefore, can only be reproduced in the laboratory or in the field under very controlled conditions and commonly with tracers instead of the real substances. The tool can be used for different case studies in terms of processes involved, governing variable, initial conditions, etc. (eg. Accidental spill of a conservative pollutant from a factory in a river stretch that constitutes a source of drinking water for a town downstream) and can be used as a virtual laboratory for the analysis of the influence of the different variables and parameters of the process. Thus, autonomous apprenticeship is fostered and therefore, the development of personal abilities and the analysis and summary of information related to the case study is stimulated.
NASA Astrophysics Data System (ADS)
Kessels, W.; Thorenz, C.; Rifai, H.
2002-05-01
A single well technique to determine groundwater flow and transport parameters is presented. Multi-electrode arrays are placed on a borehole wall by an inflatable packer or are installed behind the plastic casing. For measurements, a salt tracer is injected between the electrodes. This salt tracer cloud is afterwards moving in the natural groundwater flow field. The observation of this movement by geoelectric measurements is the basis for the determination of groundwater velocity and the dispersion parameters. The geoelectric observations are performed with n borehole electrodes and one earth connection. Thus, either n independent two point measurements or n*(n-1)/2 pole-to-pole measurements can be performed. The whole procedure consists of three phases: 1. Measurement of the basic conductivity without tracer. 2. Measurement during the injection. 3. Measurement after injection To test the method, measurements in a lab aquifer filled with sand are carried out. The results are discussed and the limitations of the method are shown. Here, the interpretation is restricted on two point geoelectric measurements and the transport equation for NaCl-tracered water. Due to the density contrast, the tracer shows a vertical movement which is not related to the natural velocity field. Numerical calculations with the finite-element-method simulator ROCKFLOW (Kolditz et al., 1999) reproduced this behaviour. The currently used interpretation code is based on an analytic solution of the transport equation. The parameters velocity and dispersion length are calculated by inversion. In the two scientific drillings CAT-LUD1 and CAT-LUD1A in the northern part of Germany multi-electrode installations behind the casing are tested in situ. A multi-electrode packer system is designed and build. References: Kessels, W., Zoth, G.(1997): Doppelmantel - Packers mit geoelektrischer Meßtechnik zur Bestimmung der Abstandsgeschwindigkeit des Grundwassers, Patentanmeldung Az:19855048.0 NLfB/GGA-Hannover. Kessels, W., Zoth, G. (1999): Doppelmantelpacker mit geoelektrischer Meßtechnik zur Bestimmung der Grundwasserströmung und hydraulischer Eigenschaften von Grundwasserleitern. -59. Jahrestagung der Deutschen Geophysikalischen Gesellschaft; 8.-12.März 1999, Braunschweig: 117. Kessels, W., Fulda, C., Binot, F., Dörhöfer, G., Fritz, J. (2001): Monitoring and Modeling in the Coastal Aquifer Test Field (CAT-Field) between Bremerhaven and Cuxhaven in the Northern Part of Germany. SWICA M3 Salt Water Intrusion and Coastal Aquifers Monitoring, Modeling and Management, 23. 25.April 2001; Essaouira, Morocco. Kolditz, O., Habbar, O., Kaiser, R., Rother, T. & Thorenz, C. (1999) ROCKFLOW - Theory and Users Manual. Release 3.4, Institute for Fluid Mechanics and Computer Application in Civil Engineering, University of Hannover
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
Studies of HZE particle interactions and transport for space radiation protection purposes
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn
1987-01-01
The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.
Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon
NASA Technical Reports Server (NTRS)
Del Alamo, Jesus A.; Swanson, Richard M.
1987-01-01
The relevant hole transport and recombination parameters in heavily doped n-type silicon under steady state are the hole diffusion length and the product of the hole diffusion coefficient times the hole equilibrium concentration. These parameters have measured in phosphorus-doped silicon grown by epitaxy throughout nearly two orders of magnitude of doping level. Both parameters are found to be strong functions of donor concentration. The equilibrium hole concentration can be deduced from the measurement. A rigid shrinkage of the forbidden gap appears as the dominant heavy doping mechanism in phosphorus-doped silicon.
Optimizing the patient transport function at Mayo Clinic.
Kuchera, Dustin; Rohleder, Thomas R
2011-01-01
In this article, we report on the implementation of a computerized scheduling tool to optimize staffing for patient transport at the Mayo Clinic. The tool was developed and implemented in Microsoft Excel and Visual Basic for Applications and includes an easy-to-use interface. The tool allows transport management to consider the trade-offs between patient waiting time and staffing levels. While improved staffing efficiency was a desire of the project, it was important that patient service quality was also maintained. The results show that staffing could be reduced while maintaining historical patient service levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, R.
Chosen for this description of the selected Kraftwerk Union (KWU) pressurized water reactor units were Obrigheim (KWO, 345 MW(e)), Stade (KKS, 662 (MW(e)), Borselle (KCB, 477 MW(e)), and Biblis (KWB-A, 1204 MW(e)). The experience at these plants shows that with a special startup procedure and a proper chemical control of the primary heat transport system that influences general corrosion, selective types of corrosion, corrosion product activity transport and resulting contamination, and radiation-induced decomposition, KWU units have no basic problems.
NASA Astrophysics Data System (ADS)
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-08-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.
2009-01-01
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
This report begins with descriptions of the differences between coastal and ocean acidification, factors contributing to acidification on the US east coast, and basic characteristics of the seawater carbonate system and its parameters. A basic survey of available methods and cha...
Research Possibilities Beyond Deep Space Gateway
NASA Astrophysics Data System (ADS)
Smitherman, D. V.; Needham, D. H.; Lewis, R.
2018-02-01
This abstract explores the possibilities for a large research facilities module attached to the Deep Space Gateway, using the same large module design and basic layout planned for the Deep Space Transport.
NASA Technical Reports Server (NTRS)
Foldes, P.
1986-01-01
The instrumentation problems associated with the measurement of soil moisture with a meaningful spatial and temperature resolution at a global scale are addressed. For this goal only medium term available affordable technology will be considered. The study while limited in scope, will utilize a large scale antenna structure, which is being developed presently as an experimental model. The interface constraints presented by a singel Space Transportation System (STS) flight will be assumed. Methodology consists of the following steps: review of science requirements; analyze effects of these requirements; present basic system engineering considerations and trade-offs related to orbit parameters, number of spacecraft and their lifetime, observation angles, beamwidth, crossover and swath, coverage percentage, beam quality and resolution, instrument quantities, and integration time; bracket the key system characteristics and develop an electromagnetic design of the antenna-passive radiometer system. Several aperture division combinations and feed array concepts are investigated to achieve maximum feasible performacne within the stated STS constraints.
Performance Analysis for the New g-2 Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakis, Diktys; Convery, Mary; Crmkovic, J.
2016-06-01
The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm - a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pionmore » production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed« less
Osterloh, Frank E.
2017-01-18
Here, the chemical literature often does not differentiate between photocatalytic (PC) and photosynthetic (PS) processes (including artificial photosynthesis) even though these reactions differ in their thermodynamics. Photocatalytic processes are thermodynamically downhill (ΔG < 0) and are merely accelerated by the catalyst, whereas photosynthetic processes are thermodynamically unfavorable (ΔG > 0) and require photochemical energy input to occur. Here we apply this differentiation to analyze the basic functions of PC and PS devices and to formulate design criteria for improved performance. As will be shown, the corresponding devices exhibit distinctly different sensitivities to their functional parameters. For example, under conditions ofmore » optimal light absorption, carrier lifetimes, and electrochemical rates, the performance of PCs is limited only by their surface area, while type 1 PS devices are limited by their carrier mobility and mass transport, and type 2 PS devices are limited by electrochemical charge-transfer selectivity. Strategies for the optimization of type 1 and 2 photosynthetic devices and photocatalysts are also discussed.« less
Manganese oxide-based materials as electrochemical supercapacitor electrodes.
Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G
2011-03-01
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).
Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft
NASA Astrophysics Data System (ADS)
McKenzie, Samuel D.
1991-12-01
The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.
Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1
NASA Astrophysics Data System (ADS)
van Rensburg, C.; Krüger, P. P.; Venter, C.
2018-03-01
We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.
Glass frit nebulizer for atomic spectrometry
Layman, L.R.
1982-01-01
The nebuilizatlon of sample solutions Is a critical step In most flame or plasma atomic spectrometrlc methods. A novel nebulzatlon technique, based on a porous glass frit, has been Investigated. Basic operating parameters and characteristics have been studied to determine how thte new nebulizer may be applied to atomic spectrometrlc methods. The results of preliminary comparisons with pneumatic nebulizers Indicate several notable differences. The frit nebulizer produces a smaller droplet size distribution and has a higher sample transport efficiency. The mean droplet size te approximately 0.1 ??m, and up to 94% of the sample te converted to usable aerosol. The most significant limitations In the performance of the frit nebulizer are the stow sample equMbratton time and the requirement for wash cycles between samples. Loss of solute by surface adsorption and contamination of samples by leaching from the glass were both found to be limitations only In unusual cases. This nebulizer shows great promise where sample volume te limited or where measurements require long nebullzatlon times.
Neutronics calculation of RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterloh, Frank E.
Here, the chemical literature often does not differentiate between photocatalytic (PC) and photosynthetic (PS) processes (including artificial photosynthesis) even though these reactions differ in their thermodynamics. Photocatalytic processes are thermodynamically downhill (ΔG < 0) and are merely accelerated by the catalyst, whereas photosynthetic processes are thermodynamically unfavorable (ΔG > 0) and require photochemical energy input to occur. Here we apply this differentiation to analyze the basic functions of PC and PS devices and to formulate design criteria for improved performance. As will be shown, the corresponding devices exhibit distinctly different sensitivities to their functional parameters. For example, under conditions ofmore » optimal light absorption, carrier lifetimes, and electrochemical rates, the performance of PCs is limited only by their surface area, while type 1 PS devices are limited by their carrier mobility and mass transport, and type 2 PS devices are limited by electrochemical charge-transfer selectivity. Strategies for the optimization of type 1 and 2 photosynthetic devices and photocatalysts are also discussed.« less
Spatially dependent modelling of pulsar wind nebula G0.9+0.1
NASA Astrophysics Data System (ADS)
van Rensburg, C.; Krüger, P. P.; Venter, C.
2018-07-01
We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multizone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially dependent B-field, spatially dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.
Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R
2015-03-01
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.
2015-03-15
A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less
Measured Plume Dispersion Parameters Over Water. Volume 1.
1984-09-01
meteorlogical parameters were continuously monitored at various locations. Tracer gas concentrations were measured by a variety of methods at...addition, this step added a header . to the data set containing a variety of averaged meteorlogical quantities. The basic procedure in this step was
Evaluation of Noncontact Power Collection Techniques
DOT National Transportation Integrated Search
1972-07-01
An evaluation is made of four basic noncontacting techniques of power collection which have possible applicability in future high speed ground transportation systems. The techniques considered include the electric arc, magnetic induction, electrostat...
Engine monitoring display study
NASA Technical Reports Server (NTRS)
Hornsby, Mary E.
1992-01-01
The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.
NASA Astrophysics Data System (ADS)
Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong
2018-06-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.
Effects of structural error on the estimates of parameters of dynamical systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1986-01-01
In this paper, the notion of 'near-equivalence in probability' is introduced for identifying a system in the presence of several error sources. Following some basic definitions, necessary and sufficient conditions for the identifiability of parameters are given. The effects of structural error on the parameter estimates for both the deterministic and stochastic cases are considered.
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin
Kubo, Tomohiro; Brown, Jason M.; Bellve, Karl; Craige, Branch; Craft, Julie M.; Fogarty, Kevin; Lechtreck, Karl F.
2016-01-01
ABSTRACT The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin. PMID:27068536
NASA Astrophysics Data System (ADS)
Brenner, Howard
2011-10-01
Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.
Proton Transports in Pure Liquid Water Characterized by Melted Ice Lattice Model
NASA Astrophysics Data System (ADS)
Jie, Binbin; Sah, Chihtang
Basic water properties have not been understood for 200 years. Our Melted Ice Lattice model accounts for the 2 basic properties of pure water, the ion product (pH) and mobilities. It has HCP primitive unit cells, each with 4H2O, based on the 1933 Bernal-Fowler model, verified by 1935 Pauling residual entropy theory of 1928-1935 Giauque experimental low temperature specific heat measurements. Our 2 ion species are point-mass protons p + and p-, for mass and electricity transport. Three protonic thermal activation energies are obtained from pH and p + and p- mobilities vs T (0-100OC). Proton transport is analyzed in 3 proton-phonon collision steps: proton detrapping by protonic phonon absorption, proton scattering by oxygenic (water) phonons, and proton trapping with protonic phonon emission. Distinction between Potential and Kinetic Energy Bands of protons (Fermions) and phonons (Bosons) is noted. Experimental protonic activation energies are the phonon energies given by the spring-mass vibration frequencies of lattice, wn = (kn/mn)1/2 . n is the proton-mass unit of the synchronized vibrating particles in the primitive unit cells.
Transport Traffic Analysis for Abusive Infrastructure Characterization
2012-12-14
Introduction Abusive traffic abounds on the Internet, in the form of email, malware, vulnerability scanners, worms, denial-of-service, drive-by-downloads, scam ...insight is two-fold. First, attackers have a basic requirement to source large amounts of data, be it denial-of-service, scam -hosting, spam, or other...the network core. This paper explores the power of transport-layer traffic analysis to detect and characterize scam hosting infrastructure, including
Optimizing the Prioritization of Natural Disaster Recovery Projects
2007-03-01
collection, and basic utility and infrastructure restoration. The restoration of utilities can include temporary bridges, temporary water and sewage lines...interrupted such as in the case of the 9/11 disaster. Perhaps next time our enemies may target our power grid or water systems. It is the duty of...Transportation The amount and type of transportation infrastructure damage a repair project addresses Water The amount and type of water
Zhang, Yong; Green, Christopher T.; Baeumer, Boris
2014-01-01
Time-nonlocal transport models can describe non-Fickian diffusion observed in geological media, but the physical meaning of parameters can be ambiguous, and most applications are limited to curve-fitting. This study explores methods for predicting the parameters of a temporally tempered Lévy motion (TTLM) model for transient sub-diffusion in mobile–immobile like alluvial settings represented by high-resolution hydrofacies models. The TTLM model is a concise multi-rate mass transfer (MRMT) model that describes a linear mass transfer process where the transfer kinetics and late-time transport behavior are controlled by properties of the host medium, especially the immobile domain. The intrinsic connection between the MRMT and TTLM models helps to estimate the main time-nonlocal parameters in the TTLM model (which are the time scale index, the capacity coefficient, and the truncation parameter) either semi-analytically or empirically from the measurable aquifer properties. Further applications show that the TTLM model captures the observed solute snapshots, the breakthrough curves, and the spatial moments of plumes up to the fourth order. Most importantly, the a priori estimation of the time-nonlocal parameters outside of any breakthrough fitting procedure provides a reliable “blind” prediction of the late-time dynamics of subdiffusion observed in a spectrum of alluvial settings. Predictability of the time-nonlocal parameters may be due to the fact that the late-time subdiffusion is not affected by the exact location of each immobile zone, but rather is controlled by the time spent in immobile blocks surrounding the pathway of solute particles. Results also show that the effective dispersion coefficient has to be fitted due to the scale effect of transport, and the mean velocity can differ from local measurements or volume averages. The link between medium heterogeneity and time-nonlocal parameters will help to improve model predictability for non-Fickian transport in alluvial settings.
45 CFR 286.10 - What does the term “assistance” mean?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) programs, transitional services, job retention, job advancement, and other employment-related services that do not provide basic income support; and (7) Transportation benefits provided under a Job Access or...
Basic Airline Services to Improve Customer Satisfaction Act
Sen. Landrieu, Mary L. [D-LA
2011-11-18
Senate - 11/18/2011 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Liquefied natural gas fuel use : basic training manual
DOT National Transportation Integrated Search
1994-05-01
The Urban Mass Transportation Administration's Alternative Fuel Initiative and the Environmental Protection Agency's 1991 regulations on transit bus exhaust emissions has resulted in a number of alternative fueled transit bus research and demonstrati...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
NASA Astrophysics Data System (ADS)
Bohrson, Wendy A.; Spera, Frank J.
2007-11-01
Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.
Krizkova, Sona; Ryant, Pavel; Krystofova, Olga; Adam, Vojtech; Galiova, Michaela; Beklova, Miroslava; Babula, Petr; Kaiser, Jozef; Novotny, Karel; Novotny, Jan; Liska, Miroslav; Malina, Radomir; Zehnalek, Josef; Hubalek, Jaromir; Havel, Ladislav; Kizek, Rene
2008-01-01
The aim of this work is to investigate sunflower plants response on stress induced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5, and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiological parameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such as lignified cell walls, it was possible to determine the changes of important shoot and root structures, mainly vascular bungles and development of secondary thickening. The differences in vascular bundles organisation, parenchymatic pith development in the root centre and the reduction of phloem part of vascular bundles were well observable. Moreover with increasing silver(I) ions concentration the vitality of rhizodermal cells declined; rhizodermal cells early necrosed and were replaced by the cells of exodermis. Further we employed laser induced breakdown spectroscopy for determination of spatial distribution of silver(I) ions in tissues of the treated plants. The Ag is accumulated mainly in near-root part of the sample. Moreover basic biochemical indicators of environmental stress were investigated. The total content of proteins expressively decreased with increasing silver(I) ions dose and the time of the treatment. As we compare the results obtained by protein analysis – the total protein contents in shoot as well as root parts – we can assume on the transport of the proteins from the roots to shoots. This phenomenon can be related with the cascade of processes connecting with photosynthesis. The second biochemical parameter, which we investigated, was urease activity. If we compared the activity in treated plants with control, we found out that presence of silver(I) ions markedly enhanced the activity of urease at all applied doses of this toxic metal. Finally we studied the effect of silver(I) ions on activity of urease in in vitro conditions. PMID:27879716
Basic Parameters of Metal Behavior under High Rate Forming
1962-03-01
1ii PHOTOGRAPH THIS SHEET II LEVELr• At-ký W •I)-_) -N INVENTORY z DOCUMENT IDENTIFICATION may. 6•t S]/ tp i - 0~o- o’•5,,? 3 ’ \\NAL- TR-/I. -a I .. ~1...TR 111.2/20- 3 BASIC PARAMETERS OF METAL BEHAVIOUR "> UNDER HIGH RATE FORMING L L j Fourth Interim Report to ell- L’,I I U. S. ARMY MATERIALS...RESEARCH AGENCY 1• I iiC::Ur:ui i 1,,i .:1 ’•:, 1 r/ n od I P,101c rolcso. Filing Subjects: I. Explosive forming 2. Dynamic behavior of metals 3 . High rate
Diagnosis of femtosecond plasma filament by channeling microwaves along the filament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshershby, Mostafa; Ren, Yu; Qin, Jiang
2013-05-20
We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.
Characterization of the thrombin generation profile in systemic lupus erythematosus.
Kern, A; Barabás, E; Balog, A; Burcsár, Sz; Kiszelák, M; Vásárhelyi, B
2017-03-01
Systemic lupus erythematosus (SLE) is a multisystemic inflammatory autoimmune disorder. Thrombotic events occur at a higher incidence among SLE patients. The investigation of thrombin generation (TG) with calibrated automated thrombogram (CAT) test as a global hemostasis assay is applicable for the overall functional assessment of the hemostasis. The aim of this study was to characterize the hemostatic alterations observed in SLE by CAT assay. In this study, CAT parameters and basic coagulation parameters of SLE patients (n = 22) and healthy control subjects (n = 34) were compared. CAT area under the curve (i.e., endogenous thrombin potential) was lower than normal in SLE (807 vs. 1,159 nM*min, respectively), whereas other CAT parameters (peak, lag time, time to peak, and velocity index) and the basic coagulation tests were within the normal range. The presence of anti-phospholipid antibodies and the applied therapy was not associated with hemostasis parameters in SLE. We concluded that the reported high risk of thrombosis is not related to TG potential.
Multimodal transport and dispersion of organelles in narrow tubular cells
NASA Astrophysics Data System (ADS)
Mogre, Saurabh S.; Koslover, Elena F.
2018-04-01
Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
Multimodal optical imaging of microvessel network convective oxygen transport dynamics.
Dedeugd, Casey; Wankhede, Mamta; Sorg, Brian S
2009-04-01
Convective oxygen transport by microvessels depends on several parameters, including red blood cell flux and oxygen saturation. We demonstrate the use of intravital microscopy techniques to measure hemoglobin saturations, red blood cell fluxes and velocities, and microvessel cross-sectional areas in regions of microvascular networks containing multiple vessels. With these methods, data can be obtained at high spatial and temporal resolution and correlations between oxygen transport and hemodynamic parameters can be assessed. In vivo data are presented for a mouse mammary adenocarcinoma grown in a dorsal skinfold window chamber model.
Relativistic H-theorem and nonextensive kinetic theory
NASA Astrophysics Data System (ADS)
Silva, R.; Lima, J. A. S.
2003-08-01
In 1988 Tsallis proposed a striking generalization of the Boltzmann-Gibbs entropy functional form given by [1] (1) where kB is Boltzmann's constant, pi is the probability of the i-th microstate, and the parameter q is any real number. Nowadays, the q-thermostatistics associated with Sq is being hailed as the possible basis of a theoretical framework appropriate to deal with nonextensive settings. There is a growing body of evidence suggesting that Sq provides a convenient frame for the thermostatistical analysis of many physical systems and processes ranging from the laboratory scale to the astrophysical domain [2]. However, all the basic results, including the proof of the H-theorem has been worked in the classical non-relativistic domain [3]. In this context we discuss the relativistic kinetic foundations of the Tsallis' nonextensive approach through the full Boltzmann's transport equation. Our analysis follows from a nonextensive generalization of the "molecular chaos hypothesis". For q > 0, the q-transport equation satisfies a relativistic H-theorem based on Tsallis entropy. It is also proved that the collisional equilibrium is given by the relativistic Tsallis' q-nonextensive velocity distribution. References [1] C. Tsallis, J. Stat. Phys. 52, 479 (1988). [2] J. A. S. Lima, R. Silva, and J. Santos, Astron. and Astrophys. 396, 309 (2002). [3] J. A. S. Lima, R. Silva, and A. R. Plastino, Phys. Rev. Lett. 86, 2938 (2001).
Effect of dispersion on convective mixing in porous media
NASA Astrophysics Data System (ADS)
Wen, Baole; Hesse, Marc; Geological porous media Group Team
2017-11-01
We investigate the effect of dispersion on convection in porous media by performing direct numerical simulations (DNS) in a 2D Rayleigh-Darcy domain. Scaling analysis of the governing equations shows that the dynamics of this system is not only controlled by the classical Rayleigh-Darcy number based on molecular diffusion, Ram , and the domain aspect ratio, but also controlled by two other dimensionless parameters: the dispersive Rayleigh number Rad = H /αt and the dispersivity ratio r =αl /αt , where H is the domain height, αt and αl are the transverse and longitudinal dispersivities, respectively. For Ram << Rad , the effect of dispersion on convection is negligible; for Ram >> Rad , however, the flow pattern is determined by Rad while the mass transport flux F Ram at high- Ram regime. Our DNS results also show that the increase of the mechanical dispersion (i.e. decreasing Rad) will broaden the plume spacing and coarsen the convective pattern. Moreover, for r >> 1 the anisotropy of dispersion destroys the slender columnar structure of the primary plumes at large Ram and therefore reduces the mass transport rate. This work was supported by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001114.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
Ruggiano, Nicole; Shtompel, Natalia; Whiteman, Karen; Sias, Kathy
2017-01-01
Although transportation has been established as a facilitator/barrier to health self-management, little is known about how the context of transportation shapes health self-management behaviors and decision-making among older adults with chronic conditions. This study interviewed 37 older adults with chronic conditions in Florida to examine their perspectives about how transportation influences their chronic care self-management. The data were systematically analyzed for themes. The thematic findings revealed how transportation intersected with participants' everyday experiences with chronic health self-management, how they evaluated transportation as part of the process of making decisions about health, and how creative problem-solving about transportation became an additional health self-management activity for addressing their complex needs. These findings suggest that the context of transportation goes beyond a basic facilitator/barrier for health and enhance our understanding about how transportation services and policies may be changed to better address the needs of older adults with chronic conditions.