Science.gov

Sample records for basin clastic reservoirs

  1. Clastic depositional styles and reservoir potential of Mediterranean basins

    SciTech Connect

    Bouma, A.H. )

    1990-05-01

    A variety of tectonic styles and activities throughout the late Mesozoic and younger epochs influenced sediment transport to the Mediterranean basins and, consequently, the approach needed to finding reservoir-type clastics. The style of the present-day basins varies from west to east, with large basinal depressions and continental rises in the western province, more elongate shapes in the central area, and numerous small basins and trenches in the eastern Mediterranean. In general terms, all these basins contain a similar fill: a deep-water sequence older than late Miocene, overlain by upper Miocene evaporites, and topped by Pliocene-Quaternary clastics. The exact type of fill depends on several factors, including proximity to the sediment source, climatic conditions, subsidence and tectonic activity, and tectono-eustatic or glacio-eustatic oscillations. Investigations on many of the clastic reservoirs in Mediterranean basins should emphasize submarine fans. The modern Mediterranean Sea contains several mid-sized fans (Rhone, Ebro, Valencia, and Nile fans) and many small ones (e.g., Crati Fan). There are several well-studied Tertiary subsurface and outcropping turbidite systems. The concept of deep-water marine sands, and many of the initial studies, began with some of the now classic outcrops in Italy, France, and Spain. A well-integrated study of both modern and ancient turbidite series is needed to construct basic exploration models for the Mediterranean region. 9 figs., 1 tab.

  2. Simulation of the mulltizones clastic reservoir: A case study of Upper Qishn Clastic Member, Masila Basin-Yemen

    NASA Astrophysics Data System (ADS)

    Khamis, Mohamed; Marta, Ebrahim Bin; Al Natifi, Ali; Fattah, Khaled Abdel; Lashin, Aref

    2017-06-01

    The Upper Qishn Clastic Member is one of the main oil-bearing reservoirs that are located at Masila Basin-Yemen. It produces oil from many zones with different reservoir properties. The aim of this study is to simulate and model the Qishn sandstone reservoir to provide more understanding of its properties. The available, core plugs, petrophysical, PVT, pressure and production datasets, as well as the seismic structural and geologic information, are all integrated and used in the simulation process. Eclipse simulator was used as a powerful tool for reservoir modeling. A simplified approach based on a pseudo steady-state productivity index and a material balance relationship between the aquifer pressure and the cumulative influx, is applied. The petrophysical properties of the Qishn sandstone reservoir are mainly investigated based on the well logging and core plug analyses. Three reservoir zones of good hydrocarbon potentiality are indicated and named from above to below as S1A, S1C and S2. Among of these zones, the S1A zone attains the best petrophysical and reservoir quality properties. It has an average hydrocarbon saturation of more than 65%, high effective porosity up to 20% and good permeability record (66 mD). The reservoir structure is represented by faulted anticline at the middle of the study with a down going decrease in geometry from S1A zone to S2 zone. It is limited by NE-SW and E-W bounding faults, with a weak aquifer connection from the east. The analysis of pressure and PVT data has revealed that the reservoir fluid type is dead oil with very low gas liquid ratio (GLR). The simulation results indicate heterogeneous reservoir associated with weak aquifer, supported by high initial water saturation and high water cut. Initial oil in place is estimated to be around 628 MM BBL, however, the oil recovery during the period of production is very low (<10%) because of the high water cut due to the fractures associated with many faults. Hence, secondary and

  3. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    SciTech Connect

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  4. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  5. Elastic and Electrical Properties Evaluation of Low Resistivity Pays in Malay Basin Clastics Reservoirs

    NASA Astrophysics Data System (ADS)

    Almanna Lubis, Luluan; Ghosh, Deva P.; Hermana, Maman

    2016-07-01

    The elastic and electrical properties of low resistivity pays clastics reservoirs in Malay Basin are strongly dependent on the complex nature of the clay content, either dispersed or laminated/layered. Estimating the hydrocarbon pore volume from conventional electrical log, i.e. resistivity log, is quite a challenge. The low elastic impedance contrast also found as one of the challenge thus create a problem to map the distribution of the low resistivity reservoirs. In this paper, we evaluate the electrical properties and elastic rock properties to discriminate the pay from the adjacent cap rock or shale. Forward modeling of well log responses including electrical properties are applied to analyze the nature of the possible pays on laminated reservoir rocks. In the implementation of rock properties analysis, several conventional elastic properties are comparatively analyzed for the sensitivity and feasibility analysis on each elastic parameters. Finally, we discussed the advantages of each elastic parameters in detail. In addition, cross-plots of elastic and electrical properties attributes help us in the clear separation of anomalous zone and lithologic properties of sand and shale facies over conventional elastic parameter crossplots attributes. The possible relationship on electrical and elastic properties are discussed for further studies.

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  7. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  8. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  9. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report

    SciTech Connect

    Dutton, S.P.

    1996-04-30

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

  10. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

    1999-06-08

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

  11. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  12. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    SciTech Connect

    Andrew G. Cole; George B. Asquith; Jose I. Guzman; Mark D. Barton; Mohammad A. Malik; Shirley P. Dutton; Sigrid J. Clift

    1998-04-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.

  13. Feasibility study of simultaneous pre-stack inversion for Miocene clastic gas reservoirs in the Ulleung Basin, Offshore Korea

    NASA Astrophysics Data System (ADS)

    Jun, J.; Lee, H.; Lim, S.; Shin, K.; Choi, B.

    2016-12-01

    DHIs are effective hydrocarbon exploration tools when they are properly calibrated with reservoir properties in a specific exploration area. Nevertheless, they can't always lead us to the success of exploration. This study discusses the effectiveness of DHIs in the Ulleung Basin, offshore Korea. Backarc opening caused by oblique subduction of the Pacific plate resulted in the multi-stage evolutions of the basin including NNE-SSW trending strike-slip movement in this region and caused highly complex structures. Most of HC explorations are targeting the deltaic sandstones intercalated with shales deposited during the Miocene. In those geological conditions, it is necessary to select an appropriate approach to indicate gas presences. During the last 30 years, gas exploration using DHIs have been conducted in this basin. Seismic amplitude anomalies and AVO Class III behaviors for Miocene clastic gas reservoirs are typically observed on 2D/3D seismic data. However, it has been proved that they are insufficient to indicate the gas reservoir. To find a more reliable DHI for gas presences, a simultaneous pre-stack inversion is conducted and AVO response is analyzed for the comparison. 3D Pre-STM gathers over the area of interest and two wells are used for inversion processes. The other two wells are used for the blind test to verify the inversion algorithm. Inversion attributes are estimated and cross-plotted to separate the gas-bearing sandstone from shale or brine sandstone based on the petrophysical analysis. As a result, it is clarified as below; The AVO analysis in this region has potential pitfalls caused by heterogeneities of porosity, mineralogy, cementation, compaction or other rock properties corresponding to the highly complex structures. It is assumed that those may give rise to AVO responses that mask fluid effects. Simultaneous pre-stack inversion plays a role as a notable DHI for Miocene clastic sandstone reservoirs in the Ulleung Basin. The gas saturated

  14. 3D multicomponent seismic characterization of a clastic reservoir in the Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Velasquez-Espejo, Antonio Jose

    The main goal of this research is to characterize the combined structural-stratigraphic trap of the Tenerife Field in the Middle Magdalena Valley Basin (MMVB), Colombia. For the first time in Colombia the structural and quantitative interpretation of modern three-dimensional multicomponent (3D-3C) seismic imaging enables a geometric description, a kinematic interpretation of the structural styles, and the facies distribution of the reservoir. A seismic petrophysics work-flow to better achieve the seismic well-tie. Edited and check-shot calibrated P-wave sonic logs were obtained and coefficients of the Gardner and Castagna equations were calibrated to match the density and shear-wave velocity depth trends for the basin. Seismic modeling was performed to evaluate the PP and PS seismic response of the reservoir interval (Mugrosa Formation). The structural interpretation methodology involves a 3D fault-correlation and horizon picking for both PP- and PS-PSTM data volumes. Geometric attributes such as coherence and curvature were used to enhance the structural discontinuities. The main unconformity of the Middle Eocene (MEU) was interpreted, and an attribute-assisted interpretation of the reservoir was conducted in detail. While P-wave data provided most of the structural interpretation, converted-wave data provide a better understanding of the faults. Traditionally, compressive thrust-propagation folds and tectonic inversion have been considered as the main mechanisms controlling the deformation in the MMVB. However, the new interpretation shown in this work provides a different structural concept that involves two major structural styles: 1. Under the MEU the Late Cretaceous and Early Paleocene deformation, dominated by east-verging thrust and partially inverted Mesozoic normal faults, is preserved. Associated folds exhibit a north-south strike, and their structural development is controlled by a long-lived structural element that dominates the area (the Infantas

  15. Comparison of transgressive and regressive clastic reservoirs, late Albian Viking Formation, Alberta basin

    SciTech Connect

    Reinson, G.E.

    1996-06-01

    Detailed stratigraphic analysis of hydrocarbon reservoirs from the Basal Colorado upwards through the Viking/Bow Island and Cardium formations indicates that the distributional trends, overall size and geometry, internal heterogeneity, and hydrocarbon productivity of the sand bodies are related directly to a transgressive-regressive (T-R) sequence stratigraphic model. The Viking Formation (equivalent to the Muddy Sandstone of Wyoming) contains examples of both transgressive and regressive reservoirs. Viking reservoirs can be divided into progradational shoreface bars associated with the regressive systems tract, and bar/sheet sands and estuary/channel deposits associated with the transgressive systems tract. Shoreface bars, usually consisting of fine- to medium-grained sandstones, are tens of kilometers long, kilometers in width, and in the order of five to ten meters thick. Transgressive bar and sheet sandstones range from coarse-grained to conglomeratic, and occur in deposits that are tens of kilometers long, several kilometers wide, and from less than one to four meters in thickness. Estuary and valley-fill reservoir sandstones vary from fine-grained to conglomeratic, occur as isolated bodies that have channel-like geometries, and are usually greater than 10 meters thick. From an exploration viewpoint the most prospective reservoir trends in the Viking Formation are those associated with transgressive systems tracts. In particular, bounding discontinuities between T-R systems tracts are the principal sites of the most productive hydrocarbon-bearing sandstones.

  16. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  17. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-07-30

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  18. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  19. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  20. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2004-01-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  1. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  2. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-07-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

  3. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  4. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-09-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

  5. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Dutton, S.P.

    1996-10-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

  6. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect

    Al-Laboun, A.A.

    1987-05-01

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  7. Reservoir heterogeneity and hydrocarbon production in mixed dolomitic-clastic sequence: Escandalosa Formation, Barinas-Apure basin, southwestern Venezuela

    SciTech Connect

    Escalona, N.; Abud, J.

    1989-03-01

    Widespread dedolomitization and differential leaching occur in the Turonian O Member of the Escandalosa Formation, Barinas-Apure basin. Within this dolostone-dominated succession, calcite was developed through a dedolomitization process occurring in deeply buried dolomitized lime sediments previously deposited on a carbonate platform as well as dedolomitization on the associated glauconitic-quartzose sandstones of small-scale channels that scoured the platform. The dolomitized intervals have a strata-bound nature, and their original fabric is totally obliterated. The dolomitization process generated a sucrose-textured mosaic of saddle dolomite. Initial dolomite was of the scattered type, but progressive replacement of the host produced a mosaic dolostone with both idiotopic and xenotopic textures. A general increase occurred in the iron and manganese content, and goethite was exsolved from the curved rhombs of saddle dolomite. Calcite usually postdates dolomitization, except in the highly fossiliferous packstones; calcite veins develop in both dolostones and limestones. Leaching is restricted essentially to glauconitic sandstones where calcite and some clay have been leached. This has produced very low intercrystalline porosity within the dolostones and partially dissolved, corroded and floating grains with oversized pores in the sandstones. These sandy intervals exhibit maximum potential for hydrocarbon storage, due to contrasting diagenetic influence associated with reservoir heterogeneity.

  8. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  9. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Michael B.

    2002-02-21

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  10. Simulating transport and deposition of clastic sediments in an elongate basin using the SIMSAFADIM-CLASTIC program: The Camarasa artificial lake case study (NE Spain)

    NASA Astrophysics Data System (ADS)

    Gratacós, O.; Bitzer, K.; Casamor, J. L.; Cabrera, L.; Calafat, A.; Canals, M.; Roca, E.

    2009-12-01

    Predicting facies distribution and the stratigraphic architecture of sedimentary basins by process-oriented numerical models is nowadays an essential tool in geologic studies. They constitute a new approach to predict the geologic heterogeneity and the spatial distribution of the diverse facies generated in a depositional system jointly with the distribution of the physical, chemical, and petrophysical characteristics of the sedimentary deposits in a quantitative way. SIMSAFADIM-CLASTIC is a 3D process-based, forward numerical model for the simulation of clastic sediment transport and sedimentation in aquatic systems. It simulates the physical process of clastic transport using the advective, diffusive, and dispersive terms of the transport equation and clastic sediment deposition as a result of a variety of processes. The capabilities of SIMSAFADIM-CLASTIC have been confirmed through the application of the program to a large deep elongated artificial lake, the Camarasa reservoir in the Noguera Pallaresa River, NE of Spain. Simulation results yield sedimentation rates ranging from 0.04 to 0.09 cm·yr - 1 close to the dam, and from 1.73 to 1.63 cm·yr - 1 in the upper reservoir section. The sample experiment results match well with the observed transport pattern linked to the flow system in Camarasa's reservoir near-bottom water layer, which transports more than 50% of the sediment that is supplied to the reservoir. Opening and closure of turbine gates and the basin geometry are the main controlling factors on the fluid flow and depositional pattern in the reservoir, with a more diversified pattern obtained when an open boundary is defined. However, the resulting model also shows some limitations of the program as it does consider a stratified water column that is consistently observed in the reservoir. Refined modeling exercises of the type described in this paper are of potential application to predict and quantify sedimentation patterns allowing the

  11. Sequence stratigraphy simulations of carbonate, clastics, and mixed basin margins

    SciTech Connect

    Kendall, C.G.St.C.; Moore, P.; Birdwell, B.A.; Rouchie, L.; Cannon, R. ); Biswas, G. ); Bezdek, J. )

    1991-03-01

    Clastics, carbonates, and their mixtures have different depositional and post-depositional behavior that produces the different margin characteristics seen in seismic sequences. Carbonates undergo early cementation while maintaining higher angles of repose, while clays and sands accumulate at lower-angle slopes whose inclination is proportional to the grain size and post-depositional cohesive behavior. In higher energy regimes, waves or currents winnow less cohesive finer material that is transported downdip to from slope sediments rimming the basin. Simulations of mixed carbonate-clastic sediment accumulation, tectonism, and eustasy for settings in the Permian basin of west Texas and New Mexico show that sharp differentiation of clastics from carbonates is a product of higher angles of repose that carbonates maintain and the higher rates of clastic input at lowstands in sea level. In contrast, simulation of mixed grain-size margins like the Exmouth Plateau of Western Australia, the Baltimore Canyon, and the Gulf Coast Tertiary indicate that muds are winnowed preferentially from shelf-margin crests but accumulate on slopes, while sands accumulate on higher energy shelves. When they bypass at lowstands in sea level, they accumulate in the near slope basin but not on the slope. Simulation of pure carbonate systems like that of the Bahamian platform suggests that progradation is greatest in areas of low wave and current energy while backstepping and cliffed margins occur in high energy settings. The ability to accurately simulate mixed carbonate-clastic slopes is a key to development of exploration and production models of these systems.

  12. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998

    SciTech Connect

    1998-04-30

    The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

  13. Advanced oil recovery technologies for improved recovery from Slope Basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (sixth quarter), January 1, 1997--March 31, 1997

    SciTech Connect

    1997-04-30

    The overall objective of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the U.S. oil and gas industry.

  14. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)

    SciTech Connect

    1996-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

  15. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  16. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect

    Hines, R.A.

    1986-05-01

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  17. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996

    SciTech Connect

    Murphy, M.B.

    1997-08-01

    The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

  18. 3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.; Jons, R.A.; Lancaster, D.E.; Elphick, R.Y.; Pendleton, V.M.

    1996-09-01

    A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs, cores, production, and pressure data from more than 200 wells, 26 mi{sup 2} of 3-D seismic data, vertical seismic profiles, and checkshots was assembled to support this investigation. The authors found the most important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the area covered. These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2,500 ft above their point of origin, causing significant disruptions in the overlying clastic strata.

  19. Sequence stratigraphy and depositional environments on a Palaeozoic clastic ramp margin, Ahnet-Timimoun Basin, Algeria

    SciTech Connect

    Myers, K.J.; Hirst, J.P.P.; Arezki, A.

    1995-08-01

    A wide, ramp margin was developed during the Devonian/Carboniferous in the Ahnet-Timimoun Basin, Algerian Sahara. Variations in relative sea level resulted in rapid, long distance (>500km) lateral translations of the clastic facies belts; this was the main influence on the locations of sand depocentres. The geometry and distribution of both Gedinnian and Emsian shallow marine sandstones is complex. Understanding the influence of relative sea level, shelf processes and local tectonics is essential to predicting the distribution of potential reservoir units. The Silurian to Carboniferous succession preserved in the Ahnet-Timimoun Basin can be divided into two major Transgressive-Regressive cycles, each of approximately 45 million years duration (Ashigill to Siegenian; Siegenian to Tournaisian). The T-R cycles several sequences of approximately 10 million years duration. Major source the basin were deposited in the Early Silurian (Llandovery) and Late Devonian (Frasnian) around the transgressive maximum of the T-R cycles. In the Ahnet-Timimoun Basin, marine sedimentation prevailed across much of the ramp margin. During Gedinnian times (early Devonian), progradational events associated with each sequence deposited a succession of extensive, shallow marine, coarsening-up sandstones. The sequence boundary marking the regressive maximum. Of the first T-R cycle (Siegenian) resulted in a rapid transition from an inner shelf environment to braided rivers which deposited a regional, high N/G sandstone. Sequence boundaries, although marked by rapid basinward shifts in facies belts, are without significant fluvial incision. The transgressive sequence set in the overlying T/R cycle, is marked initially by rapid southwards directed trangression and an extensive ravinement surface of early Emsian age.

  20. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

    SciTech Connect

    1998-09-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.

  1. Appalachian Basin Low-Permeability Sandstone Reservoir Characterizations

    SciTech Connect

    Ray Boswell; Susan Pool; Skip Pratt; David Matchen

    1993-04-30

    A preliminary assessment of Appalachian basin natural gas reservoirs designated as 'tight sands' by the Federal Energy Regulatory Commission (FERC) suggests that greater than 90% of the 'tight sand' resource occurs within two groups of genetically-related units; (1) the Lower Silurian Medina interval, and (2) the Upper Devonian-Lower Mississippian Acadian clastic wedge. These intervals were targeted for detailed study with the goal of producing geologic reservoir characterization data sets compatible with the Tight Gas Analysis System (TGAS: ICF Resources, Inc.) reservoir simulator. The first phase of the study, completed in September, 1991, addressed the Medina reservoirs. The second phase, concerned with the Acadian clastic wedge, was completed in October, 1992. This report is a combined and updated version of the reports submitted in association with those efforts. The Medina interval consists of numerous interfingering fluvial/deltaic sandstones that produce oil and natural gas along an arcuate belt that stretches from eastern Kentucky to western New York. Geophysical well logs from 433 wells were examined in order to determine the geologic characteristics of six separate reservoir-bearing intervals. The Acadian clastic wedge is a thick, highly-lenticular package of interfingering fluvial-deltaic sandstones, siltstones, and shales. Geologic analyses of more than 800 wells resulted in a geologic/engineering characterization of seven separate stratigraphic intervals. For both study areas, well log and other data were analyzed to determine regional reservoir distribution, reservoir thickness, lithology, porosity, water saturation, pressure and temperature. These data were mapped, evaluated, and compiled into various TGAS data sets that reflect estimates of original gas-in-place, remaining reserves, and 'tight' reserves. The maps and data produced represent the first basin-wide geologic characterization for either interval. This report outlines the methods and

  2. Crestal unconformities as indicators of clastic stratigraphic traps: genetic relation of Berlin field and Elk City structure, deep Anadarko basin

    SciTech Connect

    Lyday, J.R.

    1988-02-01

    The Berlin fan-delta gas reservoir in the deep Anardarko basin was deposited during the late Atokan (Pennsylvanian) as a response to the initial uplift and erosion of the Elk City structure. During the late Atokan pulse of the episodic Pennsylvanian orogeny in the south-central US, abrupt epeirogenic uplift and brittle deformation created an interregional unconformity on positive areas around foreland and cratonic basins. The Elk City structure within the deep Anadarko basin originated as a distinct, subaerially exposed upthrust-block during the late Atokan tectonic event. A crestal unconformity developed on the emergent upthrust block concurrent with its uplift. Terrigenous, detrital Atoka dolomite, originally sourced from the Arbuckle dolomite (Cambrian-Ordovician) of the Amarillo-Wichita uplift, was eroded from the upthrust block and recycled northward as the Berlin fan-delta. Today, the Berlin recrystallized, recycled detrital dolomite fan-delta is a large 41 mi/sup 2/ overpressured gas reservoir with 242-362 bcf reserves at 15,000 ft. The Berlin field is genetically related to the late Atokan crestal unconformity of the Elk City structure, and is an example of the association of crestal unconformities and clastic stratigraphic traps. Such stratigraphic traps originated in marine environments proximal to active structures that have become subaerially exposed. With adequate seals and favorable structural position, detrital deposits recycled from local uplifts can form significant stratigraphic traps. Such stratigraphic traps can occur in compressional, extensional, and diapiric regions.

  3. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect

    Grover, G. Jr. )

    1993-09-01

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  4. Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin

    SciTech Connect

    Smith, L.B.; Read, J.F. )

    1994-03-01

    Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularly where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.

  5. Integrated methodology for constructing a quantified hydrodynamic model for application to clastic petroleum reservoirs

    SciTech Connect

    Honarpour, M. M.; Schatzinger, R. A.; Szpakiewicz, M. J.; Jackson, S. R.; Sharma, B.; Tomutsa, L.; Chang, M. M.

    1990-01-01

    A comprehensive, multidisciplinary, stepwise methodology is developed for constructing and integration geological and engineering information for predicting petroleum reservoir performance. This methodology is based on our experience in characterizing shallow marine reservoirs, but it should also apply to other deposystems. The methodology is presented as Part 1 of this report. Three major tasks that must be studied to facilitate a systematic approach for constructing a predictive hydrodynamic model for petroleum reservoirs are addressed: (1) data collection, organization, evaluation, and integration; (2) hydrodynamic model construction and verification; and (3) prediction and ranking of reservoir parameters by numerical simulation using data derived from the model. 39 refs., 62 figs., 13 tabs.

  6. Fractured reservoirs in clastic rocks: Differences between a basement-cored structure and a detached fold belt

    SciTech Connect

    Engelder, T.; Gross, M.R.; Younes, A.

    1996-08-01

    The Elk Basin anticline, Wyoming-Montana, has an order of magnitude more structural relief than structures of the Appalachian Plateau, New York. Despite its structural relief the Elk Basin anticline shows very little macroscopic evidence for layer-parallel shortening vs. more than 10% for the subtle Appalachian Plateau folds. Elk Basin anticline is a passive drape fold extending over a tongue of basement punching up into the sedimentary cover. On the other extreme, the detached fold belt of the Appalachian Plateau remained in compression during most, if not all, of the Alleghanian layer-parallel shortening event. The joint pattern in Elk Basin is dominated by fold-parallel sets. The joint pattern in the Appalachian Plateau is dominated by fold-perpendicular sets. These two joint patterns are consistent with states of stress that suppress layer-parallel shortening in the former case and favor it in the latter case. Curvy cross joints are unambiguous records of the change in stress field orientation. Such structures in the clastic rocks of Elk Basin indicate a 10{degrees} to 15{degrees} clockwise reorientation of the stress field during later stages of fold development. The early to synfolding propagation of fold-parallel joints is indicated by their attitude normal to bedding on both limbs of the Elk Basin anticline. Fold-parallel joints are also rotated during strike-slip motion on later, vertical faults cutting subperpendicular to the anticlinal axis. Finally, the fracture spacing index for fold-parallel joints in various formations at Elk Basin is less than for cross fold joints of the Appalachian Plateau.

  7. Geological model of shallow marine clastic reservoirs in a Wrench-Faulted Province

    SciTech Connect

    Johnson, H.D.; Chapman, J.W.; Ranggon, J.

    1988-01-01

    The St. Joseph field is situated along a major wrench-fault zone in offshore Sabah (The Bunbury-St. Joseph-Bambazon ''ridge'') that divides the field into several structural areas. The most prospective of these is the structurally simple northwest flank (about 6 km long and 1 km wide) that dips uniformly to the northwest (about 15/sup 0/-20/sup 0/) in a basinward direction away from the crestal wrench-fault zone. The main hydrocarbon-bearing interval comprises a 1,350-ft long oil column, which is contained within a highly heterogeneous sequence of late Miocene shallow marine sandstone and shales. The main geologic uncertainties of the northwest flank concern lateral variations in sand development, shale-layer continuity, and reservoir quality. They have a major impact on reservoir recovery mechanisms, pressure-maintenance schemes, and on field development strategy. Therefore, a reservoir geologic model was developed that incorporates sedimentologic studies, well-log facies analysis, reservoir mapping, and detailed structural interpretation (using a full reservoir core and three-dimensional seismic data). These studies demonstrate that depositional processes and tectonic setting had a major impact in controlling the thickness, quality and distribution of the sandstone reservoirs. Features that had a particularly significant impact on hydrocarbon distribution, reservoir modeling and field development are: (1) a storm-dominated shelf-sand depositional system, (2) rapid vertical and lateral switches in sand supply, (3) a tectonically unstable, narrow (about 5-15 km wide) shelf, and (4) shelf-edge slumping (slump scars).

  8. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively.

  9. Evidence of clastic evaporites in the canyons of the Levant basin (Israel): implications for the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Lugli, Stefano; Schreiber, B. Charlotte; Gvirtzman, Zohar; Manzi, Vinicio; Roveri, Marco

    2013-04-01

    The recognition of widespread and thick evaporite deposits below the floor of the Mediterranean Sea has boosted a long standing controversy concerning their depositional setting (shallow versus deep) and their correlation with the onshore sequences. Until a new scientific campaign might be launched to cross those deposits, the discussion is still open to speculation. Many Messinian evaporitic deposits have been interpreted as primary precipitates in very shallow-water or coastal environments, thus favouring the idea of a desiccated Mediterranean basin (Hsu et al., 1973). Recent studies have questioned this interpretation (Hardie and Lowenstein, 2004) and widespread, thick, clastic evaporite facies have been identified in the Mediterranean (Manzi et al., 2005). These clastic deposits are not compatible with a desiccation model as they were clearly emplaced by fully subaqueous, deep-water processes, ranging from submarine slides, to high- and low-density gravity flows. One of the most relevant areas for the understanding of the salinity crisis is the Levant basin where the Messinian evaporites partially fill some of the erosional features (canyons) considered to have formed as a consequence of significant drawdown related to the desiccation of the Mediterranean Sea (up to - 850 m, Druckman et al., 1995). Our complete revisitation of the available cores from onshore Israel cutting through the sedimentary filling of the Messinian canyons (Afiq 1, Ashdod 2, Be'eri Sh1, Be'eri Sh4, Jaffa 1 and Talme-Yaffe 3) revealed exclusively clastic sulfate facies. This is the first direct evidence that the Lower Evaporite Unit offshore Israel may actually consist of deep-water resedimented evaporites that were originally deposited on the margin of the Levant Basin. References Druckman Y., Buchbinder B., Martinotti G.M., Tov R.S., Aharon P., 1995. The buried Afiq Canyon (eastern Mediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times

  10. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  11. Organic geochemistry of Upper Carboniferous bituminous coals and clastic sediments from the Lublin Coal Basin

    NASA Astrophysics Data System (ADS)

    Gola, Marek R.; Karger, Michał; Gazda, Lucjan; Grafka, Oliwia

    2013-09-01

    Bituminous coals and clastic rocks from the Lublin Formation (Pennsylvanian, Westphalian B) were subjected to detailed biomarker and Rock-Eval analyses. The investigation of aliphatic and aromatic fractions and Rock-Eval Tmax suggests that the Carboniferous deposits attained relatively low levels of thermal maturity, at the end of the microbial processes/initial phase of the oil window. Somewhat higher values of maturity in the clastic sediments were caused by postdiagenetic biodegradation of organic matter. The dominance of the odd carbon-numbered n-alkanes in the range n-C25 to n-C31 , high concentrations of moretanes and a predominance of C 28 and C29 steranes are indicative of a terrigenous origin of the organic matter in the study material. This is supported by the presence of eudesmane, bisabolane, dihydro-ar-curcumene and cadalene, found mainly in the coal samples. In addition, tri- and tetracyclic diterpanes, e. g. 16β(H)-kaurane, 16β(H)-phyllocladane, 16α(H)-kaurane and norisopimarane, were identified, suggesting an admixture of conifer ancestors among the deposited higher plants. Parameters Pr/n-C17 and Rdit in the coal samples show deposition of organic matter from peat swamp environments, with the water levels varying from high (water-logged swamp) to very low (ephemeral swamp). Clastic deposits were accumulated in a flood plain environment with local small ponds/lakes. In pond/lake sediments, apart from the dominant terrigenous organic matter, research also revealed a certain quantity of algal matter, indicated, i.a., by the presence of tricyclic triterpanes C28 and C29 and elevated concentrations of steranes. The Paq parameter can prove to be a useful tool in the identification of organic matter, but the processes of organic matter biodegradation observed in clastic rocks most likely influence the value of the parameter, at the same time lowering the interpretation potential of these compounds. The value of Pr/Ph varies from 0.93 to 5.24 and from 3

  12. Raton basin, New Mexico - exploration frontier for fracture reservoirs in Cretaceous shales

    SciTech Connect

    Woodward, L.A.

    1983-03-01

    The Raton basin contains up to 3000 ft (900 m) of marine shale and subordinate carbonate rocks of Cretaceous age, including (in ascending order) the Graneros Shale, Greenhorn Limestone, Carlile Shale, Niobrara Formation, and Pierre Shale. Clastic reservoir rocks are sparse in this part of the section and drilling for them in the Raton basin has led to disappointing results. However, brittle siltstone and carbonate-rich interbeds within the Cretaceous shale intervals are capable of providing fracture reservoirs under the right conditions. Carbonate-rich beds of the Greenhorn Limestone and Niobrara Formation appear to be the most widespread and thickest intervals that might develop fracture reservoirs. Siltstone or orthoquartzitic interbeds in the Graneros, Carlile, and Pierre Shales may provide other zones with fracture systems. Hydrocarbon shows have been reported from the Graneros, Greenhorn, Niobrara, and Pierre Formations in the New Mexico parts of the Raton basin. Also, minor gas was produced from the Garcia field near Trinidad, Colorado. Fracturing appears to have enhanced the reservoir characteristics of the Wagon Mound Dakota gas field in the southern part of the basin. Structure contour maps and lithofacies maps showing brittle interbeds in dominantly shaly sequences are the basic tools used in exploration for fracture reservoirs. These maps for the Raton basin indicate numerous exploration targets.

  13. Regional stratigraphy, depositional environments, and tectonic framework of Mississippian clastic rocks between Tuscumbia and Bangor Limestones in Black Warrior basin of Alabama and Mississippi

    SciTech Connect

    Higginbotham, D.R.

    1986-09-01

    Detailed correlations in the subsurface and outcrop of northern Alabama document that Mississippian clastic rocks between the Tuscumbia and Bangor Limestones are thickest along a band across the northern and eastern parts of the Black Warrior basin. The interval thins markedly southeastward across a northeast-trending line in Monroe County, Mississippi, and Lamar County, Alabama, from more than 350 ft to less than 150 ft. The thickness distribution suggests synsedimentary differential subsidence of crustal blocks. The northeast-trending block boundary in the Black Warrior basin nearly parallels an interpreted northeast-trending late Precambrian rift segment farther southeast. The northwest-striking boundary closely parallels an interpreted northwest-trending transform fault farther southwest. The block boundaries are interpreted as basement faults that originated during late Precambrian rifting. Subsequently, the older faults were reactivated by convergenced during the Mississippian, simultaneously with the initial dispersal of clastic sediment into the Black Warrior foreland basin.

  14. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  15. Experimental Determination of Clay Mineral Reactions in Clastic Reservoir Rock Resulting from the Injection of Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Mangini, S. A.; Shaw, C. A.; Skidmore, M. L.

    2013-12-01

    The Cretaceous Frontier Formation of the Powder River Basin, WY has been considered as a potential reservoir for storing anthropogenic CO2. The reservoir zones are composed of fine-grained quartz and potassium feldspar rich sandstones, cemented with clay minerals (kaolinite and interlayered illite and montmorillonite). The purpose of these experiments is to determine whether susceptible minerals such as illite, montmorillonite, and potassium feldspar undergo in-situ 'weathering' reactions when exposed to the high concentrations of carbonic acid generated by the dissolution of supercritical CO2 in formation water. The transformation of these minerals has the potential to: 1.) open up pore space through dissolution; 2.) reduce pore space and/or close pore throats by precipitating new minerals, or 3.) cause little change if the reactions take place slowly. Core samples of the Frontier Formation were obtained from the USGS Core Repository in Denver, CO and their physical and mineralogical properties analyzed. Porosity and permeability of the cores have been determined by helium porosimetry and gas permeability testing. Pore space distribution was analyzed by CT scan. Mineralogy was determined by thin section analysis, X-Ray diffraction, and Scanning Electron Microscopy. Ongoing experiments will expose the cores to CO2 saturated brine in a flow-through reactor at conditions similar to those found in the subsurface (100oC and 15MPa). Changes to the chemical composition of the brine will be determined by withdrawing samples at regular intervals during the experiment and analyzing their contents with ion chromatography and colorimetry. The physical and mineralogical properties of the cores will be analyzed after each experiment and compared to the initial conditions. We will report on the results of these experiments.

  16. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1996-12-31

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  17. Mechanically infiltrated clays: recognition and influence in fluvial reservoirs of Reconcavo basin, Brazil

    SciTech Connect

    Moraes, M.A.S.; De Ros, L.F.

    1989-03-01

    Fluvial sandstones and conglomerates of the Sergi Formation (Jurassic) are the main reservoirs of the Reconcavo basin in northeastern Brazil. These reservoirs contain significant amounts of interstitial detrital clays resulting from early diagenetic mechanical infiltration. The infiltration developed under arid/semiarid conditions, where the lowered water table allowed muddy waters of episodic runoff to infiltrate through the coarse alluvium. The main clay concentrations occurred in the upper phreatic zone and in proximity to sources of influent seepage. It is difficult to identify infiltrated clays in ancient sedimentary rocks due to a lack of well-established petrographic criteria. In this work, a series of petrographic criteria is proposed to recognize these clays in clastic reservoirs. These criteria include the anisophachous coatings of tangentially accreted lamellae and the geometric patterns developed due to shrinkage. The infiltrated clays are among the main controls of reservoir properties, and the horizons of maximum clay concentration are the main internal barriers in most Sergi reservoirs. In general, infiltrated clays damage reservoir quality by creating macroheterogeneities and microheterogeneities, by decreasing recovery efficiency and permeability, and by increasing water saturation. Also, they can cause formation damage either by their swelling properties or through the migration of loose particles left by shrinkage. As demonstrated in the Sergi Formation, infiltrated clays must be adequately identified for the definition of proper procedures for drilling, completion, reservoir development, and EOR programs.

  18. Lithofacies and cyclicity of the Yates Formation, Permian basin: Implications for reservoir heterogeneity

    SciTech Connect

    Borer, J.M.; Harris, P.M. )

    1991-04-01

    Siliciclastics of the Yates Formation (Permian, upper Guadalupian) are significant hydrocarbon reservoirs in the US Permian basin. Subsurface and outcrop data show that the most porous lithofacies occur in a clastic-dominated middle shelf and that evaporitic inner shelf and carbonate outer shelf equivalents are mostly nonporous. Lithofacies relations and much of the heterogeneity in Yates reservoirs are related to the stacking of depositional sequences (i.e., siliciclastic-carbonate alternations and sandstone-argillaceous siltstone alternations) in response to three orders of orbitally forced, low-amplitude, eustatic variation. In general, siliciclastics dominated the Yates shelf during lowstand parts of asymmetric, 400-k.y. sea level fluctuations, whereas carbonates were deposited during sea level highstands. The character and position of sand depocenters on the Yates shelf during these lowstands were controlled by a longer duration third-order sea level variation. Shorter duration cycles controlled the heterogeneity within the 400-k.y. depositional sequences. The variation in cycle packaging, lithology, and reservoir quality between the Central Basin platform and Northwest shelf may be a response of eustatic variation on parts of the shelf with different slopes or subsidence profiles. The lithofacies described from the Yates Formation and the deposition model proposed to explain the stratigraphy may be valuable as analogs in other basins containing mixed siliciclastic-carbonate settings.

  19. Fluvial reservoir architecture in the Malay Basin: Opportunities and challenges

    SciTech Connect

    Elias, M.R.; Dharmarajan, K. )

    1994-07-01

    Miocene fluvial sandstones are significant hydrocarbon-bearing reservoirs in the Malay Basin. These include high energy, braided stream deposits of group K, associated with late development of extensional half grabens and relatively lower energy, meandering, and anastomosing channel deposits of group I formed during the subsequent basin sag phase. Group K reservoirs are typically massive, commonly tens of meters thick, and cover an extensive part of the Malay Basin. These reservoirs have good porosity and permeability at shallow burial depths. However, reservoir quality deteriorates rapidly with increasing depth. Lateral and vertical reservoir continuity is generally good within a field, commonly forming a single system. Good water drive enhances recovery. Seismic modeling to determine fluid type and the extent of interfluvial shales is possible due to reservoir homogeneity.

  20. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  1. Sources of clastic material of Cretaceous-Paleogene deposits in the southwestern part of the Amur-Zeya Basin: results of dating U-Pb detrital zircons

    NASA Astrophysics Data System (ADS)

    Sorokin, A. P.; Sorokin, A. A.

    2017-06-01

    The results of our study indicate that at the Late Cretaceous-Paleogene boundary in the southeastern part of the Amur-Zeya Basin, the sedimentation conditions changed drastically, namely, the change of provenance areas of debris. In the Maastrichtian, the clastic material was mainly transported from the Bureya-Jiamusi Superterrane and the volcanic-plutonic belts of Khingan-Okhotsk and East Sikhote-Alin located to the east: sedimentation occurred simultaneously with magmatic activity. During the Danian Stage, the major source of debris to the southern part of the basin was located to the south of the young mountain system of the Lesser Khingan (the uplifted part of the basement of the Songliao Block).

  2. Evidence of Quaternary rock avalanches in the central Apennines: new data and interpretation of the huge clastic deposit of the L'Aquila basin (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Esposito, Carlo; Scarascia Mugnozza, Gabriele; Tallini, Marco; Della Seta, Marta

    2014-05-01

    Active extensional tectonics and widespread seismicity affect the axial zone of the central Apennines (Italy) and led to the formation of several plio-quaternary intermontane basins, whose morpho-evolution was controlled by the coupling of tectonic and climatic inputs. Common features of the Apennines intermontane basins as well as their general morpho-evolution are known. Nonetheless, the complex interaction among regional uplift, local fault displacements and morpho-climatic factors caused differences in the denudational processes of the single intermontane basins. Such a dynamic response left precious records in the landscape, which in some cases testify for the occurrence of huge, catastrophic rock slope failures. Several Quaternary rock avalanches have been identified in central Apennines, which are often associated with Deep Seated Gravitational Slope Deformation (DSGSD) and thus strictly related to the geological-structural setting as well as to the Quaternary morpho-structural evolution of the mountain chain. The L'Aquila basin is one of the intermontane tectonic depression aligned along the Middle Aterno River Valley and was the scene of strong historical earthquakes, among which the last destructive event occurred on April 6, 2009 (Mw 6.3). We present here the evidence that the huge clastic deposit on which the city of L'Aquila was built up is the body of a rock avalanche detached from the southern slope of the Gran Sasso Range. The clastic deposit elongates for 13 km to the SW, from the Assergi Plain to L'Aquila and is characterized by typical morphological features such as hummocky topography, compressional ridges and run-up on the opposite slope. Sedimentological characters of the deposit and grain size analyses on the matrix let us confirm the genetic interpretation, while borehole data and significant cross sections allowed us reconstructing the 3D shape and volume of the clastic body. Finally, morphometric analyses of the Gran Sasso Range southern

  3. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico. Quarterly technical progress report, April 1, 1995--June 1, 1995

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1995-09-01

    The objective of this project is to investigate styles of reservoir heterogeneity that occur in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Technical progress is reported for outcrop activities and subsurface activities.

  4. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico. Quarterly report, January 1--April 30, 1996

    SciTech Connect

    Lucia, F.J.; Kerans, C.

    1996-04-30

    The objective of this project is to investigate styles of reservoir heterogeneity found in low-permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study.

  5. Reservoir, seal, and source rock distribution in Essaouira Rift Basin

    SciTech Connect

    Ait Salem, A. )

    1994-07-01

    The Essaouira onshore basin is an important hydrocarbon generating basin, which is situated in western Morocco. There are seven oil and gas-with-condensate fields; six are from Jurassic reservoirs and one from a Triassic reservoir. As a segment of the Atlantic passive continental margin, the Essaouira basin was subjected to several post-Hercynian basin deformation phases, which resulted in distribution, in space and time, of reservoir, seal, and source rock. These basin deformations are synsedimentary infilling of major half grabens with continental red buds and evaporite associated with the rifting phase, emplacement of a thick postrifting Jurassic and Cretaceous sedimentary wedge during thermal subsidence, salt movements, and structural deformations in relation to the Atlas mergence. The widely extending lower Oxfordian shales are the only Jurassic shale beds penetrated and recognized as potential and mature source rocks. However, facies analysis and mapping suggested the presence of untested source rocks in Dogger marine shales and Triassic to Liassic lacustrine shales. Rocks with adequate reservoir characteristics were encountered in Triassic/Liassic fluvial sands, upper Liassic dolomites, and upper Oxfordian sandy dolomites. The seals are provided by Liassic salt for the lower reservoirs and Middle to Upper Jurassic anhydrite for the upper reservoirs. Recent exploration studies demonstrate that many prospective structure reserves remain untested.

  6. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, Jerry F.; Kerans, Charles

    1997-05-29

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Subsurface Activities - We continue to prepare two final reports that summarize research results of the South Cowden Field study. One report summarizes results of the petrophysical characterization research, and one summarizes results of the fluid-flow modeling research. Outcrop Activities - We also continue to prepare the final report, which summarizes the research results of the Grayburg outcrop reservoir study.

  7. Geoscience/Engineering Characterization of the Interwell Environment in Carbonate Reservoirs Based on Outcrop Analogs, Permian Basin, West Texas and New Mexico.

    SciTech Connect

    Lucia, Jerry F.; Kerans, Charles

    1997-05-19

    The objective of this project is to investigate styles of reservoir heterogeneity found in low permeability pelleted wackestone/packstone facies and mixed carbonate/clastic facies found in Permian Basin reservoirs by studying similar facies exposed in the Guadalupe Mountains. Specific objectives for the outcrop study include construction of a stratigraphic framework, petrophysical quantification of the framework, and testing the outcrop reservoir model for effects of reservoir heterogeneity on production performance. Specific objectives for the subsurface study parallel objectives for the outcrop study. Subsurface Activities - We continue to prepare two final reports that summarize research results of the South Cowden Field study. One report summarizes results of the petrophysical characterization research, and one summarizes results of the fluid-flow modeling research. Outcrop Activities - We also continue to prepare the final report, which summarizes the research results of the Grayburg outcrop reservoir study.

  8. Routing of terrigenous clastics to oceanic basins in the southern Gulf of California, inherited from features of the pre-spreading protogulf

    NASA Astrophysics Data System (ADS)

    Lonsdale, P.; Kluesner, J. W.

    2010-12-01

    The southern protogulf was a Miocene belt of continental rupture bounded on the northeast by the Sierra Madre Occidental (SMO) volcanic plateau, and on the southeast by the Main Gulf Escarpment of the Baja California (BC) rift shoulder. Since no later than 8-9Ma, before the depression became a deep inlet of the Pacific, the southern protogulf has hosted the principal shear zone between the Pacific and North American plates. As BC gradually acquired Pacific-plate motion, its vector wrt North America rotated and made the shear zone transtensional, leading to the development of several types of pull-apart basins. Some of them, at right steps between en echelon faults, evolved into the oceanic basins that are now the principal Gulf depocenters. Recent geophysical mapping and geologic sampling in the southern Gulf has clarified the location, structures, and composition of the oceanic/continental crustal boundary, and the mechanisms and routes by which terrigenous clastics reach the intracontinental and oceanic basins.Longitudinal (northwest-southeast) thermohaline and tidal currents transport significant volumes of hemipelagic sediment across the floors of gulf basins, but most of the coarser terrigenous clastics arrive there in density flows, primarily turbidity currents that have built channeled deep-sea fans at the mouths of canyons in the continental slopes. Mapped patterns of submarine canyons, channels and fans confirm that turbidity-current transport has primarily been from the northeast margin, which has permanent mainland rivers with large catchments in the SMO. Most of the arid BC peninsula, with ephemeral-stream drainage directed toward the Pacific, contributes little terrigenous input to the deep-water gulf basins, except in the far south: more than a third of the elevated Cabo Block drains into the gulf, building a large fan on the northwest side of Alarcon Basin. The canyons feeding this fan, cut through crystalline rock and probably subaerial in origin

  9. Controls on reservoir development in Devonian Chert: Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Hovorka, S.D.

    1995-12-01

    Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily attributable to original depositional processes. Despite facies variations, porosity development in these cherts is principally a result of variations in rates and products of early silica diagenesis. Because this diagenesis was in part a function of depositional facies architecture, porosity development follows original depositional patterns. In reservoirs such as Three Bar field, where the Thirtyone Formation has been unroofed by Pennsylvanian deformation, meteoric diagenesis has created additional heterogeneity by causing dissolution of chert and carbonate, especially in areas of higher density fracturing and faulting and along truncated reservoir margins. Structural deformation also has exerted direct controls on heterogeneity that are particularly noteworthy in reservoirs under waterflood. High-density fracture zones create preferred flow paths that result in nonuniform sweep through the reservoir. Faulting locally creates compartments by offsetting reservoir flow units. As such, the processes and models defined here improve understanding of the causes of heterogeneity in all Thirtyone chert reservoirs in the Permian basin and aid recovery of the sizable hydrocarbon resource remaining in these rocks.

  10. The impact of high-resolution biostratigraphy on reservoir prediction and basin history - A Barents Sea case study

    SciTech Connect

    Husmo, T. ); Hochuli, P. )

    1991-08-01

    The Hammerfest Basin is bounded by the Troms-Finnmark Platform to the south and the Loppa High to the north. Twenty-seven exploration wells have been drilled in the basin since 1980. The objective for most of these wells was Middle Jurassic fault blocks. Until recently little attention has been paid to the Upper Jurassic to Lower Cretaceous synrift sequence. The first well drilled on Block 7120/10 tested a rotated Jurassic fault block. This well, together with two wells in an adjacent block, penetrated thin Lower Cretaceous sands near the distal pinch-outs of fault wedges. Seismic data indicated that a basinal wedge of equivalent age was present on Block 7120/10. High risk was put on the presence of sand in this basinal wedge, and a detailed biostratigraphic analysis was performed on wells along the basin margin in order to determine the timing of erosion on the margin and whether the Jurassic-Triassic coarse clastics were present in the provenance area. The analysis separated reworked from in-situ palynomorph assemblages in the synrift succession in the analyzed wells. A clear inverted stratigraphy was displayed by the reworked palynomorphs. Furthermore, a dramatic increase in reworked palynomorphs. Furthermore, a dramatic increase in reworked palynomorphs was observed in all wells at the onset of Valanginian. In particular the presence of Nannoceratopsis gracilis suggested that shallow marine Jurassic clastics were eroded at this time. Sand presence was predicted for the basinal wedge. The understanding of the basin history was also improved. Well 71Z0/10-2 drilled summer 1990 proved the success of the reservoir prediction and hence the usefulness of incorporating biostratigraphy in the assessment.

  11. Regional correlations and reservoir characterization studies of the Springer group in the Anadarko basin area of western Oklahoma

    SciTech Connect

    Smith, P.W.; Hendrickson, W.J.; Williams, C.M.

    1995-09-01

    The nomenclature used within the Anadarko Basin and encompassing shelf areas is typically erratic. A productive horizon may be incorrectly called several various names within the same field. The Springer Group, Upper Mississippian and Lower Pennsylvanian, is often misnamed as the abovelying Pennsylvanian Morrow or the underlying Mississippian Chester. Generally, the Springer Group consists of the Boatwright, Britt, and Cunningham in ascending order. A correlative and equivalent formation may be called by various names by geologists familiar with the nomenclature of one region of the basin. Further complicating the understanding of the Anadarko Basin`s geology, few detailed regional cross-sections are available (or even exist outside proprietary studies) showing the most up-to-date logs correlated throughout the basin. By using regional cross-sections, the stratigraphic relationships existing within the Springer Group are demonstrated as well as the contacts of the Springer/Chester and the Springer/Morrow identified. The lateral facies change of the Springer Group from a clastic facies into a carbonate dominated facies is illustrated by the log cross-sections. Wells accounting for approximately twenty-five percent (25%) of the production attributed to the Springer Group in the Anadarko Basin have been evaluated. The perforated interval was compared to the logs and the correct (Springer) reservoir was identified. Detailed reservoir characterization of the reservoirs was conducted to include geologic and engineering data such as depths, thicknesses, porosities, permeabilities, pressures, water saturations, area, spacings, and heterogeneities along with a correlated {open_quotes}field-specific{close_quotes} reservoir type log. Log analysis was conducted on the producing interval, saturated interval, and gross interval. The results of the studies are presented.

  12. Regional correlations and reservoir characterization studies of the Pennsylvanian system in the Anadarko Basin area of Western Oklahoma and the Panhandle of Texas

    SciTech Connect

    Hendrickson, W.J.; Smith, P.W.; Williams, C.M.

    1995-09-01

    Correlations problems have long existed between the Pennsylvanian marine clastics of the northeastern half of the Anadarko Basin and Shelf and the Pennsylvanian terrigenous washes of the extreme southwestern portion of the Anadarko Basin. These correlation problems have created nomenclature problems resulting in thousands of feet of washes often referred to on completion reports and production records as {open_quotes}granite wash{close_quotes} or {open_quotes}Atoka Wash{close_quotes} when much greater accuracy and specificity is both needed and possible. Few detailed cross-sections are available. Regional and field scale cross-sections were constructed which have been correlated well by well and field by field using nearly every deep well drilled in the basin. This process has provided for a high degree of consistency. These cross-sections have greatly diminished the correlation and nomenclature problems within the Anadarko Basin. Certain markers proved to be regionally persistent from the marine clastics into the terrigenous washes making the subdivision of thousands of feet of washes possible. Those of greatest importance were the top of the Marmaton, the Cherokee Marker, the Pink {open_quotes}Limestone{close_quotes} Interval, the top of the Atoka and the top of the Morrow. Once these and other subdivisions were made, production was allocated on a much more definitive basis. Additionally, detailed reservoir characterization of the reservoirs was conducted to include geologic and engineering data. Finally, a {open_quotes}field-specific{close_quotes} reservoir type log was chosen. A series of regional cross-sections will be presented along with the results of reservoir characterization studies conducted on reservoirs within the fields located along the cross-sections. A type log for each reservoir will also be illustrated.

  13. Gas accumulations in Oligocene-Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation

    NASA Astrophysics Data System (ADS)

    Pytlak, L.; Gross, D.; Sachsenhofer, R. F.; Bechtel, A.; Linzer, H.-G.

    2017-09-01

    Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene reservoir rocks have been generated beneath the Alps in Lower Oligocene source rocks, relative dry gas in Oligocene-Miocene clastic rocks deposited in the deep marine basin-axial channel system (Puchkirchen Channel) is interpreted as microbial in origin. Detailed investigations of the molecular and isotope composition of 87 gas samples from 86 wells, representing all producing fields with Oligocene and Miocene reservoir rocks, suggest that the presence of pure microbial gas is rare and limited mainly to the northern basin flank (e.g., KK field). All other fields contain varying amounts of thermogenic gas, which has been generated from a source rock with oil-window maturity. A relation with the underlying thermogenic petroleum system is obvious. Upward migration occurred along discrete fault zones (e.g., H field) or through low-permeability caprocks. Local erosion of Lower Oligocene sediments, the principal seal for the thermogenic petroleum system, as well as a high percentage of permeable rocks within the Puchkirchen Channel favored upward migration and mixing of thermogenic and microbial gas. All gas samples in Oligocene-Miocene reservoirs are biodegraded. Biodegradation and the formation of secondary microbial gas resulted in gas drying. Therefore, the gas samples analyzed in this study are relative dry, despite significant contributions of thermogenic hydrocarbons. Biodegradation probably continues at present time. The degree of biodegradation, however, decreases with depth.

  14. Gas accumulations in Oligocene-Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation

    NASA Astrophysics Data System (ADS)

    Pytlak, L.; Gross, D.; Sachsenhofer, R. F.; Bechtel, A.; Linzer, H.-G.

    2016-11-01

    Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene reservoir rocks have been generated beneath the Alps in Lower Oligocene source rocks, relative dry gas in Oligocene-Miocene clastic rocks deposited in the deep marine basin-axial channel system (Puchkirchen Channel) is interpreted as microbial in origin. Detailed investigations of the molecular and isotope composition of 87 gas samples from 86 wells, representing all producing fields with Oligocene and Miocene reservoir rocks, suggest that the presence of pure microbial gas is rare and limited mainly to the northern basin flank (e.g., KK field). All other fields contain varying amounts of thermogenic gas, which has been generated from a source rock with oil-window maturity. A relation with the underlying thermogenic petroleum system is obvious. Upward migration occurred along discrete fault zones (e.g., H field) or through low-permeability caprocks. Local erosion of Lower Oligocene sediments, the principal seal for the thermogenic petroleum system, as well as a high percentage of permeable rocks within the Puchkirchen Channel favored upward migration and mixing of thermogenic and microbial gas. All gas samples in Oligocene-Miocene reservoirs are biodegraded. Biodegradation and the formation of secondary microbial gas resulted in gas drying. Therefore, the gas samples analyzed in this study are relative dry, despite significant contributions of thermogenic hydrocarbons. Biodegradation probably continues at present time. The degree of biodegradation, however, decreases with depth.

  15. Sedimentology of granite boulder conglomerates and associated clastics in the onshore section of the late Mesozoic Pletmos Basin (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; America, Travis

    2016-07-01

    Along the southern margin of South Africa, intermountain rift successions, which comprise unusually large, rounded granite boulders and other coarse clastics, reveal an important geological history about the mid-Mesozoic extensional tectonics that lead to the break-up of Gondwana. These strata, mapped as part of the Mid to Upper Jurassic Enon Formation, allow the assessment of the nature, intensity and mode of sediment transport in onshore section of the Pletmos Basin, which is one of the late Mesozoic basins in southern Africa. Based on sedimentary facies analysis, palaeocurrent measurements and semi-quantitative palaeohydraulic calculations, the results suggest that the abundant coarse sediment was deposited by debris-flows and stream-flow floods on a proximal alluvial fan with high gradient alluvial channels. The floods were intense with mean flow velocity of ˜6 m3/s and peak discharge of ˜450 m3/s. While the role of climate in the sedimentation dynamics remains unknown, syn-sedimentary rift tectonics were likely significant and caused, north of the major boundary fault, the unroofing and denudation of the uplifted mountainous source areas, including the Late Ediacaran-Cambrian Maalgaten Granite Suite and the Siluro-Ordovician Table Mountain Group (Cape Supergroup).

  16. Salt tectonics, patterns of basin fill, and reservoir distribution

    SciTech Connect

    Yorston, H.J.; Miles, A.E.

    1988-02-01

    Salt structures, which develop due to sediment loading, gravity creep, and/or buoyancy, include boundary-fault grabens and half grabens, rollers, anticlines, domes and walls, diapirs, sills, massifs, and compressional toe structures. Associated features include fault systems and turtle structures. Of these, six directly relate to basin fill and all directly influence the distribution of reservoir facies. Salt structuring is initiated by sedimentation, which in turn is localized by salt withdrawal. Withdrawal produces individual salt structures, migrating sills, dissected massifs, and regional depocenters bordered by salt walls. Composite withdrawals dictate the patterns of basin fill. Relative rates of structural growth and sedimentation control the distribution of reservoir facies. When growth dominates, sands are channeled into lows. When sedimentation dominates and maintains flat surfaces, facies distribution is not impacted except where faulting develops. Turtle structures, developed by the inversion of peripheral synclines, can move sands into favorable structural position and/or serve as platforms for carbonate reservoir development. Salt growth varies with type structure, stage of development, and rate of sedimentation. Sedimentation at a specific location depends on basin position, sediment transport system, sea level stand, and rate of salt withdrawal. This paper presents techniques for using seismic data to determine the controls on salt structural growth and sedimentation and the patterns of basin fill and reservoir distribution.

  17. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  18. Paleontology and sedimentology of upper clastic member of Wanakah Formation, Chama basin, New Mexico: Lacustrine paleoenvironmental implications

    SciTech Connect

    Good, S.J.; Ridgley, J.L. )

    1989-09-01

    Lacustrine strata of the upper part of the Jurassic Wanakah Formation were restricted to the Chama basin of north-central New Mexico by mid-Jurassic tectonic activity in the Brazos and Nacimiento uplifts and along the Gallina-Archuleta anticlinorium. Lateral and vertical facies of the upper Wanakah exposed around the southern margin of the Chama basin indicate that the deeper part of the lake was north of the outcrop belt. The upper 3-5 m of the Wanakah consists of thin-bedded rippled sandstone, interbedded mudstone, and limestone containing trace fossils and freshwater mollusks characteristic of marginal lacustrine facies. Taphonomic studies of mollusks in the Wanakah Formation have been combined with application of ecophenotypic variation documented in extant unionid bivalves to produce paleoenvironmental interpretations of these lacustrine rocks.

  19. Clastic-hosted stratiform, vein/breccia and disseminated Zn-Pb-Ag deposits of the northwestern Brooks Range, AK: Are they different expressions of dewatering of the same source basin

    SciTech Connect

    Schmidt, J.M. ); Werdon, M.B. . Dept. of Geology)

    1993-04-01

    Sphalerite and galena, with significant silver occur in 3 distinct types of mineralization hosted in Upper Devonian and Carboniferous clastic rocks of the northwestern Brooks Range. The best known are Zn-Pb-Ag massive sulfide deposits with variable pyrite, barite, and hydrothermal silifica hosted in Mississippian (to Pennsylvanian ) black siliceous shale and chert, and similar to shale-hosted Pb-Zn massive sulfide deposits worldwide. Zn-Pb-Ag breccias and veins are hosted in Upper Devonian to Lower Mississippian fine-grained quartzites and siltstone which stratigraphically underlie the massive sulfide-hosting units. The breccia-vein and disseminated occurrences are co-extensive with the rocks that host massive sulfide deposits, and with the western part of the Endicott Group clastic basin. Pb isotopic ratios of galena from all the deposits are remarkably uniform, and suggest a single Pb source. The authors genetic model suggests that all types are the result of dewatering of a single clastic source basin. Different mineralization styles are probably due to variable depths of emplacement (at or below the seafloor), thermal variations related to extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional thinning of the crust, and hydrologic flow out of the basin controlled by extensional faulting and permeability variations in local stratigraphy. The most likely sources for Zn and Pb are clay minerals within the lowermost (Hunt Fork Shale) portions of the western Endicott Group.

  20. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A.; Soreghan, G.S.

    1996-12-31

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  1. Lithofacies distribution and reservoir heterogeneity within Pennsylvanian phylloid algal mounds, western Orogrande basin, New Mexico

    SciTech Connect

    Giles, K.A. ); Soreghan, G.S. )

    1996-01-01

    Pennsylvanian strata within the San Andres Mountains (western Orogrande basin) contain very well-developed phylloid algal bioherms, but these bioherms remain understudied owing to their location within the bounds of the U.S. Army White Sands Missile Range. The exposed Upper Pennsylvanian section within Hembrillo Canyon affords a three-dimensional view of mound structure, and thus an excellent opportunity for characterizing lithofacies distribution and reservoir heterogeneity that may prove useful for exploration/exploitation efforts in analogous petroliferous systems. The mounds are developed within a mixed carbonate-clastic shallow marine section punctuated by shoaling-upward cycles. Each mound site consists of a slack of individual biohermal growth events characterized by a subtidal wackestone initiation phase, core boundstone phase, and peritidal to subaerially exposed packstone/grainstone terminal phase. Individual biohermal growth events range up to 30 m in thickness; vertical stacking of these bioherms has produced aggregate mounds reaching up to 100 m in stratigraphic thickness and 300 m in diameter. Individual blohermal thicknesses decrease abruptly and markedly away from mound sites, and calcareous mudstones dominate in intermound regions. The controlling influences of paleogeography and glacioeustasy, respectively, produced the pronounced lateral and vertical heterogeneity characterizing these and analogous phylloid algal mound systems. Reservoirs within these systems are highly compartmentalized: wackestone initiation phases and peritidal to subaerial termination phases that envelope core facies may serve as porosity and permeability barriers that effectively partition the reservoir. Recognition of the scale, character, and probable controls on these lateral and vertical changes is important for effective exploration and exploitation in phylloid algal mound systems.

  2. Madison Group (Mississippian) reservoir facies of Williston Basin, North Dakota

    SciTech Connect

    Lindsay, R.F.

    1985-02-01

    Twenty-seven oil fields producing from the Mission Canyon Limestone and Charles Formation (Madison Group) were studied: 1) along the eastern basin margin (Bluell, Sherwood, Mohall, Glenburn, Haas, and Chola fields), 2) northeast of Nesson anticline (Foothills, North Black Slough, South Black Slough, Rival, Lignite, and Flaxton), 3) along Nesson anticline (North Tioga, Tioga, Beaver Lodge, Capa, Hoffland, Charlson, Hawkeye, Blue Buttes, Antelope, and Clear Creek), and 4) south of the basin center (Lone Butte, Little Knife, Big Stick, Fryburg, and Medora). Mission Canyon reservoirs along the eastern margin are in several shoaling-upward carbonate to anhydrite cycles of pisolitic packstone or grainstone buildups. South of the basin center, only a single shoaling-upward sequence is present, with dolomitized, mostly restructed-marine skeletal wackstone to pelletal wackstone or packstone reservoir facies. Nesson anticline, between these 2 areas, contains a single shoaling-upward sequence without an anhydrite cap. In northern Nesson anticline, Mission Canyon reservoir facies are oolitic-pisolitic, intraclastic wackestone or grainstone buildups or open-marine skeletal packstone or grainstone. Both limestones and dolostones are productive in southern Nesson anticline. Limestone reservoir facies are transitional, open to restricted-marine slightly intraclastic, skeletal wackestone or packstone facies. Dolostone reservoir facies are restricted-marine mudstone to skeletal mudstone and pelletal wackestone or packstone. Northeast of the Nesson anticline, production is from oolitic to pisolitic packstone or grainstone buildups in the Rival subinterval and from restricted-marine, dolomitized spiculitic mudstone in the Midale subinterval (base of Charles Formation). In the northern Nesson anticline, Rival reservoir facies are offshore open to restricted-marine, skeletal, intraclastic, pelletal wackestone and/or packstones.

  3. Sequence stratigraphy, facies architecture and reservoir distribution, Cretaceous lowstand fan reservoirs, Southern Basin, onshore Trinidad

    SciTech Connect

    Sprague, A.R.; Larue, D.K.; Faulkner, B.L.

    1996-08-01

    Thick Albian-Campanian mass-flow sandstones in the Southern Basin Trinidad were deposited within submarine canyons incised into the northern continental slope of South America and as associated down-dip basin-floor lowstand fans. The contemporaneous slope to basin-floor break lay across the Southern Basin area with turbidity current paleoflow being to the northwest. North of this paleo-slope break graded to massive, channelized, high-density turbidite sandstones occur interstratified with shaly overbank and channel abandonment deposits. A progression of depositional sub-environments from proximal through distal lowstand fan can be recognized. All fine and thin upward but can be discriminated by the occurrence of slumps, debris flows and conglomerates, the grain-size and bedding scale of sandstones and the characteristics of low-density turbidites and mudrocks. South of the paleo-slope break mass-flow deposits comprise muddy slumps and debris flows rich in granules and pebbles deposited in slope canyons. During periods of turbidity current by-pass or fan abandonment hemipelagic settling processes predominated. Reservoir distribution maps of these lowstand fans have been constructed utilizing geometric constraints, analogs and paleoslope determinations from oriented core. The interpreted canyon locations and orientations are key to the understanding of reservoir distribution on the basin-floor tract to the north: a vital component in the exploration of the basin.

  4. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    SciTech Connect

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, which developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.

  5. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: a high-resolution sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Royhan Gani, M.; Mustafa Alam, M.

    2003-02-01

    The Tertiary basin-fill history of the Bengal Basin suffers from oversimplification. The interpretation of the sedimentary history of the basin should be consistent with the evolution of its three geo-tectonic provinces, namely, western, northeastern and eastern. Each province has its own basin generation and sediment-fill history related mainly to the Indo-Burmese and subordinately to the Indo-Tibetan plate convergence. This paper is mainly concerned with facies and facies sequence analysis of the Neogene clastic succession within the subduction-related active margin setting (oblique convergence) in the southeastern fold belt of the Bengal Basin. Detailed fieldwork was carried out in the Sitapahar anticline of the Rangamati area and the Mirinja anticline of the Lama area. The study shows that the exposed Neogene succession represents an overall basinward progradation from deep marine through shallow marine to continental-fluvial environments. Based on regionally correlatable erosion surfaces the entire succession (3000+ m thick) has been grouped into three composite sequences C, B and A, from oldest to youngest. Composite sequence C begins with deep-water base-of-slope clastics overlain by thick slope mud that passes upward into shallow marine and nearshore clastics. Composite sequence B characteristically depicts tide-dominated open-marine to coastal depositional systems with evidence of cyclic marine regression and transgression. Repetitive occurrence of incised channel, tidal inlet, tidal ridge/shoal, tidal flat and other tidal deposits is separated by shelfal mudstone. Most of the sandbodies contain a full spectrum of tide-generated structures (e.g. herringbone cross-bedding, bundle structure, mud couplet, bipolar cross-lamination with reactivation surfaces, 'tidal' bedding). Storm activities appear to have played a subordinate role in the mid and inner shelf region. Rizocorallium, Rosselia, Planolites and Zoophycos are the dominant ichnofacies within the

  6. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    SciTech Connect

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  7. Reservoir Sediment Management Workshop for Tuttle Creek Lake and Perry Lake Reservoirs in the Kansas River Basin

    DTIC Science & Technology

    2015-03-01

    Sedimentation problems are severe in reservoirs on the Kansas River, where expanding water demand due to population increases must be satisfied by...ERDC/CHL CHETN-XIV-43 March 2015 Reservoir Sediment Management Workshop for Tuttle Creek Lake and Perry Lake Reservoirs in the Kansas River...USACE) reservoirs in the Kansas River basin in the state of Kansas within the U.S. Army Engineer District, Kansas City (NWK). The focus of the workshop

  8. Thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian Basin, U.S.A.

    USGS Publications Warehouse

    Belt, E.S.; Lyons, P.C.

    1990-01-01

    developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.

  9. Tight Reservoir Properties Derived by Nuclear Magnetic Resonance, Mercury Porosimetry and Computed Microtomography Laboratory Techniques. Case Study of Palaeozoic Clastic Rocks

    NASA Astrophysics Data System (ADS)

    Krakowska, Paulina I.; Puskarczyk, Edyta

    2015-06-01

    Results of the nuclear magnetic resonance (NMR) investigations, mercury porosimetry measurements (MP) and computed microtomography (micro-CT), applied to the tight Palaeozoic rocks from the depths lower than 3000 m, were presented to estimate their reservoir potential. NMR signal analysis and interpretation were performed. Based on NMR driven models, permeability and Free Fluid Index were calculated for data sets divided into homogeneous clusters. Computerized mercury porosimetry results visualization and processing provided useful information, as the automatically determined Swanson parameter is correlated with petrophysical properties of rocks. Micro-CT enriched the image of porous space in qualitative and quantitative ways. Homogeneity of pore space structure was discussed using micro-CT approach. Integration of the results in the frame of reservoir parameters from standard laboratory methods and the modern ones resulted in the improvement of methodology for determining the old, deep-seated, hard sedimentary rocks reservoir potential.

  10. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B.

    1996-12-31

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very {open_quote}high risk{close_quotes} targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell`s recent major gas discovery from a turbidite play in this basin.

  11. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B. )

    1996-01-01

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very [open quote]high risk[close quotes] targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell's recent major gas discovery from a turbidite play in this basin.

  12. 3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Christopher D. White

    2009-12-21

    rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method

  13. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    SciTech Connect

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  14. Fluvioglacial sandstone reservoirs and deposystem analysis in hydrocarbon exploration of Permian Gidgealpa group, southern Cooper basin, south Australia

    SciTech Connect

    Wild, E.K.; Williams, B.P.J.

    1984-04-01

    The sedimentology of the Permian Gidgealpa Group of the southern Cooper basin currently is being evaluated to ascertain the tectono-sedimentologic evolution of the basin and to determine the architecture of the clastic suite in order to generate exploration plays. The Merrimelia Formation of the Gidgealpa Group was examined regionally in 29 cored wells. The formation attains a maximum thickness of 300 m (1000 ft), and representative facies include glaciofluvial outwash, terrestrial and subaqueous diamictites, and glaciolacustrine, wave-affected, and ripple-laminated sandstones, with thick, monotonous mudrock sequences containing clay-dominant rhythmite horizons. The Tirrawarra Sandstone, analyzed in 32 cored wells, comprises four major facies associations throughout its maximum 75 m (250 ft) thickness. These associations indicate a temporal and spatial evolution of a fluvioglacial to predominantly fluvial system. Initial deposition on low slope, outwash fans, where braided processes operated is indicated. This sedimentation style evolved into a low sinuosity, bedload-dominant, sandy braided system, with high width-to-depth ratio channels. Allocyclic control mechanisms are invoke for late Tirrawarra sedimentation as the facies reveal proximal-distal patterns and the fluvial style changes to a mixed-load channel system. The interfacing and evolutionary pattern of the deposystem indicates that additional reserves potential exists for reservoirs developed locally within the Merrimelia Formation.

  15. Modeling water-quality loads to the reservoirs of the Upper Trinity River Basin, Texas, USA

    USDA-ARS?s Scientific Manuscript database

    Water quality modeling efforts have been conducted for 12 reservoirs in ten watersheds in Upper Trinity River Basin located in north Texas. The reservoirs are being used for water supply to the populated area around the Dallas-Fort Worth Metro and the water quality of some of these reservoirs has b...

  16. DHI evaluation by combining rock physics simulation and statistical techniques for fluid identification of Cambrian-to-Cretaceous clastic reservoirs in Pakistan

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Khalid, Perveiz; Shafi, Hafiz Muhammad Bilal; Connolly, Patrick

    2017-08-01

    The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli (K sat and K sat-μ), lambda-mu-rho method (λρ and μρ), P-to-S-wave velocity ratio (V P/V S), and Poisson's ratio (σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K sat-μ, EEI, V P/V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.

  17. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  18. Characterization of the Qishn sandstone reservoir, Masila Basin-Yemen, using an integrated petrophysical and seismic structural approach

    NASA Astrophysics Data System (ADS)

    Lashin, Aref; Marta, Ebrahim Bin; Khamis, Mohamed

    2016-03-01

    This study presents an integrated petrophysical and seismic structural analysis that is carried out to evaluate the reservoir properties of Qishn sandstone as well as the entrapment style of the hydrocarbons at Sharyoof field, Sayun-Masila Basin that is located at the east central of Yemen. The reservoir rocks are dominated by clean porous and permeable sandstones zones usually intercalated with some clay stone interbeds. As identified from well logs, Qishn sandstone is classified into subunits (S1A, S1B, S1C and S2) with different reservoir characteristics and hydrocarbon potentiality. A number of qualitative and quantitative well logging analyses are used to characterize the different subunits of the Qishn reservoir and identify its hydrocarbon potentiality. Dia-porosity, M-N, Pickett, Buckles plots, petrophysical analogs and lateral distribution maps are used in the analysis. Shale volume, lithology, porosity, and fluid saturation are among the most important deduced parameters. The analysis revealed that S1A and S1C are the main hydrocarbon-bearing units. More specifically, S1A unit is the best, as it attains the most prolific hydrocarbon saturations (oil saturation "SH″ up to 65) and reservoir characteristics. An average petrophysical ranges of 4-21%, 16-23%, 11-19%, 0-65%, are detected for S1A unit, regarding shale volume, total and effective porosity, and hydrocarbon saturation, respectively. Meanwhile, S1B unit exhibits less reservoir characteristics (Vsh>30%, ϕEff<15% and SH< 15%). The lateral distribution maps revealed that most of the hydrocarbons (for S1A and S1C units) are indicated at the middle of the study area as NE-SW oriented closures. The analysis and interpretation of seismic data had clarified that the structure of study area is represented by a big middle horst bounded by a group of step-like normal faults at the extreme boundaries (faulted anticlinal-structure). In conclusion, the entrapment of the encountered hydrocarbon at Sharyoof oil

  19. Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA

    USGS Publications Warehouse

    Frailey, S.M.; Damico, J.; Leetaru, H.E.

    2011-01-01

    The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection

  20. Comparison of the streamflow sensitivity to aridity index between the Danjiangkou Reservoir basin and Miyun Reservoir basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomang; Liu, Wenhua; Xia, Jun

    2013-02-01

    The central route of China's South-to-North Water Diversion Project would divert water from the Danjiangkou Reservoir basin (DRB) to Beijing beginning in the year 2014. The current main surface water source for Beijing is the Miyun Reservoir basin (MRB). The observed streamflows into the DRB and the MRB decreased significantly due to climatic variation and human activities from 1960 to 2005. The climate elasticity method is widely used to quantitatively separate the impacts of climatic variation and human activities on streamflow. One of the uncertainties of the method is that the impacts of changes in precipitation and potential evapotranspiration on streamflow are separated with the assumption that they are independent. However, precipitation and potential evapotranspiration are not totally independent. Aridity index, as the ratio between potential evapotranspiration and precipitation, could be considered as the representative indicator of climatic variation. In this study, the sensitivity of streamflow to aridity index is evaluated to assess the impact of climatic variation on streamflow in the DRB and the MRB. The result shows that streamflow in the MRB is more sensitive to climatic variation than that in the DRB. However, the effective impact of aridity index on streamflow is the product of the sensitivity and the change rate of aridity index. The attribution results show that change in aridity index contributed 68.8 % of the decrease in streamflow in the DRB while it contributed 31.5 % of the decrease in streamflow in the MRB. This indicated that the impact of climatic variation was the main reason of decrease in streamflow in the DRB while human activities such as increasing water consumption and land use change were the main reasons of decreasing streamflow in the MRB.

  1. Electrofacies vs. lithofacies sandstone reservoir characterization Campanian sequence, Arshad gas/oil field, Central Sirt Basin, Libya

    NASA Astrophysics Data System (ADS)

    Burki, Milad; Darwish, Mohamed

    2017-06-01

    The present study focuses on the vertically stacked sandstones of the Arshad Sandstone in Arshad gas/oil field, Central Sirt Basin, Libya, and is based on the conventional cores analysis and wireline log interpretation. Six lithofacies types (F1 to F6) were identified based on the lithology, sedimentary structures and biogenic features, and are supported by wireline log calibration. From which four types (F1-F4) represent the main Campanian sandstone reservoirs in the Arshad gas/oil field. Lithofacies F5 is the basal conglomerates at the lower part of the Arshad sandstones. The Paleozoic Gargaf Formation is represented by lithofacies F6 which is the source provenance for the above lithofacies types. Arshad sediments are interpreted to be deposited in shallow marginal and nearshore marine environment influenced by waves and storms representing interactive shelf to fluvio-marine conditions. The main seal rocks are the Campanian Sirte shale deposited in a major flooding events during sea level rise. It is contended that the syn-depositional tectonics controlled the distribution of the reservoir facies in time and space. In addition, the post-depositional changes controlled the reservoir quality and performance. Petrophysical interpretation from the porosity log values were confirmed by the conventional core measurements of the different sandstone lithofacies types. Porosity ranges from 5 to 20% and permeability is between 0 and 20 mD. Petrophysical cut-off summary of the lower part of the clastic dominated sequence (i. e. Arshad Sandstone) calculated from six wells includes net pay sand ranging from 19.5‧ to 202.05‧, average porosity from 7.7 to 15% and water saturation from 19 to 58%.

  2. Upper Strawn (Desmoinesian) carbonte and clastic depositional environments, southeastern King County, Texas

    SciTech Connect

    Boring, T.H. )

    1990-02-01

    The Pennsylvanian upper Strawn Group of southeastern King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water terrigenous clastic sediments. Within the study area, carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeastern King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion, and compaction. The platform carbonates within the northern region of southeastern King County record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region of southeastern King County occur in a variety of complex depositional geometries, including distributary-bar fingers, lobate deltas, and offshore bars. Cores of these sandstones represent mainly the uppermost portion of the various sandstone bodies. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000-6,000 ft. Total production within the area is over 100 million bbl of oil since the early 1940s. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve a detailed study due to these relatively shallow, unexplored, multiple pay zones.

  3. What happens to nutrients in offstream reservoirs in the lower South Platte River basin?

    USGS Publications Warehouse

    Sprague, Lori A.; Kimbrough, Robert A.; Ranalli, Anthony J.

    2002-01-01

    The practice of storing South Platte River water in offstream reservoirs reduces nutrient concentrations but also contributes to the growth of algae, which may adversely affect the recreational use of the reservoirs. Results of a study of five offstream reservoirs in the lower South Platte River Basin during the 1995 irrigation season showed that the reservoirs trapped 20 to 88 percent of incoming nitrogen and phosphorus, except for phosphorus in one reservoir. Total nitrogen concentrations in the reservoirs were highest in March and decreased through September, largely as a result of uptake by algae and other aquatic life for growth. Total phosphorus concentrations in the reservoirs were more variable because of the recycling of phosphorus by aquatic life. Chlorophyll-a concentrations indicated that the amount of algae in all reservoirs increased during the summer and that all reservoirs were eutrophic. This study was done by the U.S. Geological Survey as part of the National Water-Quality Assessment (NAWQA) Program.

  4. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    USGS Publications Warehouse

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  6. Antrim shale fractured reservoirs: Their potential throughout the Michigan Basin

    SciTech Connect

    Manger, K.C.; Woods, T.J.; Curtis, J.B.; Zuber, M.D.

    1996-09-01

    Antrim shale gas production grew from 0.4 Bcf in 1987 to 156 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model contains an Antrim resource base description that was developed in 1991. It was based on industry activity through 1990 and only covered the northern extent of the Antrim surrounding the current play. Significant technological improvements since then have resulted in projected near-term production lagging actual production by one to two years. Even so, the 1996 Edition of the GRI Baseline Projection predicts Antrim production will reach 1 Tcf by the year 2015. Given the 1996 projection results, a reassessment of the potential for producing gas from Antrim shale-type fractured reservoirs was initiated. The analysis identified general geological characteristics that appear to contribute to successful wells and extrapolated them to the rest of the Michigan Basin. Data used included production and well data through 1995, GRI-funded studies, and proprietary studies and data on the Antrim and deeper formations significant to gas origin and thermal maturity. Initial results suggest four {open_quotes}Resource Areas{close_quotes} based on comparison to the existing play using the following geological factors: (1) extent and thicknesses of the Lachine and Norwood organic shales; (2) regional structural expression of potential fracturing; (3) total depth relating to probability of open fractures; and (4) probability of biogenic gas contribution.

  7. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  8. Inferring reservoir operating patterns across the Mekong Basin using only space observations

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew; Hossain, Faisal

    2017-05-01

    This study explores the operating pattern of artificial reservoirs by examining their impact on streamflow through two parameters, residence time and flow alteration, using a purely satellite-based technique for the Mekong Basin. Overall residence times of individual reservoirs ranged from 0.09 to 4.04 years, while streamflow was altered between 11 and 130% of its natural variability. The current set of reservoirs appears to have increased the residence time of the entire Mekong basin by about 1 month. However, if subbasin variability is considered, the satellite-based method depicts a different picture. Residence time increases to 4 months when only regulated flows are considered. If low residence time reservoirs on major rivers are excluded and reservoirs on higher stream-order rivers considered, residence time increases to 1.3 years. Predictable strong seasonal patterns emerged in residence time, where reservoirs experience higher residence time in the dry season and lower residence time in the wet season and residence time varies inversely with precipitation. High variability in reservoir effects on streamflow between reservoirs could not be explained by any reservoir properties (e.g., size, use, location, etc.), highlighting the variability in the human decisions operating these reservoirs. The take-home message of this study is that satellite observations, in combination with physical models forced with satellite data, can elucidate the spatiotemporal variability of reservoir behavior in ungauged basins of the developing world. We demonstrate in this study that the requirement for ground data to monitor current or historical behavior of dams is not necessary.

  9. A new integrated tectonic synthesis of the Piceance Basin: Implications for fractured reservoir detection and characterization

    SciTech Connect

    Hoak, T.E.

    1995-06-01

    Detailed reservoir characterization of Piceance Basin thin-skinned structural traps reveals the importance of fracture-controlled gas production. A complete understanding of basin fracture genesis can be achieved through determination of the regional tectonic evolution. To understand the evolution of thin-skinned and basement-involved structures, high-resolution aeromagnetic data, seismic data, remote sensing imagery analysis, and production history analyses have been integrated with conventional subsurface and surficial dynamic structural analyses. Examination of structural trends in rocks ranging in age from the Precambrian through Holocene show the importance of pre-existing anisotropies in partitioning younger tectonic strain. Because of this strain partitioning, many Laramide structures show complex reactivation histories that obscure older Precambrian and Paleozoic tectonic events. An excellent example of this reactivation and partitioning is provided by NW-trending Precambrian-age structures on the Uncompahgre Uplift that were reactivated during Pennsylvanian-age deformation (Ancestral Rockies) and Laramide events. Because of its importance to reservoir engineering problems such as hydraulic stimulation design and drainage efficiency calculations for fractured reservoirs, the modern stress state throughout the basin has been determined and data suggest that there is significant variability in principal stress orientations throughout the basin. This interpretation demonstrates the complex evolution of multiply-reactivated tectonic structures and the relationship between production trends, structure, and fractured reservoirs. Most importantly, the integrated exploration approach demonstrates the power of an integrated basin analysis as a deterministic tool for understanding and predicting fractured reservoir conditions in advance of drilling.

  10. Jurassic carbonate reservoirs of the Amu Darya Basin, Uzbekistan and Turkmenistan

    SciTech Connect

    Shein, V.S.; Fortunatova, N.K.; Neilson, J.E.

    1995-08-01

    The Amu Darya Basin is a world class hydrocarbon province. Current reserves estimates are 220 TCF of gas and 800 MMbbl of oil and condensate, 50% of which is reservoired in Late Jurassic carbonates. Exploration opportunities still exist in large parts of the basin which are relatively undrilled. Within the 100-600m thick carbonate sequence, reservoir facies include reefs, shelf grainstones and turbidite fares. The major seal are Kimmeridgian - Tithonian evaporates which are up to 1600m thick in the basin centre. Stratigraphic trapping is common and often enhanced by structural modifications. The reservoirs are in communication with a major gas-prone Early-Middle Jurassic source rock. Oil-prone source rocks are thought to occur in basinal sediments which are coeval with the Late Jurassic reservoirs. Carbonate sedimentation commenced during the Late Jurassic with the development of a ramp complex. This evolved into a rimmed shelf with barrier and pinnacle reefs. Several cycles of relative sea-level change (largely eustatic?) influence the carbonate ramp/shelf systems and effect the distribution of reservoir facies. Numerous empirical observations by VNIGNI scientists on carbonate successions have enabled them to develop mathematically calculated indices for facies and reservoir prediction, which have been applied successfully in the Amu Darya Basin. Reservoir quality in the limestones is strongly controlled by primary facies. Reefs and shelf grainstones display the best reservoir characteristics. Whilst many facies have good total porosity, it is only the reef and grainstone belts where connected porosity (with pore throats greater than 10um) becomes effective. Burial cements are rare. Freshwater solution and cementation has often improved or preserved primary porosity.

  11. Upper Strawn (Desmoinesian) carbonate and clastic depositional environments, SE King County, TX

    SciTech Connect

    Boring, T.H. )

    1990-05-01

    The Pennsylvanian upper Strawn Group of southeast King County, Texas, provides a unique setting to study interactions between coeval carbonate and clastic deposition during the Desmoinesian. One of the most perplexing problems is the relationship of massive Pennsylvanian platform carbonates to shallow-water marine and deltaic sediments. Within the study area carbonate facies were deposited along the northern edge of the Knox-Baylor trough on the Spur platform, and terrigenous clastics were carried toward the Midland basin through the Knox-Baylor trough. Based on the analysis of subsurface cores, five carbonate lithofacies and four clastic lithofacies were recognized in southeast King County, Texas. The distribution and geometry of these lithofacies are related to variations in the rate of subsidence in the Knox-Baylor trough, Pennsylvanian tectonics, deltaic progradation, avulsion and compaction. The platform carbonates within the northern region record environments within the carbonate platform complex, including middle platform, outer platform, algal mound, and platform margin. The quartzarenitic sandstones within the southern region occur in a variety of complex depositional geometries, including distributary bar fingers, lobate deltas, and offshore bars. The upper Strawn Group provides an attractive area for exploration geology. Both carbonates and clastics provide excellent reservoirs from a depth of approximately 5,000 to 6,000 ft. Total production since the early 1940s, within the area is over 100,000,000 bbl of oil. Multiple pay zones within a 600-ft interval also provide an added incentive for exploration. Areas within and around the Knox-Baylor trough deserve additional study due to these relatively shallow, unexplored, multiple pay zones.

  12. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  13. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  14. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  15. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Structural and reservoir quality assessment

    NASA Astrophysics Data System (ADS)

    Rusillon, Elme; Clerc, Nicolas; Makhloufi, Yasin; Brentini, Maud; Moscariello, Andrea

    2017-04-01

    A reservoir assessment was performed in the Greater Geneva Basin to evaluate the geothermal resources potential of low to medium enthalpy (Moscariello, 2016). For this purpose, a detail structural analysis of the basin was performed (Clerc et al., 2016) simultaneously with a reservoir appraisal study including petrophysical properties assessment in a consistent sedimentological and stratigraphical frame (Brentini et al., 2017). This multi-disciplinary study was organised in 4 steps: (1) investigation of the surrounding outcrops to understand the stratigraphy and lateral facies distribution of the sedimentary sequence from Permo-Carboniferous to Lower Cretaceous units; (2) development of 3D geological models derived from 2D seismic and well data focusing on the structural scheme of the basin to constrain better the tectonic influence on facies distribution and to assess potential hydraulic connectivity through faults between reservoir units ; (3) evaluation of the distribution, geometry, sedimentology and petrophysical properties of potential reservoir units from well data; (4) identification and selection of the most promising reservoir units for in-depth rock type characterization and 3D modeling. Petrophysical investigations revealed that the Kimmeridgian-Tithonian Reef Complex and the underlying Calcaires de Tabalcon units are the most promising geothermal reservoir targets (porosity range 10-20%; permeability to 1mD). Best reservoir properties are measured in patch reefs and high-energy peri-reefal depositional environments, which are surrounded by synchronous tight lagoonal deposits. Associated highly porous dolomitized intervals reported in the western part of the basin also provide enhanced reservoir quality. The distribution and geometry of best reservoir bodies is complex and constrained by (1) palaeotopography, which can be affected by synsedimentary fault activity during Mesozoic times, (2) sedimentary factors such as hydrodynamics, sea level variations

  16. Structurally controlled and aligned tight gas reservoir compartmentalization in the San Juan and Piceance Basins

    SciTech Connect

    Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.

    1995-10-01

    Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamic structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.

  17. Seismic Texture Applied to Well Calibration and Reservoir Property Prediction in the North Central Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Ghosh, Amartya Ghosh

    Enhancing seismic interpretation capabilities often relies on the application of object oriented attributes to better understand subsurface geology. This research intends to extract and calibrate seismic texture attributes with well log data for better characterization of the Marcellus gas shale in north central Appalachian basin. Seismic texture refers to the lateral and vertical variations in reflection amplitude and waveform at a specific sample location in the 3-D seismic domain. Among various texture analysis algorithms, here seismic texture is characterized via an algorithm called waveform model regression utilizing model-derived waveforms for reservoir property calibration. Altering the calibrating waveforms facilitates the conversion of amplitude volumes to purpose-driven texture volumes to be calibrated with well logs for prediction of reservoir properties in untested regions throughout the reservoir. Seismic data calibration is crucial due to the resolution and uncertainty in the interpretation of the data. Because texture is a more unique descriptor of seismic data than amplitude, it provides more statistically and geologically significant correlations to well data. Our new results show that seismic texture is a viable attribute not only for reservoir feature visualization and discrimination, but also for reservoir property calibration and prediction. Comparative analysis indicates that the new results help better define seismic signal properties that are important in predicting the heterogeneity of the unconventional reservoir in the basin. Provisions of this research include a case study applying seismic texture attributes and an assessment of the viability of the attributes to be calibrated with well data from the Marcellus Shale in the north central Appalachian basin. Examples from this study will provide insight in its capabilities in practical applications of seismic texture attributes in unconventional reservoirs in the Appalachian basin and other

  18. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    SciTech Connect

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  19. Sedimentological reservoir characteristics of the Paleocene fluvial/lacustrine Yabus Sandstone, Melut Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Mahgoub, M. I.; Padmanabhan, E.; Abdullatif, O. M.

    2016-11-01

    Melut Basin in Sudan is regionally linked to the Mesozoic-Cenozoic Central and Western African Rift System (CWARS). The Paleocene Yabus Formation is the main oil producing reservoir in the basin. It is dominated by channel sandstone and shales deposited in fluvial/lacustrine environment during the third phase of rifting in the basin. Different scales of sedimentological heterogeneities influenced reservoir quality and architecture. The cores and well logs analyses revealed seven lithofacies representing fluvial, deltaic and lacustrine depositional environments. The sandstone is medium to coarse-grained, poorly to moderately-sorted and sub-angular to sub-rounded, arkosic-subarkosic to sublitharenite. On the basin scale, the Yabus Formation showed variation in sandstone bodies, thickness, geometry and architecture. On macro-scale, reservoir quality varies vertically and laterally within Yabus Sandstone where it shows progressive fining upward tendencies with different degrees of connectivity. The lower part of the reservoir showed well-connected and amalgamated sandstone bodies, the middle to the upper parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenetic changes such as compaction, cementation, alteration, dissolution and kaolinite clays pore fill and coat all have significantly reduced the reservoir porosity and permeability. The estimated porosity in Yabus Formation ranges from 2 to 20% with an average of 12%; while permeability varies from 200 to 500 mD and up to 1 Darcy. The understanding of different scales of sedimentological reservoir heterogeneities might contribute to better reservoir quality prediction, architecture, consequently enhancing development and productivity.

  20. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  1. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, J.R.; Harrison, W.B.

    2001-01-22

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  2. Insights to Late Cretaceous Clastic Progradation from U-Pb and (U-Th)/He Double Dating in the Book Cliffs, Utah and South-Central San Juan Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Saadeh, C. M.; Saylor, J. E.; Bartschi, N.; Lapen, T. J.; Copeland, P.

    2016-12-01

    Middle-late Campanian strata exposed in the Book Cliffs, Utah and in the San Juan Basin (SJB), New Mexico record the deposition of marine-nonmarine clastic wedges in the Cordilleran foreland basin. The basin initially developed in response to loading by the Sevier thrust belt to the west and also received sediment from along-strike tectonic elements such as the Mogollon highlands to the southwest. Laramide basement-cored uplifts partitioned the foreland basin and exposed >1800 m of non-marine, marginal- and offshore marine foreland basin infill in the SJB. An anomalously fast progradation rate is observed in the uppermost middle Campanian Upper Castlegate Sandstone (Book Cliffs) and the Pictured Cliffs Formation (SJB). Rapid progradation may be due to either (1) an increase in sediment supply following an increase in exhumation of the Sevier thrust belt or an introduction of a new sediment source or (2) decreased accommodation, possibly associated with Laramide deformation. We examine this relationship by comparing U-Pb and (U-Th)/He ages of detrital zircon grains from sections measured in the Book Cliffs, Utah and in the south-central SJB, New Mexico to identify whether synchronous shifts in U-Pb age populations are due to an increase in exhumation rate in the sediment source area(s). Lag time is the difference between the closure age of a thermochronologic system and the depositional age of a sedimentary rock. A decrease or increase in the exhumation rate of the source area should be expressed by an increase or decrease in zircon (U-Th)/He lag time, respectively, while a constant exhumation rate will result in a constant lag time. In both the Book Cliffs and SJB, detrital zircon U-Pb data indicate a synchronous increase in magmatic-arc zircons in uppermost middle Campanian strata. In the Book Cliffs, the upsection decrease in a thrust-belt source coupled with an increase in a magmatic arc and Mogollon Highlands source area continues into the late Campanian

  3. Effects of sequence stratigraphy on distribution of Cambro-Ordovician siliciclastic hydrocarbon reservoirs in Michigan basin

    SciTech Connect

    Horne, J.C.; Reel, C.L.; Cummins, G.D. )

    1989-08-01

    The lateral and vertical distribution of Cambrian-Ordovician siliciclastic reservoir-potential rock types in the Michigan basin is governed by the sequence stratigraphy. The sequence stratigraphy is controlled primarily by the interaction of four variables: subsidence, eustasy, volume of sediments, and climate. Seven sequential stratigraphic intervals can be defined in the pre-Utica, Cambrian-Ordovician deposits of the Michigan basin. Each of these unconformity-bounded sequences begins with a siliciclastic unit deposited over a lowstand surface of erosion. These lowstand surfaces developed during periods when eustatic sea level decline exceeded the rate of subsidence in the basin, and much or all of the basin became exposed. Where the sedimentation rate was less than the sum of the rate of subsidence and sea level change, a transgressive sequence developed with more open-marine carbonates overlying shallower water and/or non-marine facies. Reservoir-potential siliciclastics accumulated in incised valley-fill and transgressive reworked deposits.

  4. Belize model, a carbonate-clastic shelf buildup

    SciTech Connect

    Shepard, W.

    1987-05-01

    Belize, a small Central American country located on the Caribbean Sea south of the Yucatan Peninsula, offers an excellent modern analog of a mixed carbonate/clastic shelf buildup. Its 175-mi long reef tract, second longest in the world, restricts a shallow shelf depobasin into which terrigenous clastics source from the Maya Mountains to the west and carbonates dominate from the east. Mixed lithologies occur along strandlines, in submarine channels, and in lagoons and river-delta fronts, which are scattered throughout the depobasin. Energy sources from both land and sea influence sedimentation. Heavy summer rains flood the basin with arkosic and quartzose clastics, and periodic sea storms and hurricanes drive carbonate particles from the reef tract landward into the basin. Modern environments include the reef tract, carbonate tidal flats, shallow shelf patch reefs, lagoons, cayes, mainland coast deltas, estuaries, lagoons, and beach/bar barriers. Modern sediments include reef metazoans, algae, coralline algae, lime mud, quartz, and feldspathic sand and clay. The setting for the model has been influenced by Tertiary tectonics and Pleistocene sea level changes. Karstification occurred during the past 10,000 years, partly controlling topography and resulting Holocene sediment patterns. Facies patterns of the Belize Holocene are compared to the Jurassic of Montana. The Middle Jurassic Piper Formation exhibits a nearly 100-mi long carbonate barrier/buildup restricting a clastic-dominated shelf. Other ancient mixed carbonate/clastic terranes may fit this model as well.

  5. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China

    NASA Astrophysics Data System (ADS)

    Zheng, M.

    2016-12-01

    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  6. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    NASA Astrophysics Data System (ADS)

    Ma, Xiangxian; Zheng, Guodong; Xu, Wang; Liang, Minliang; Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin; Shozugawa, Katsumi; Matsuo, Motoyuki

    2016-12-01

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  7. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  8. Vertical stacking of reservoirs in Silurian carbonates of Appalachian basin

    SciTech Connect

    Smosna, R.; Conrad, J.M.; Maxwell, T.C.

    1988-08-01

    The distribution of modern reefs and oolites is controlled to a large degree by sea-floor topography. Likewise, paleotopographic highs in the Silurian Lockport Dolomite and underlying Keefer Sandstone provided optimum sites for the deposition of boundstone and grainstone reservoir facies. The Keefer Sandstone in western West Virginia was deposited as a series of subtidal sand waves with a relief of a few meters. During initial Lockport sedimentation, the turbulence, water chemistry, and light intensity were most favorable in shallow water over the Keefer sand waves, encouraging growth of coral-stromatoporoid patch reefs. Skeletal banks in the upper Lockport of eastern Kentucky also were established over topographic highs of earlier Lockport mounds. In a similar fashion, the upper Lockport of West Virginia was deposited as oolitic shoals that formed atop exposed mud mounds in the middle member. A slight rise of sea level created the agitated subtidal environment above the now-submerged mud mounds, and oolite bars developed. The reef, skeletal-bank, and oolite facies of the Lockport, and the Keefer Sandstone, are all petroleum reservoirs. Carbonate reservoirs can be identified in the subsurface by thicks on isopach maps, by their clean gamma-ray signature, and by a relatively high log porosity. Based on these criteria, seven potential fairways have been mapped in Kentucky. Because the distribution of buildups was greatly influenced by that of their predecessors, five of the fairways contain vertically stacked reservoir facies. These are particularly attractive because they can be drilled as multistory targets.

  9. Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama

    SciTech Connect

    Kugler, R.L.; Pashin, J.C.

    1992-05-01

    This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

  10. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  11. Val Verde Basin: Thrusted Strawn (Pennsylvanian) carbonate reservoirs, Pakenham Field area

    SciTech Connect

    Montgomery, S.L.

    1996-07-01

    An important target of recent exploration in the Val Verde basin of southwestern Texas has been thrusted Pennsylvanian (Desmoinesian) carbonates along the leading edge of the Ouachita front. These reservoirs produce gas and condensate at significant rates from fractured limestones, which were deposited in a variety of environments and later complexly juxtaposed during thrusting. Improvements in seismic imaging capabilities, particularly associated with the introduction of two-dimension (2-D) swath and three-dimensional (3-D) surveys, have allowed accurate mapping of the thrust front and have resulted in revised interpretations of basin structure and history. These data highlight the existence of multiple reservoirs at separate structural levels. Strawn reservoirs are discussed in relation to the Pakenham field area, northwestern Terrell County.

  12. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    USGS Publications Warehouse

    Groshong, R.H.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  13. 3-D sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming

    SciTech Connect

    Janok P. Bhattacharya; George A. McMechan

    2007-02-16

    This project examined the internal architecture of delta front sandstones at two locations within the Turonian-age Wall Creek Member of the Frontier Formation, in Wyoming. The project involved traditional outcrop field work integrated with core-data, and 2D and 3D ground penetrating radar (GPR) imaging from behind the outcrops. The fluid-flow engineering work, handled through a collaborative grant given to PI Chris White at LSU, focused on effects on fluid flow of late-stage calcite cement nodules in 3D. In addition to the extensive field component, the work funded 2 PhD students (Gani and Lee) and resulted in publication of 10 technical papers, 17 abstracts, and 4 internal field guides. PI Bhattacharya also funded an additional 3 PhD students that worked on the Wall Creek sandstone funded separately through an industrial consortium, two of whom graduated in the fall 2006 ((Sadeque and Vakarelov). These additional funds provided significant leverage to expand the work to include a regional stratigraphic synthesis of the Wall Creek Member of the Frontier Formation, in addition to the reservoir-scale studies that DOE directly funded. Awards given to PI Bhattacharya included the prestigious AAPG Distinguished Lecture Award, which involved a tour of about 25 Universities and Geological Societies in the US and Canada in the fall of 2005 and Spring of 2006. Bhattacharya gave two talks, one entitled “Applying Deltaic and Shallow Marine Outcrop Analogs to the Subsurface”, which highlighted the DOE sponsored work and the other titled “Martian River Deltas and the Origin of Life”. The outcrop analog talk was given at about 1/2 of the venues visited.

  14. Mesozoic basins of eastern N. America: Exploration target whose time has come

    SciTech Connect

    Pyron, A.J.

    1998-07-20

    Significant hydrocarbon reserves may be found in Mesozoic age rift basins of the eastern US. The Mesozoic basins of eastern North America stretch from the Labrador shelf in Nova Scotia to the Florida panhandle. In northwestern Africa, basins with stratigraphic columns of clastic rocks (sandstones, shales, and conglomerates) similar to those in eastern North America have been documented. Similar basins formed on the South American and southern African plates in response to extensional activity concurrently with the more northern basins. Only the rift basins found onshore in the US have no identified economic hydrocarbon reservoirs. The paper discusses the regional geology, production analogs, and a review of the Newark basin.

  15. Facies relationships and reservoir potential of Ohio Creek interval across Piceance Creek basin, northwestern Colorado

    SciTech Connect

    Rutledge, A.K.; Lorenz, J.C.

    1984-04-01

    The Ohio Creek member of the Mesaverde Group of Late Cretaceous age grades from a fluvial to a paralic facies from the southern to central parts of the Piceance Creek basin. The Ohio Creek is considered here to be the nonmarine to paralic equivalent of the Lewis transgression to the north. Although it is fluvial in the type area and southern part of the basin, evidence of marine influence in the east central part of the basin includes: (1) zones of abundant logs with large fossil Teredinidae burrows, (2) palynological evidence from outcrops at Rifle Gap and the US Department of Energy MWX wells, and (3) marine-type sedimentary structures visible in outcrop. In this east-central area Ohio Creek depositional environments are interpreted as distributary channel and estuarine. Although the Ohio Creek is highly altered by diagenesis and is an aquifer in some parts of the basin, the equivalent zones are productive of hydrocarbons in the north-central parts of the basin. Continued changes in facies toward a marine environment to the north affected the petrologic characteristics and sand body/reservoir morphology, increasing the reservoir potential of this zone to the north. The variably thick interval is recognizable in the subsurface as an extensive sandy zone with blocky shaped log profiles; it should provide good reservoirs where porosity and permeability are not occluded by diagenesis, and where continuity with surface exposures has not allowed gas escape and water influx.

  16. Precambrian clastic sedimentation systems

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.; Condie, K. C.; Tirsgaard, H.; Mueller, W. U.; Altermann, W.; Miall, A. D.; Aspler, L. B.; Catuneanu, O.; Chiarenzelli, J. R.

    1998-09-01

    The unique and evolving nature of the Precambrian geological environment in many ways was responsible for significant differences between Precambrian clastic sedimentary deposits and their Phanerozoic-modern equivalents. Some form of plate tectonics, with rapid microplate collisions and concomitant volcanic activity, is inferred to have led to the formation of greenstone belts. Explosive volcanism promoted common gravity-flow deposits within terrestrial greenstone settings, with braided alluvial, wave/storm-related and tidal coastline sediments also being preserved. Late Archaean accretion of greenstone terranes led to emergence of proto-cratons, where cratonic and rift sedimentary assemblages developed, and these became widespread in the Proterozoic as cratonic plates stabilised. Carbonate deposition was restricted by the paucity of stable Archaean terranes. An Early Precambrian atmosphere characterised by greenhouse gases, including CO 2, in conjunction with a faster rotation of the Earth and reduced albedo, provide a solution to the faint young Sun paradox. As emergent continental crust developed, volcanic additions of CO 2 became balanced by withdrawal due to weathering and a developing Palaeoproterozoic microbial biomass. The reduction in CO 2, and the photosynthetic production of O 2, led to aerobic conditions probably being achieved by about 2 Ga. Oceanic growth was allied to atmospheric development, with approximately 90% of current ocean volume being reached by about 4 Ga. Warm Archaean and warm, moist Palaeoproterozoic palaeoclimates appear to have become more arid after about 2.3 Ga. The 2.4-2.3 Ga Huronian glaciation event was probably related to continental growth, supercontinent assembly and weathering-related CO 2 reduction. Despite many analogous features among both Precambrian and younger sedimentary deposits, there appear to be major differences as well. Two pertinent examples are rare unequivocal aeolian deposits prior to about 1.8 Ga and an

  17. The circular Uneged Uul structure (East Gobi Basin, Mongolia) - Geomorphic and structural evidence for meteorite impact into an unconsolidated coarse-clastic target?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Seyfried, Hartmut; Gerel, Ochir

    2013-03-01

    The Uneged Uul structure is a ˜10 km circular, complex, multi-ridged domal feature in the Unegt subbasin of the East Gobi Basin, southeastern Mongolia. As revealed by remote sensing and recent field reconnaissance, the central part of the Uneged Uul structure comprises a complex central peak of outward-radiating curved ridges, composed of stratigraphically uplifted greenschist-facies basement schists, surrounded by an annular moat. The most prominent feature of the structure is a central annular ridge ˜3 km in diameter composed of pebble-boulder conglomerates and gravels of the Upper Jurassic Sharilyn Formation, surrounded by three outer domal ridges composed of Lower Cretaceous conglomeratic sandstones and gypsum clays. Jurassic conglomerates forming the main part of the central annular ridge show effects of severe internal deformation. The original population of pebbles, cobbles and boulders appears moderately displaced and mostly broken but nowhere aligned along shear planes or foliated. Primary sedimentary features, such as cross-lamination or imbrication, have been obliterated. We explain this penetrative brecciation as a result of dissipative shearing caused by a strong and rapid singular event that in magnitude was beyond the range of the common crustal tectonics recorded elsewhere in this region. Disrupted and chaotically distributed conglomeratic sandstone beds in the central annular ridge dip in highly variable directions on a local scale but show an apparent SE-NW trend of bedding plane alignment. Further outside, the tilted and uplifted Upper Jurassic to Lower Cretaceous strata of the domal area are overlain by the flat-lying Upper Cretaceous, which stratigraphically constrains the timing of deformation at the Uneged Uul structure to most likely the Early Cretaceous. Endogenic formation models, such as magmatism and salt, gypsum, or mud diapirism, fail to explain the nature of the Uneged Uul structure. The Uneged Uul structure bears a set of

  18. Miocene carbonate reservoirs related to tectonic and thermal evolution of southeast Asian marginal basins

    SciTech Connect

    Fulthorpe, C.S.; Brodholt, J.P.; Jurdy, D.M.; Schlanger, S.O.

    1986-05-01

    The early Miocene global sea level rise and oceanic warming period allowed the tropical reef growth belt to expand and fostered the development of major carbonate buildups throughout southeast Asia. A regional paleogeographic reconstruction for 18 m.y. places reefal, shelf, and basinal facies in a tectonic setting of island arcs, subduction zones, and marginal basins. For typical basins, such as the Sulu, Celebes, and South China Sea basins, basin formation and sedimentation models have been developed based on ages inferred from identified marine magnetic anomalies and heat flow data. These basins have many of the attributes needed for hydrocarbon development and maturation. They accumulated sediment from pelagic sources and surrounding island arcs and landmasses fringed by reefs. During the early Miocene, limited water circulation in restricted basins, such as the Sulu and Celebes basins, may have induced dysaerobic conditions that enhanced organic carbon preservation. Models of marginal basin formation provide the basis for studying the time-dependent thermal histories of their sediment sequences. The authors models show that, for example, lower Miocene sediments deposited at a rate of 100 m/m.y. on 20-m.y.-old crust in a typical basin have just entered the oil-generation window. Lower sedimentation rates require deposition on younger crust in order for the sediments to reach an equivalent maturation stage. Estimates of the hydrocarbon potential of such marginal basins should be based on a sequential time-slice analysis of each basin in terms of sediment type, sedimentation rate, sea floor age and thermal regime, and the presence of reservoirs.

  19. Reservoir-development impacts on surface-water quantity and quality in the Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Adams, D. Briane; Bauer, Daniel P.; Dale, Robert H.; Steele, Timothy Doak

    1983-01-01

    Development of coal resources and associated economy is accelerating in the Yampa River basin in northwestern Colorado and south-central Wyoming. Increased use of the water resources of the area will have a direct impact on their quantity and quality. As part of 18 surface-water projects, 35 reservoirs have been proposed with a combined total storage of 2.18 million acre-feet, 41% greater than the mean annual outflow from the basin. Three computer models were used to demonstrate methods of evaluating future impacts of reservoir development in the Yampa River basin. Four different reservoir configurations were used to simulate the effects of different degrees of proposed reservoir development. A multireservoir-flow model included both within-basin and transmountain diversions. Simulations indicated that in many cases diversion amounts would not be available for either type of diversion. A corresponding frequency analysis of reservoir storage levels indicated that most reservoirs would be operating with small percentages of total capacities and generally with less than 20% of conservation-pool volumes. Simulations using a dissolved-solids model indicated that extensive reservoir development could increase average annual concentrations at most locations. Simulations using a single-reservoir model indicated no significant occurrence of water-temperature stratification in most reservoirs due to limited reservoir storage. (USGS)

  20. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  1. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  2. Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin

    SciTech Connect

    Montgomery, S.L.

    1996-09-01

    Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

  3. Diagenesis and reservoir quality of Paleocoene sandstones in the Kupe South field, Taranaki Basin, New Zealand

    SciTech Connect

    Martin, K.R. ); Baker, J.C. ); Hamilton, P.J. ); Thrasher, G.P. )

    1994-04-01

    The Kupe South field, Taranaki basin, New Zealand is a gas condensate and oil field offshore in the southern Taranaki basin. Its Paleocene reservoir sandstones contain a diagenetic mineral assemblage that records major shifts in pore-water composition during the burial history of the basin. Early calcite formed a shallow burial largely from meteoric depositional pore waters, whereas later chlorite/smectic records the downward passage of marine pore waters into the sandstones from overlying, marine mudrocks prior to significant sandstone compaction during the late Miocene. Late calcite and ferroan carbonates may record the presence of connate meteoric water expelled upward from nonmarine sedimentary rocks of the underyling Cretaceous sequence, whereas later kaolinite and secondary porosity formation are related to localized meteoric influx resulting from late Miocene to early Pliocene uplift and erosion of the reservoir section. Hydrocarbon entrapment occurred during further Pliocene to Holocene sediment accumulation. Labile-grain alteration has been less severe in the lower part of the hydrocarbon-bearing section than in the upper sands with the result that the lower sands contain mainly chlorite/smectite and the upper sands contain mainly ferroan carbonates and kaolinite formed by extensive alteration of labile grains and earlier formed chlorite/smectite. Reservoir quality in the lower sands is controlled mostly by grain size and the presence of chlorite/smectite, but in the upper sands, the presence of kaolinite is the single most important cause of poor reservoir quality. 36 refs., 13 figs., 3 tabs.

  4. Geology and petroleum resources of West Siberian Basin, USSR

    SciTech Connect

    Clarke, J.W.; Klemme, H.D.; Peterson, J.A.

    1986-05-01

    The West Siberian basin occupies an area of approximately 3.3 million km/sup 2/ (1.3 million mi/sup 2/) in northwestern Siberia east of the Ural Mountains. Thickness of the Phanerozoic sedimentary cover ranges from approximately 3-5 km (10,000-15,000 ft) in the central area of the basin, to 8-12 km (25,000-40,000 ft) in the northern part. The basin is filled with approximately 10 million km/sup 3/ (2.4 million mi/sup 3/) of Mesozoic-Cenozoic clastic sedimentary rocks ranging in thickness from 3-4 km (10,000-13,000 ft) in the central area to 6-9 km (20,000-30,000 ft) in the north. The basement in the basin is Precambrian and Precambrian-Paleozoic granitic rocks and in places is highly metamorphosed Paleozoic sedimentary rocks. In other parts of the basin, Paleozoic carbonate and clastic rocks are only lightly metamorphosed and are targets for petroleum exploration. The Mesozoic-Cenozoic sedimentary basin fill was initiated in the northern part of the basin during the Triassic. By the Late Jurassic, marine clastic deposition had spread throughout the basin, and the basin configuration was established for the remainder of geologic time. Cretaceous and lower Tertiary rocks are primarily shallow marine shelf, coastal plain, and lowland clastic deposits formed during several transgressive-regressive phases. Major oil accumulations, mainly in Lower Cretaceous and Jurassic sandstone reservoirs, are located in the central and west-central parts of the basin. The largest reserves of natural gas in the world are located in the northern part of the basin, primarily in Upper Cretaceous (Cenomanian) sandstone reservoirs. In 1982, estimated cumulative production from the basin was approximately 10 billion bbl of oil. Estimated mean undiscovered resources (1981) are approximately 80 billion bbl of oil and 700 tcf of gas.

  5. Towards an optimal integrated reservoir system management for the Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Müller, Ruben; Gebretsadik, Henok Y.; Schütze, Niels

    2016-05-01

    Recently, the Kessem-Tendaho project is completed to bring about socioeconomic development and growth in the Awash River Basin, Ethiopia. To support reservoir Koka, two new reservoirs where built together with extensive infrastructure for new irrigation projects. For best possible socioeconomic benefits under conflicting management goals, like energy production at three hydropower stations and basin wide water supply at various sites, an integrated reservoir system management is required. To satisfy the multi-purpose nature of the reservoir system, multi-objective parameterization-simulation-optimization model is applied. Different Pareto-optimal trade-off solutions between water supply and hydro-power generation are provided for two scenarios (i) recent conditions and (ii) future planned increases for Tendaho and Upper Awash Irrigation projects. Reservoir performance is further assessed under (i) rule curves with a high degree of freedom - this allows for best performance, but may result in rules curves to variable for real word operation and (ii) smooth rule curves, obtained by artificial neuronal networks. The results show no performance penalty for smooth rule curves under future conditions but a notable penalty under recent conditions.

  6. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  7. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    SciTech Connect

    Hoak, T.E.; Decker, A.D.

    1995-10-01

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  8. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  9. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  10. Hydrology and model study of the proposed Prosperity Reservoir, Center Creek Basin, southwestern Missouri

    USGS Publications Warehouse

    Harvey, Edward Joseph; Emmett, Leo F.

    1980-01-01

    A reservoir has been proposed on Center Creek, Jasper County, southwestern Missouri. Ground-water levels in the limestone uplands adjacent to the reservoir will rise when the impoundment is completed. The site is a few miles upstream from the Oronogo-Duenweg belt in the Tri-State zinc district. Grove Creek joins Center Creek downstream from the reservoir separating it from the mining belt. A model study indicates water-level rises varying from about 20 feet near the reservoir to 0.5 to 1.0 foot in the southern part of the Grove Creek drainage basin. A significant rise in the water table adjacent to the reservoir could increase mine-water discharge if Grove Creek is not an effective drain. However, it is probable that Grove Creek is an effective drain, and the higher ground-water levels in the reservoir area will increase ground-water discharge to Grove Creek, and in turn, Center Creek. The increase in ground-water discharge to Grove Creek will have the beneficial effect of diluting mine-water discharge from the Oronogo-Duenweg belt during periods of low flow. (USGS)

  11. Evaluation and management of vertically drained reservoirs: Castilla and Chichimene fields, Llanos Basin, Colombia

    SciTech Connect

    Hartshorn, K.G.

    1996-08-01

    The Castilla and Chichimene NE fields, operated by Chevron, are located in the southern Llanos basin of Colombia. The Castilla field, with an estimated 2.3 billion BBLS OOIP, produces heavy 14{prime} API oil, while the Chichimene NE field with an estimated 480 MMBBLS OOIP, produces a lighter 20{prime} API oil. Production is from multiple sandstone reservoirs of the Tertiary San Fernando and the Cretaceous Guadalupe Formations, and from massive non-marine sands of the Cretaceous Une Formation. Early problems with water coning and high water cuts led to detailed geologic study and engineering simulation to determine the most effective methods of reservoir management. The fresh nature of the connate water made evaluation more complicated, but results of RST (Reservoir Saturation Tool) logging runs on producing wells support the conclusions of the simulation studies regarding the potential for vertical drainage of the reservoir. As a result, the massive sands of the Une Formation can be perforated in the upper portion of the reservoir only, still enabling effective drainage of the lower reservoir while reducing water production and coning problems.

  12. Exploration of the lower permeability reservoir in Sanzhao area of Songliao Basin

    SciTech Connect

    Ding Guiming; Wang Yuxin )

    1996-01-01

    Sanzhao area is an independent petroleum generation-migration-accumulation unit that concentrates in the Sanzhao sag, a large sag in the central depression of Songliao basin. The oil generated from the Lower Cretaceous Qingshankou Formation migrated into Fuyu and Yangdachengzi reservoirs in Members 3 and 4 of the Quantou Formation, with the overpressure of the source bed driving fluids through dense fault pathways. Fuyu and Yangdachengzi reserviors are formed by areally-extensive, fluviodeltaic thin interbedded sandstones. Most of the oil pools in Sanzhao area are in low-permeability lithologies. In order to prospect for these lower permeability reservoirs, first we set evaluation and oil/gas reservoir evaluation. On the basis of the composite study of petroleum geology, the low-permeability feature of Fuyu and Yangdachengzi reservoirs has been further understood. Secondly, we have developed a series of exploration methods and techniques, including high-resolution seismic exploration, oil testing and fracturing, and techniques for protecting oil reservoirs. Due to breakthrough in understanding of petroleum geology and the development of composite exploration techniques, the low-permeability reservoirs of Sanzhao area have liberated abundant reservers. A large, low-permeability oil province with reserves of more than 10x10[sup 8] has been proven.

  13. Exploration of the lower permeability reservoir in Sanzhao area of Songliao Basin

    SciTech Connect

    Ding Guiming; Wang Yuxin

    1996-12-31

    Sanzhao area is an independent petroleum generation-migration-accumulation unit that concentrates in the Sanzhao sag, a large sag in the central depression of Songliao basin. The oil generated from the Lower Cretaceous Qingshankou Formation migrated into Fuyu and Yangdachengzi reservoirs in Members 3 and 4 of the Quantou Formation, with the overpressure of the source bed driving fluids through dense fault pathways. Fuyu and Yangdachengzi reserviors are formed by areally-extensive, fluviodeltaic thin interbedded sandstones. Most of the oil pools in Sanzhao area are in low-permeability lithologies. In order to prospect for these lower permeability reservoirs, first we set evaluation and oil/gas reservoir evaluation. On the basis of the composite study of petroleum geology, the low-permeability feature of Fuyu and Yangdachengzi reservoirs has been further understood. Secondly, we have developed a series of exploration methods and techniques, including high-resolution seismic exploration, oil testing and fracturing, and techniques for protecting oil reservoirs. Due to breakthrough in understanding of petroleum geology and the development of composite exploration techniques, the low-permeability reservoirs of Sanzhao area have liberated abundant reservers. A large, low-permeability oil province with reserves of more than 10x10{sup 8} has been proven.

  14. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  15. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  16. Porosity evolution in reservoir sandstones in the West-Central San Joaquin basin, California

    SciTech Connect

    Horton, R.A. Jr.; McCullough, P.T.; Houghton, B.D.; Pennell, D.A.; Dunwoody, J.A. III; Menzie, R.J. Jr.

    1995-04-01

    Miocene reservoir sands (feldspathic and lithic arenites) in central San Joaquin basin oil fields show similar trends in porosity development despite differences in depositional environment, pore-fluid chemistry, and burial history. Burial and tectonic compaction caused grain rotation, deformation of altered lithics, and extensive fracturing of brittle grains, thereby eliminating most primary porosity. Diagenetic fluids, infiltrating along fractures in grains, reacted with freshly exposed mineral surfaces causing extensive leaching of framework components. All major grain types were affected but preferential removal of feldspars and lithics resulted in changes in QFL ratios. With continued compaction angular remnants of partially disolved grains were rotated and rearranged while secondary intergranular and moldic porosity collapsed to form secondary intergranular porosity. This resulted in reservoir sands that are less well sorted, more angular, and mineralogically more mature than they were at deposition. Such changes appear to widespread in the San Joaquin basin and may be more important than is generally acknowledged.

  17. Influence of depositional environment and diagenesis on gas reservoir properties in St. Peter Sandstone, Michigan basin

    SciTech Connect

    Harrison, W.B. III; Turmelle, T.M.; Barnes, D.A.

    1987-05-01

    The St. Peter Sandstone in the Michigan basin subsurface is rapidly becoming a major exploration target for natural gas. This reservoir was first proven with the successful completion of the Dart-Edwards 7-36 (Falmouth field, Missaukee County, Michigan) in 1981. Fifteen fields now are known, with a maximum of three producing wells in any one field. The production from these wells ranges from 1 to more than 10 MMCFGD on choke, with light-gravity condensate production of up to 450 b/d. Depth to the producing intervals ranges from about 7000 ft to more than 11,000 ft. The St. Peter Sandstone is an amalgamated stack of shoreface and shelf sequences more than 1100 ft in thickness in the basin center and thinning to zero at the basin margins. Sandstone composition varies from quartzarenite in the coarser sizes to subarkose and arkose in the finer sizes. Thin salty/shaly lithologies and dolomite-cemented sandstone intervals separate the porous sandstone packages. Two major lithofacies are recognized in the basin: a coarse-grained, well-sorted quartzarenite with various current laminations and a fine-grained, more poorly sorted subarkose and arkose with abundant bioturbation and distinct vertical and horizontal burrows. Reservoir quality is influenced by original depositional and diagenetic fabrics, but there is inversion of permeability and porosity with respect to primary textures in the major lithofacies. The initially highly porous and permeable, well-sorted, coarser facies is now tightly cemented with syntaxial quartz cement, resulting in a low-permeability, poor quality reservoir. The more poorly sorted, finer facies with initially lower permeabilities did not receive significant fluid flux until it passed below the zone of quartz cementation. This facies was cemented with carbonate which has subsequently dissolved to form a major secondary porosity reservoir.

  18. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  19. Rationale for finding and exploiting fractured reservoirs, based on the MWX/SHCT-Piceance basin experience

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.; Teufel, L.W.

    1993-08-01

    The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are present once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.

  20. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  1. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  2. Characterization of petroleum reservoirs in the Eocene Green River Formation, Central Uinta Basin, Utah

    USGS Publications Warehouse

    Morgan, C.D.; Bereskin, S.R.

    2003-01-01

    The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.

  3. Effects of Reservoirs on Nutrient Concentrations and Ratios along the Longitudinal Gradient of Danube River Basin

    NASA Astrophysics Data System (ADS)

    Salcedo Borda, J. S.; Gettel, G. M.; Irvine, K.

    2015-12-01

    Reservoirs reduce water flow and increase the retention time which can provide conditions to increase primary production, sedimentation and nutrient retention. As a consequence, nutrient ratios and fluxes of nitrogen (N), phosphorus (P), and silica (Si) may be altered which in turn affects the identity of limiting nutrients and the dynamics of primary production in downstream ecosystems. Residence time as well as the position of reservoirs along the longitudinal gradient (headwaters vs. mouth) may affect these processes. The Danube River Basin is one example where reservoirs have likely altered nutrient stoichiometry along the longitudinal gradient. It has a dam every 17 Km in the upper 1000 km of the river along with a very large dam complex (Iron Gates Dam) 117- Km from the mouth. There has been there has been an observed decline in Si flux, which may have led to changes in phytoplankton community structure in the Black Sea, but for which the causes for this decline are not yet clear. The purpose of this study is to examine the effects of reservoirs from headwaters to the mouth on nutrient stoichiometry in the Danube Basin. Data on dissolved Si, N, and P concentrations from 1996 to 2012 were analyzed from 40 monitoring stations from the TransNational Monitoring Network (TNMN), which are located in the main stem of the Danube. Time series analysis is used to compare nutrient concentrations and ratios both through seasons and through the 15 year time-period. The monitoring stations are located above and below reservoirs in order to analyze the effect of reservoirs on nutrient ratios and fluxes. Preliminary results show that relationship of dissolved inorganic N (DIN): soluble reactive P (SRP) range from 207 to 76, while DIN:Si ratio ranges from 1.89 to 0.2 from the headwaters to the mouth.

  4. Sensitivity of reservoir storage and outflow to climate change in a water-limited river basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Gao, H.; Naz, B. S.; Kao, S. C.; Voisin, N.

    2015-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal water supplies, and hydropower. Consequently, streamflow timing and magnitude are altered significantly by reservoir operations. In addition, the hydrological cycle can be modified substantially by a changing climate. Therefore, a distributed hydrological model which has an embedded reservoir component is essential for representing these effects in future water management planning strategies. In this study, a multi-purpose reservoir module was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). The DHSVM model was selected because of its high spatial and temporal resolution and because of its explicit representation of the physical processes. Prescribed operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The integrated model was tested over a water-limited basin (i.e. the central Brazos River Basin, Texas). Both the calibration and validation results suggest that the model performed robustly at daily, weekly, and monthly levels. Subsequently, the effect of climate sensitivity on reservoir storage and outflow was assessed by perturbing precipitation within a range from -30% to 30% and temperature from -2 °C to 2 °C. Results suggest that both variables are more sensitive to precipitation than temperature. However, there are more uncertainties associated with future precipitation than temperature. It was also found that the sensitivities vary significantly by season. Enabled with the new reservoir component, the DHSVM model provides a platform for projecting future water availability estimations under flow regulation, climate change, and land cover/land use changes. We expect this integrated model to be beneficial for sustainable water resources management.

  5. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  6. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  7. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  8. Geologic assessment of undiscovered oil and gas resources in the Albian Clastic and Updip Albian Clastic Assessment Units, U.S. Gulf Coast Region

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    U.S. Geological Survey National Oil and Gas Assessments (NOGA) of Albian aged clastic reservoirs in the U.S. Gulf Coast region indicate a relatively low prospectivity for undiscovered hydrocarbon resources due to high levels of past production and exploration. Evaluation of two assessment units (AUs), (1) the Albian Clastic AU 50490125, and (2) the Updip Albian Clastic AU 50490126, were based on a geologic model incorporating consideration of source rock, thermal maturity, migration, events timing, depositional environments, reservoir rock characteristics, and production analyses built on well and field-level production histories. The Albian Clastic AU is a mature conventional hydrocarbon prospect with undiscovered accumulations probably restricted to small faulted and salt-associated structural traps that could be revealed using high resolution subsurface imaging and from targeting structures at increased drilling depths that were unproductive at shallower intervals. Mean undiscovered accumulation volumes from the probabilistic assessment are 37 million barrels of oil (MMBO), 152 billion cubic feet of gas (BCFG), and 4 million barrels of natural gas liquids (MMBNGL). Limited exploration of the Updip Albian Clastic AU reflects a paucity of hydrocarbon discoveries updip of the periphery fault zones in the northern Gulf Coastal region. Restricted migration across fault zones is a major factor behind the small discovered fields and estimation of undiscovered resources in the AU. Mean undiscovered accumulation volumes from the probabilistic assessment are 1 MMBO and 5 BCFG for the Updip Albian Clastic AU.

  9. Effects of reservoirs on river nitrogen and phosphorus export in the Mississippi and Great Lakes Basins: A regional comparison

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Tank, J. L.; Robertson, D.

    2013-12-01

    Reservoirs can influence mass transport of anthropogenic nitrogen (N) and phosphorus (P) through rivers, but comparative studies are needed to better understand how reservoir processes vary among landscapes and regions. We compared influences of reservoirs on N and P delivery to tributaries of the Mississippi and Great Lakes Basins, using river monitoring stations that were positioned immediately downstream of reservoir outlets. For a given agricultural intensity (percent of basin classified as cropland), outlet stations (n=115) had lower mean annual flow-weighted concentration for N and P than other stations (n=1085), as well as lower concentration variability. For instance, in the presence of high agriculture (>50% of basin as cropland), reservoir outflow stations had on average 40% lower N and 35% lower P concentration, while the coefficient of variation for both N and P was 30% lower. These aggregate patterns were examined more closely for individual reservoirs of different regions, which fell into two monitoring categories: 1) those which had monitoring stations positioned at the inflow as well as the outflow (n= 23 for TN, n=34 for TP); 2) those which had outflow monitoring stations, as well as an estimate of the expected inflow (from a spatially-referenced regression model). Again, both outflow nutrient concentration and yield (mass per basin area) were usually lower and more stable than the inflow. However, the difference between outflow and inflow varied substantially among reservoirs and regions, including some cases where reservoirs appeared to be net P sources to rivers at the annual time frame. These effects of reservoirs on river N and P are presumably the consequence of reservoir nutrient burial, microbial denitrification, and internal nutrient recycling. Management intended to improve the water quality of rivers and receiving waters would benefit from an improved understanding of reservoir processes, which not only vary among regions, but also could

  10. Reservoir Operations and Flow Modeling to Support Decision Making in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Quinodoz, H. A.

    2006-12-01

    About five percent of the US population depends on the waters from the Delaware River Basin for its water supply, including New York City and Philadelphia. Water management in the basin is governed by a compact signed in 1961 by the four basin states and the federal government. The compact created the Delaware River Basin Commission (DRBC) and gave it broad powers to plan, regulate, and manage the development of the basin water resources. The compact also recognized a pre-existing (1954) U.S. Supreme Court Decree that grants the City of New York the right to export up to 800 million gallons per day out of the basin, provided that a prescribed minimum flow is met at Montague, New Jersey for the use of the lower-basin states. The Delaware River Basin Compact also allows the DRBC to adjust the releases and diversions under the Decree, subject to the unanimous consent of the decree parties. This mechanism has been used several times over the last 30 years, to implement and modify rules governing drought operations, instream flows, minimum flow targets, and control of salinity intrusion. In every case, decision makers have relied upon extensive modeling of alternative proposals, using a basin-wide daily flow model. Often, stakeholders have modified and used the same model to test and refine their proposals prior to consideration by the decision makers. The flow model has been modified over the years, to simulate new features and processes in a river system partially controlled by more than ten reservoirs. The flow model has proved to be an adaptable tool, able to simulate the dynamics of a complex system driven by conflicting objectives. This presentation reviews the characteristics of the daily flow model in its current form, discuss how model simulations are used to inform the decision-making process, and provide a case study of a recent modification of the system-wide drought operating plan.

  11. Lagoa Feia Formation (Lower Cretaceous), Campos basin, offshore Brazil - Rift-Valley-Stage Lacustrine carbonate reservoirs

    SciTech Connect

    Bertani, R.; Petrobras, T.; Carozzi, A.V.

    1985-02-01

    The Lagoa Feia Formation, buried in excess of 3000 m, is the exploration frontier of the prolific Campos basin. It contains the source beds of all the basin's oil in addition to having its own potential carbonate reservoirs. The faulted margins of the basin fed a system of alluvial fans, sand flats, and mud flats. Alternating dry and rainy period regulated the size and nature of contemporaneous basinal alkaline lakes. Dry periods corresponded to contracted playa lakes with ostracod carbonates and euxinic shales; rainy periods corresponded to expanded pluvial lakes with pelecypod banks. Subaqueous intrusions of basaltic magma generated hyaloclastites with kerolitic ooids and hyalotuffs. Petrographic analysis reveals 5 diagenetic stages: (1) syndepositional alteration of lithoclasts to trioctahedral smectites; (2) early dolomitization, early silicification, and cementation by bladed-rim calcite and zeolites; (3) freshwater-vadose dissolution of bioclasts and lithoclasts, freshwater-phreatic sparite cementation, and neomorphism; (4) mixed saline-freshwater silicification; and (5) burial with compaction, late dolomitization, and partial conversion of smectites to illite. Pelecypod limestones with primary interparticle, secondary intraparticle, moldic, and moldic-enlarged porosities are the potential reservoirs. Ideal conditions for porosity generation and preservation were subaerial exposure followed by rapid lake expansion and burial.

  12. Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2012-04-01

    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical

  13. Integrating short-term and long-term forecasting with reservoir optimisation; Mantaro Basin, Peru.

    NASA Astrophysics Data System (ADS)

    Jensen, R. A.; Lasarte, A.; Butts, M. B.

    2009-04-01

    Operational water management often requires a trade-off between short-term and long-term water demands, where short-term demands are driven for example by hydropower generation and flood protection requirements and the long-term demands by water and irrigation supply, sustainable reservoir management and the seasonal impacts of snow melt or climate. This paper presents an operational decision support system designed to forecast and optimise reservoir operations in both the short-term and long-term. The system has been established for the 20,000 km2 Mantaro river basin located in the high Andes with altitudes ranging from 3500 to nearly 6000 m.a.s.l.. The two main power stations at Tablachaca have a combined capacity of more than 1000 MW that supplies 30% of Peru's electrical energy. In addition, the basin's water resources supply extensive agricultural areas, an urban population and mining activities and sustain important ecological habitats. In this paper, the methodologies used for the integrating short-term and long-term forecasting are presented together with their application to the optimal operation of reservoirs. A key element in the system is the MIKE BASIN modelling tool. The system uses several modelling capabilities of MIKE BASIN: rainfall-runoff, reservoir operation, hydropower production, and river flow routing. The system also takes advantage of long-term forecasts (based on statistical information) and short-term forecasts (based on telemetry data). The continually updated runoff and flow forecasts enter the optimization, which applies the Model Predictive Control principle for MIKE BASIN as the core simulation model. For each optimization, a non-linear program algorithm is used to find the best release strategy. On the basis of the forecasted inflows and the real time data the system suggests to the user from which reservoirs to release water for alleviation of possible forecasted deficits. In addition to the Tablachaca scheme the model accounts for

  14. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  15. Delineation of Piceance Basin basement structures using multiple source data: Implications for fractured reservoir exploration

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1995-10-01

    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau, Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.

  16. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  17. The stress regime in a Rotliegend reservoir of the Northeast German Basin

    NASA Astrophysics Data System (ADS)

    Moeck, Inga; Schandelmeier, Heinz; Holl, Heinz-Gerd

    2009-10-01

    In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V ( S hmin ≥ 0.55 S V ) and of the maximum horizontal stress S Hmax ≤ 0.78-1.00 S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V = 100 MPa, S hmin = 55 MPa and S Hmax = 78-100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.

  18. Diagenesis of an 'overmature' gas reservoir: The Spiro sand of the Arkoma Basin, USA

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Burns, S.J.

    1996-01-01

    The Spiro sand is a laterally extensive thin sandstone of earliest Atokan (Pennsylvanian) age that forms a major natural gas reservoir in the western Arkoma Basin, Oklahoma. Petrographic analysis reveals a variety of diagenetic alterations, the majority of which occurred during moderate to deep burial. Early diagenetic processes include calcite cementation and the formation of Fe-clay mineral peloids and coatings around quartz framework grains. These clays, which underwent transformation to well-crystallized chamosite [polytype Ib(?? = 90??)] on burial, are particularly abundant in medium-grained channel sandstones, whereas illitic clays are predominant in fine-grained interchannel sandstones. Subsequent to mechanical compaction, saddle ankerite precipitated in the reservoir at temperatures in excess of 70??C. Crude oil collected in favourable structural locations during and after ankeritization. Whereas hydrocarbons apparently halted inorganic diagenesis in oil-saturated zones, cementation continued in the underlying water-saturated zones. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir. At temperatures exceeding ???140-150??C, non-syntaxial quartz cement, ferroan calcite and traces of dickite(?) locally reduced the reservoir quality. Local secondary porosity was created by carbonate cement dissolution. This alteration post-dated hydrocarbon emplacement and is probably related to late-stage infiltration of freshwater along 'leaky' faults. The study shows that the Spiro sandstone locally retained excellent porosities despite deep burial and thermal conditions that correspond to the zone of incipient very low grade metamorphism.

  19. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride

  20. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    USGS Publications Warehouse

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  1. Impact of an inter-basin water transfer and reservoir operation in karst on the hydrological regime: the example of the Sabljaki and Bukovik reservoirs (Croatia)

    NASA Astrophysics Data System (ADS)

    Bonacci, Ognjen; Andrić, Ivo; Oskoruš, Dijana

    2010-05-01

    The Sabljaki reservoir in the Zagorska Mrežnica River and the Bukovik reservoir in the Upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak. Their water volumes at the spillway altitude of 320.10 m a. s. l. and 320.15 m a. s. l. is 3.3 × 106 m3 and 0.24 × 106 m3 respectively. Water from the Sabljaki reservoir is provided by 9376 m long tunnel to the HEPP Gojak constructed in the neighboring Lower Dobra River. The Sabljaki reservoir is located in the Mrežnica karst polje while the Bukovik reservoir is located in the neighboring Ogulin karst polje. The consequence of the inter-basin water transfer is strong and abrupt change of hydrological regime on the downstream parts of both rivers. At the same time construction and development of the both reservoirs caused hydrological changes on the upstream part of the Upper Dobra River. The both Dobra and Mrežnica Rivers are at the same time losing, sinking and underground karst rivers. The presentation describes hydrological changes caused by inter-basin water transfer and the reservoirs development on the hydrological regime on the both rivers.

  2. Geothermal energy from the Main Karoo Basin (South Africa): An outcrop analogue study of Permian sandstone reservoir formations

    NASA Astrophysics Data System (ADS)

    Campbell, Stuart A.; Lenhardt, Nils; Dippenaar, Matthys A.; Götz, Annette E.

    2016-04-01

    The geothermal potential of the South African Main Karoo Basin has not been addressed in the past, although thick siliciclastic successions in geothermal prone depths are promising target reservoir formations. A first assessment of the geothermal potential of the Karoo Basin is based on petro- and thermophysical data gained from an outcrop analogue study of Permian sandstones in the Eastern Cape Province, and evaluation of groundwater temperature and heat flow values from literature. A volumetric approach of the sandstones' reservoir potential leads to a first estimation of 2240 TWh (8.0 EJ) of power generation within the central and southern part of the basin. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Karoo for future geothermal resource exploration, development and production. The mainly low permeability lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas auto-convective thermal water circulation might be expected and direct heat use becomes reasonable. The data presented here serve to identify exploration areas and are valuable attributes for reservoir modeling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization.

  3. The organic contamination survey and health risk assessment of 16 source water reservoirs in Haihe River basin.

    PubMed

    Gao, Jijun; Liu, Linghua; Liu, Xiaoru; Lu, Jin; Hao, Hong; Yuan, Hao; Zhou, Huaidong

    2012-01-01

    Although contamination by organic pollutants has previously been reported to occur in the Haihe River basin, few studies have been carried out on the levels of source water reservoir contamination and the health risk in the Haihe River basin. To understand the organic pollution status of the reservoirs in the Haihe River basin, samples were collected from 16 source water reservoirs. The samples were analyzed for the representative organic pollutants, which included benzene homologues, chlorobenzene compounds, organophosphorus pesticides, and nitrobenzene compounds, a total in all of 17 compounds. It was observed that the concentrations of the 17 compounds in the 16 reservoirs were all less than the limit laid down by Chinese surface water quality standards. In addition, benzene, toluene, nitrobenzene, p-nitrochlorobenzene, 2,4-dinitrotoluene and 2,4-dinitrochlorobenzene, dichlorvos, demeton, dimethoate methyl parathion, malathion and parathion were frequently detected in the 16 source water reservoirs, especially the organophosphorus pesticides; the detection rates of dichlorvos, dimethoate, methyl parathion, malathion and parathion were all 100% in the 16 source water reservoirs. The detection rate of target compounds suggested that organic pollution had been common in the source water of the Haihe River basin. The health risk assessment results suggested that the noncarcinogenic risk hazard quotient values of the target compounds were less than one, and the cancer risk values were all below 1 × 10(-6), which indicated that the heath risk produced by the target compounds in the 16 reservoirs was at an acceptable level.

  4. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    NASA Astrophysics Data System (ADS)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  5. Reservoir development in Brahaney northwest and Patricia fields, northern Midland basin, Texas

    SciTech Connect

    Mazzullo, L.J.

    1990-02-01

    Porous pay zones in the Silurian-Devonian section of the northern Midland basin, Texas, vary stratigraphically, as well as structurally, with their locations beneath the pre-Woodford unconformity. These variations are related to at least two major periods of widespread pre-Woodford tectonism and erosion. A major unconformable surface, present at the top of the Lower Silurian Fusselman formation, was later modified by tectonism and erosion immediately preceding deposition of the Woodford Shale. In places where the Fusselman subcrops beneath the Woodford, its capacity for reservoir development is dependent upon the severity of geologic events that affected the formation during the two major tectonic/erosional events. Where the Wristen and Thirtyone formations subcrop, their reservoir capacity depends upon the extent of structuring and subsequent erosion immediately prior to Woodford deposition. Two pre-Woodford oil fields in the northern Midland basin illustrate geologic complexity that bears on the successful application of subsurface mapping in defining potential pay zones. Brahaney Northwest field in Yoakum County is productive from fractured, coarse crystalline Silurian-Devonian dolomites on subtle, fault-bounded structures. These structures, defined seismically on the base of the Woodford, do not reveal the more complex structural and stratigraphic variations within the reservoir itself. Patricia field in Dawson County is productive from Fusselman carbonates where upper Fusselman structural and topographic relief coincides with post-Woodford faulting and low-relief anticlinal closure as defined at the base of the Woodford.

  6. Depositional facies of hydrocarbon reservoirs of upper Cherokee Group, Anadarko basin

    SciTech Connect

    Puckette, J.O.; Al-Shaieb, Z. )

    1989-08-01

    The Desmoinesian upper Cherokee Group sequence in the Anadarko basin is the subsurface equivalent of the Cabaniss Group of eastern Oklahoma. This sequence includes the Pink limestone, Skinner sandstone, Verdigris limestone, and Prue sandstone intervals. The upper Skinner sandstone, which has not been well documented, is an important hydrocarbon-producing reservoir in the Anadarko basin. The Skinner sandstone is represented by channel, delta-front-prodelta, and shallow marine facies. Channel facies consist of a primary elongate trend extending 40 mi southeast-northwest across Custer and Roger Mills Counties, Oklahoma. Several small secondary channels trending northeast-southwest were also observed. Active channel-fill sequences in the primary trend exceed 100 ft in thickness and represent the major producing reservoir of the upper Skinner sandstone. Delta-front-prodelta sequences are dominated by shale and interbedded sandstone-shale units. Shallow marine facies consist of massive coarsening-upward units that reach 300 ft in thickness. This facies belt is broad and slightly elongated, approximately 12 mi wide by 20 mi long, and trends northeast-southwest somewhat normal to channel facies orientation. Lithologically, the upper Skinner channel sandstone is feldspathic litharenite with abundant feldspar and quartz overgrowth. Both primary and secondary porosity were observed in the upper Skinner sandstone. Secondary porosity evolved mainly from dissolution of feldspar and lithic fragments. However, extensive cementation in the shallow marine facies has reduced porosity to negligible amounts and consequently reduced reservoir quality.

  7. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  8. Increasing Heavy Oil in the Wilmington Oil Fiel Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    SciTech Connect

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs.

  9. Development and distribution of Rival reservoirs in central Williston basin, western North Dakota

    SciTech Connect

    Hendricks, M.L.

    1988-07-01

    The Mississippian Rival (Nesson) beds in the central Williston basin, North Dakota, are a limestone to evaporite regressive sequence. Progradation of the depositional system produced several distinct shallowing-upward genetic units. Cyclicity in Rival beds was produced by periodic fluctuations in sea level. Rival oil reservoirs are porous and permeable packstones and grainstones. The dominant allochems in these reservoir rocks are peloids and skeletal and algal fragments. These sediments were deposited along carbonate shorelines and within algal banks that developed basinward of shorelines. The trapping mechanism along shorelines is a lithofacies change from limestone to anhydride. Algal banks are locally productive along paleostructural trends where bathymetric shallowing produced shoals dominated by the Codiacean alga Ortonella. Algal banks are flanked by impermeable carbonate mudstones and wackestones deposited in interbank and protected shelf environments. Two distinct Rival bank trends occur in the central basin: a northwest-southeast trend in McKenzie and Williams Counties, North Dakota, parallel with the Cedar Creek anticline, and a northeast-southwest trend along the Nesson anticline and the northeast flank of the basin, parallel with the Weldon-Brockton fault trend.

  10. Cenozoic basin development in Hispaniola

    SciTech Connect

    Mann, P.; Burke, K.

    1984-04-01

    Four distinct generations of Cenozoic basins have developed in Hispaniola (Haiti and Dominican Republic) as a result of collisional or strike-slip interactions between the North America and Caribbean plates. First generation basins formed when the north-facing Hispaniola arc collided with the Bahama platform in the middle Eocene; because of large post-Eocene vertical movements, these basins are preserved locally in widely separated areas but contain several kilometers of arc and ophiolite-derived clastic marine sediments, probably deposited in thrust-loaded, flexure-type basins. Second generation basins, of which only one is exposed at the surface, formed during west-northwesterly strike-slip displacement of southern Cuba and northern Hispaniola relative to central Hispaniola during the middle to late Oligocene; deposition occurred along a 5-km (3-mi) wide fault-angle depression and consisted of about 2 km (1 mi) of submarine fan deposits. Third generation basins developed during post-Oligocene convergent strike-slip displacement across a restraining bend formed in central Hispaniola; the southern 2 basins are fairly symmetrical, thrust-bounded ramp valleys, and the third is an asymmetrical fault-angle basin. Fourth generation basins are pull-aparts formed during post-Miocene divergent strike-slip motion along a fault zone across southern Hispaniola. As in other Caribbean areas, good source rocks are present in all generations of basins, but suitable reservoir rocks are scarce. Proven reservoirs are late Neogene shallow marine and fluvial sandstones in third generation basins.

  11. Terrigenous clastic depositional systems. Applications to petroleum, coal and uranium exploration

    SciTech Connect

    Galloway, W.E.; Hobday, D.K.

    1983-01-01

    Two experts in fundamental and applied sedimentology and sedimentary economic geology provide a state-of-the-art summary of clastic depositional environments and their associated mineral fuel deposits. Utilizing a multidisciplinary approach, the authors focus on the recognition, mapping, and three-dimensional reconstruction of clastic deposits, primarily from subsurface data, examine the hydrology of sedimentary basins, and discuss applications of genetic facies analysis to mineral fuel resource appraisal, exploration, and development.

  12. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  13. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  14. Geochemical and geological control on filling history of Eocene reservoirs, Maracaibo Basin, Venezuela

    SciTech Connect

    Alberdi, M.; Maguregui, J.; Toro, C.; Marquina, M.

    1996-08-01

    Crude oils of Eocene fluvio-deltaic reservoirs in {open_quotes}Bloque V{close_quotes} and {open_quotes}Centro Lago{close_quotes} fields in the center of the Maracaibo Lake show many differences in composition, which are due to stratigraphically and structurally controlled reservoir geometry and a low rate of in-reservoir mixing of at least two successive petroleum charges. Oils produced from the top of structural highs contain 18(H) oleanane, higher Pr/Ph and C{sub 23-3}/C{sub 24-4} ratios, a lower proportion of DBT/P compounds, and clearly different fingerprint patterns in the C{sub 6}-C{sub 15} range, than those observed in oils produced from the lower parts of the structures. These compositional differences suggest that two source rocks, or two distinctive organic facies within the same Cretaceous La Luna Formation, generated and filled vertically poorly connected Eocene reservoirs. On the other hand, saturate-biomarkers ratios, triaromatics (C{sub 21}/C{sub 21}+C{sub 28}), n-paraffins (n-C{sub 20}/n-C{sub 29}) and n-heptane index suggest that oils in upper reservoirs are slightly less mature than oils in lower reservoirs and, consequently filled the structure first. Additional evidence from formation water analysis and tectonic basin evolution allow us to interpret at least two petroleum pulses from Cretaceous source rocks during Upper Miocene to present day kitchens located in the Andes foredeep at the southeast of the study area.

  15. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    SciTech Connect

    Sippel, M.; Luff, K.D.; Hendricks, M.L.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

  16. Seasonal Forecasting of Reservoir Inflow for the Segura River Basin, Spain

    NASA Astrophysics Data System (ADS)

    de Tomas, Alberto; Hunink, Johannes

    2017-04-01

    A major threat to the agricultural sector in Europe is an increasing occurrence of low water availability for irrigation, affecting the local and regional food security and economies. Especially in the Mediterranean region, such as in the Segura river basin (Spain), drought epidodes are relatively frequent. Part of the irrigation water demand in this basin is met by a water transfer from the Tagus basin (central Spain), but also in this basin an increasing pressure on the water resources has reduced the water available to be transferred. Currently, Drought Management Plans in these Spanish basins are in place and mitigate the impact of drought periods to some extent. Drought indicators that are derived from the available water in the storage reservoirs impose a set of drought mitigation measures. Decisions on water transfers are dependent on a regression-based time series forecast from the reservoir inflows of the preceding months. This user-forecast has its limitations and can potentially be improved using more advanced techniques. Nowadays, seasonal climate forecasts have shown to have increasing skill for certain areas and for certain applications. So far, such forecasts have not been evaluated in a seasonal hydrologic forecasting system in the Spanish context. The objective of this work is to develop a prototype of a Seasonal Hydrologic Forecasting System and compare this with a reference forecast. The reference forecast in this case is the locally used regression-based forecast. Additionally, hydrological simulations derived from climatological reanalysis (ERA-Interim) are taken as a reference forecast. The Spatial Processes in Hydrology model (SPHY - http://www.sphy.nl/) forced with the ECMWF- SFS4 (15 ensembles) Seasonal Forecast Systems is used to predict reservoir inflows of the upper basins of the Segura and Tagus rivers. The system is evaluated for 4 seasons with a forecasting lead time of 3 months. First results show that only for certain initialization

  17. Oil reservoirs in grainstone aprons around Bryozoan Mounds, Upper Harrodsburg Limestone, Mississippian, Illinois Basin

    SciTech Connect

    Jobe, H.; Saller, A.

    1995-06-01

    Several oil pools have been discovered recently in the upper Harrodsburg Limestone (middle Mississippian) of the Illinois basin. A depositional model for bryozoan mound complexes has allowed more successful exploration and development in this play. In the Johnsonville area of Wayne County, Illinois, three lithofacies are dominant in the upper Harrodsburg: (1) bryozoan boundstones, (2) bryozoan grainstones, and (3) fossiliferous wackestones. Bryozoan boundstones occur as discontinuous mounds and have low porosity. Although bryozoan boundstones are not the main reservoir lithofacies, they are important because they influenced the distribution of bryozoan grainstones and existing structure. Bryozoan grainstones have intergranular porosity and are the main reservoir rock. Bryozoan fragments derived from bryozoan boundstone mounds were concentrated in grainstones around the mounds. Fossiliferous wackestones are not porous and form vertical and lateral seals for upper Harrodsburg grainstones. Fossiliferous wackestones were deposited in deeper water adjacent to bryozoan grainstone aprons, and above grainstones and boundstones after the mounds were drowned. Upper Harrodsburg oil reservoirs occur where grainstone aprons are structurally high. The Harrodsburg is a good example of a carbonate mound system where boundstone cores are not porous, but adjacent grainstones are porous. Primary recovery in these upper Harrodsburg reservoirs is improved by strong pressure support from an aquifer in the lower Harrodsburg. Unfortunately, oil production is commonly decreased by water encroaching from that underlying aquifer.

  18. Reservoir characteristics of Putnam zone (Silurian Interlake Formation) lithofacies, southwestern Williston basin

    SciTech Connect

    Inden, R. ); Oglesby, C. ); Byrnes, A. ); Cluff, B. )

    1991-06-01

    Reservoirs in the Putnam zone (lower Interlake Formation) in the southwestern part of the Williston basin include oolitic-pellet dolomite grainstone, fossil-pellet grainstone, and a wide spectrum of reef-related, fossil-corral dolomite packstones and coral-stromatoporoid rudstone/boundstones. Each of these potential reservoirs has a unique pore system and, thus a different set of petrophysical properties which define their reservoir characteristics. Oolitic grainstones have a homogeneous intercrystalline-micro-crystalline pore system, whereas the fossil-pellet dolomite grainstone facies consists of separate mesovugs dispersed in well-interconnected intercrystalline porosity. Capillary pressure curves indicate that pore-throat heterogeneity is greater, and entry pressures lower, for reefal lithofacies than for pelletal grainstones. These curves also demonstrate why many of the producing fields tend to have high water cuts. In many oolitic-pellet grainstone units, irreducible water saturations of 10% would not be reached until a hydrocarbon column of 700 ft was reached. High water production characteristics are therefore expected because Red River/Interlake structures attain only 50-100 ft of closure. This, however, does not mean that Putnam is not an economic zone, especially as a secondary objective. Wells in Putnam and Crane fields, for instance, have reserves in excess of 300,000 bbl of oil. The reservoirs here may be dominated by the reef-related facies, which have an extremely high relative permeability to oil.

  19. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    SciTech Connect

    Montgomery, S.L.; Chidsey, T.C. Jr.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-02-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounts, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO{sub 2} flooding of these reservoirs should have considerable success in recovering remaining oil reserves.

  20. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    PubMed

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs.

  1. Pore pressure prediction in laminated shaly sand reservoir: A case study of Bintuni Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Parlindungan, E.; Riyanto, A.

    2017-07-01

    Pore pressure prediction has been carried out using well log and seismic velocity data to evaluate pore pressure character of the laminated shally sand reservoir in Bintuni Basin, West Papua. The majority of the thin laminated reservoir are below resolving power of logging tool. The main factor of reservoir behavior, which typically exhibits composition mineral of lithic, micaceous and glauconitic, has a strong relationship with conductive mineral. Based on total gas mud logging data, there is some potential gas reservoir. In this study, non-normal high pore pressure was identified in some intervals and designed for cases where compaction disequilibrium is the cause of fluid expansion on the compaction state of the impermeable sediments. We used Eaton's method to estimate pore pressure gradient. We also performed seismic velocity model analysis to estimate the effective stress using empirical Bowers and Terzaghi method, where horizontal and vertical pressure data were distributed using probabilistic neural network method. Our analysis on the pore pressure distribution map, which is combined with the time structure, shows that the correlation of non normal pore pressure is found not only in height structure but also in the low structure, particularly at the southern part of the study area.

  2. Reservoir potential of carbonate rocks in the Kutai Basin region, East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Alam, H.; Paterson, D. W.; Syarifuddin, N.; Busono, I.; Corbin, S. G.

    1999-04-01

    Fifteen percent of the exploration wells drilled in the Kutai Basin region were targeted for stratigraphic play-types. Carbonate reservoirs comprise almost 70% of the objectives in these stratigraphic plays. There was need for a better understanding of the carbonate reservoir potential in the region. Accordingly, this study was carried out. The distribution, depositional environment as well as factors controlling the quality of carbonate reservoirs are reviewed and analyzed. Carbonate reservoirs in the study area can be found sparsely throughout the Kutai Basin. Carbonates range in age from Oligocene (Bebulu limestone) to Late Miocene (Dian limestone). The main constituents of these carbonate build-ups are platy-corals, encrusting red algae and larger benthonic foraminifera. Most of the carbonates were deposited in a shallow marine environment (inner to middle shelf) during rises in relative sea level. Highstand system tracts are characterized by well-developed carbonate facies-belts. The carbonate build-ups generally occur as isolated bedded mounds, from a few feet up to 1000 ft in thickness. The preservation of primary porosity is generally poor due to diagenetic processes during burial history, particularly the infilling of pores by non-ferroan calcite cement. The development of secondary porosity is limited, due to the retardation of subsurface fluid flow by non-permeable layers, and the absence of solution effects due to sub-aerial exposure and karstification. Preserved porosities are mainly present as vugs, best developed in coarse-grained shelf-margin facies, which may not have subsequently been completely filled by calcite cement. Early hydrocarbon migration may retard the diagenetic processes and preserve the primary carbonate porosity.

  3. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.

  4. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the

  5. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  6. Sedimentology of the Sbaa oil reservoir in the Timimoun basin (S. Algeria)

    SciTech Connect

    Mehadi, Z. )

    1990-05-01

    In 1980 oil was discovered in the Timimoun portion of the Sbaa depression in Southern Algeria. Until that time this basin had produced only dry gas. Since the 1980 oil discovery, several wells have been drilled. Data acquired from these wells were analyzed and are presented in this study. The oil reservoir is located within a sandstone interval of the Sbaa formation which has an average thickness of 75 m. The Sbaa lies between the Tournaisian (Lower Carboniferous) silts and the Strunian (uppermost Devonian) shales and sandstones. The sedimentological study reveals that the Sbaa formation contains bimodal facies consisting of coarse siltstones and fine sandstones. The sequence has been attributed to a deltaic environment developed in the central part of the Ahnet basin. The sources of the associated fluvial system are from the surrounding In-Semmen, Tinessourine, and Arak-Foum-Belrem paleohighs. Thermoluminescence indicates the provenance for the Sbaa sands was the crystalline basement Cambrian and Ordovician sections.

  7. Shelf sheet-sand reservoir of the lower Cretaceous Greensand, North Celtic Sea Basin, offshore Ireland

    SciTech Connect

    Winn, R.D. Jr.

    1994-11-01

    Core and log data show that the marine, early to middle Albian {open_quotes}A{close_quotes} Sand of the Aptian to lower Cenomanian Greensand-Gault interval, North Celtic Sea Basin, offshore Ireland, was deposited as an approximately tabular sand body in shelf water depths. The {open_quotes}A{close_quotes} Sand is the major reservoir interval at Kinsale Head and Ballycotton gas fields. The reservoir sandstone is bioturbated, variably glauconitic, shell rich, and least muddy toward its provenance in a local area of the Irish massif and finer grained southeastward into the basin. Thickness and coarseness of the {open_quotes}A{close_quotes} Sand are related, in part, to distance from a narrow area of the paleoshore. Bathymetric control of sand thickness was superimposed on proximal-distal trends. Specifically, thick intervals are inferred to have been deposited in shelf lows, and thin zones were deposited over bathymetric highs. The {open_quotes}A{close_quotes} Sand was not deposited as a ridge sand, and positive relief on the depositional sand body appears to have been minor. Deposition of the Greensand occurred during thermal subsidence of the North Celtic Sea Basin following Early Cretaceous rifting. Overall late Early Cretaceous to Late Cretaceous transgression was interrupted by progradation of the {open_quotes}A{close_quotes} Sand, probably caused by a relative drop in sea level (forced regression). The {open_quotes}A{close_quotes} Sand sheet consists of several units within the central depositional basin. Three slightly coarsening-upward units up to 15 m thick probably are the consequence of high-frequency fluctuations in sea level during progradation. The top of the {open_quotes}A{close_quotes} Sand consists of a several-meter-thick, very glauconitic, muddy sandstone to sandy mudstone. The upper unit accumulated in deepening water following the maximum lowstand.

  8. Evolution of overpressured and underpressured oil and gas reservoirs, Anadarko Basin of Oklahoma, Texas, and Kansas

    USGS Publications Warehouse

    Nelson, Phillip H.; Gianoutsos, Nicholas J.

    2011-01-01

    Departures of resistivity logs from a normal compaction gradient indicate that overpressure previously extended north of the present-day overpressured zone. These indicators of paleopressure, which are strongest in the deep basin, are mapped to the Kansas-Oklahoma border in shales of Desmoinesian age. The broad area of paleopressure has contracted to the deep basin, and today the overpressured deep basin, as determined from drillstem tests, is bounded on the north by strata with near normal pressures (hydrostatic), grading to the northwest to pressures that are less than hydrostatic (underpressured). Thus the pressure regime in the northwest portion of the Anadarko Basin has evolved from paleo-overpressure to present-day underpressure. Using pressure data from drillstem tests, we constructed cross sections and potentiometric maps that illustrate the extent and nature of present-day underpressuring. Downcutting and exposure of Lower Permian and Pennsylvanian strata along, and east of, the Nemaha fault zone in central Oklahoma form the discharge locus where pressure reaches near atmospheric. From east to west, hydraulic head increases by several hundred feet in each rock formation, whereas elevation increases by thousands of feet. The resulting underpressuring of the aquifer-supported oil and gas fields, which also increases from east to west, is a consequence of the vertical separation between surface elevation and hydraulic head. A 1,000-ft thick cap of Permian evaporites and shales isolates the underlying strata from the surface, preventing re-establishment of a normal hydrostatic gradient. Thus, the present-day pressure regime of oil and gas reservoirs, overpressured in the deep basin and underpressured on the northwest flank of the basin, is the result of two distinct geologic events-rapid burial and uplift/erosion-widely separated in time.

  9. Tectonism, subsidence, and fracturing of Mesaverde reservoirs in the Piceance basin, Colorado

    SciTech Connect

    Lorenz, J.C.; Finley, S.J.; Norman, D.I.

    1988-02-01

    Cretaceous strata in the Piceance basin of northwestern Colorado were subjected to several phases of tectonic, burial, and uplift stress. However, extensive data on fractures in core from the US Department of Energy's Multiwell Experiment (MWX) wells suggest that most of the fractures in the Cretaceous strata in this part of the basin originated during one episode of stress. Time-depth relationships, fracture orientations, and fluid inclusion analyses all indicate that fracturing occurred about 35-40 m.y. during Laramide west-northwest horizontal compression. Most Cretaceous rocks at the MWX site contain a single set of west-northwest extension fractures. Isochore calculations indicate trapping pressures around 325 bars for fluid inclusions in 16 samples of quartz and calcite mineralization from the fractures, suggesting that mineralization occurred in a pressure-temperature regime compatible with the reconstructed burial depths of 10,000-12,000 ft. Younger episodes of stress are recorded in both the post-Cretaceous strata and in the less deeply buried Cretaceous strata near the basin boundaries. However, the effects of these younger stresses are not evident in deeply buried Mesaverde reservoirs at the MWX site in the east-central part of the basin. Moreover, if the orientation of the horizontal compressive stress rotated significantly during the late Laramide, as suggested by some authors, its effects are not apparent in the Cretaceous formations examined. Most measurements of ancient and present-day stress in Mesaverde strata at the MWX site indicate only west-northwest Laramide compression.

  10. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars

  11. Bogi and Capiron fields, Oriente Basin, Ecuador: Similar reservoirs but contrasting drive mechanisms and recoveries

    SciTech Connect

    Sanchez, H.; Morales, M.; Young, R.; Zambrano, H.

    1996-08-01

    Bogi and Capiron fields are being developed under a unit agreement with Petroecuador. These adjoining fields straddle Block 16 in the Oriente Basin and probably share a common oil water contact. Both fields are simple four-way-dip closures which produce heavy oil from Campanian sandstones of similar quality. However, the two fields are remarkably different in terms of oil production and projected recovery as a result of differing structural closures, reservoir distributions and, hence, differing drive mechanisms. The main reservoir at Bogi field is an amalgamation of two fluvial sheet sandstones thought to be low-stand deposits associated with two falls in relative sea level. The reservoir is thick (56-78 ft) and, with an observed oil column of only 38 feet, a bottom-water drive mechanism is ubiquitous. The oil is heavy (18 API) and mobility ratios unfavorable; water production is high and oil recovery from conventional drilling is expected to be 3-5%. In contrast, only the upper fluvial sheet sandstone is present in Capiron field and a reservoir thickness of 32-48 ft combined with an oil column of 99 ft ensures an edge-water drive mechanism over most of the field with concomitant initial low water production and oil recoveries of approximately 30%. The contrast between Bogi and Capiron fields highlights the problems and challenges in the Block 16 area. Small structural closures filled with heavy oil are abundant and an accurate seismic depth map coupled with an understanding of reservoir distribution are vital to economic success.

  12. Sedimentology and genetic stratigraphy of Dean and Spraberry Formations (Permian), Midland basin, Texas

    SciTech Connect

    Handford, C.R.

    1981-09-01

    The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenous clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.

  13. Fractional water allocation and reservoir capacity sharing concepts: An adaptation for the Komati Basin

    NASA Astrophysics Data System (ADS)

    Dlamini, Enoch M.; Dhlamini, Sidney; Mthimkhulu, Sindy

    This paper presents an adaptation of fractional water allocation and reservoir capacity sharing (FWARCS) concepts for application in the Komati Basin, a river system shared between South Africa, Swaziland and Mozambique. Many traditional methods for allocating water are based on volume-per-unit-time allocation that is supplied at some level of assurance and managed using priority-based reservoir and river system operating rules, as well as on the “use it or lose it” principle, which is considered exclusive by water users as it leaves them out of the management of their water allocations. In the Komati Basin, these traditional methods of water allocation led to frequent conflicts among users and with water managers. However, the introduction of the modified FWARCS, which assigns available water in the system to water users according to the proportions of their water entitlements and allows water to be banked in reservoirs, appears to be a solution to some of these problems. This method allows water users to decide when and how much of that entitlement they may use. Since the implementation of the modified FWARCS technique in the Komati Basin in 2002, the regulation, transparency and efficiency of operating the system improved and subsequently the number of disputes over water has declined. South Africa improved from an overuse of 8.2 Mm 3 in 2002/03 water year to realize a saving of 29.5 Mm 3 in 2005/06. Similarly, Swaziland improved from an overuse of 3.9 Mm 3 in 2002/03 to achieve a saving of 14.6 Mm 3 in 2005/06. Users have recognised and embraced the transparency and flexibility of the modified FWARCS. They choose, as the need and opportunity arise, when and how much water they utilise, whether to “bank” and/or “trade” the water they save subject to the conditions of their entitlements. The implementation of the modified FWARCS was also made successful by the existence of proper institutional structures, appropriate decision support tools, good water

  14. Brittleness modelling of shale gas reservoir: Case study of Pematang formation, Central Sumatera basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Iskandarsyah, Riyanto, A.

    2017-07-01

    The Pematang formation, which is located at Central Sumatera basin become the prospective shale gas reservoir in the Kisaran area. It is shown by a large potential amount of gas and oil in place. However, there is still a lack of information about the shale properties in this field so it becomes a big challenge for developing the shale gas exploration. Based on the core and petrophysical analysis, it is shown that the formation is dominated by shale and some part is laminated by sand layers. There is a significantly large deposit of shale underneath sand layer. This paper aims to perform the brittleness modeling, which is based on the integration of geophysical and geomechanical data. In the application, the brittleness distribution map is used to delineate the brittle zone of the shale reservoir that has potential to be fractured by using an artificial hydraulic fracturing. The brittleness modeling is performed by using Statistic Linear Gaussian Simulation (SLGS) approach based on the 3D seismic data and the well log data. The brittleness map shows that the potential shale reservoir to be fractured, which is indicated by brittleness index greater than 0.5, is distributed in the eastern part and the north-eastern part of the study area at the depth range of 6308 feet to 7432 feet.

  15. Reservoir geology and paleoenvironmental reconstruction of Yates Formation, Central Basin Platform, West Texas

    SciTech Connect

    Casavant, R.R.

    1988-01-01

    Computer slice maps and proprietary three-dimensional interactive graphics were used to reconstruct the paleodeposition and to map reservoir variations within the Yates Formation of west Texas. The prolific Yates Formation is a major reservoir in the North Ward Estes field, Ward County, Texas. The Upper Permian (Guadalupian) Yates Formation is an overall regressive shallowing-upward package containing variable sequences of subtidal, intertidal, and supratidal strata. Sediment types include various siliciclastics mixed with sabkha-type carbonates and evaporites. The types of rocks and their structures indicate that these sediments were deposited in a prograding tidal flat-lagoonal setting located behind a shelf margin edge on the western flank of the positive Central Basin platform during the Guadalupian. The cyclic nature of the Yates is largely the result of lagoonal expansion and construction that caused environmental belts on both sides of the lagoon to converge and diverge. These rapid migrations of facies coupled with diagenetic processes created the heterogeneities that characterize this large reservoir.

  16. How water reservoirs lift the blue water footprint cap for a river basin and reduce blue water scarcity: a case study for the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Hoekstra, Arjen Y.; Wu, Pute; Zhao, Xining

    2017-04-01

    The maximum sustainable blue water footprint in a river basin is limited by the part of precipitation that becomes runoff and by the need to maintain a minimum flow for sustaining ecosystems and livelihoods. A "blue water footprint cap" to be specified over time has been proposed as a policy instrument to set a maximum to the blue water footprint in a river basin. Reservoirs along the river help smoothing runoff variability and thus may reduce blue water scarcity during the dry season and increase the water footprint cap to be set for that period. Previous water scarcity studies, considering the ratio of actual to maximum sustainable blue water footprints have not included reservoir storages. In a case study for the Yellow River Basin (YRB), the current study estimates how water reservoirs lift the blue water footprint cap during the dry season and reduce blue water scarcity in this season. We schematize the YRB into three reaches (sub-basins), include five reservoirs along the main stream, and consider the period January 2002-August 2006. Results show that blue WF caps in all three reaches in the dry seasons with net water release from the reservoirs can be lifted substantially. In years with a net decrease in water storage over the year as a whole, the blue WF cap over the year can be lifted as well. The caps in the wet seasons with net water storage in the reservoirs get lower, but this is acceptable given the lower water demands in the wetter seasons. It is shown to which extent reservoir storage reduces blue water scarcity in every month and every reach of the YRB.

  17. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    USGS Publications Warehouse

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  18. Assessing the Benefits Provided by SWOT Data Towards Estimating Reservoir Residence Time in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Bonnema, M.; Hossain, F.

    2016-12-01

    The Mekong River Basin is undergoing rapid hydropower development. Nine dams are planned on the main stem of the Mekong and many more on its extensive tributaries. Understanding the effects that current and future dams have on the river system and water cycle as a whole is vital for the millions of people living in the basin. reservoir residence time, the amount of time water spends stored in a reservoir, is a key parameter in investigating these impacts. The forthcoming Surface Water and Ocean Topography (SWOT) mission is poised to provide an unprecedented amount of surface water observations. SWOT, when augmented by current satellite missions, will provide the necessary information to estimate the residence time of reservoirs across the entire basin in a more comprehensive way than ever before. In this study, we first combine observations from current satellite missions (altimetry, spectral imaging, precipitation) to estimate the residence times of existing reservoirs. We then use this information to project how future reservoirs will increase the residence time of the river system. Next, we explore how SWOT observations can be used to improve residence time estimation by examining the accuracy of reservoir surface area and elevation observations as well as the accuracy of river discharge observations.

  19. Tectonic evolution of Tarim basin in Cambrian-Ordovician and its implication for reservoir development, NW China

    NASA Astrophysics Data System (ADS)

    Bingsong, Yu; Zhuang, Ruan; Cong, Zhang; Yinglu, Pan; Changsong, Lin; Lidong, Wang

    2016-03-01

    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  20. RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH

    SciTech Connect

    S. Robert Bereskin

    2003-02-11

    Anastamosing, low gradient distributary channels produce {approx}30 gravity, paraffinic oils from the Middle Member of the lacustrine Eocene Green River Formation in the south-central portion of the Uinta Basin. This localized depocenter was situated along the fluctuating southern shoreline of Lake Uinta, where complex deposits of marginal-lacustrine to lower delta plain accumulations are especially characteristic. The Middle Member contains several fining-upward parasequences that can be recognized in outcrop, core, and downhole logs. Each parasequence is about 60 to 120 feet thick and consists of strata deposited during multiple lake level fluctuations that approach 30 to 35 feet in individual thickness. Such parasequences represent 300,000-year cycles based on limited absolute age dating. The subaerial to subaqueous channels commonly possess an erosional base and exhibit a fining upward character. Accordingly, bedding features commonly range from large-scale trough and planar cross bedding or lamination at the base, to a nonreservoir, climbing ripple assemblage near the uppermost reservoir boundary. The best reservoir quality occurs within the laminated to cross-stratified portions, and the climbing ripple phase usually possesses more deleterious micas and/or detrital clays. Diagenesis also exerts a major control on reservoir quality. Certain sandstones were cemented by an early, iron-poor calcite cement, which can be subsequently leached. Secondary intergranular porosity (up to 20%) is largely responsible for the 10 -100 millidarcy rock, which represents petrophysical objectives for both primary and secondary production. Otherwise, intense compaction, silicic and iron-rich carbonate cements, and authigenic clays serve to reduce reservoir quality to marginal economic levels.

  1. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    NASA Astrophysics Data System (ADS)

    Leemhuis, C.; Jung, G.; Kasei, R.; Liebe, J.

    2009-08-01

    In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  2. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    SciTech Connect

    Benamrane, O.; Messaoudi, M.; Messelles, H. )

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rock in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.

  3. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    . A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  4. Shallow Miocene basaltic magma reservoirs in the Bahia de Los Angeles basin, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Delgado-Argote, Luis A.; García-Abdeslem, Juan

    1999-01-01

    The basement in the Bahı´a de Los Angeles basin consists of Paleozoic metamorphic rocks and Cretaceous granitoids. The Neogene stratigraphy overlying the basement is formed, from the base to the top, by andesitic lava flows and plugs, sandstone and conglomeratic horizons, and Miocene pyroclastic flow units and basaltic flows. Basaltic dikes also intrude the whole section. To further define its structure, a detailed gravimetric survey was conducted across the basin about 1 km north of the Sierra Las Flores. In spite of the rough and lineal topography along the foothills of the Sierra La Libertad, we found no evidence for large-scale faulting. Gravity data indicates that the basin has a maximum depth of 120 m in the Valle Las Tinajas and averages 75 m along the gravimetric profile. High density bodies below the northern part of the Sierra Las Flores and Valle Las Tinajas are interpreted to be part of basaltic dikes. The intrusive body located north of the Sierra Las Flores is 2.5 km wide and its top is about 500 m deep. The lava flows of the top of the Sierra Las Flores, together with the distribution of basaltic activity north of this sierra, suggests that this intrusive body continues for 20 km along a NNW-trending strike. Between the sierras Las Flores and Las Animas, a 0.5-km-wide, 300-m-thick intrusive body is interpreted at a depth of about 100 m. This dike could be part of the basaltic activity of the Cerro Las Tinajas and the small mounds along the foothills of western Sierra Las Animas. The observed local normal faulting in the basin is inferred to be mostly associated with the emplacement of the shallow magma reservoirs below Las Flores and Las Tinajas.

  5. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins

  6. Regional correlations and reservoir characterization studies of the Morrow group in the Anadarko basin area of Western Oklahoma

    SciTech Connect

    Williams, C.M.; Henderickson, W.J.; Smith, P.W.

    1995-09-01

    Reservoir characterization studies of numerous fields within the Anadarko Basin area have demonstrated nomenclature problems regarding Morrowan Aged reservoirs. The Morrow can be overlaid by strata as young as basal Des Moinesian and underlaid by strata that is Springeran to Chesterian in Age. This problem has led to Morrow production being erroneously called as young as Red Fork (Des Moinesian) and as old as Chester. To further complicate nomenclature, a correlative and equivalent formation may be called various names from one region of the basin to another and/or may be known by local names from one field to another. Misallocated Morrow production is carried incorrectly throughout the production is then used by various State and Federal agencies to model reserves and to create energy policies. To date, few detailed regional cross-sections have been available (or even exist outside proprietary studies) showing the most up-to-date logs correlated throughout the basin. By using regional cross-section grids have established that all log correlations tie intra-field as well as interfield. Production was allocated by comparing the perforated interval to the log which was correlated to the correct reservoir. Characterization of the reservoirs was conducted to include geologic and engineering data such as depths, thicknesses, porosities, permeabilities, pressures, water saturations, area, spacings, and heterogeneities along with a correlated reservoir specific type log. The results of those studies are presented.

  7. Synergistic gains from the multi-objective optimal operation of cascade reservoirs in the Upper Yellow River basin

    NASA Astrophysics Data System (ADS)

    Bai, Tao; Chang, Jian-xia; Chang, Fi-John; Huang, Qiang; Wang, Yi-min; Chen, Guang-sheng

    2015-04-01

    The Yellow River, known as China's "mother river", originates from the Qinghai-Tibet Plateau and flows through nine provinces with a basin area of 0.75 million km2 and an annual runoff of 53.5 billion m3. In the last decades, a series of reservoirs have been constructed and operated along the Upper Yellow River for hydropower generation, flood and ice control, and water resources management. However, these reservoirs are managed by different institutions, and the gains owing to the joint operation of reservoirs are neither clear nor recognized, which prohibits the applicability of reservoir joint operation. To inspire the incentive of joint operation, the contribution of reservoirs to joint operation needs to be quantified. This study investigates the synergistic gains from the optimal joint operation of two pivotal reservoirs (i.e., Longyangxia and Liujiaxia) along the Upper Yellow River. Synergistic gains of optimal joint operation are analyzed based on three scenarios: (1) neither reservoir participates in flow regulation; (2) one reservoir (i.e., Liujiaxia) participates in flow regulation; and (3) both reservoirs participate in flow regulation. We develop a multi-objective optimal operation model of cascade reservoirs by implementing the Progressive Optimality Algorithm-Dynamic Programming Successive Approximation (POA-DPSA) method for estimating the gains of reservoirs based on long series data (1987-2010). The results demonstrate that the optimal joint operation of both reservoirs can increase the amount of hydropower generation to 1.307 billion kW h/year (about 594 million USD) and increase the amount of water supply to 36.57 billion m3/year (about 15% improvement). Furthermore both pivotal reservoirs play an extremely essential role to ensure the safety of downstream regions for ice and flood management, and to significantly increase the minimum flow in the Upper Yellow River during dry periods. Therefore, the synergistic gains of both reservoirs can be

  8. The exhumed ``Carlin-type'' fossil oil reservoir at Yankee Basin

    NASA Astrophysics Data System (ADS)

    Hulen, Jeffrey B.; Collister, James W.; Stout, Bill; Curtiss, David K.; Dahdah, Nicolas F.

    1998-12-01

    The Carlin-type disseminated gold orebodies of Yankee basin in the southern part of the Alligator Ridge mining district in Nevada contain widespread oil as smears, open-space fillings, and fluid inclusions in syn- and pre-mineral calcite veins. These unusual oils are the relicts of an exhumed and deeply oxidized oil reservoir that encom-passes the orebodies at the crest of a dissected, anticlinal trap. Results of fluid-inclusion microthermometry and organic geochemistry demonstrate that the oils experienced peak paleotemperatures of no more than about 150°C, a temperature unusually low for Carlin-type mineralization, but ideal for the transport, entrapment, and preservation of liquid hydrocarbon. Similar geothermal systems are actively circulating at three of Nevada’s producing oil fields—Grant Canyon, Bacon Flat, and Blackburn. Accordingly, concealed Carlin-type fossil hydrothermal systems of this type, even if subeconomic for gold, could contain commercial concentrations of oil.

  9. RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH

    SciTech Connect

    C.D. Morgan

    1999-08-17

    The +2000-foot-thick (600-m), Tertiary-aged lacustrine deposits of the Middle and Lower Members of the Green River Formation contain the primary oil-producing reservoirs in the southwest Uinta Basin. The authors developed a log-based correlation scheme by identifying what they interpret as depositional cycles on the gamma-ray and resistivity logs of several wells. Regional cross sections were constructed and cycle boundaries revised as needed. The cycles typically range from 50 to 100 feet (15-30 m) thick. The regional correlation scheme will be used to improve their knowledge of the depositional patterns and distribution of productive intervals in the southwest Uinta Basin. Currently, each operator uses a different terminology for many of the same intervals. A regional log-based correlation scheme based on depositional cycles should make it easier to relate subsurface data to the outcrop where depositional environments and lateral continuity of the reservoir rocks can be studied in greater detail. The correlation scheme uses an alpha-numeric nomenclature avoiding local field or facies names that are difficult to use regionally. The nomenclature has three primary levels: (1) MGR or LGR for Middle or Lower Green River, respectively, (2) MGR1 through MGR18 and LGR1 through LGR3 for the different cycles in each member, and (3) MGR1a, MGR1b, and so on, for beds within each cycle. Beds are defined for local use and are not intended to be regional. The cycles can be divided into smaller subcycles, if necessary, for detailed work within a field (MGR14A and MGR14B, for example). cycles can be combined where depositional thinning or poor log quality does not allow correlation of all the individual cycles (MGR5 through MGR9, for example).

  10. Deep burial diagenesis in Rotliegende reservoirs of the NW German Basin

    SciTech Connect

    Ramseyer, K. ); Gaupp, R.; Matter, A.

    1990-05-01

    A deeply buried Permian continental sequence forms the major gas reservoir in northwest Germany. Deposits of fluvial, eolian, and playa lake shoreline facies show the most favorable reservoir properties. Burial diagenesis is greatly influenced by primary depositional textures and eogenetic processes. However, growth of authigenic clay minerals (illite, kaolinite/dickite, chlorite) relates to changes in the chemistry and flow rate of formation waters. Three different mesogenetic fluid types can be recognized: (1) Alkaline fluids from basin center red beds: The presence of pore-lining chlorite in porous subarkoses of the playa shoreline facies probably is related to a compaction-driven influx of alkaline waters from the shaly, red bed sequences of the basin center. (2) Acidic fluids from coal-bearing Late Carboniferous sediments: An aureole of dickite/kaolinite, several hundred meters wide, is developed in Rotliegende arkosic sands where they are juxtaposed against Carboniferous horsts. In this zone, almost all feldspars were destroyed and the formation of dickite/kaolinite was followed by illite growth and bitumen impregnation. In an outer aureole with less extensive feldspar destruction, kandite minerals are not present, but a dense meshwork of well-crystallized, platy illite fills the pores. The intensity of illitization diminishes away from the Carboniferous sediments (i.e., with increasing distance of fluid migration). K-Ar ages reveal that this illite precipitated within a period when organic maturation products were expelled from the coal measures into Rotliegende sediments and when Paleozoic faults were reactivated. (3) Brines from overlying Zechstein evaporites: During late mesogenetic uplift local influxes of these brines resulted in the formation of pore-plugging carbonate and sulfate cements.

  11. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico

    DOE PAGES

    Hillman, Jess I. T.; Cook, Ann E.; Daigle, Hugh; ...

    2017-07-27

    Here, the interactions of microbial methane generation in fine-grained clay-rich sediments, methane migration, and gas hydrate accumulation in coarse-grained, sand-rich sediments are not yet fully understood. The Terrebonne Basin in the northern Gulf of Mexico provides an ideal setting to investigate the migration of methane resulting in the formation of hydrate in thin sand units interbedded with fractured muds. Using 3D seismic and well log data, we have identified several previously unidentified hydrate bearing units in the Terrebonne Basin. Two units are >100 m- thick fine-grained clay-rich units where gas hydrate occurs in near-vertical fractures. In some locations, these fine-grainedmore » units lack fracture features, and they contain 1-4-m thick hydrate bearing-sands. In addition, several other thin sand units were identified that contain gas hydrate, including one sand that was intersected by a well at the location of a discontinuous bottom-simulating reflector. Using correlation of well log data to seismic data, we have mapped and described these new units in detail across the extent of the available data, allowing us to determine the variation of seismic amplitudes and investigate the distribution of free gas and/or hydrate. We present several potential source-reservoir scenarios between the thick fractured mud units and thin hydrate bearing sands. We observe that hydrate preferentially forms within thin sand layers rather than fractures when sands are present in larger marine mud units. Based on regional mapping showing the patchy lateral extent of the thin sand layers, we propose that diffusive methane migration or short-migration of microbially generated methane from the marine mud units led to the formation of hydrate in these thin sands, as discontinuous sands would not be conducive to long-range migration of methane from deeper reservoirs.« less

  12. [Potential ecological risks assessment of heavy metals in the reservoir sediment of the western Haihe River basin].

    PubMed

    Cheng, Xian; Wang, Rui-lin; Wang, Jian-li; Sun, Ran-hao

    2015-05-01

    The reservoirs distributed in the western part of Haihe River basin play a key role in drinking water supply in the densely populated region. The potential ecological risk of heavy metals stored in the reservoir sediments has drawn more attention during recent decades. In this study, a total of 10 reservoirs in the western Haihe River basin were sampled. The sediment samples were assessed by the Hakanson potential ecological risk evaluation index. The sediments of upstream and downstream rivers were also sampled for comparative analysis with those of the reservoirs. The results indicated the concentration of Cd was significantly higher than the background value in this region, it was 1.67 times of the background value on average and the highest was 2.77 times. The concentration of Pb was higher than the background value for more than half of the reservoirs. The potential ecological risk was evaluated by the toxic coefficient. The ecological risk level was decreased in the order of Cd>As>Pb>Ni>Cu>Cr>Zn. The ecological risk of Cd in most reservoir sediments belonged to a moderate harm. Xidayang Reservior, which supplied the drinking water for Beijing and Baoding, had the highest level of Cd pollution. The ecological risk of Cd in the upstream and downstream rivers was significantly higher than that of the reservoirs. In addition, the ecological risks of Pb, Cu and Ni in the upstream rivers were also higher than the reservoirs. The difference of ecological risks of Zn and Cr was not significant between reservoirs and rivers.

  13. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria).

    PubMed

    Exner, Ulrike; Kaiser, Jasmin; Gier, Susanne

    2013-05-01

    In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains. The chemical composition of this dolomite cement (10-12 wt% FeO) differs from detrital dolomite grains in the host rock (<2 wt% FeO). This observation in combination with stable isotope data suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from an external, non-meteoric source. After an initial increase of porosity by dilation, disaggregation and fragmentation of detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the porosity relative to the host sediment. The retention of pyrite cement by these cementation bands as well as the different degree of oil staining on either side of the bands demonstrate that these cementation bands act as effective barriers to the migration of fluids and should be considered in reservoir models.

  14. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    SciTech Connect

    Janjua, Osama Akhtar Wahid, Ali Salim, Ahmed Mohamed Ahmed; Rahman, M. Nasir B. A.

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I –Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well – log correlation. The petrophysical parameters analogue to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.

  15. Deformation bands evolving from dilation to cementation bands in a hydrocarbon reservoir (Vienna Basin, Austria)

    PubMed Central

    Exner, Ulrike; Kaiser, Jasmin; Gier, Susanne

    2013-01-01

    In this study we analyzed five core samples from a hydrocarbon reservoir, the Matzen Field in the Vienna Basin (Austria). Deformation bands occur as single bands or as strands of several bands. In contrast to most published examples of deformation bands in terrigeneous sandstones, the reduction of porosity is predominantly caused by the precipitation of Fe-rich dolomite cement within the bands, and only subordinately by cataclasis of detrital grains. The chemical composition of this dolomite cement (10–12 wt% FeO) differs from detrital dolomite grains in the host rock (<2 wt% FeO). This observation in combination with stable isotope data suggests that the cement is not derived from the detrital grains, but precipitated from a fluid from an external, non-meteoric source. After an initial increase of porosity by dilation, disaggregation and fragmentation of detrital grains, a Fe-rich carbonate fluid crystallized within the bands, thereby reducing the porosity relative to the host sediment. The retention of pyrite cement by these cementation bands as well as the different degree of oil staining on either side of the bands demonstrate that these cementation bands act as effective barriers to the migration of fluids and should be considered in reservoir models. PMID:26321782

  16. Prospect evaluation of shallow I-35 reservoir of NE Malay Basin offshore, Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Janjua, Osama Akhtar; Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Rahman, M. Nasir B. A.

    2016-02-01

    A potential accumulation of hydrocarbon that describes significant and conceivable drilling target is related to prospect. Possibility of success estimation, assuming discovery of hydrocarbons and the potential recoverable quantities range under a commercial development program are the basis of Prospect evaluation activities. The objective was to find the new shallow prospects in reservoir sandstone of I -Formation in Malay basin. The prospects in the study area are mostly consisting of faulted structures and stratigraphic channels. The methodology follows seismic interpretation and mapping, attribute analysis, evaluation of nearby well data i.e., based on well - log correlation. The petrophysical parameters analogue to nearby wells was used as an input parameter for volumetric assessment. Based on analysis of presence and effectiveness, the prospect has a complete petroleum system. Two wells have been proposed to be drilled near the major fault and stratigraphic channel in I-35 reservoir that is O-1 and O-2 prospects respectively. The probability of geological success of prospect O-1 is at 35% while for O-2 is 24%. Finally, for hydrocarbon in place volumes were calculated which concluded the best estimate volume for oil in O-1 prospect is 4.99 MMSTB and O-2 prospect is 28.70 MMSTB while for gas is 29.27 BSCF and 25.59 BSCF respectively.

  17. SWOT Data Assimilation for Operational Reservoir Management on the Upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2014-12-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of model states derived using corrupted meteorological forcings. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam at the entrance of the environmentally sensitive Niger Inner Delta. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence", which describes the duration of the assimilation effect, was clearly improved by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the assimilation of SWOT data resulted in substantial improvements in the performances of the Selingue Dam management with a greater ability to meet environmental requirements and a lower volume of water released from the dam.

  18. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    NASA Astrophysics Data System (ADS)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  19. ANALYSIS OF FAULT SEAL POTENTIAL FOR KNOX RESERVOIRS IN THE SOUTHERN ILLINOIS BASIN

    SciTech Connect

    Hickman, John; Leetaru, Hannes

    2014-09-30

    The presence of known faults near potential geologic CO2 sequestration sites significantly raises the uncertainty of having a sufficient seal to prevent leakage along the fault plane from the intended reservoir. In regions where relocating a large sequestration project a considerable distance away from any known faults is impractical, a detailed analysis of the sealing potential of any faults within the projected future injection plume must be performed. In order to estimate the sealing potential of faults within the Late Cambrian-Early Ordovician Knox Supergroup in the Illinois Basin, two well-based cross sections were produced across two different regional fault systems (Rough Creek Fault Zone in Kentucky, and the unnamed core fault of the LaSalle Anticlinorium in Illinois) to calculate subsurface stratigraphic juxtapositions across each fault zone. Using this stratigraphic and lithologic data, three different algorithms were used to calculate the sealing potential of a theoretical Knox reservoir at each section location. These results indicate a high probability for sealing within the Rough Creek Fault Zone, but a much lower probability for a continuous seal within the LaSalle Anticlinorium.

  20. Quantifying quagga mussel veliger abundance and distribution in Copper Basin Reservoir (California) using acoustic backscatter.

    PubMed

    Anderson, Michael A; Taylor, William D

    2011-11-01

    Quagga mussels (Dreissena bugensis) have been linked to oligotrophication of lakes, alteration of aquatic food webs, and fouling of infrastructure associated with water supply and power generation, causing potentially billions of dollars in direct and indirect damages. Understanding their abundance and distribution is key in slowing their advance, assessing their potential impacts, and evaluating effectiveness of control strategies. Volume backscatter strength (Sv) measurements at 201- and 430-kHz were compared with quagga mussel veliger and zooplankton abundances determined from samples collected using a Wisconsin closing net from the Copper Basin Reservoir on the Colorado River Aqueduct. The plankton within the lower portion of the water column (>18 m depth) was strongly dominated by D-shaped quagga mussel veligers, comprising up to 95-99% of the community, and allowed direct empirical measurement of their mean backscattering cross-section. The upper 0-18 m of the water column contained a smaller relative proportion of veligers based upon net sampling. The difference in mean volume backscatter strength at these two frequencies was found to decrease with decreasing zooplankton abundance (r(2) = 0.94), allowing for correction of Sv due to the contribution of zooplankton and the determination of veliger abundance in the reservoir. Hydroacoustic measurements revealed veligers were often present at high abundances (up to 100-200 ind L(-1)) in a thin 1-2 m layer at the thermocline, with considerable patchiness in their distribution observed along a 700 m transect on the reservoir. Under suitable conditions, hydroacoustic measurements can rapidly provide detailed information on the abundance and distribution of quagga mussel veligers over large areas with high horizontal and vertical resolution.

  1. Building the 3-D jugsaw puzzle: Applications of sequence stratigraphy to 3-D reservoir characterization, Permian basin

    SciTech Connect

    Tinker, S.W.

    1996-04-01

    Reservoir characterization involves the quantification, integration, reduction, and analysis of geological, petrophysical, seismic, and engineering data. This is no small task. A principal goal of reservoir characterization is to derive a spatial understanding of interwell heterogeneity. Traditionally, geologic attempts to characterize interwell heterogeneity have been done using hand-drawn or computer-generated two-dimensional (2-D) maps and cross sections. Results can be improved dramatically using three-dimensional (3-D) interpretation and analysis techniques. Three-dimensional reservoir characterization requires the same input data used in 2-D approaches, and the cost is equal to, and commonly lower than, traditional 2-D methods. The product of 3-D reservoir characterization is a 3-D reservoir model. The language used to communicate the results of a 3-D reservoir model is visualization; i.e., visual images of numerical data. All of the available log and core data in a model area are incorporated in a 3-D model, but the data are depicted as colored cells rather than as log traces. The integrity of the 3-D reservoir model is largely a function of the stratigraphic framework. Interpreting the correct stratigraphic framework for a subsurface reservoir is the most difficult and creative part of the 3-D modeling process. Sequence and seismic stratigraphic interpretation provide the best stratigraphic framework for 3-D reservoir modeling. The purpose of this paper is to discuss the pro- cess of 3-D deterministic reservoir modeling and to illustrate the advantages of using a sequence stratigraphic framework in 3-D modeling. Mixed carbonate and siliciclastic sediment outcrop and subsurface examples from the Permian basin of west Texas and New Mexico will be used as examples, but the concepts and techniques can be applied to reservoirs of any age.

  2. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  3. OIL RESERVOIR CHARACTERIZATION AND CO2 INJECTION MONITORING IN THE PERMIAN BASIN WITH CROSSWELL ELECTROMAGNETIC IMAGING

    SciTech Connect

    Michael Wilt

    2004-02-01

    Substantial petroleum reserves exist in US oil fields that cannot be produced economically, at current prices, unless improvements in technology are forthcoming. Recovery of these reserves is vital to US economic and security interests as it lessens our dependence on foreign sources and keeps our domestic petroleum industry vital. Several new technologies have emerged that may improve the situation. The first is a series of new flooding techniques to re-pressurize reservoirs and improve the recovery. Of these the most promising is miscible CO{sub 2} flooding, which has been used in several US petroleum basins. The second is the emergence of new monitoring technologies to track and help manage this injection. One of the major players in here is crosswell electromagnetics, which has a proven sensitivity to reservoir fluids. In this project, we are applying the crosswell EM technology to a CO{sub 2} flood in the Permian Basin oil fields of New Mexico. With our partner ChevronTexaco, we are testing the suitability of using EM for tracking the flow of injected CO{sub 2} through the San Andreas reservoir in the Vacuum field in New Mexico. The project consisted of three phases, the first of which was a preliminary field test at Vacuum, where a prototype system was tested in oil field conditions including widely spaced wells with steel casing. The results, although useful, demonstrated that the older technology was not suitable for practical deployment. In the second phase of the project, we developed a much more powerful and robust field system capable of collecting and interpreting field data through steel-cased wells. The final phase of the project involved applying this system in field tests in the US and overseas. Results for tests in steam and water floods showed remarkable capability to image between steel wells and provided images that helped understand the geology and ongoing flood and helped better manage the field. The future of this technology is indeed bright

  4. Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.; Barks, James H.

    1980-01-01

    Effects of the proposed Prosperity Reservoir on groundwater and water quality in lower Center Creek basin, Mo., depend partly on the effectiveness of Grove Creek as a hydrologic boundary between the reservoir site and the Oronogo-Duenweg mining belt. Results of two dye traces indicate that Grove Creek probably is not an effective boundary. Therefore, higher water levels near the reservoir could cause more groundwater to move into the mining belt and cause a greater discharge of zinc-laden mine water into Center Creek. Fertilizer industry wastes discharged into Grove Creek resulted in significant increases of nitrogen and phosphorus in lower Center Creek. Results of seepage runs confirm that mine-water discharge and seepage account for the increased zinc concentrations in Center Creek during base flow. The nutrient and zinc concentrations in Center Creek, after the completion of the proposed reservoir, would depend upon the release schedule. (USGS)

  5. Evolution and hydrocarbon provinces of Neogene basins in the West Carpathians

    SciTech Connect

    Keith, J.F. Jr.; Fleischmann, K.H. ); Nemcok, M. )

    1991-03-01

    The Neogene basins of the West Carpathians are plate-margin, A-subduction zone basins that developed during convergent and escape phases of Alpine deformation. Field studies show that thrusting, strike-slip, and extension created composite basins that were dependent on structural position through time, including piggyback, transtensional, and extensional mechanisms. The Vienna, Danube Lowland, and East Slovakian basins were the major catchment features of Neogene sediments. The Vienna basin is the most mature hydrocarbon-producing province of the West Carpathians, with both oil and gas reserves under exploitation. This multiphase composite-complex basin produces hydrocarbons from Neogene clastics (6 km) and Mesozoic units (4-8 km) of the Alpine nappe system and European platform. The Danube Lowland basin, one of the largest sedimentary basins of the West Carpathians, is a multiphase complex of structural units and has in excess of 8 km of Paleogene and Neogene basin fill. Although minor gas reserves are known, it is essentially a frontier hydrocarbon province. The East Slovakian basin is the largest and most important of the three depocenters of the Transcarpathian Depression. The basin is filled with over 7 km of Tertiary flysch and molasse. Hydrocarbon reserves are being exploited from the Neogene Badenian and Sarmatian clastic reservoirs. Syntheses of field and geophysical data indicate that the West Carpathian Neogene basins are multiphase in their development and, therefore, more complex than suggested by previous studies. This multiphase basin evolution has created a challenging array of hydrocarbon play concepts.

  6. Reservoir impact assessment in sub-Saharan Africa: The Volta Basin Water Allocation System (VB-WAS)

    NASA Astrophysics Data System (ADS)

    Leemhuis, C.; Jung, G.; Kasei, R.; Liebe, J.

    2009-04-01

    In the Volta River Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. The Volta basin drains an area of approx. 400 000 km² of the subhumid to semiarid West-African savannah zone and is shared by six riparian countries. The region is characterized by erratic rainfall patterns, and domestic and agricultural water users in the upper regions of the Basin complete with hydropower generation in the south for increasingly scarce water resources. There is an ongoing debate on the impact of further development of small, medium and large reservoirs on the water level of Lake Volta. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the coupled climate-hydrological model (MM5/WaSiM) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. Furthermore it is possible to up set up climate scenario time series scenarios for an assessment of the consequences of extreme climate conditions. Within a case study analysis the impact of small and medium scale reservoir development on the water resources of the Volta basin has been evaluated under different climatic conditions. For the evaluation of the impact of large reservoir development in particular the impact of Bui dam, which is under construction on the Black Volta River in Ghana, on the water level of Lake Volta has been simulated with the VB-WAS model. The VB-WAS model allows a quantified impact

  7. Geology of the Roswell artesian basin, New Mexico, and its relation to the Hondo Reservoir and Effect on artesian aquifer storage of flood water in Hondo Reservoir

    USGS Publications Warehouse

    Bean, Robert T.; Theis, Charles V.

    1949-01-01

    In the Roswell Basin in southeastern New Mexico artesian water is produced from cavernous zones in the carbonate rocks of the San Andres formation and the lower part of the Chalk Bluff formation, both of Permian age. The Hondo Reservoir, 9 miles west-southwest of Roswell, was completed by the U. S. Bureau of Reclamation in 1907, to store waters of the Rio Hondo for irrigation. The project was not successful, as the impounded water escaped rapidly through holes in the gypsum and limestone of the San Andres formation constituting its floor. Of 27,000 acre~feet that entered the reservoir between 1908 and 1913, only 1,100 acre-feet was drawn Ollt for use, the remainder escaping through the floor of the reservoir. Since 1939, plans have been drawn up by the State Engineer and by Federal agencies to utilize the reservoir to protect Roswell from floods. It has also been suggested that water from the Pecos River might be diverted into underground storage through the reservoir. Sinkholes in the Roswell Basin are largely clustered in areas where gypsum occurs in the bedrock. Collapse of strata is due to solution of underlying rock commonly containing gypsum. Domes occur in gypsiferous strata near Salt Creek. The Bottomless Lakes, sinkhole lakes in the escarpment on the east side of the Pecos, are believed to have developed in north-south hinge-line fractures opened when the westernmost beds in the escarpment collapsed. Collapse was due to solution and removal of gypsiferous rock by artesian water which now fills the lakes.

  8. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  9. Structural/stratigraphic reconstruction of frontal [open quotes]Choctaw[close quotes] triangle zone within Oklahoma Atoka Trend - early controls (Prethrusting) on deposition of deep-water clastic reservoirs

    SciTech Connect

    Cox, D.; Foshee, R. )

    1993-09-01

    A structural and stratigraphic study in southwestern Oklahoma, encompassing approximately 30 townships in Atoka, Coal, and Pittsburg counties, was done using several hundred wells, surface geologic maps, and more than 400 mi of 1980 seismic data. Isopach maps of six Atokan sands covered various areas, all within a deep-water fan setting. Structural balancing, done on numerous geologic cross sections of six mi or less, allowed correlation of logs of the various reservoirs and structural details within the frontal [open quotes]Choctaw[close quotes] triangle zone. Two regional cross sections were made based, respectively. on 12 and 16 mi or recent high-fold common-depth-point seismic lines, with a minimum of one-well-per-mile control, diameter data, and surface geology. These cross sections were reconstructed by line balancing to illustrate the amount of thrusting in the section and the pre-Pennsylvanian normal faulting that subtly controlled the Atoka sands depositional framework. The thickest and most channelized sands are found downthrown to these earlier faults, with is past relationship now obscured by post-Atokan thrusting.

  10. Nutrient dynamics in five off-stream reservoirs in the lower South Platte River basin, March-September 1995

    USGS Publications Warehouse

    Sprague, Lori A.

    2002-01-01

    In 1995, the U.S. Geological Survey conducted a study to characterize nutrient concentrations in five off-stream reservoirs in the lower South Platte River Basin?Riverside, Jackson, Prewitt, North Sterling, and Julesburg. These reservoirs are critical sources of irrigation water for agricultural areas, and several also are used for fishing, boating, swimming, hunting, and camping. Data collected for this study include depth profiles of water temperature, dissolved oxygen, pH, and specific conductance; nutrient species concentrations in the water column, bottom sediment, and inflow and outflow canals; and chlorophyll-a concentrations in the water column. Data were collected during the irrigation season from March through September 1995 at five sites each in Riverside, Jackson, Prewitt, and Julesburg Reservoirs and at six sites in North Sterling Reservoir. The five reservoirs studied are located in similar geographic, climatic, and land-use areas and, as a result, have a number of similarities in their internal nutrient dynamics. Nitrogen concentrations in the reservoirs were highest in March and decreased through September as a result of dilution from river inflows and biological activity. From March through June, decreases in nitrogen concentrations in the river and biological activity contributed to decreases in reservoir concentrations. From July through September, inflows from the river were cut off, and biological activity in the reservoirs led to further decreases in nitrate concentrations, which fell to near or below detectable levels. Phosphorus concentrations in the reservoirs did not show the same consistent decrease from March through September. Phosphorus likely was recycled continuously back to algae during the study period through processes such as excretion from fish, decay of aquatic plants and animals, and release of orthophosphate from bottom sediment during periods of low oxygen. With the exception of phosphorus in Jackson Reservoir, the

  11. Frontier sedimentary basins of New Zealand region

    SciTech Connect

    Beggs, J.M. )

    1991-03-01

    Petroleum-prospective basins of New Zealand began to form by mid-Cretaceous rifting of crustal elements previously assembled at the Gondwana continental margin. During the latest Cretaceous-early Cenozoic New Zealand separated from Australia and Antarctica by sea-floor spreading. An overall transgression in widely recorded in this post-rift phase, with decreasing clastic sediment supply as land area and relief were reduced. Mid-Cenozoic initiation of the modern plate boundary has resulted in uplift of mountain ranges, subsidence and filling of troughs, progradation of the shelf, and common reactivation or eversion of older structures. Petroleum potential of less explored basins can be compared to the productive Taranki basin. Source rocks are coal-rich deposits of the rift phase, also developed in Great South, Canterbury/Chatham, Western Southland, West Coast, and Northland basins. A different source contributes to oil and gas seeps on the East Coast, a continental margin during Late Cretaceous. The main reservoirs of Taranaki are early Cenozoic coastal and fluvial sands, also present in Great South, Canterbury, and West Coast and possibly other basins. Other Taranaki reservoirs include mid-Cenozoic limestone and Miocene turbidites, which are widespread in most other basins. Pliocene limestones have excellent reservoir potential on the East Coast. Late Cenozoic tectonics, essential to trap development and significant for maturation in Taranaki, have created similar structures in basins near the plate boundary but are less significant in the development of Great South, eastern Canterbury/Chatham, and Northland basins.

  12. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    NASA Astrophysics Data System (ADS)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  13. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K. )

    1996-01-01

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  14. High resolution reservoir architecture of late Jurassic Haynesville ramp carbonates in the Gladewater field, East Texas Salt Basin

    SciTech Connect

    Goldhammer, R.K.

    1996-12-31

    The East Texas Salt Basin contains numerous gas fields within Upper Jurassic Haynesville ramp-complex reservoirs. A sequenced-keyed, high-resolution zonation scheme was developed for the Haynesville Formation in Gladewater field by integrating core description, well-log, seismic, porosity and permeability data. The Haynesville at Gladewater represents a high-energy ramp system, localized on paleotopographic highs induced by diapirism of Callovian Age Salt (Louann). Ramp crest grainstones serve as reservoirs. We have mapped the distribution of reservoir facies within a hierarchy of upward-shallowing parasequences grouped into low-frequency sequences. The vertical stacking patterns of parasequences and sequences reflect the interplay of eustasy, sediment accumulation patterns, and local subsidence (including salt movement and compaction). In this study we draw on regional relations from analogous, Jurassic systems in Mexico to constrain the stratigraphic architecture, age model, and facies model. Additionally, salt-cored Holocene, grain-rich shoals from the Persian Gulf provide excellent facies analogs. The result is a new high-resolution analysis of reservoir architecture at a parasequence scale that links reservoir facies to depositional facies. The new stratigraphy scheme demonstrates that different geographic portions of the field have markedly distinct reservoir intervals, both in terms of total pay and the sequence-stratigraphic interval within which it occurs. Results from this study are used to evaluate infill drill well potential, in well planning, for updating reservoir models, and in refining field reserve estimates.

  15. Multi-scale reservoir modeling as an integrated assessment tool for geo-sequestration in the San Juan Basin

    USGS Publications Warehouse

    Young, G.; Haerer, D.; Bromhal, G.; Reeves, S.

    2007-01-01

    The Southwestern Regional Partnership on CO2 Sequestration conducted an Enhanced Coalbed Methane (ECBM)/Carbon Storage Pilot in the San Juan Basin as part of the ongoing DOE/NETL Carbon Capture and Storage Program. The primary goal of this pilot is to demonstrate the efficacy of using CO2 to enhance coalbed methane recovery particularly near reservoir abandonment pressure while also evaluating the suitability of coal seams for longer-term carbon storage. Basic geologic models of the coal seams were developed from well logs in the area. Production histories from several surrounding CBM wells were shown. To monitor the injection of up to 75,000 ton of CO2 beginning September 2007, seismic surveys and tiltmeter arrays were utilized. Larger-scale geo-hydrodynamic simulations were used to develop a regional model for the fluid dynamics of the northern San Juan Basin. Smaller-scale reservoir simulations, incorporating available laboratory and field data, were used to develop an improved understanding of reservoir dynamics within the specific 640-acre pilot area. Both modeling scales were critical to assessing the suitability of deploying commercial carbon storage programs throughout the basin. Reservoir characterization results on the optimization of total CO2 injection volume, injection rate over time, and how CO2 is expected to disperse after injection are presented. This is an abstract of a paper presented at the 2007 AIChE Annual Meeting (Salt Lake City, UT 11/4-9/2007).

  16. Mapping lacustrine syn-rift reservoir distribution using spectral attributes: A case study of the Pematang Brownshale Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Yustiawan, R.; Riyanto, A.; Ramadian, R.

    2017-07-01

    Pematang Brownshale is the lake sediment, which is proven as the main source rock in Malacca Strait Area. So far Brownshale is only considered as source rock, but the well data show intercalated sand layers encountered within the Pematang Brownshale, where several downhole tests proved this series as a potential hydrocarbon reservoir. Pematang formation is a syn-rift sequent deposited in Malacca Strait following the opening of central Sumatra basin during a late cretaceous to early Oligocene, which is proven as potential source rock and reservoir. The aim of the study is to identify the distribution of sandstone reservoir in Pematang Brownshale using spectral attributes. These works were carried out by integrating log data analysis and frequency maps extracted from spectral attributes Continuous Wavelet Transform (CWT). All these data are used to delineate reservoir distribution in Pematang Brownshale. Based on CWT analysis the anomalies are only visible on the frequency of I5 and I0 Hz maps, which are categorized as low frequencies. Low-frequency shadow anomaly is commonly used as an indication of the presence of hydrocarbons. The distribution of these anomalies is covering an area of approximately 3840.66 acres or equal to I554.25 sq. km, where the low-frequency pattern is interpreted as a deltaic lacustrine feature. By considering the Pematang Brown Shale of Malacca Strait area as a potential reservoir, it would open new play to another basin that has similar characteristics.

  17. Modelling of wind waves on the lake-like basin of Gorky Reservoir with WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kuznetsova, Alexandra; Zenkovich, Dmitry; Papko, Vladislav; Kandaurov, Alexander; Baidakov, Georgy; Vdovin, Maxim; Sergeev, Daniil

    2014-05-01

    Simulation of ocean waves and sea waves is nowadays a generally adopted technique of operational meteorology. Such well-known models as WAVEWATCH, WAM, SWAM are aimed primarily at describing ocean waves including coastal (nearshore) zones. Meanwhile, wave modelling is less developed for moderate and small inland water reservoirs and lakes, though being of considerable interest for inland navigation. In this paper test numerical experiments on simulating waves on the lake-like basin of the Gorky Reservoir using WAVEWATCH III are reported. We aimed to evaluate the applicability of the model to the waves on a mid-sized inland reservoir. Gorky Reservoir is an artificial lake in the central part of the Volga River formed by a hydroelectric dam of Gorky Hydroelectric Station between the towns of Gorodets and Zavolzhye. It spans for 427 km from the dam of Rybinsk to the dam of Gorodets through several regions of Central Russia. While it is relatively narrow and follows the natural riverbed of Volga in the upper part, it becomes up to 15 km wide downstream the town of Yuryevets. Its maximum depth is 22 m, the surface area is 1590 km2, the accumulated water volume amounts to 8.71 km3. In the series of calculations we considered moderate winds of different directions blowing steadily all over the surface of the reservoir and the waves developing from calm conditions or from some initial seeding spectral distribution that is Gaussian in frequency and space, cosine in direction. The results of wave simulation are compared then with the data collected by the field in-situ observations and measurements. The field experiments were carried out in the south part of the Gorky reservoir from the boat. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill

  18. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation.

  19. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  20. Modeling naturally fractured carbonate as potential CGS reservoir: a case study from Sulcis Basin.

    NASA Astrophysics Data System (ADS)

    Chiara Tartarello, Maria; Bigi, Sabina; Ruggiero, Livio

    2017-04-01

    The naturally fractured carbonates have a great potential for Carbon Geological Storage purpose because they could offer the possibility for storage in that areas where no sandstone are available. In Italy, we studied the Sulcis Basin, an area situated in SW Sardinia, where the "Miliolitico Fm." represents the potential reservoir. This Formation consists of well bedded, about 50 m thick, mudstones and grainstones with Miliolidae, deposited in a lagoon environment during the Early Eocene. This formation has a very low primary porosity and permeability, so it is essential to characterize the fracture network that characterize the reservoir's capacity. We performed a detailed fracture analysis at the outcrop, using scan lines and scan areas techniques. We measured the fractures spacing, aperture, length and connectivity both linearly and on a surface. These parameters were used to build several Discrete Fracture Model, using Move 2016 (Midland Valley). In particular DFN were constructed varying length and aperture values to evaluate their influence on the total secondary porosity. The same approach was also utilized in the Nuraxi Figus coal mine, where the Miliolitico crops out at a depth of -480 m b.s.l., in more confined pressure condition. Here we collected detailed scan lines. Major fractures/faults that cross the whole tunnel were also measured. These data were integrated with the previous ones for the DFN generation. A separate fracture model were generated to represent the fault network, to evaluate the different component of the brittle deformation (small fault and fractures). The fracture modeling was performed using Move 2016 and Petrel (Schlumberger); than the results were compared. The results show that most of the secondary permeability and porosity is due to faults, through which fluid circulate. Some fractures sometimes are affected by karst phenomena, that influence their aperture.

  1. Control of facies, burial history, and oil migration on diagenesis and reservoir quality: Maracaribo basin, Venezuela

    SciTech Connect

    Ghosh, S.K.; Di Croce, J.; Isea, A.; Gonzalez, C. )

    1990-05-01

    This regional study of the Eocene Misoa Formation is the first attempt to decipher the role of depositional facies, burial history, and timing of oil migration on diagenetic make-up and reservoir quality in the Maracaibo basin. Subsurface data including cores from 11 wells along a northwest-southeast transect in the Urdaneta, Lagunillas, and Barua-Motatan fields reveal that the depositional facies of the three sandstones range from mainly fluvial (Urdaneta) to deltaic-coastal marine in Lagunillas, and typically sublittoral in the Barua-Motatan area. Both authigenic mineralogy and vitrinite reflectance data suggest progressively greater subsidence from the northwest to southeast. Thus, diagenetic grade is immature on the northwest in Urdaneta and mature to supermature in Barua-Moutan where greater mineralogical diversity and porosity/permeability reduction were noted. Similarly, compaction effects are minimum in Urdaneta, and maximum in Barua-Motatan where porosity is highly reduced, and is totally secondary in nature. Other factors, such as grain size, presence of early pore-lining chlorite (in marine facies), infiltrated grain-coating clays (in fluvial facies), and proximity of reservoirs to the post-Eocene unconformity surface also helped preserve or enhance porosity. Timing of oil migration also contributed to variable regional distribution of porosity and permeability. An early migration in the Urdaneta area helped retain much of the original porosity. In contrast, relatively late migration during upper Miocene, especially in the Barua-Motatan area on the southeast, permitted unimpeded silicification and pressure solution, and consequent destruction of all primary porosity.

  2. Dolomite diagenesis and porosity preservation in lithic reservoirs: Carmopolis member, Sergipe-Alagoas Basin, northeastern Brazil

    SciTech Connect

    Souza, R.S. de; De Ros, L.F.; Morad, S.

    1995-05-01

    The lithic sandstones and conglomerates of the Carmopolis Member of the Muribeca Formation (Aptian) were deposited by fan deltas, alluvial fans, and braid deltas that prograded from low-grade metamorphic terrains into the Sergipe-Alagoas rift basin during the opening of the South Atlantic. Initial carbonates in the Carmopolis reservoirs (presently at depths of 180-2200 m) were marine (high-Mg calcite/aragonite) grain rims, allochems, stromatolitic laminites, and meteoric calcite. These carbonates were subsequently replaced by dolomite/ankerite ({delta}18O{sub PDB} = -7.3 to -4.1{per_thousand}; {delta}{sup 13}C{sub PDB} = -15 to +16.2{delta}) derived from ascending thermobaric fluids prior to oil emplacement. These fluids also caused the direct precipitation of dolomite/ankerite cements and the replacement of dolomite/ankerite cements and the replacement of nonferroan dolomite by ferroan dolomite/ankerite. Rocks lacking early cements were strongly compacted, losing their primary intergranular porosity and permeability, whereas massively cemented rocks show only minor compaction and further diagenetic modifications. Partial cementation has greatly limited the compaction and preserved intergranular porosity, allowing the partial dissolution of carbonates and framework grains and the precipitation of replacive ferroan dolomite/ankerite and pyrite. Offshore reservoirs show late porosity reduction by the precipitation of quartz, kaolinite/dickite, saddle dolomite, and ferroan calcite. Experimental analyses of porosity and permeability reduction under pressure confirmed the importance of early cementation in the preservation of porosity in lithic rocks with ductile framework.

  3. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico - petrophysical characterization of the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    SciTech Connect

    Lucia, F.J.

    1997-06-01

    Reservoir performance of the South Cowden Grayburg field suggests that only 21 percent of the original oil in place has been recovered. The purpose of this study is to construct a realistic reservoir model to be used to predict the location of the remaining mobile oil. Construction of reservoir models for fluid-flow simulation of carbonate reservoirs is difficult because they typically have complicated and unpredictable permeability patterns. Much of the difficulty results from the degree to which diagenetic overprinting masks depositional textures and patterns. For example, the task of constructing a reservoir model of a limestone reservoir that has undergone only cementation and compaction is easier than constructing a model of a karsted reservoir that has undergone cavern formation and collapse as well as cementation and compaction. The Permian-age carbonate-ramp reservoirs in the Permian Basin, West Texas and New Mexico, are typically anhydritic dolomitized limestone. Because the dolomitization occurred soon after deposition, depositional fabrics and patterns are often retained, and a reservoir model can be constructed using depositional concepts. Recent studies of the San Andres outcrop in the Guadalupe Mountains and the Seminole San Andres reservoir in the Permian Basin illustrate how depositional fabrics and patterns can be used to construct a reservoir model when depositional features are retained.

  4. Small reservoir distribution, rate of construction, and uses in the upper and middle Chattahoochee basins of the Georgia Piedmont, USA, 1950-2010

    USGS Publications Warehouse

    Ignatius, Amber R.; Jones, John W.

    2014-01-01

    Construction of small reservoirs affects ecosystem processes in numerous ways including fragmenting stream habitat, altering hydrology, and modifying water chemistry. While the upper and middle Chattahoochee River basins within the Southeastern United States Piedmont contain few natural lakes, they have a high density of small reservoirs (more than 7500 small reservoirs in the nearly 12,000 km2 basin). Policymakers and water managers in the region have little information about small reservoir distribution, uses, or the cumulative inundation of land cover caused by small reservoir construction. Examination of aerial photography reveals the spatiotemporal patterns and extent of small reservoir construction from 1950 to 2010. Over that 60 year timeframe, the area inundated by water increased nearly six fold (from 19 reservoirs covering 0.16% of the study area in 1950 to 329 reservoirs covering 0.95% of the study area in 2010). While agricultural practices were associated with reservoir creation from 1950 to 1970, the highest rates of reservoir construction occurred during subsequent suburban development between 1980 and 1990. Land cover adjacent to individual reservoirs transitioned over time through agricultural abandonment, land reforestation, and conversion to development during suburban expansion. The prolific rate of ongoing small reservoir creation, particularly in newly urbanizing regions and developing counties, necessitates additional attention from watershed managers and continued scientific research into cumulative environmental impacts at the watershed scale.

  5. Origin and geometry of Red River Dolomite Reservoirs, Western Williston Basin

    SciTech Connect

    Longman, M.W.; Fertal, T.G.; Glennie, J.S.

    1983-05-01

    Remarkably uniform distribution of limestone, laminated dolomite, and anhydrite as determined from compensated neutron-density logs suggests that the entire Ordovician Red River Formation of the central Williston Basin was deposited in subtidal ''brining-upward'' sequences. Study of cores and thin sections verifies this locally dolomitized fossiliferous wackestones and packstones, laminated to evenly bedded unfossiliferous mudstones (dolomitized in many wells), and bedded anhydrite. No evidence of subaerial exposure was observed in these rock units. Dolomitization in the Red River ''C'' zone is highly localized. An empirical study of dolomite distribution using data from well logs reveals the presence of dozens of pods of dolomite immediately beneath the ''C'' anhydrite. The pods are up to 200 ft (60 m) thick and 1 mi (1.6 km) in diameter and consist of concentered lenses of (1) tight (locally anhydritic) cryptocrystalline dolomite up to 40 ft (12.2 m) thick and 3,300 ft (1,000 m) in diameter, (2) fine to medium-grained porous dolomite that forms the reservoirs, and (3), still farther from the cryptocrystalline dolomite, relatively tight partly dolomitized limestones. could have been found through application of this model and others could be more efficiently developed.

  6. Water quality in the proposed Prosperity Reservoir area, Center Creek Basin, Missouri

    USGS Publications Warehouse

    Barks, James H.; Berkas, Wayne R.

    1979-01-01

    Water in Center Creek basin, Mo., upstream from the proposed Prosperity Reservoir damsite is a calcium bicarbonate type that is moderately mineralized, hard, and slightly alkaline. Ammonia and organic nitrogen, phosphorus, total organic carbon, chemical oxygen demand, and bacteria increased considerably during storm runoff, probably due to livestock wastes. Nitrogen and phosphorus concentrations are probably high enough to cause the proposed lake to be eutrophic. Minor-element concentrations were at or near normal levels in Center and Jones Creeks. The only pesticides detected were 0.01 micrograms per liter of 2, 4, 5-T in one base-flow sample and 0.02 to 0.04 micrograms per liter of 2, 4, 5-T and 2, 4-D in all storm-runoff samples. Fecal coliform and fecal streptococcus densities ranged from 2 to 650 and 2 to 550 colonies per 100 milliliters, respectively, during base flow , but were 17,000 to 45,000 and 27,000 to 70,000 colonies per 100 milliliters, respectively, during storm runoff. Water in Center Creek about 2.5 miles downstream from the proposed damsite is similar in quality to that upstream from the damsite except for higher concentrations of sodium, sulfate, chloride, fluoride, nitrogen, and phosphorus. These higher concentrations are caused by fertilizer industry wastes that enter Center Creek about 1.0 mile downstream from the proposed damsite. (Woodard-USGS).

  7. Fault assessment for basement reservoir compartmentalization: Case study at Northeast Betara gas field, South Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Risyad, M.; Suta, I. N.; Haris, A.

    2017-07-01

    Northeast Betara field is situated on the northern part of prolific South Sumatra Basin. It has produced gas from Lower Talang Akar Formation sandstone and over 90 wells have been drilled. A 3D seismic data was acquired in 2000 and reprocessed in 2012 to enhance the subsurface image. In 2013 an exploratory well NEB Base-1 was drilled and made gas and condensate discovery from the subsequent pre-tertiary basement which is confirmed as granite. The well proved fractured basement reservoir play on paleo high of the structure. The absence of full-diameter conventional core prompts well logs and seismic data analysis by using a workstation. Main methods for fracture prediction have been seismic attributes extraction and structural geology studies of basement provided by image logs on a few exploration wells. Ant tracking attribute is widely employed to image seismic event discontinuities due to extensive faults which generated the natural fractures. Delineations well NEB Base-2 was drilled on second paleo high and unfortunately, it did not find any gas indication from pre-tertiary basement target. Seismic structural interpretation and seismic attributes are conducted to image distribution of event discontinuities related to faults or fracture. We found that compartmentalization on basement involved old faults and both paleo high have undergone different structural history and stress character which resulted in separated fractures distribution.

  8. The relationship analysis between water injection and microfacies of SHA1 reservoir of Liao He Basin, China.

    PubMed

    Wang, Qing; Lu, Zhanguo; Guo, Shiguang; Wang, Chao

    2014-01-01

    SHA1 is the representative reservoir in Liao He Basin. Through the introduction of curvature displayed on the gray scale, we determine the substructure and fractures. Geostatistical inversion method is used to help study the porosity of reservoir. The relationship between interval transit times and resistivity among mudstone and sandstone, before and after water injection, is analyzed. The relationship between porosity and permeability and the relationship between porosity and impedance from core analysis were studied. Through the whole information above, we divide the microfacies of SHA1 reservoir to distributary channel, mouth bar, the leading edge thin sand, and prodelta mud. The water injections in different microfacies are studied. The distributary channel should be used by large distant injection wells or smaller injection pressure injection. The smaller distant injection wells or large injection pressure should be used in the mouth bar. The arrangement of well injection need consider the different sedimentary microfacies.

  9. Stratigraphy and reservoir potential of glacial deposits of the Itarare Group (Carboniferous-Permian), Parana basin, Brazil

    SciTech Connect

    Franca, A.B. ); Potter, P.E. )

    1991-01-01

    Drilling in the Parana basin of Brazil in the mid-1980s discovered gas and condensate in the Itarare Group, and showed that glacial deposits in Brazil can contain hydrocarbons. The reservoir potential of the Carboniferous-Permian Itarare Group of the basin is analyzed using new subsurface data from 20 deep wells drilled in the early to middle 1980s. Central to the analysis was the construction of over 3000 km of cross sections based on more than 100 wells, the description of more than 400 m of core, and study of 95 thin sections. Subsurface exploration and mapping of the Itarare are greatly aided by the recognition of three recently defined and described formations and four members, which are traceable for hundreds of kilometers. These units belong to three major glacial cycles in which the pebbly mudstones and shales are seals and glacially related sandstones are reservoirs. The best sandstone reservoirs in the deep subsurface belong to the Rio Segredo Member, the upper-most sandy unit of the Itarare. The Rio Segredo Member is the best petroleum target because it is overlain by thick seals and massive pebbly mudstones and shales, and because it is shallower and less compacted than underlying, more deeply buried sandstones. This member has little detrital matrix and much of its porosity is secondary, developed by carboxylic acid and CO{sub 2} generated when Jurassic-Cretaceous basalts, sills, and dikes were intruded into the Parana basin as Gondwana broke up.

  10. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil

    NASA Astrophysics Data System (ADS)

    Melo, Davi de C. D.; Scanlon, Bridget R.; Zhang, Zizhan; Wendland, Edson; Yin, Lei

    2016-11-01

    Droughts are particularly critical for Brazil because of impacts on water supply and because most (70 %) of its electricity is derived from hydroelectric generation. The Paraná basin (PB), a major hydroelectric producing region with 32 % (60 million people) of Brazil's population, recently experienced the most severe drought since the 1960s, compromising the water supply for 11 million people in São Paulo. The objective of this study is to quantify linkages between meteorological and hydrological droughts based on remote sensing, modelling, and monitoring data using the Paraná River basin in south-eastern Brazil as a case study. Two major meteorological droughts were identified in the early 2000s and 2014, with precipitation 20-50 % below the long-term mean. Total water storage change estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites declined by 150 km3 between April 2011 and April 2015. Simulated soil moisture storage declined during the droughts, resulting in decreased runoff into reservoirs. As a result, reservoir storage decreased by 30 % relative to the system's maximum capacity, with negative trends ranging from 17 (May 1997-April 2001) to 25 km3 yr-1 (May 2011-April 2015). Storage in upstream reservoirs is mostly controlled by natural climate forcing, whereas storage in downstream reservoirs also reflects dam operations. This study emphasizes the importance of integrating remote sensing, modelling, and monitoring data to evaluate droughts and to establish a preliminary understanding of the linkages between a meteorological and hydrological drought for future management.

  11. Unconformity structures controlling stratigraphic reservoirs in the north-west margin of Junggar basin, North-west China

    NASA Astrophysics Data System (ADS)

    Wu, Kongyou; Paton, Douglas; Zha, Ming

    2013-03-01

    Tectonic movements formed several unconformities in the north-west margin of the Junggar basin. Based on data of outcrop, core, and samples, the unconformity is a structural body whose formation associates with weathering, leaching, and onlap. At the same time, the structural body may be divided into three layers, including upper layer, mid layer, and lower layer. The upper layer with good primary porosity serves as the hydrocarbon migration system, and also accumulates the hydrocarbon. The mid layer with compactness and ductility can play a role as cap rock, the strength of which increases with depth. The lower layer with good secondary porosity due to weathering and leaching can form the stratigraphic truncation traps. A typical stratigraphic reservoir lying in the unconformity between the Jurassic and Triassic in the north-west margin of the Junggar basin was meticulously analyzed in order to reveal the key controlling factors. The results showed that the hydrocarbon distribution in the stratigraphic onlap reservoirs was controlled by the onlap line, the hydrocarbon distribution in the stratigraphic truncation reservoirs was confined by the truncation line, and the mid layer acted as the key sealing rock. So a conclusion was drawn that "two lines (onlap line and truncation line) and a body (unconformity structural body)" control the formation and distribution of stratigraphic reservoirs.

  12. Hydrologic modeling in a small mediterranean basin as a tool to assess the feasibility of a limno-reservoir.

    PubMed

    Molina-Navarro, Eugenio; Martínez-Pérez, Silvia; Sastre-Merlín, Antonio; Bienes-Allas, Ramón

    2014-01-01

    The SWAT model was applied to the Ompólveda River Basin (Guadalajara, central Spain) to assess the hydrological feasibility of the Pareja Limno-reservoir. A limno-reservoir is a water management infrastructure designed to counteract some negative impacts caused by large reservoirs under Mediterranean climate. Highly detailed inputs were selected to set up the model. Its performance was evaluated by graphical and statistical techniques and compared with the previous knowledge of the basin. An overall good performance was obtained during the calibration and validation periods (monthly and annual NSE values of 0.67 and 0.60, respectively, for calibration and 0.70 and 0.83, respectively, for validation). Total discharge was well simulated, and flow components prediction was acceptable. However, the model is not accurate at predicting evapotranspiration. Once evaluated, the model was used to simulate the water discharge into the Pareja Limno-reservoir during 2008 and 2009, establishing a water balance and assessing its hydrologic feasibility. The water balance predicted the absence of surplus during summer (2008 and 2009) and autumn (2009), matching up with the decrease of water level and demonstrating the usefulness of SWAT as a tool to evaluate the hydrologic feasibility of the Pareja Limno-reservoir. Very low discharges from the Ompólveda River after a sequence of normal and dry years are the main factors responsible of this phenomenon, whereas the effect of the wastewater flow redirection in the Pareja village is negligible. These results question the usefulness of the Pareja Limno-reservoir during summer, the most favorable season for recreational activities. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    SciTech Connect

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable

  14. Comparison of Tarim and central Asian FSU basins, II: Differences in hydrocarbon systems and possible explanations

    SciTech Connect

    Shangyou, N.; Heubeck, C.

    1996-12-31

    If the Tertiary crustal shortening and indentation in the Pamirs is restored palinspastically, it would be evident that the Central Asian basins in the FSU (including Amu Darya, Tajik, Fergana, and Syr Darya) in the west and the Tarim basin in the cast probably shared many similarities in their geological history after becoming part of the Eurasia continent in the Late Paleozoic. For example, both areas contain significant amounts of coal-bearing Jurassic sequences, and a marine connection no doubt existed between the two during the maximum marine transgression period of Late Cretaceous and Early Tertiary. A direct comparison is more difficult for the Paleozoic sequences because in the Central Asia basins, they are either buried too deeply or highly metamorphosed in the outcrops. It is interesting to note that these basins exhibit vast differences in the age and type of source and reservoir rocks. For the Tarim basin, most of the source rocks are Paleozoic (Ordovician and Carboniferous) and marine in nature, whereas in the Central Asian basins, the dominant source rocks are Jurassic and younger and include both marine and non-marine sequences. Similarly for the reservoir rocks, most of the hydrocarbons found in the Tarim basin is from the Paleozoic, (such as Devonian and Carboniferous clastics/carbonates), whereas in Amu Darya and Fergana basins, the reservoir rocks are dominated by Jurassic carbonates and Paleogene clastics respectively. This presentation will highlight these differences and address the probable causes mainly from the view points of tectonics and paleogeography. We conclude that the dominant effect is the Early Tertiary India-Asia collision, which caused significant differences in the distribution and thickness of the post-collisional clastic sediments, which in turn resulted in different maturation and migration history.

  15. Comparison of Tarim and central Asian FSU basins, II: Differences in hydrocarbon systems and possible explanations

    SciTech Connect

    Shangyou, N.; Heubeck, C. )

    1996-01-01

    If the Tertiary crustal shortening and indentation in the Pamirs is restored palinspastically, it would be evident that the Central Asian basins in the FSU (including Amu Darya, Tajik, Fergana, and Syr Darya) in the west and the Tarim basin in the cast probably shared many similarities in their geological history after becoming part of the Eurasia continent in the Late Paleozoic. For example, both areas contain significant amounts of coal-bearing Jurassic sequences, and a marine connection no doubt existed between the two during the maximum marine transgression period of Late Cretaceous and Early Tertiary. A direct comparison is more difficult for the Paleozoic sequences because in the Central Asia basins, they are either buried too deeply or highly metamorphosed in the outcrops. It is interesting to note that these basins exhibit vast differences in the age and type of source and reservoir rocks. For the Tarim basin, most of the source rocks are Paleozoic (Ordovician and Carboniferous) and marine in nature, whereas in the Central Asian basins, the dominant source rocks are Jurassic and younger and include both marine and non-marine sequences. Similarly for the reservoir rocks, most of the hydrocarbons found in the Tarim basin is from the Paleozoic, (such as Devonian and Carboniferous clastics/carbonates), whereas in Amu Darya and Fergana basins, the reservoir rocks are dominated by Jurassic carbonates and Paleogene clastics respectively. This presentation will highlight these differences and address the probable causes mainly from the view points of tectonics and paleogeography. We conclude that the dominant effect is the Early Tertiary India-Asia collision, which caused significant differences in the distribution and thickness of the post-collisional clastic sediments, which in turn resulted in different maturation and migration history.

  16. The Mesozoic rift basins of eastern North America: Potential reservoir or Explorationist's folly

    SciTech Connect

    Pyron, A.

    1991-08-01

    Mesozoic rift basins are found on the East Coast of North America from Georgia to Nova Scotia. The basins formed as a result of extensional activity associated with the breakup of Pangaea. The internal geometry of the basins includes a depositional sequence ranging from coarse fanglomerates to fine-grained siltstones and argillites. Since these Mesozoic rift basins were first studied, they have not been considered to be likely spots for hydrocarbon accumulations. Recently, geologists have reconsidered these Mesozoic basins and have developed a more synergistic approach that suggests that many of these rift basins might be suitable targets for exploration. By analogy, these Mesozoic basins are correlative to similar basins in northwestern Africa, where significant reserved of oil and natural gas have been developed. The similarity between the productive basins in northwestern Africa and the Mesozoic basins of North America and their proximity to major markets provides sufficient rationale to further investigate these basins.

  17. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  18. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  19. Styles of deposition and diagenesis in the Monahans Clear Fork reservoir: Implications for improved characterization of Leonard reservoirs on the Central basin platform

    SciTech Connect

    Ruppel, S.C. )

    1992-04-01

    The Leonard Series (Lower Permian) of west Texas contains a substantial hydrocarbon resource; the original oil in place in these predominantly carbonate rocks totaled about 14.5 billion bbl. Recovery of this resource has proven difficult, however. Current recovery efficiencies average about 20%, far below the 35% average for other Permian basin carbonate reservoirs. Detailed characterization of the Leonard in the Monahans field (Ward and Winkler counties, Texas) illustrates that poor reservoir performance in these reservoirs is the result of extreme lithologic heterogeniety resulting from cyclic rise and fall of relative sea level. Patterns of both depositional and diagenetic facies are a function of this cyclicity. Three orders of cyclicity are apparent in the Leonard: high-frequency, fifth-order cycles averaging 1-2 m in thickness, fourth-order cycles averaging 15-20 m in thickness, and third-order cycles averaging 200 m in thickness. Diagenetic patterns reflect control by fourth-order and third-order cyclicity. Both depositional and diagenetic trends are modified by local topography. Porosity and permeability also manifest cycle-related trends. Porosity and permeability exhibit opposite relationships to paleotopography. Porosity, which is encountered in tidal-flat and subtidal facies, is greatest on paleotopographic highs, whereas permeability, which is most commonly developed in subtidal facies, is most common on paleotopographic lows. Preliminary investigation of Leonard carbonate sequences elsewhere in the Permian basin reveals analogous styles and patterns of facies development. The concepts and models developed in the Monahans field should help improve characterization of these sequences as well.

  20. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    Northeast Thailand, one of the regions in the Mekong River Basin, has less rainfall than adjacent countries and its rainfall is heavily concentrated in rainy seasons (almost 90% of annual rainfall). Therefore, this area is characterized as semi-arid region especially during dry seasons. In this region, rain-fed paddies account for about 90% and this leads to unstable rice production. Against these backgrounds, a number of large irrigation projects have been carried out since the 1970s to increase agricultural productivity. In these projects, a lot of irrigation facilities such as large/medium reservoirs, diversion weirs and irrigation canals were constructed for stable water supply in dry seasons. These projects enable farmers to pursue double rice cropping as rainy- and dry-season cropping in this region. Paddy field irrigation, however, exerts a great influence on water circulation of river basins in Monsoon Asia and modeling of these processes is crucial to understand the hydrological cycle especially in areas where irrigated agriculture is dominant. In this study, to quantify the hydrological cycle in irrigation-dominant basins, we applied a distributed hydrological model incorporating paddy irrigation schemes to the Mun River Basin, one of the tributaries of the Mekong River, in Northeast Thailand, and analyzed water circulation considering complex water use by agricultural activities. The model used in this study consists of four sub-models, such as referential evapotranspiration, cropping pattern/area, agricultural water use, and runoff model in order to estimate various information on agricultural water use. Additionally, water allocation and reservoir operation models were integrated into the hydrological model to account for the water circulation in large irrigation areas. For the analysis, the basin is divided into 10km-mesh and each mesh contains the ratio of 5 land-use category as forest, rain-fed paddy, irrigated paddy, upland field and water area

  1. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  2. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    USGS Publications Warehouse

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  3. Detailed mapping of reservoir structural geometry in detached, shortened fold belts, Ortega (Aptian-Albian) field area, Girardot basin, Colombia

    SciTech Connect

    Allen, G.D. )

    1990-05-01

    Discovery and development of oil fields in shortened compressional fold belts require recognition that the largest reservoirs occur in intermediate or third-order scale folds. Third-order folds generally are preserved in the footwall of larger scale fold thrusts, and may be concealed beneath smaller, detached surface folds of nonreservoir condition. A successful reservoir mapping procedure involved (1) detailed surface mapping, (2) depth conversion of seismic data (3) construction of a network of true-scale balanced cross sections, and (4) contour mapping above and below the major zones of detachment. Structure at the 11 million bbl Ortega field consist of convergent third-order fold thrusts, with internal decollement. Tight flexural-slip folds imbricate and tectonically thicken upward on the west-verging Ortega anticline. The buried, east-vergent Salado anticline acts as a buttress to westward propagation at Ortega but retreats along strike to allow the Porvenir anticline to develop a low, broad, fault-bend fold geometry. At least four fault blocks in the Ortega field remain untested because balanced section analysis has not been employed to create additional control points for structure contour maps on the top of the reservoir. It is speculated that another 10-50 million bbl of primary recoverable reserves remain in the Ortega field. In addition, reservoirs like the Ortega field should occur elsewhere in the Girardot basin. These reservoirs likely will occur all along the footwall of fold-thrust structures on the flank of the intrabasin Pata high.

  4. Integrated reservoir characterization to define a hydrodynamic model in the Misoa formation, Eocene, Center Lake Field, Maracaibo Basin, Venezuela

    SciTech Connect

    Azuaje, V.; Gil, J.

    1996-08-01

    The Center Lake Field is one of the most important light oil reservoirs in the Maracaibo Basin. Field production of {open_quotes}C{close_quotes} sandstones, Misoa formation, Eocene, started in 1968. Actual cumulative production is 630 MMBls, which represents 23% of the original oil in place. Flank water injection programs have been executed since 1976; however, reservoirs within this field still have shown pressure and production declination. A multidisciplinary study has been conducted to produce an updated hydrodynamic model which matches the static and dynamic behavior of the reservoirs. An integrated interpretation team has merged geological, geophysical and engineering data and criteria to generate an updated and consistent interpretation of today`s performance of reservoirs. The integration of a 3D seismic survey with a sequence- stratigraphy analysis, petrophysical and production data allowed us to determine a new structural and stratigraphic framework. The first important conclusion is that active aquifer is not located at the flanks of the structure, as traditionally worked out. Instead, a water-bottom drive system was interpreted and validated with production data so a different strategy for water injection was recommended. The latter interpretation restricted the injection to those areas where rock volume calculation, permeability, porosity and depositional environment make it suitable and profitable. A pattern injection program is going to be developed in C-4-X.46 reservoir and 21.6 MMBls additional recovery is expected in respect to the old production scheme.

  5. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred

  6. Research on the Log Interpretation Method of Tuffaceous Sandstone Reservoirs of X Depression in Hailar-Tamtsag Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Pan, B.

    2015-12-01

    The logging evaluation of tuffaceous sandstone reservoirs is always a difficult problem. Experiments show that the tuff and shale have different logging responses. Since the tuff content exerts an influence on the computation of shale content and the parameters of the reservoir, and the accuracy of saturation evaluation is reduced. Therefore, the effect of tuff on the calculation of saturation cannot be ignored. This study takes the tuffaceous sandstone reservoirs in the X depression of Hailar-Tamtsag basin as an example to analyze. And the electric conduction model of tuffaceous sandstone reservoirs is established. The method which combines bacterial foraging algorithm and particle swarm optimization algorithm is used to calculate the content of reservoir components in well logging for the first time, and the calculated content of tuff and shale corresponds to the results analysis of thin sections. The experiment on cation exchange capacity (CEC) proves that tuff has conductivity, and the conversion relationship between CEC and resistivity proposed by Toshinobu Iton has been improved. According to the rock electric experiment under simulated reservoir conditions, the rock-electro parameters (a, b, m and n) are determined. The improved relationship between CEC and resistivity and the rock-electro parameters are used in the calculation of saturation. Formula (1) shows the saturation equation of the tuffaceous reservoirs:According to the comparative analysis between irreducible water saturation and the calculated saturation, we find that the saturation equation used CEC data and rock-electro parameters has a better application effect at oil layer than Archie's formulas.

  7. Sequence stratigraphy and reservoir architecture of the J18/20 and J15 sequences in PM-9, Malay Basin

    SciTech Connect

    Rahman, R.A.; Said, Md.J. ); Bedingfield, J.R.; Lovell, R. )

    1994-07-01

    The group J stratigraphic interval is lower Miocene (18.5-21 Ma) in age and was deposited during the early sag phase of the Malay Basin structural development. Reduction in depositional relief and first evidence of widespread marine influence characterize the transition into this interval. Twelve group J sequences have been identified. Reservoirs consist of progradational to aggradational tidally-dominated paralic to shallow marine sands deposited in the lowstand systems tract. Transgressive and highstand deposits are dominantly offshore shales. In PM-9, the original lift-related depocenters, coupled with changes in relative sea level, have strongly influenced group J unit thickness and the distribution of reservoir and seal facies. Two important reservoir intervals in PM-9 are the J18/20 and J15 sands. The reservoirs in these intervals are contained within the lowstand systems tracts of fourth-order sequences. These fourth-order sequences stack to form sequence sets in response to a third-order change in relative sea level. The sequences of the J18/20 interval stack to form part of a lowstand sequence set, whereas the J15 interval forms part of the transgressive sequence set. Reservoir facies range from tidal bars and subtidal shoals in the J18/20 interval to lower shoreface sands in the J15. Reservoir quality and continuity in group J reservoirs are dependent on depositional facies. An understanding of the controls on the distribution of facies types is crucial to the success of the current phase of field development and exploration programs in PM-9.

  8. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  9. Upper Cretaceous Shannon Sandstone reservoirs, Powder River Basin, Wyoming: evidence for organic acid diagenesis?

    USGS Publications Warehouse

    Hansley, P.L.; Nuccio, V.F.

    1992-01-01

    Comparison of the petrology of shallow and deep oil reservoirs in the Upper Cretaceous Shannon Sandstone Beds of the Steele Member of the Cody Shale strongly suggests that organic acids have had a more significant impact on the diagenetic alteration of aluminosilicate grains and carbonate cements in the deep reservoirs than in the shallow reservoirs. Vitrinite reflectance and Rock-Eval measurements, as well as the time-temperature index and kinetic modeling, indicate that deep reservoirs have been subjected to maximum temperatures of approximately 110-120??C, whereas shallow reservoirs have reached only 75??C. -from Authors

  10. Prolific Overton field gas reservoirs within large transverse oolite shoals, Upper Jurassic Haynesville, Eastern Margin East Texas basin

    SciTech Connect

    Glynn, W.G.; Covington, T.E.; Lighty, R.G.; Ahr, W.M.

    1985-02-01

    Late Triassic rifting along a northeast-southwest spreading center in east Texas resulted in basement highs along the eastern margin of the East Texas basin that became sites of extensive ooid shoal deposition during Late Jurassic time. Reservoirs within oolite facies at Overton field contain over 1 tcf of natural gas. These large shoals, each approximately 15 mi (24 km) long and 3 mi (4.8 km) wide, trend north-south as a group and northeast-southwest individually. They are oblique to the basin margin but parallel with Jurassic diffracted tidal currents within the East Texas embayment. Modern Bahamian ooid shoals of similar size, trend, and depositional setting occur at the terminus of the deep Tongue-Of-The-Ocean platform reentrant. Overton field reservoirs are in ooid grainstone shoal facies and in transitional shoal margins of skeletal-oolitic-peloidal grainstones and packstones. Adjacent nonreservoir facies are peloidal-skeletal-siliciclastic wackestones and mudstones. Early diagenesis of grainstone reservoir facies included meteoric dissolution and grain stabilization, resulting in abundant chalky intraparticle porosity and equant and bladed calcite cements filling interparticle porosity. Subsequent burial diagenesis resulted in intense solution compaction and coarse equant calcite and saddle crystal dolomite that occluded remaining interparticle porosity. Whole-rock trace element analysis indicates greatest diagenetic flushing (less magnesium, strontium) in porous zones. Stable isotopes for grains and cements show strong overprint of later burial diagenesis, with greater depletion of delta/sup 18/O in reservoir facies. However, hydrocarbons were emplaced prior to late cementation, and unlike other Jurassic Gulf Coast reservoirs, deep burial diagenesis provided no late-stage formation of porosity.

  11. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    NASA Astrophysics Data System (ADS)

    Polo, María J.; Rovira, Albert; García-Contreras, Darío; Contreras, Eva; Millares, Agustín; Aguilar, Cristina; Losada, Miguel A.

    2016-05-01

    Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930-2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  12. [Surface physicochemical and fractal characteristics of sediments in desilting basin from Yellow River diversion reservoir].

    PubMed

    Hu, Kang-Bo; Wang, Yi-Li; Li, Jun-Qing; Gui, Ping; Jiang, Yan-Ling

    2011-07-01

    Surface morphology and pore surface fractal characteristics of the sediment in the desilting basin of Queshan Reservoir were studied. Six sediment samples were collected and particle size, morphology, pore structure and fractal characteristics, surface elements distribution were analyzed as well. The objectives of this study were to investigate the reason for the differences among the pore surface fractal dimensions and fractal scales on the basis of different models, and discuss the effect of surface morphology of these sediment particles on their surface elements distribution. The results showed that these sediment particles with average diameter of 18-83 microm were mainly composed of clay, silt and fine sand. Their complex surface morphology and pore size distribution were reflected by wide range of the BET surface area (8.248-31.60 m2/g), average pore diameter (3.977-7.850 nm) and pore-size distribution (1.870-60.78 nm). Although the pore surface fractal dimensions (D(s)), based on fractal FHH or thermodynamic models, were 2.67-2.89, and their fractal scales generally ranged from several nanometers to tens of nanometers, the differences were still observed in D(s) values calculated from above two models because of inhomogeneity in surface pore size distribution. Therefore, the D(s) based on pore-size distribution were 2.12-2.60, these values close to D(s) calculated from fractal FHH models revealed that pore-size distribution could contribute significantly to D(s) calculation. In addition, the heterogeneous surface adsorption sites of these sediment particles caused by much complex surface morphology had strong influence on the each element distribution on the particle surface.

  13. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  14. Prediction and exploitation of basement-controlled production trends in Piceance Basin fractured tight gas reservoirs: Results of an integrated analysis

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1995-12-31

    The ability to delineate and accurately predict fracured reservoir conditions represents critical information necessary for field development srategies, and development of play concepts in less-developed areas. To demonstrate relationships between fracture-controlled production, stratigraphy and structural geology, the Piceance Basin is being used as the site for an integrated fracture detection and reservoir characterization program utilizing high-resolution aeromagnetics, seismic, and conventional subsurface structural and stratigraphic mapping. In the Piceance Basin, there are two primary controls on well performance. The first is reservoir thickness and the second is deliverability, a funciton of fracture permeability. Reservoir thickness is controlled by depositional systems whereas fracture permeability is controlled by tectonic deformation. In Rulison Field, a sidetrack well with a 142 foot difference in bottomhole location shows a 50% difference in net sandstone pay between the two wellbores. This intense variability underscores the difficulty of predicting sand geometries in the basin. Depositional systems analysis is important as a means of predicting reservoir quality and reservoir thickness, however, in the Piceance Basin, reservoir thickness and quality cannot be accurately predicted because of complex fluvial and paludal stratigraphy, In addition, stratigraphy does not exert the greatest control on production economics. Instead, fracture permeability is the predictable and most important variable for successful development programs. In support of this, the orientation of fracture-controlled production trends lie either orthogonal or oblique to depositional trends in White River Dome, Divide Creek, Shire Gulch, Plateau, Grand Valley, Parachute and Rulison fields.

  15. The geology and petroleum potential of the Queen Charlotte Basin, Pacific Continental Margin, Canada

    SciTech Connect

    Dietrich, J.R.; Higgs, R.; Rohr, K. )

    1990-05-01

    The Queen Charlotte basin is a 40,000 km{sup 2} late Paleogene-Neogene basin underlying the Queen Charlotte Islands, Hecate Strait, and Queen Charlotte Sound region of the Canadian Pacific continental margin. The basin formed during Eocene to Pliocene extension along and adjacent to a transform segment of the Pacific-North American plate boundary. Oblique subduction along the plate boundary in the late Cenozoic resulted in uplift and folding of portions of the northern half of the basin. In detail, the basin consists of numerous, variably oriented half-grabens and subbasins separated and underlain by complexly structured Mesozoic rocks of the Wranellia terrane. Most of the offshore subbasins contain clastic sediments in excess of 3,000 m thick and strata as thick as 6,000 m are known to occur in the deepest depocenters. The older (pre-Pliocene) portions of the basin locally contain volcanics, often interbedded with clastics. Potential hydrocarbon reservoirs within the basin include alluvial-fan fan-delta and tidal-shelf sandstones. Potential hydrocarbon source rocks include Upper Triassic-Lower Jurassic shales and limestones locally preserved below the basin and Tertiary shales within the deeper portions of the basin fill. Possible hydrocarbon traps include folds, rollover anticlines, basement fault blocks, and a variety of combined structural-stratigraphic traps. The Queen Charlotte basin is considered to be one of the most prospective areas for significant hydrocarbon resources along the northeast Pacific margin.

  16. Cretaceous may hold promise in Majunga basin, Madagascar

    SciTech Connect

    Lalaharisaina, J.V. ); Ferrand, N.J. )

    1994-08-01

    Recent drilling in the Majunga basin of northwestern Madagascar revealed unexpected light oil shows in excellent quality reservoir sands of Mid-Cretaceous age. Regional reconstructions show the development of a prograding clastic shelf from the Aptian until the Mid-Turonian that extended laterally from the northwest costs of Madagascar into Northwest India and Southeast Pakistan. Six untested play concepts have been identified in Cretaceous reservoirs of the Majunga basin. These plays offer multiple objectives in the depth range of 800--2,500 m within a well defined area. Further untested plays exist for Tertiary and Dogger objectives. The paper describes the geologic setting, exploration history the Cretaceous reservoirs, source rocks, and other potential plays. Political changes in Madagascar the last four years have led to an open door policy for foreign investment. Favorable terms are on offer for investment in the petroleum sector, and high potential exists for development on this island continent.

  17. Deepwater turbidite system analysis : From outcrops studies to basin scale depositional elements. Key learnings for reservoir occurence and characterisation.

    NASA Astrophysics Data System (ADS)

    Navarre, J.-C.; Dattilo, P.; Crumeyrolle, P.

    2012-04-01

    Decisions on exploration and production in the deepwater domain rely mostly on seismic data (2D or 3D) with limited amount of well geological data. This limited information has to be supplemented by models derived from analogues at different scales, in order to derisk the reservoir presence and infer the reservoir architecture within a larger stratigraphic framework from shelf to deep basin. The fundamental outcrop analysis carried in the 70's and the 80's contributed to identify and characterize the main deep water depositional elements. Outcrop observations are the best way to appraise the architectural and faciological complexity of the subsurface depositional systems within their stratigraphic framework. The lessons learned in the Earth surface provide the key to the subsurface data understanding: core analysis, well-logs correlations and detailed 3D seismic interpretations. Subsurface data is in turn bringing key insights on large scale depositional system; 3D geometry and sediment nature of the depositional elements and processes. Research derived from 3D seismic subsurface data interpretations with tentative continuity between shelf to basin improved the understanding of shelf to deep basin sediment transfer mechanisms. In particular, it has been accompanied by a renewal of interest in the processes associated with hyperpycnal flows in the various deepwater settings. Outcrop and Subsurface integration appears as a powerful tool to characterize and predict reservoir occurence. A seismic based approach on the recognition of depositional elements defined at different scales honoring the stratigraphical architecture of turbidites deposits is systematically applied in our evaluations at a similar scale than the elementary depositional sequences recognized by Mutti (1994). Despite common depositional processes, a large diversity of systems and geobodies will be illustrated from regional scale to reservoir scale from a worldwide portfolio of assets in turbidite

  18. Finding a way to optimize drilling depths in clastic aquifers for geothermal energy

    NASA Astrophysics Data System (ADS)

    van Putten, M.; van Wees, J. D. A. M.; Pluymaekers, M. P. D.; Kramers, L.

    2012-04-01

    Clastic aquifers generally are marked by decreasing porosity and associated permeability with depth. Uncertainties in porosity of a few percentages can result in an order of magnitude change in permeability. Further, temperature increases with depth and is marked by an uncertainty of about 10-20%. Monte Carlo performance calculations, adopting variable temperature and porosity distributions, along with other natural uncertainties and engineering options for drilling, show that performance in doublet power and levelized costs of energy (LCOE in EUR/GJ) is most sensitive to changes in the temperature gradient and the porosity. As the temperature increases with depth while the porosity decreases with depth, these relationships show a trade-off in performance, such that a theoretical optimal depth can be found for a specific temperature gradient and porosity-depth curve, and associated porosity-permeability relationship. The optimal drilling depth is at the depth level where the LCOE are minimal. In mature oil and gas basin areas, such as the Netherlands, it is possible to obtain relationships of porosity and underlying permeability as a function of depth. Therefore, the applicability for establishing and using an optimal depth has been tested for a clastic aquifer in the Rotliegend stratigraphic group in the Netherlands. This aquifer has high geothermal potential and is subject to many exploration activities. Temperature gradient and porosity-depth trends (and underlying uncertainties) for this aquifer have been adopted from the national geothermal information system ThermoGIS (www.thermogis.nl). For the performance calculation of doublet power and LCOE an in-house techno-economical performance assessment (TEPA) tool called DoubletCalc has been used. The results show that optimal depth corresponds to a pronounced and sharp minimum in LCOE. Its depth depends strongly on the actual porosity-depth relationship and ranges between 1.5 and 3 km. Remarkably, variations in

  19. Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imagery.

    PubMed

    Durduran, S Savas

    2010-05-01

    This paper focuses mainly on the coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey. The Konya Closed Basin exists at the Central Anatolia Region and covers a region of 50,000 km(2) area corresponding to the 7% cumulative area of Turkey in which three million people live, 45% in rural areas and 55% in urban areas. The basin is surrounded with the city centers of Konya, Aksaray, Karaman, Isparta, Niğde, Ankara, Nevşehir, and Antalya cities. In this study, these changes were examined using Landsat TM and ETM+ 1987-2006 and 1990-2000. In the image processing step, image and vectorization of the satellite images were carried out to monitor coastline changes over the lakes located in the Konya Closed Basin Area. At the end of the study, significant coastline movements were detected for a 19-year period due to drought effects, agricultural watering, and planning mistakes experienced in the basin.

  20. Seismic structural investigation and reservoir characterization of the Moki Formation in Maari Field, Taranaki Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed Dhaifallah M.

    The Maari Field is a large oil field located in the southern part of the Taranaki Basin, New Zealand. The field is bounded by two major structures, the Eastern Mobile Belt and Western Stable Platform. The Maari Field produces 40,000 BOPD (Barrels of Oil per Day) from five wells from reservoirs in the Moki Formation. The Miocene Moki Formation was deposited as part of the Wai-iti Group and consists of sandstone interbedded with siltstone and claystone. The sandstone of the Moki Formation is characterized by a submarine fan. It is distributed along the southern and central Taranaki shelf. Three-dimensional seismic data and well logs were recorded by the Geco-Prakla Company. Time and depth structural maps on the top of the Moki Formation are subdivided into a main structure with high and low elevations of topography, which are separated by a major fault, the Kiwi Fault. The fault trends from the south toward the northeast. Seismic attributes, such as coherence and edge detection, were mapped to interpret the major and minor faults. In the Maari Field, there are more than seventeen faults. Seismic data and well log data were used to determine the petrophysical properties in the Moki reservoir. Using the well logs, the transition zone (oil-water contact) between the oil and water was found to be 1352 m. The Moki reservoir has good quality oil, with an average porosity at Maari-1, Maui-4, Kea-1, Moki, and Maari-2 ranging from 14 to 19 percent. Gamma ray, resistivity, and spontaneous potential logs were used to determine correlation between well and lithology of the Moki reservoir. The net thickness of the reservoir is 320 m to 360 m. The distribution of shale is less than 10 percent throughout the Moki reservoir.

  1. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  2. Petrography and diagenesis of reservoir and non-reservoir sandstones in Shattuck Member of Queen Formation, northwest shelf of Permian basin

    SciTech Connect

    Malicse, A.; Siegel, J.; Mazzullo, J.

    1988-02-01

    The Shattuck Member is a thick (6-20 m) sandstone that defines the top of the Queen Formation (Permian, Guadalupian) and is a major hydrocarbon reservoir on the Northwestern shelf of the Permian basin. The Shattuck was deposited in desert dune and interdune, dry and wet sand sheet, and sandy sabkha environments during a lowstand of sea level. The desert dune, interdune, and dry sand sheet deposits constitute the producing horizons in the Shattuck, whereas the wet sand sheet and sabkha deposits are generally non-productive. The purposes of this study are to examine the petrographic characteristics of the producing and non-producing horizons with petrographic and scanning electron microscopes, and to determine their provenance and diagenetic history.

  3. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  4. Impact of depositional facies on the distribution of diagenetic alterations in the Devonian shoreface sandstone reservoirs, Southern Ghadamis Basin, Libya

    NASA Astrophysics Data System (ADS)

    Khalifa, Muftah Ahmid; Morad, Sadoon

    2015-11-01

    The middle Devonian, shoreface quartz arenites (present-day burial depths 2833-2786 m) are important oil and gas reservoirs in the Ghadamis Basin, western Libya. This integrated petrographic and geochemical study aims to unravel the impact of depositional facies on distribution of diagenetic alterations and, consequently, related reservoir quality and heterogeneity of the sandstones. Eogenetic alterations include the formation of kaolinite, pseudomatrix, and pyrite. The mesogenetic alterations include cementation by quartz overgrowths, Fe-dolomite/ankerite, and illite, transformation of kaolinite to dickite, illitization of smectite, intergranular quartz dissolution, and stylolitization, and albitization of feldspar. The higher energy of deposition of the coarser-grained upper shoreface sandstones combined with less extensive chemical compaction and smaller amounts of quartz overgrowths account for their better primary reservoir quality compared to the finer-grained, middle-lower shoreface sandstones. The formation of kaolin in the upper and middle shoreface sandstones is attributed to a greater flux of meteoric water. More abundant quartz overgrowths in the middle and lower shoreface is attributed to a greater extent of stylolitization, which was promoted by more abundant illitic clays. This study demonstrated that linking the distribution of diagenetic alterations to depositional facies of shoreface sandstones leads to a better understanding of the impact of these alterations on the spatial and temporal variation in quality and heterogeneity of the reservoirs.

  5. New England reservoir management: Land use/vegetation mapping in reservoir management (Merrimack River Basin). [Massachusetts and New Hamshire

    NASA Technical Reports Server (NTRS)

    Cooper, S. (Principal Investigator); Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1974-01-01

    The author has identified the following significant results. It is evident from this comparison that for land use/vegetation mapping the S190B Skylab photography compares favorably with the RB-57 photography and is much superior to the ERTS-1 and Skylab 190A imagery. For most purposes the 12.5 meter resolution of the S190B imagery is sufficient to permit extraction of the information required for rapid land use and vegetation surveys necessary in the management of reservoir or watershed. The ERTS-1 and S190A data products are not considered adequate for this purpose, although they are useful for rapid regional surveys at the level 1 category of the land use/vegetation classification system.

  6. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface

  7. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Beaulieu, Jake J.; Nietch, Christopher T.; Young, Jade L.

    2015-10-01

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in reservoirs. Due to long water residence times and high nitrogen (N) loading rates, reservoirs support substantial N processing and therefore may be particularly important sites of N2O production. Predicting N2O emissions from reservoirs is difficult due to complex interactions between microbial N processing in the oxygen-poor hypolimnion and oxygen-rich epilimnion. Here we present the results of a survey of N2O depth profiles in 20 reservoirs draining a broad range of land use conditions in four states in the U.S. Nitrous oxide was supersaturated in the epilimnion of 80% of the reservoirs and was undersaturated in only one, indicating that reservoirs in this region are generally a source of N2O to the atmosphere. Nitrous oxide was undersaturated in the hypolimnion of 10 reservoirs, supersaturated in 9, and transitioned from supersaturation to undersaturation in 1 reservoir that was monitored periodically from midsummer to fall. All reservoirs with a mean hypolimnion nitrate concentration less than 50 µg N L-1 showed evidence of net N2O consumption in the hypolimnion. All reservoirs sampled during lake turnover supported N2O production throughout the water column. These results indicate that N2O dynamics in reservoirs differ widely both among systems and through time but can be predicted based on N and oxygen availability and degree of thermal stratification.

  8. Structural and stratigraphic compartmentalization of the Terry Sandstone and effects on reservoir fluid distributions: Latham Bar Trend, Denver Basin: Colorado

    SciTech Connect

    Al-Raisi, M.H.; Slatt, R.M.; Decker, M.K.

    1996-01-01

    The Latham Bar Trend, located in the Denver Basin of Colorado, is an elongate sandstone which extends in a northwest direction for more than 6 mi and is up to 1-2 mi wide. It is now under infill drilling on 40-acre spacing, with more than 65 wells producing from the Upper Cretaceous Terry Sandstone. Detailed analysis of four cores and 210 wells suggests that the Terry Sandstone within the Lantham Bar Trend was deposited in an open marine environment. Reservoir quality, particularly permeability, is primarily facies controlled, and secondarily controlled by diagenetic products. Estimated ultimate recovery (EUR) values in wells are related to thickness of this facies. Structural analysis indicates the Trend is dissected by a series of northeast-trending, northwest-dipping faults with vertical displacements of 30-100 ft. (9-30 m). The faults are interpreted to be sealing, separating the Terry Sandstone into isolated fault blocks, on the basis of the following criteria: (1) normalized GOR values exhibit a non-systematic areal distribution across the trend, but show systematic up-structure increases in GOR within individual fault blocks; (2) initial API gravity values from different wells also are non-systematically distributed areally across the Trend, but show similar groupings within fault blocks; (3) EUR values within each fault block exhibit a positive correlation with thickness of cross-bedded sandstone facies; (4) individual wells with specific normalized GOR values occur at lower structural elevations than wells in adjacent fault blocks with lower GORs, giving rise to structural reversal of fluid distributions. Recognition of the facies control on reservoir quality, reservoir facies thickness, sealing capacity of normal faults, and resultant compartmentalization can help explain complex stratigraphic and areas distribution patterns of gas and oil in these and other strata in the Denver Basin and to maximize reservoir producibility and exploration success.

  9. Carbonate reservoirs deposited during sea level lowstands, Permian basin: Occurrence, geometry, facies, and origin of porosity of in-situ buildups

    SciTech Connect

    Mazzullo, S.J. ); Reid, A.M.; Reid, S.T.

    1990-02-01

    Carbonate reservoirs composed of in-situ reefs and associated facies, mostly deposited basinward of shallow platforms during sea level lowstands, are common in Pennsylvanian rocks in the Permian basin. Specific examples include some Atokan and Strawn fields in the Delaware basin, and Canyon-Cisco fields in the Midland basin. Such reservoirs are conspicuous by their absence in Permian rocks, where lowstand facies are instead siliciclastics and detrital carbonates. In-situ lowstand carbonate reservoirs are represented by phylloid algal reefs (Atokan, Canyon-Cisco), crinoid banks locally with some Chaetetes and phylloid algal reefs (Strawn), and bryozoan-algal boundstone reefs (Canyon-Cisco). These facies are associated with bioclastic and, locally, oolitic sandstones. Lowstand reservoirs are both underlain and overlain by deep-water facies, and field geometries range from equidimensional to slightly elongate, generally parallel to platform margins. Porosity in many fields is due to extensive leaching and karsting accompanying subaerial or shallow subsurface meteoric exposure. Accordingly, porosity predictions are best based on knowledge of reconstructed sea level curves. However, many reservoir pore systems have resulted from deep-burial dissolution accompanying chemical compaction and the migration of fluids out of the basin. Porosity predictions in such cases must rely on knowledge of diagenesis and aspects of basin hydrodynamics.

  10. Reservoir geological characterization of Miocene reef outcrops from the western Mediterranean basins of southeastern Spain

    SciTech Connect

    Dawans, J.M.

    1988-08-01

    Miocene reef complexes are well exposed in the Alicante-Almeria region of southeast Spain. Predominant reservoir lithofacies are (1) in the off-reef environments (i.e., fore-reef slope deposits and overlying shallow platform sediments), a porous leached microsucrosic to spherulitic dolomite with mostly moldic and intercrystalline porosity and good to very good matrix permeability, and (2) in the reef-core framework, (A) a tight, karstified (i.e., fissured), coarsely crystalline dolomite with poor matrix reservoir potential but good to very good fissure porosity with darcy permeability and (B) a porous, leached, coarsely crystalline dolomite with vuggy matrix porosity and good matrix permeability. The most significant conclusion in terms of reservoir geology is that these reefs do not have a homogeneous reservoir quality. Each rock lithofacies has different geometries and capillary characteristics. In volumetric terms, the most significant reservoir unit in such reefs would be the fore-reef slope deposits. Assuming typical values for reservoir properties, such fore-reef deposits could contain 75% of the total hydrocarbons in comparable reservoirs. However, the best productivities could be obtained from fissured reservoirs, that is, from the reef-core framework, although low production rates might be required to avoid premature water or gas breakthrough along highly permeable channel conduits of karstic origin.

  11. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    USGS Publications Warehouse

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  14. Role of structural heritage and global tectonics events in evolution of Algerian Triassic basin: Tectonic inversion and reservoir distribution

    SciTech Connect

    Boudjema, A.; Tremolieres, P.

    1988-01-01

    Fieldwork and subsurface studies (350 bore holes and more than 100 seismic profiles) show the structural evolution of the Triassic Saharian basin. This evolution is controlled by the successive motions of ancient faults of the Paleozoic basement during the different compressional and distensional tectonic phases. These movements led to some tectonic inversions. Depending on the strike of the faults, the present results correspond to normal throw or reverse throw at the level of hydrocarbon reservoirs. These tectonic phases clearly result from relative motions between African, American, and European lithospheric plates. The Triassic basin, a mobile zone between two rigid shields, constitutes a very good indication of the successive motions. The distribution and the nature of hydrocarbon fields are clearly related to the proximity of the faults, the post-tectonic erosion of a part of the source rocks, the burial and maturation of the organic matter, and the age of structural traps.

  15. Effects of a regional décollement level for gravity tectonics on late Neogene-Quaternary deep-sea clastic sedimentation in the Foz do Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Cruz, A. M.; Gorini, C.

    2015-12-01

    Sets of 2D multi-channel seismic and chronostratigraphic data allowed us to undertake analyses of source to sink processes and triggering mechanisms of the gigantic megaslides previously documented off the NW and SE steep slope settings of the Foz do Amazonas basin. These megaslides comprise two sets of stacked allochthonous masses within the Upper Miocene-Quaternary sedimentary record, now described as Mass-Transport Complexes (MTCs): the Amapá Megaslide Complex (AMC) and the Pará-Maranhão Megaslide Complex (PMMC). Individual megaslides of both MTCs can mobilize to deep waters up to kilometer thick sedimentary series as allochthonous masses with different flow directions, degrees of sediment disruption and internal coherence. Megaslides spread downslope over areas as large as thousands of km2, attaining dimensions comparable to the world's largest mass-transport deposits. The basal and largest megaslide of the AMC (AM1 megaslide) is a quite unique example of mass-transport deposit, since it is interpreted as a dominant carbonate allochthonous mass sourced from a mixed carbonate-siliciclastic platform. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered between the late Miocene and the end of the Early Pliocene by gravitational collapse of the mixed platform under its own weight, after successive subaerial exposures which were able to generate karstification processes. Siliciclastic-type megaslides, on the other hand, are all sourced from large upslope slide and/or rotated blocks (up to 60 km large in the case of the PMMC).Stratigraphic correlations evidenced that horizon equally acts as the upper décollement level for the gravity tectonic system that operates in the regional scale of the Foz do Amazonas basin. In such a context, results of this work evidence complex links between variable modes of gravity deformation (gravity tectonics and mass wasting), all induced by instability created from

  16. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2001-04-01

    Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet. We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data. As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focusing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface. The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  18. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  19. Simulation of reservoir storage and firm yields of three surface-water supplies, Ipswich River Basin, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2002-01-01

    A Hydrologic Simulation Program FORTRAN (HSPF) model previously developed for the Ipswich River Basin was modified to simulate the hydrologic response and firm yields of the water-supply systems of Lynn, Peabody, and Salem-Beverly. The updated model, expanded to include a portion of the Saugus River Basin that supplies water to Lynn, simulated reservoir system storage over a 35-year period (1961-95) under permitted withdrawals and hypothetical restrictions designed to maintain seasonally varied streamflow for aquatic habitat. A firm yield was calculated for each system and each withdrawal restriction by altering demands until the system failed. This is considered the maximum withdrawal rate that satisfies demands, but depletes reservoir storage. Simulations indicate that, under the permitted withdrawals, Lynn and Salem-Beverly were able to meet demands and generally have their reservoir system recover to full capacity during most years; reservoir storage averaged 83 and 82 percent of capacity, respectively. The firm yields for the Lynn and Salem-Beverly systems were 11.4 and 12.2 million gallons per day (Mgal/d), respectively, or 8 and 21 percent more than average 1998-2000 demands, respectively. Under permitted withdrawals and average 1998-2000 demands, the Peabody system failed in all years; thus Peabody purchased water to meet demands. The firm yield for the Peabody system is 3.70 Mgal/d, or 37 percent less than the average 1998-2000 demand. Simulations that limit withdrawals to levels recommended by the Ipswich River Fisheries Restoration Task Group (IRFRTG) indicate that under average 1998-2000 demands, reservoir storage was depleted in each of the three systems. Reservoir storage under average 1998-2000 demands and IRFRTG-recommended streamflow requirements averaged 15, 22, and 71 percent of capacity for the Lynn, Peabody, Salem-Beverly systems, respectively. The firm-yield estimates under the IRFRTG-recommended streamflow requirements were 6.02, 1.94, and 7

  20. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  1. Geothermal prospection in the Greater Geneva Basin (Switzerland and France). Impact of diagenesis on reservoir properties of the Upper Jurassic carbonate sediments

    NASA Astrophysics Data System (ADS)

    Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias

    2017-04-01

    Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri

  2. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    USGS Publications Warehouse

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  3. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2002-12-02

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

  4. Estimation of small reservoir storage capacities in Limpopo River Basin using geographical information systems (GIS) and remotely sensed surface areas: Case of Mzingwane catchment

    NASA Astrophysics Data System (ADS)

    Sawunyama, T.; Senzanje, A.; Mhizha, A.

    The current interest in small reservoirs stems mainly from their utilization for domestic use, livestock watering, fishing and irrigation. Rarely were small reservoirs considered in the water resources system even though they are important in water resource planning and management. The main limitation being lack of knowledge on small reservoir capacities, for the methodologies used to quantify physical parameters of reservoirs are costly, time consuming and laborious. To address this challenge an attempt has been made in this study to estimate small reservoir storage capacities using remotely sensed surface areas. A field study on 12 small reservoirs was carried out in Mzingwane catchment in Limpopo River Basin; Zimbabwe. The depths of water accompanied with their coordinates were measured; from which area and capacity were calculated for each reservoir using geographical information system based on data acquired from the field and that from satellite images. The output data was compared and a linear regression analysis was carried out to establish a power relationship between surface area and storage capacity of small reservoirs. The Pearson correlation analysis at 95% confidence interval indicated that the variances of the two surface areas (field area and image area) were not significantly different ( p < 0.05). The findings from linear regression analysis (log capacity-log area) show that there exist a power relationship between remotely sensed surface areas (m 2) and storage capacities of reservoirs (m 3), with 95% variation of the storage capacity being explained by surface areas. The relationship can be used as a tool in decision-making processes in integrated water resources planning and management in the river basin. The applicability of the relationship to other catchments requires further research as well as investigating the impacts of small reservoirs in water resources available in the river basin by carrying out a hydrological modelling of the

  5. A mixed clastic-carbonate lake margin succession from Triassic of East Greenland

    NASA Astrophysics Data System (ADS)

    Andrews, Steven

    2016-04-01

    Lake margin deposits are being increasingly studied, but this is often focussed on either clastic or carbonate/microbial dominated end members. This study examines the interaction of clastic and carbonate system from a dynamic lake margin. The Late Triassic Edderfugledal Member outcrops between 71° and 72° 40' N in East Greenland. Throughout the Late Triassic, lacustrine conditions predominated and deposition occurred in the largely closed, underfilled Jameson Land Basin which lay at approximately 30° to 40° north in Northern Pangea. Regular fluctuations in lake level, interpreted as a response to cyclic, orbitally forced climatic variance, resulted in a highly mobile lake shore zone. The response and interaction of both clastic and carbonate components of the shore zone environment to these fluctuations in lake level are documented in this study. The studied, ≈ 10 m thick, section which has been traced for over 4 km, lies within the transition between the carbonate dominated Sporfjeld Beds and the overlying Pingel Dal Beds which contain an increased clastic content. During the deposition of the Edderfugledal Member, arid conditions prevailed leading to more ephemeral lacustrine developments and low sediment input. Extensive post depositional disruption occurred with there being evidence for desiccation, pedogenic processes and evaporite precipitation. These effects increase towards the lake margins where exposure was most regular and most prolonged. Up section, increasingly humid conditions led to the formation of longer lived lacustrine developments and increased clastic sediment input. During the transgressive phases of individual climatically driven cycles, sediment input was pushed back to the lake margin allowing extensive microbialite development. Ooidal shoals developed in shallow water beyond the extend of clastic input. The lakeward migration of the ooidal shoals and the progradation of clastic systems eventually stifle the microbialites prior to

  6. Carbonate reservoir characterization using seismic velocity and amplitude variation with offset analysis: Hardeman basin, Texas, test case

    SciTech Connect

    Pigott, J.D.; Shrestha, R.K. ); Warwick, R.A. )

    1991-03-01

    Mississippian bioherms in the Hardeman basin, Texas, produce from dolomitized mud cores with porosities that can vary from 10 to 40%. These carbonate buildups, though often similar in seismic reflector boundary configuration, can vary remarkably in reservoir quality (e.g., porosity) owing to diagenesis. However, imaging these lateral variations of porosity and determining the reservoir pressure is possible with detailed seismic velocity control and amplitude variation with offset (AVO) analysis. The investigated 24-fold seismic profile was acquired by four Vibroseis trucks in the Hardeman basin across two bioherms, one oil-productive and other tight and water-filled. Detailed stacking velocity analyses on the relative amplitude processed line directly delineate areas of increasing and decreasing gross porosity and dramatically differentiate the two mounds. Moreover, the detailed velocity analyses help provide a more accurate stacked section with resultant better definition of the external mound configuration. Analysis of available laboratory compressional and shear wave velocity data for carbonate rocks reveal that Young's modulus in carbonates is a function of porosity and differential pressure. Comparison of the derived Young's modulus from an inversion of the AVO data for the unstacked line with the experimental laboratory data yield porosity and differential pressure estimates over the productive bioherm which are within 18% and 15%, respectively, of those observed in the borehole.

  7. Application of nuclear magnetic resonance logs for evaluating low-resistivity reservoirs: a case study from the Cambay basin, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rima; Datta Gupta, Saurabh; Farooqui, M. Y.

    2012-10-01

    Low-resistivity pay sands have been identified in four wells, namely: AM-7, AM-8, TA-1 and TA-5, which penetrate the Eocene pay-IV (EP-IV) sand unit of the Kalol formation in the Cambay basin. These wells are located near the Dholka and Kanwara oilfields in the Cambay basin. The main objective of this paper is to evaluate nuclear magnetic resonance (NMR) logs of the low-resistivity reservoirs from these four wells and to determine the petrophysical properties more accurately than conventional logs have done. The thickness of low-resistivity sand varies from 5 to 17 m in the wells under the study area. The formation has been characterized by a high surface area; thus irreducible water saturation (Swi) is high. The resistivity of these pay zones varies from 1 to 8 Ωm and the total NMR porosity ranges from 15% to 50%. The free fluid porosity ranges from 2% to 5% in wells TA-1 and TA-5 and 12-20% in wells AM-7 and AM-8. The Timur-Coates/SDR model derived that the permeability of the low-resistivity reservoir ranges from 0.8 to 1.5 md in wells TA-1 and TA-5 and 10-110 md in wells AM-7 and AM-8.

  8. An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Azeem, Tahir; Chun, Wang Yan; MonaLisa; Khalid, Perveiz; Xue Qing, Liu; Ehsan, Muhammad Irfan; Jawad Munawar, Muhammad; Wei, Xie

    2017-03-01

    The sand intervals of the Lower Goru Formation of the Cretaceous age, widely distributed in the Middle and Lower Indus Basin of Pakistan, are proven reservoirs. However, in the Sawan gas field of the Middle Indus Basin, these sandstone intervals are very deep and extremely heterogeneous in character, which makes it difficult to discriminate lithologies and fluid saturation. Based on petrophysical analysis and rock physics modeling, an integrated approach is adopted to discriminate between lithologies and fluid saturation in the above-mentioned sand intervals. The seismic velocities are modeled using the Xu–White clay–sand mixing rock physics model. The calibrated rock physics model shows good consistency between measured and modeled velocities. The correlation between measured and modeled P and S wave velocities is 92.76% and 84.99%, respectively. This calibrated model has been successfully used to estimate other elastic parameters, even in those wells where both shear and sonic logs were missing. These estimated elastic parameters were cross-plotted to discriminate between the lithology and fluid content in the target zone. Cross plots clearly separate the shale, shaly sand, and gas-bearing sand clusters, which was not possible through conventional petrophysical analysis. These data clusters have been exported to the corresponding well for the purpose of interpolation between wells and to analyze the lateral and vertical variations in lithology and fluid content in the reservoir zone.

  9. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin

    NASA Astrophysics Data System (ADS)

    Cao, Z.

    2015-12-01

    Jimusar Sag, which lies in the Junggar Basin,is one of the most typical tight oil study areas in China. However, the properties and origin of the crude oil and the geochemical characteristics of the tight oil from the Lucaogou Formation have not yet been studied. In the present study, 23 crude oilsfrom the Lucaogou Formation were collected for analysis, such as physical properties, bulk composition, saturated hydrocarbon gas chromatography-mass spectrometry (GC-MS), and the calculation of various biomarker parameters. In addition,source rock evaluation and porosity permeability analysis were applied to the mudstones and siltstones. Biomarkers of suitable source rocks (TOC>1, S1+S2>6mg/g, 0.7%basin modeling was performed. The oil-filling history was also defined by means of basin modeling and microthermometry. The results indicated the presence of low maturity to mature crude oils originating from the burial of terrigenous organic matter beneath a saline lake in the source rocks of mainly type II1kerogen. In addition, a higher proportion of bacteria and algae was shown to contribute to the formation of crude oil in the lower section when compared with the upper section of the Lucaogou Formation. Oil-source correlations demonstrated that not all mudstones within the Lucaogou Formation contributed to oil accumulation.Crude oil from the upper and lower sections originated from thin-bedded mudstones interbedded within sweet spot sand bodies. A good coincidence of filling history and hydrocarbon generation history indicated that the Lucaogou reservoir is a typical in situ reservoir. The mudstones over or beneath the sweet spot bodies consisted of natural caprocks and prevented the vertical movement of oil by capillary forces. Despite being thicker, the thick-bedded mudstone between the upper and lower sweet spots had no obvious contribution to

  10. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    NASA Astrophysics Data System (ADS)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    use of lake water is acceptable from different points of view (water quality, legal constrains, etc.). Our results indicate that the joint use of the lake/reservoir system is feasible. Based on this and other complementary study, the basin water authorities has developed a project by which a 2.1 km uptake tunnel will be excavated in the next years to drain water from the lake towards the Barcés river and complement the water supply necessities of the Abegondo-Cecebre reservoir in case of hydric emergencies.

  11. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres

  12. Socioeconomic Impact of Infill Drilling Recovery from Carbonate Reservoirs in the Permian Basin, West Texas

    DTIC Science & Technology

    1994-05-01

    revenues of infill drilling and the creation of jobs in the Permian basin communities, and ( 3 ) develops a correlation between the increased tax...1 3 viii Page CHAPTER IV THE AMOUNT OF REVENUE FROM OIL PRODUCTION...the Permian Basin ........................ 32 4.5 Percent of Federal Income Tax ............................................ 3 33 4.6 Rule of Thumb in

  13. Seismic and well logging interpretation for evaluation of the lower Bahariya reservoir, southwest Qarun (SWQ) Field, Gindi Basin, Egypt

    NASA Astrophysics Data System (ADS)

    Sarhan, Mohammad Abdelfattah; Basal, A. M. K.; Ibrahim, Ibrahim Mohamed

    2017-09-01

    This paper focuses on seismic and well log interpretations for evaluating the sandstones of the Cenomanian Bahariya Formation in the southwest Qarun Field, Gindi Basin, northern Western Desert of Egypt. The seismic profiles display a clear anticlinal structure intersected by reverse faults in the study area. This faulted anticline has been interpreted to be one of the Syrian arc system folds formed by Upper Cretaceous tectonic inversion, which resulted from the NW movement of the African Plate relative to Laurasia. This anticline has been recommended as a target for exploration by the present work as it may represent a structural trap for hydrocarbon accumulation. The sandstones of the Lower Bahariya Formation in the southwest Qarun Field display good reservoir characteristics. The interpretation of the available well log data for the SWQ-21 and SWQ-25 wells for the Lower Bahariya Formation reflects a good reservoir quality for oil production in its topmost part. This reservoir possesses low SW (<50%), high porosity (16%), low SW/SXO and low BVW (<0.09) which all reflect a high potential for oil production.

  14. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  15. Seismic and well logging interpretation for evaluation of the lower Bahariya reservoir, southwest Qarun (SWQ) Field, Gindi Basin, Egypt

    NASA Astrophysics Data System (ADS)

    Sarhan, Mohammad Abdelfattah; Basal, A. M. K.; Ibrahim, Ibrahim Mohamed

    2017-06-01

    This paper focuses on seismic and well log interpretations for evaluating the sandstones of the Cenomanian Bahariya Formation in the southwest Qarun Field, Gindi Basin, northern Western Desert of Egypt. The seismic profiles display a clear anticlinal structure intersected by reverse faults in the study area. This faulted anticline has been interpreted to be one of the Syrian arc system folds formed by Upper Cretaceous tectonic inversion, which resulted from the NW movement of the African Plate relative to Laurasia. This anticline has been recommended as a target for exploration by the present work as it may represent a structural trap for hydrocarbon accumulation. The sandstones of the Lower Bahariya Formation in the southwest Qarun Field display good reservoir characteristics. The interpretation of the available well log data for the SWQ-21 and SWQ-25 wells for the Lower Bahariya Formation reflects a good reservoir quality for oil production in its topmost part. This reservoir possesses low SW (<50%), high porosity (16%), low SW/SXO and low BVW (<0.09) which all reflect a high potential for oil production.

  16. Application of sequence stratigraphy to reservoir and hydrocarbon source rock prediction in the Cretaceous carbonate platforms of Maracaibo Basin, Venezuela

    SciTech Connect

    Murat, B.; Azpiritxaga, I. )

    1993-02-01

    Prediction of reservoir and source rocks is enhanced by an understanding of the sequential organization of the sedimentary units. In the Maracaibo Basin, the carbonate Cogollo Group and the basal part of the Shaly La Luna Formation (Upper Barremian to Lower Cenomanian) have been subdivided into a hierarchy of cycles ranging from parasequences (4th and 5th order) up to Regressive-Transgressive cycles (2nd order). Sedimentation during this period on a passive platform under the influence of eustatic sea level fluctuations, led to a succession of about twenty 3rd order sequences (depending on their location on the platform) composed of Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST). Their boundaries and maximum flooding surfaces can be traced on wireline logs and on cored material. These sequences belong to three Regressive-Transgressive 2nd order cycles showing a 3-stage evolution of infill, aggradation and backstepping. Sedimentary facies vary laterally within systems tracts and vertically from one cycle to another. Most basal TST units display high energy sediments prone to porosity development, whereas the basal HST units are generally characterized by muddier sediments. The best reservoirs are at the top of HST units, with development of both early dolomite and grainy packstones with moderate reservoir quality. Maximum oil productivity occurs where matrix porosity is associated with fractures, which are always best developed within the aggrading stage. Finally, source-rock intervals coincide with the maximum flooding surfaces which limit second order cycles.

  17. Microfractures due to overpressures caused by thermal cracking in well-sealed upper Devonian reservoirs, deep Alberta basin

    SciTech Connect

    Marquez, X.M.; Mountjoy, E.W.

    1996-04-01

    Microfractures (<1 mm in width) filled with reservoir bitumen occur and crosscut all sedimentary and diagenetic phases in the upper 200 m of the partially to completely dolomitized Upper Devonian (Leduc Formation) Strachan buildup and other buildups in the deep Alberta basin. They display three patterns: (1) subhorizontal, extending from intraskeletal pores and subvertical fractures, (2) radial around vugs and molds, and (3) random in the matrix. Subhorizontal microfracturing is the most common, and radial is the least common. Overpressuring by thermal cracking of crude oil to gas during burial can produce most of the characteristics exhibited by these microfractures: their association with all pore types, bitumen fillings, and relatively late diagenetic timing. Microfractures are restricted to isolated buildups below depths of about 3800 m in the Alberta basin. The lack of microfractures in adjacent gas-bearing and updip buildups along the Rimbey-Meadowbrook reef trend is likely because of the connection of these buildups to a regional conduit system in the underlying Cooking Lake platform, preventing them from developing sufficient pressures. Thermal cracking of crude oil to gas during burial is also indicated by finely and coarsely deformed lamellar textures of the reservoir bitumen that fills the microfractures in the Strachan buildup. This thermal cracking took place during the Late Cretaceous when the buildup was buried deeper than about 3500 m; however, tectonic compression occurred immediately west of these areas during the Late Cretaceous and early Tertiary Laramide orogeny, modifying the stress field. Suprahydrostatic (abnormal) pressures generated during thermal cracking of oil in conjunction with Laramide tectonic compression probably created the microfractures in isolated and effectively scaled reservoirs.

  18. Petroleum geology and resources of the West Siberian Basin, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2003-01-01

    during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o

  19. Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments

    NASA Astrophysics Data System (ADS)

    Ungemach, Pierre; Antics, Miklos

    2014-05-01

    Europe at large enjoys a variety of sedimentary environments. They most often host dependable geothermal reservoirs thus favouring the farming of hot fluids, within the low to medium enthalpy range, among which geothermal district heating (GDH) and combined heat and power (CHP) undertakings hold a dominant share. Three selected reservoir settings, addressing carbonate and clastic deposits, the Central part of the Paris Basin, the Southern Germany Molasse Basin in the Münich area and the Netherland Basin respectively will be presented and the exploratory, modeling and development strategies discussed accordingly. Whereas 2D (reprocessed) and 3D seismics have become a standard in matching the distinctive (reef facies, an echelon faulting, carbonate platform layering) features of a deep buried karst and a key to drilling success in the Molasse Basin, thus emphasizing a leading exploratory rationale, the Netherland and Paris Basin instead benefit from a mature data base inherited from extensive hydrocarbon exploration campaigns, with concerns focused on reservoir modeling and sustainable management issues. As a result the lessons learned from the foregoing have enabled to build up a nucleus of expertise in the whole chain from resource identification to reservoir assessment and market penetration. The seismic risk, indeed a sensitive though somewhat emotional issue, which is requiring special attention and due microseismic monitoring from the geothermal community will also be commented.

  20. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    SciTech Connect

    Stueber, A.M. ); Walter, L.M.; Huston, T.J. ); Pushkar, P. )

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.

  1. Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin

    SciTech Connect

    Putnam, P.E.; Moore, S. ); Ward, G. )

    1990-05-01

    Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

  2. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    NASA Astrophysics Data System (ADS)

    Stueber, Alan M.; Walter, Lynn M.; Huston, Ted J.; Pushkar, Paul

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO 3 recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show 87Sr /86Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the range 0.70900-0.71052. Inverse correlations between 87Sr /86Sr and B, Li, and Mg concentrations suggest that the brines acquired radiogenic 87Sr through interaction with siliciclastic minerals. Completely unsystematic relations between 87Sr /86Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSO 4. Although there are many similarities in their origin and evolution, these formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships. Thus

  3. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China

    NASA Astrophysics Data System (ADS)

    Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua

    2017-06-01

    The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the

  4. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  5. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    SciTech Connect

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  6. Methane and carbon dioxide production in soils flooded by the Belo Monte hydropower reservoir in the Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Sawakuchi, H. O.; Bertassoli, D. J., Jr.; Silveira, A. M.; Bozi, B. S.; de Jesus, J. S.; Sawakuchi, A. O.; Ward, N. D.; Bastviken, D.; Krusche, A. V.; Richey, J. E.

    2016-12-01

    The Xingu River, one of the major tributary of the Amazon River, was recently impounded by the Belo Monte dam, a massive and controversial hydropower plant that will become the third biggest power station in generating capacity of the world. Given the limited data associated with greenhouse gas emissions from reservoirs in the Amazon basin, the impacts of hydroelectric expansion in this region to the global carbon budget remains unclear. Here, we used a bottom-up assessment to quantify a fraction of the possible emissions associated with the Belo Monte reservoir. Eighteen soil samples were collected before the impoundment from seven different locations and depths in areas that were going to be permanently flooded by the reservoir (forests and pasturelands). Soil samples were split in triplicates and incubated in anoxic conditions during two phases totaling 160 days of anoxic incubation in order to quantify the potential methane and carbon dioxide production through time. Our results showed that pasturelands soil presented higher potential production of both gases in relation to the soils from forested areas, reaching up to 0.072 mg CH4 g-¹d-1 and 0.078 mg CO2 g-¹d-1 during the first period of 65 days in the first phase of incubations. Significant differences in production were also noted through soil depth and time. In several areas, the first 15 cm of soil generated 99% of the methane volume that was being produced in the 60 cm sampled profile. The first 65 days of the second phase of incubations showed production that was 35% (CH4) and 44% (CO2) lower than the same period in the first stage. Extrapolations towards the total flooded area demonstrates that 27.3-43.3 ton CH4 d-1 may be generated from flooded soils in the Belo Monte reservoir during only the first several months of flooding, maintaining significant production rates during upcoming months as long as favorable conditions are maintained.

  7. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  8. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  9. Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin

    SciTech Connect

    Johnson, M.S.

    1995-07-01

    Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more than 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.

  10. RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH

    SciTech Connect

    Milind D. Deo

    2003-02-11

    Reservoir simulations of different fields in the Green River Formation are reported. Most extensive simulations were performed on the Monument Butte Northeast unit. Log data were used to construct detailed geostatistical models, which were upscaled to obtain reasonable number of grid blocks for reservoir simulation. Porosities, permeabilities, and water saturations required for reservoir simulation were thus generated. Comparison of the production results with the field data revealed that there was a phenomenological deficiency in the model. This was addressed by incorporating hydraulic fractures into the models. With this change, much better agreement between simulation results and field data was obtained. Two other fields, Brundage Canyon and Uteland Butte, were simulated in primary production. Only preliminary simulations were undertaken since a number of critical data elements were missing and could not be obtained from the operators. These studies revealed that the production performance of the Brundage Canyon field is much better than what can be predicted from simulations of a typical non-fractured, undersaturated reservoir. Uteland Butte field performance was that of a typical undersaturated reservoir.

  11. Diagenetic effects of compaction on reservoir properties: The case of early callovian ``Dalle Nacrée'' formation (Paris basin, France)

    NASA Astrophysics Data System (ADS)

    Nader, Fadi H.; Champenois, France; Barbier, Mickaël; Adelinet, Mathilde; Rosenberg, Elisabeth; Houel, Pascal; Delmas, Jocelyne; Swennen, Rudy

    2016-11-01

    The impact of compaction diagenesis on reservoir properties is addressed by means of observations made on five boreholes with different burial histories of the Early Callovian ;Dalle Nacrée; Formation in the Paris Basin. Petrographic analyses were carried out in order to investigate the rock-texture, pore space type and volume, micro-fabrics, and cement phases. Based on the acquired data, a chronologically ordered sequence of diagenetic events (paragenesis) for each borehole was reconstructed taking the burial history into account. Point counting and a segmentation algorithm (Matlab) were used to quantify porosity, as well as the amounts of grain constituents and cement phases on scanned images of studied thin sections. In addition, four key samples were analyzed by 3D imaging using microfocus X-ray computer tomography. Basin margin grainstones display a different burial diagenesis when compared to basin centre grainstones and wackestones. The former have been affected by considerable cementation (especially by blocky calcite) prior to effective burial, in contrast to the basin centre lithologies where burial and compaction prevailed with relatively less cementation. Fracturing and bed-parallel stylolitization, observed especially in basinal wackestone facies also invoke higher levels of mechanical and chemical compaction than observed in basin marginal equivalents. Compaction fluids may have migrated at the time of burial from the basin centre towards its margins, affecting hence the reservoir properties of similar rock textures and facies and resulting in cross-basin spatial diagenetic heterogeneities.

  12. Simulation model of clastic sedimentary processes

    SciTech Connect

    Tetzlaff, D.M.

    1987-01-01

    This dissertation describes SEDSIM, a computer model that simulates erosion, transport, and deposition of clastic sediments by free-surface flow in natural environments. SEDSIM is deterministic and is applicable to sedimentary processes in rivers, deltas, continental shelves, submarine canyons, and turbidite fans. The model is used to perform experiments in clastic sedimentation. Computer experimentation is limited by computing power available, but is free from scaling problems associated with laboratory experiments. SEDSIM responds to information provided to it at the outset of a simulation experiment, including topography, subsurface configuration, physical parameters of fluid and sediment, and characteristics of sediment sources. Extensive computer graphics are incorporated in SEDSIM. The user can display the three-dimensional geometry of simulated deposits in the form of successions of contour maps, perspective diagrams, vector plots of current velocities, and vertical sections of any azimuth orientation. The sections show both sediment age and composition. SEDSIM works realistically with processes involving channel shifting and topographic changes. Example applications include simulation of an ancient submarine canyon carved into a Cretaceous sequence in the National Petroleum Reserve in Alaska, known mainly from seismic sections and a sequence of Tertiary age in the Golden Meadow oil field of Louisiana, known principally from well logs.

  13. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China.

    PubMed

    Li, Chun-Quan; Chen, Hong-Han; Li, Si-Tian; Zhang, Xi-Ming; Chen, Han-Lin

    2004-08-01

    The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya, respectively. The critical hydrocarbon charging time was at the late Hercynian.

  14. The lower Miocene Liuhua carbonate reservoir, Pearl River Mouth basin, offshore People's Republic of China

    SciTech Connect

    Turner, N.L. )

    1990-06-01

    Since the drilling in January 1987 of the Amoco Liuhua 11-1-1A discovery well located 220 km southeast of Hong Kong, five additional wells have drilled and tested this lower Miocene Zhujiang Formation carbonate reservoir. Deposition of upper Zhujiang carbonates in the Liuhua area took place in an isolated platform environment. Major facies are (1) a platform-rim reef composed of red algae and coral boundstones, (2) a back-reef lagoon of fine-grained carbonates, (3) a large interior platform bank dominated by red algae but with a red algal-coral fringe on the south and southwest sides, (4) platform grainrocks, and (5) platform to lagoonal mud-supported carbonates. A paleo-water table surface present in every well represents a time of regional exposure. The reservoir is subdivided into five diagenetic carbonate units that are correlated across the platform and that cross facies boundaries and inferred time lines. The uppermost unit is a thin, tightly cemented carbonate formed at the time of drowning of the platform. Two thick highly leached carbonate units with porosities and permeabilities as high as 30% and several darcys comprise most of the reservoir. They are separated by a thin (7 m) tighter interval that formed by cementation below the water table of an exposure surface. The less porous unit at the base of the reservoir formed as a result of interaction between oil and water causing calcite cementation. Leaching continued in the carbonate below the reservoir and biodegradation occurred after oil had filled the structure. Further drilling and testing will determine the limits of the diagenetic units and whether the reservoir has commercial potential.

  15. Genetic stratigraphy and reservoir characterization of the Spiro sandstone, Red Oak Field, Arkoma Basin, southeastern Oklahoma

    SciTech Connect

    Horn, B.W. )

    1996-01-01

    The Lower Atokan Spiro sandstone is a mixed carbonate-silicilastic reservoir that produces hydrocarbons from three discrete stratigraphic intervals at the Red Oak Field. Reservoir-quality sandstones develop in the seaward stepping sub-Spiro sequence (highstand system tract), landward stepping Foster [open quote]channel,[close quotes] and upper Spiro depositional sequences (transgressive and highstand system tract). The sub-Spiro and Foster [open quote]channel[close quote] sequences are separated by regional unconformity interpreted as a sequence boundary. Regressive marine shoreface cycles, genetically related to the sub-Spiro shale, comprise the lowermost producing interval. Fluvial/estuarine valley-fill (Foster channel) sandstones progressively onlap the sequence boundary overlying the regressive shoreface cycles and juxtapose reservoir-quality sandstones of different sequences, creating a complex reservoir architecture. Upper Spiro reservoir sandstones are developed within marine shoreface cycles that are deposited in a landward-stepping succession (highstand systems tract) following the drowning of incised paleovalleys. These aggradational / retrogradational successions downlap onto the valley-fill and sub-Spiro sequences representing the final stages of Spiro deposition prior to the high stand of sea level during Middle Atokan time. Regional stratigraphic correlations demonstrate progressive basinward truncation of the sub-Spiro regressive shoreface cycles by an erosional surface, creating a network of incised paleovalleys across the Pennsylvanian shelf. Based on core, well log, and outcrop interpretations, the magnitude of the facies offset across this sequence boundary indicates that a significant volume of reservoir-quality sediment has been partitioned basinward of the current producing areas.

  16. Ordovician carbonate buildups: Potential gas reservoirs in the Ordos basin, central China

    SciTech Connect

    Huaida Hsu )

    1991-03-01

    The Ordos basin of central China covers an area of about 25,000 km{sup 2}. A series of eastward moving overthrusts developed along its western flank, but most of the basin consists of a stable slope that dips westward less than one degree. The basin contains sediments from Sinian to Middle Ordovician and from the Middle Carboniferous to Cretaceous. Its evolutionary history is similar to that of the Alberta basin. Recently drilled wildcat wells have produced commercial gas flows that are closely associated with Ordovician carbonate buildups and a weathered surface between the Ordovician and Carboniferous. Most of the buildups consist of agal mounds; however, some Middle Ordovician reefs developed in the western portion and along the southern margin of the Ordos basin. More than 200 buildups were delineated using seismic stratigraphic techniques. They can be divided into four distinct types. The growth and distribution of buildups were controlled by sea-level fluctuations. The interpretations made in this study were based on the integration of results from a variety of analyses including vertical profiling, differential interformational velocity analysis, amplitude versus offset comparisons, G-log analysis, seismic modeling techniques, and high-precision gravity surveys. The best gas prospects are the Ordovician carbonate buildups distributed around the basin's central uplift. The delineation of carbonate buildups and the demonstration that they are associated with commercial gas flows open the gate for future gas exploration in this area.

  17. Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano

    2017-04-01

    Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.

  18. Incorporating a simple two-layer reservoir into a coupled land surface and river routing model to improve river temperature simulations in the Tennessee River Basin

    NASA Astrophysics Data System (ADS)

    Niemeyer, R. J.; Cheng, Y.; Mao, Y.; Yearsley, J. R.; Nijssen, B.

    2016-12-01

    Accurately simulating river temperatures is essential to predict the impact of land use and climate change on freshwater ecosystems. Coupled land cover, river routing, and river temperature models have been developed to this end. However, the majority of these models lack reservoir thermal stratification, which can decrease downstream temperature due to reservoirs providing a consistent source of cool water from deep layers. The objective of this research was to verify if incorporating a simple reservoir module improved the accuracy of river temperature simulations. We simulated river temperatures from 1949 to 2010 in the Tennessee River Basin in the U.S.A. We simulated surface hydrologic fluxes with the Variable Infiltration Capacity model and routed runoff fields from VIC with the RVIC routing model to produce streamflow estimates at multiple locations within the basin. We then used these streamflow estimates as well as meteorological variables as input to the River Basin Model (RBM) to produce river temperature estimates. Initial simulations demonstrated an ability of RBM to capture the seasonal variation in observed river temperature. However, these simulations overestimated summer temperatures, which we attributed to a lack of simulated temperature stratification in the reservoirs. We incorporated a new module into RBM to simulate reservoir stratification with a simple physically-based two-layer model. We compared river temperature simulations for RBM with and without this new reservoir module with continuous river temperature measurements and periodic reservoir measurements stratified at depth. Our simulations reveal that the two-layer module improves the model accuracy. The model also accurately simulated reservoir stratification improving its potential to estimate future impacts of climate and land cover change on river temperature.

  19. Structural style of the Cuyo-Bolsones basin complex of west-central Argentina

    SciTech Connect

    Gollop, I.G. )

    1991-03-01

    The Cuyo-Bolsones basin complex is part of a mosaic of basinal features that lie in the eastern Andean foreland. Sedimentary section ranges from Ordovician to Tertiary in age with the main petroleum source and reservoir potential in Carboniferous to Triassic clastics. Thick conglomerate units and widespread unconformities of both Permo-Carboniferous and Triassic age as well as localized volcanics indicate several periods of violent tectonic activity during late Paleozoic to early Mesozoic times. Triassic and older sediments are affected by normal faulting which in basins directly south extends up into the Lower Cretaceous. In the Cuyo-Bolsones basinal area, however this ancient tensional regime is entirely overprinted by relatively recent thrusting. This thrusting is late Tertiary in age, generally from east to west with very substantial relief. These thrust sheets are cut in places by later northeast-southwest strike-slip fault zones producing some localized flower structures. Nearly all the oil discovered in the Cuyo basin is produced from Triassic clastic reservoirs in compressional anticlines related to this thrusting. The major thrusts are well defined seismically, and seismic interpretations fit easily on balanced sections.

  20. Neoproterozoic to Early Cambrian clastics sedimentation and stratigraphy in the Central and Southern Appalachians: An overview

    SciTech Connect

    Schwab, F.L. . Dept. of Geology)

    1993-03-01

    A clear understanding of paleogeography, tectonics, and sedimentary framework now exists for Neoproterozoic to Early Cambrian clastics in the Central and Southern Appalachians. It is based on well-constrained data on mineralogy, texture, and sedimentary structures and less precise information on age and regional variations in lithology and thickness. From 900 m.y. ago until 600 m.y. ago, tension along the eastern edge of North America produced a series of NE-SW basins (grabens and aulacogens ). These rift-related basins filled with thick, coarse, arkosic clastics (Mechum River Fm., Mt. Rogers Volc. Gp., Grandfather Mtn. Fm., portions of the Ocoee Series) mimicking the setting that later typified the Triassic of eastern North America. Coeval sequences exposed along the southeastern edge of the Blue Ridge in Va. and N.C. (Fauquier Fm., Lynchburg Gp., Ashe Fm.) define the hinge zone of a developing continental margin. Farther south in Tenn., Ga., and Ala., the picture is less clear. In latest Precambrian and Early Cambrian time, a passive Atlantic-type'' margin existed. This consisted of paired continental shelf and continental slope-rise areas (shallow water deposits of the Chilhowee Gp. and overlying muds and carbonates to the northwest; deep water clastics of the Evington Gp. and Alligator Back Fm. to the southeast). The cohesiveness of this framework argues against these tectonostratigraphic belts being considered terranes.

  1. Diagenetic overprint of original depositional architecture in a shallow water carbonate reservoir, Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Lucia, F.J.

    1996-12-31

    Permian shallow-water carbonate reservoirs are highly heterogeneous because of complex variations in depositional facies produced by high-frequency sea level rise and fall. Accordingly, establishment of a cycle stratigraphic framework is fundamental to defining reservoir heterogeneity. Because nearly all of these reservoirs have experienced multiple episodes of dolomitization and sulfate emplacement, however, permeability is a n of diagenetic overprint. The extent to which diagenesis can affect permeability development is dramatically displayed in the Grayburg Formation (middle Permian) at South Cowden field, Weit Texas. Three scales of cyclicity contribute to original depositional facies heterogeneity in the Grayburg; high-frequency cycles, averaging 3 meters in thickness, constitute the fundamental architectural element in the main reservoir interval. Despite original depositional heterogeneity due to this cyclicity, however, permeability development is substantially the result of two diagenetic events: (1) dolomite diagenesis in vertically burrowed wackestones and packstones and (2) late alteration and removal of anhydrite. Dolomite diagenesis in vertically burrowed wackestones and packstones has produced irregular vertical zones of higher permeability in mud-dominated bases of high-frequency cycles in leeward ramp-crest highstand successions. Because dolomite diagenesis is concentrated in burrowed highstand successions, the distribution of resultant permeability trends is partly constrained by patterns of longterm accommodation and high frequency cyclicity. Anhydrite diagenesis, which is characterized by conversion to gypsum or by complete removal of sulfate, is developed along basinward margins of the field and cross cuts original depositional framework.

  2. Diagenetic overprint of original depositional architecture in a shallow water carbonate reservoir, Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Lucia, F.J. )

    1996-01-01

    Permian shallow-water carbonate reservoirs are highly heterogeneous because of complex variations in depositional facies produced by high-frequency sea level rise and fall. Accordingly, establishment of a cycle stratigraphic framework is fundamental to defining reservoir heterogeneity. Because nearly all of these reservoirs have experienced multiple episodes of dolomitization and sulfate emplacement, however, permeability is a n of diagenetic overprint. The extent to which diagenesis can affect permeability development is dramatically displayed in the Grayburg Formation (middle Permian) at South Cowden field, Weit Texas. Three scales of cyclicity contribute to original depositional facies heterogeneity in the Grayburg; high-frequency cycles, averaging 3 meters in thickness, constitute the fundamental architectural element in the main reservoir interval. Despite original depositional heterogeneity due to this cyclicity, however, permeability development is substantially the result of two diagenetic events: (1) dolomite diagenesis in vertically burrowed wackestones and packstones and (2) late alteration and removal of anhydrite. Dolomite diagenesis in vertically burrowed wackestones and packstones has produced irregular vertical zones of higher permeability in mud-dominated bases of high-frequency cycles in leeward ramp-crest highstand successions. Because dolomite diagenesis is concentrated in burrowed highstand successions, the distribution of resultant permeability trends is partly constrained by patterns of longterm accommodation and high frequency cyclicity. Anhydrite diagenesis, which is characterized by conversion to gypsum or by complete removal of sulfate, is developed along basinward margins of the field and cross cuts original depositional framework.

  3. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    EPA Science Inventory

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in lakes and reservoirs. Due to long water residence tim...

  4. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin

    EPA Science Inventory

    Aquatic ecosystems are a globally significant source of nitrous oxide (N2O), a potent greenhouse gas, but estimates are largely based on studies conducted in streams and rivers with relatively less known about N2O dynamics in lakes and reservoirs. Due to long water residence tim...

  5. Occurrence and potential risk of currently used pesticides in sediments of the Alqueva reservoir (Guadiana Basin).

    PubMed

    Palma, P; Köck-Schulmeyer, M; Alvarenga, P; Ledo, L; de Alda, M López; Barceló, D

    2015-05-01

    The evaluation of sediments, concerning to pesticides, constitutes an important step for the understanding of the principal sources of contamination of the surface water. Hence, the purpose of this study was to evaluate for the first time the occurrence, distribution and risk of pesticides in sediments of the Alqueva reservoir, the largest reservoir in the Europe. For this purpose, the occurrence of 22 pesticides and some of their degradation products was determined in surficial sediments of the Alqueva reservoir. To assess the potential risk on ecosystem, the measured concentrations of pesticides were compared with regulatory and toxicological benchmarks. Of the 22 pesticides analysed, only 8 were detected. Diuron was the pesticide detected in greater concentration, followed by terbuthylazine and chlortoluron. The sediments most polluted by pesticides were from Lucefécit, constituted totally by fine particles (<0.063 mm) and with high values of organic matter, and are located nearby large agricultural fields. The risk assessment allowed us to conclude that the sediments from the Alqueva reservoir presented low risk, concerning to pesticides, for the various communities that integrate the aquatic ecosystems. However, some of the compounds detected present a high potential for bioaccumulation that may lead to their bioamplification in the trophic chain, reaching concentrations higher than their acceptable daily intake, putting, in this way the populations at risk.

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  7. Petrology and reservoir paragenesis in the Sussex B sandstone of the Upper Cretaceous Cody Shale, House Creek and Porcupine fields, Powder River basin, Wyoming

    SciTech Connect

    Not Available

    1992-01-01

    This book of reservoir paragenesis includes detailed descriptions of the petrology of depositional facies of the Sussex B sandstone of the Sussex Sandstone Member of the Upper Cretaceous Cody Shale in the House Creek and Porcupine fields, Powder River basin, Wyoming.

  8. Variogram Identification Aided by a Structural Framework for Improved Geometric Modeling of Faulted Reservoirs: Jeffara Basin, Southeastern Tunisia

    SciTech Connect

    Chihi, Hayet Bedir, Mourad; Belayouni, Habib

    2013-06-15

    This article describes a proposed work-sequence to generate accurate reservoir-architecture models, describing the geometry of bounding surfaces (i.e., fault locations and extents), of a structurally complex geologic setting in the Jeffara Basin (South East Tunisia) by means of geostatistical modeling. This uses the variogram as the main tool to measure the spatial variability of the studied geologic medium before making any estimation or simulation. However, it is not always easy to fit complex experimental variograms to theoretical models. Thus, our primary purpose was to establish a relationship between the geology and the components of the variograms to fit a mathematically consistent and geologically interpretable variogram model for improved predictions of surface geometries. We used a three-step approach based on available well data and seismic information. First, we determined the structural framework: a seismo-tectonic data analysis was carried out, and we showed that the study area is cut mainly by NW-SE-trending normal faults, which were classified according to geometric criteria (strike, throw magnitude, dip, and dip direction). We showed that these normal faults are at the origin of a large-scale trend structure (surfaces tilted toward the north-east). At a smaller scale, the normal faults create a distinct compartmentalization of the reservoirs. Then, a model of the reservoir system architecture was built by geostatistical methods. An efficient methodology was developed, to estimate the bounding faulted surfaces of the reservoir units. Emphasis was placed on (i) elaborating a methodology for variogram interpretation and modeling, whereby the importance of each variogram component is assessed in terms of probably geologic factor controlling the behavior of each structure; (ii) integrating the relevant fault characteristics, which were deduced from the previous fault classification analysis, as constraints in the kriging estimation of bounding surfaces

  9. Quantitative seismic reservoir characterization of tight sands (granite wash) play at Stiles Ranch field in the Anadarko Basin, Texas (USA)

    NASA Astrophysics Data System (ADS)

    Durrani, Muhammad Zahid Afzal

    The main objective of this study is to conduct quantitative seismic reservoir characterization study of the Granite Wash (Marmaton-tight sand) play at Stiles Ranch field in the Anadarko Basin, Texas (USA). The proposed methodology incorporates seismic petrophysics, rock physics, Amplitude Variation with Offset (AVO) analysis and seismic pre-stack simultaneous elastic impedance inversion. In addition, it utilizes geostatistical technique to improve the reservoir property estimation and quantify uncertainty in seismic lithology and fluid prediction. The general objective encompasses several more specific goals to study: well data conditioning and prediction of essential petrophysical properties (e.g., porosity, permeability and saturation), and their relationship to the elastic properties. Due to the multidisciplinary nature of seismic petrophysics, only three core aspects are focused on that cover the desired objectives: 1) porosity modeling, 2) shear wave prediction, and (3) fluid substitution. The rock types are characterized by Rock Physics Diagnostic (RPD) approach conducted on well log data calibrated with core data and thin sections. The Granite Wash reservoir elastic properties are upscaled from log to seismic scale using Backus averaging to obtain a more coarsely (upscaled) sampled data set equivalent to the seismic scale. Anisotropy parametric (epsilon, gamma and delta) log curves are estimated consistent with seismic measurements using rock properties, seismic velocity and clay volume (Vsh) as a function of depth. The reservoir elastic properties are related to both the depositional environment and burial history through rock physics depth trends as function of depth. Furthermore, based on the practical aspects two separate inversion approaches; AVO and Elastic Impedance (EI) are evaluated prior to their application to real seismic. Various AVO derived attribute volumes such as intercept (A), gradient (B) and reflection coefficients (scaled Poisson's ratio

  10. Airborne Snow Observatory: measuring basin-wide seasonal snowpack with LiDAR and an imaging spectrometer to improve runoff forecasting and reservoir operation (Invited)

    NASA Astrophysics Data System (ADS)

    McGurk, B. J.; Painter, T. H.

    2013-12-01

    The Airborne Snow Observatory (ASO) NASA-JPL demonstration mission collected detailed snow information for portions of the Tuolumne Basin in California and the Uncompahgre Basin in Colorado in spring of 2013. The ASO uses an imaging spectrometer and LiDAR sensors mounted in an aircraft to collect snow depth and extent data, and snow albedo. By combining ground and modeled density fields, the ~weekly flights over the Tuolumne produced both basin-wide and detailed sub-basin snow water equivalent (SWE) estimates that were used in a hydrologic simulation model to improve the accuracy and timing of runoff forecasting tools used to manage Hetch Hetchy Reservoir, the source of 85% of the water supply for 2.5 million people on the San Francisco Peninsula. The USGS PRMS simulation model was calibrated to the 459 square mile basin and was updated with both weather forecast data and distributed snow information from ASO flights to inform the reservoir operators of predicted inflow volumes and timing. Information produced by the ASO data collection was used to update distributed SWE and albedo state variables in the PRMS model and improved inflow forecasts for Hetch Hetchy. Data from operational ASO programs is expected to improve the ability of reservoir operators to more efficiently allocate the last half of the recession limb of snowmelt inflow and be more assured of meeting operational mandates. This presentation will provide results from the project after its first year.

  11. Remote Sensing of the Water Storage Dynamics of Large Lakes and Reservoirs in the Yangtze River Basin from 2000 to 2014

    NASA Astrophysics Data System (ADS)

    Cai, Xiaobin; Feng, Lian; Hou, Xuejiao; Chen, Xiaoling

    2016-11-01

    Basin-scale water volumes of lakes and reservoirs are difficult to obtain due to a number of challenges. In this study, area-based water storage estimation models are proposed for large lakes and reservoirs in the Yangtze River Basin (YRB). The models are subsequently applied to Moderate Resolution Imaging Spectroradiometer (MODIS) observations of 128 large lakes and 108 reservoirs between 2000 and 2014, and the first comprehensive map of the temporal and spatial dynamics of water storage in large water bodies in the YRB is provided. The results show that 53.91% of the lakes experienced significant decreasing trends in water storage during this period, and the total water storage in lakes showed a decreasing trend of 14 million m3 month‑1. By contrast, a monthly mean increase of 177 million m3 was observed for water storage in reservoirs. Our analysis revealed that the pronounced increase in reservoirs was primarily due to the rapid water level increase in the Three Gorges Reservoir in recent years, while understanding the water loss in lakes requires additional studies. The long-term data presented in this study provide critical baseline information for future water resource monitoring and regulation in the YRB and China.

  12. Remote Sensing of the Water Storage Dynamics of Large Lakes and Reservoirs in the Yangtze River Basin from 2000 to 2014

    PubMed Central

    Cai, Xiaobin; Feng, Lian; Hou, Xuejiao; Chen, Xiaoling

    2016-01-01

    Basin-scale water volumes of lakes and reservoirs are difficult to obtain due to a number of challenges. In this study, area-based water storage estimation models are proposed for large lakes and reservoirs in the Yangtze River Basin (YRB). The models are subsequently applied to Moderate Resolution Imaging Spectroradiometer (MODIS) observations of 128 large lakes and 108 reservoirs between 2000 and 2014, and the first comprehensive map of the temporal and spatial dynamics of water storage in large water bodies in the YRB is provided. The results show that 53.91% of the lakes experienced significant decreasing trends in water storage during this period, and the total water storage in lakes showed a decreasing trend of 14 million m3 month−1. By contrast, a monthly mean increase of 177 million m3 was observed for water storage in reservoirs. Our analysis revealed that the pronounced increase in reservoirs was primarily due to the rapid water level increase in the Three Gorges Reservoir in recent years, while understanding the water loss in lakes requires additional studies. The long-term data presented in this study provide critical baseline information for future water resource monitoring and regulation in the YRB and China. PMID:27812023

  13. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  14. Cation exchange capacity (Qv) estimation in shaly sand reservoirs: case studies in the Junggar Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Mao, Zhi-Qiang; Sun, Zhong-Chun; Luo, Xing-Ping; Deng, Ren-Shuang; Zhang, Ya-Hui; Ren, Bing

    2015-10-01

    Cation exchange capacity (Qv) is a key parameter in resistivity-based water saturation models of shaly sand reservoirs, and the accuracy of Qv calculation is crucial to the prediction of saturations of oil and gas. In this study, a theoretical expression of Qv in terms of shaly sand permeability (Kshaly-sand), total porosity (ϕt), and salinity of formation water (S) is deduced based on the capillary tube model and the physics volume model. Meanwhile, the classical Schlumberger-Doll research (SDR) model has been introduced to estimate Kshaly-sand. On this basis, a novel technique to estimate Qv from nuclear magnetic resonance (NMR) logs is proposed, and the corresponding model is also established, whose model parameters are calibrated by laboratory Qv and NMR measurements of 15 core samples from the Toutunhe formation of the Junggar Basin, northwest China. Based on the experimental data sets, this technique can be extended to reservoir conditions to estimate continuous Qv along the intervals. The processing results of field examples illustrate that the Qv calculated from field NMR logs are consistent with the analyzed results, with the absolute errors within the scope of  ±0.1 mmol cm-3 for the majority of core samples.

  15. Fault seal analysis to predict the compartmentalization of gas reservoir: Case study of Steenkool formation Bintuni Basin

    NASA Astrophysics Data System (ADS)

    Ginanjar, W. C. B.; Haris, A.; Riyanto, A.

    2017-07-01

    This study is aimed to analyze the mechanism of hydrocarbons trapping in the field on a relatively new play in the Bintuni basin particularly Steenkool formation. The first well in this field has been drilled with a shallow target in the Steenkool formation and the drilling is managed to find new gas reserves in the shale-sandstone layer. In the structure of this gas discovery, there is the potential barrier for compartmentalization that draws attention to analyze how the patterns of structural of fault become a part of reservoir compartment. In order to measure the risk associated with prospects on a field bounded by faults, it is important to understand the processes that contribute to fault seal. The method of Fault Seal Analysis (FSA) is one of the methods used for the analysis of the nature of a fault whether the fault is sealing or leaking the fluid flow in the reservoir. Trapping systems that are limited by faults play an important role in creating a trap of hydrocarbon. The ability of a fault to seal fluid is quantitatively reflected by the value of Shale Gouge Ratio (SGR). SGR is the calculation of the amount of fine-grained material that fills fault plane (fault gouge) as a result of the movement mechanism of fault. The result of this study is a valuable resource for the systematic evaluation of the analysis of hydrocarbon prospects in the field.

  16. Study on the application of seismic sedimentology in a stratigraphic-lithologic reservoir in central Junggar Basin

    NASA Astrophysics Data System (ADS)

    Yu, Yixin; Xia, Zhongmou

    2017-06-01

    This paper discusses the research idea of description for stratigraphic-lithologic reservoir based on seismic sedimentology methods. The sandstone reservoir of Jurrassic XiShanyao Formation in Junggar Basin is studied according to the theory and approaches of seismic sedimentology. By making full use of borehole data, the technologies of layer correlation based on the stratigraphic sequence framework, the forward seismic modeling, the stratal slicing and lithologic inversion are applied. It describes the range of denudation line, the distribution characteristics of sedimentary facies of the strata, the vertical and horizontal distribution of sand bodies and the favourable oil-gas bearing prospective area. The results shows that study area are dominated braided delta deposition including underwater distributary channel and distributary bay microfacies, the nip-out lines of the formation are northeast to southwest from north to south, the second Middle Jurassic sand body is the most widely distributed one among three sand bodies, the prospective oil-gas bearing area located in the south part and around the YG2 well area. The study result is effective on the practice of exploration in study area.

  17. Reservoir characterization through facies analysis of core and outcrop of the Lower Green River Formation: Hydrocarbon production enhancement in the Altamont-Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Wegner, M.; Garner, A.; Morris, T.H.

    1995-06-01

    The Altamont-Bluebell Field has produced over 125 million barrels of oil from lacustrine rocks of the Green River Formation, yet operators have not been able to accurately distinguish productive zones from non-productive, thief, and water-bearing zones. Low recoverability is largely due to the lack of understanding of the relationship between heterolithic facies, reservoir fracture systems and clay migration. These areas were investigated by analyzing over 457 meters of core from the Bluebell area and 843 meters of outcrop from the Willow Creek area. Approximately 60% of the core consists of carbonates and 40% consists of clastics (predominantly sandstones). The carbonate rocks in general have good porosity and randomly oriented, interconnected fractures, whereas the fractures in the sandstones are more vertical and isolated. The sandstones, however, do have the best reservoir capacity due to inherent interparticle porosity. Preliminary analysis of clay types indicates swelling illite-smectite mixed layer clays as well as kaolinite in both the elastic and carbonate rocks. These swelling clay types combine with the high pour point waxy oils to reduce production efficiency and total recovery. Outcrop studies conducted in the Willow Creek Canyon area help establish facies heterogeneity and reservoir storage capacity of lithology within the facies belts that have been defined in the Altamont-Bluebell field. Although production primarily occurs from fractured lithology, core plug analyses of more than 10 lithology indicate that arenites have the greatest potential for reservoir capacity, with porosities as high as 27%. This suggests that an association of arenites with fractured lithology would provide the best scenario for long-term production.

  18. Negotiating designs of multi-purpose reservoir systems in international basins

    NASA Astrophysics Data System (ADS)

    Geressu, Robel; Harou, Julien

    2016-04-01

    Given increasing agricultural and energy demands, coordinated management of multi-reservoir systems could help increase production without further stressing available water resources. However, regional or international disputes about water-use rights pose a challenge to efficient expansion and management of many large reservoir systems. Even when projects are likely to benefit all stakeholders, agreeing on the design, operation, financing, and benefit sharing can be challenging. This is due to the difficulty of considering multiple stakeholder interests in the design of projects and understanding the benefit trade-offs that designs imply. Incommensurate performance metrics, incomplete knowledge on system requirements, lack of objectivity in managing conflict and difficulty to communicate complex issue exacerbate the problem. This work proposes a multi-step hybrid multi-objective optimization and multi-criteria ranking approach for supporting negotiation in water resource systems. The approach uses many-objective optimization to generate alternative efficient designs and reveal the trade-offs between conflicting objectives. This enables informed elicitation of criteria weights for further multi-criteria ranking of alternatives. An ideal design would be ranked as best by all stakeholders. Resource-sharing mechanisms such as power-trade and/or cost sharing may help competing stakeholders arrive at designs acceptable to all. Many-objective optimization helps suggests efficient designs (reservoir site, its storage size and operating rule) and coordination levels considering the perspectives of multiple stakeholders simultaneously. We apply the proposed approach to a proof-of-concept study of the expansion of the Blue Nile transboundary reservoir system.

  19. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  20. Diagenesis and reservoir potential of volcanogenic sandstones - Cretaceous of the Surat Basin, Queensland, Australia

    SciTech Connect

    Hawlader, H.M. )

    1990-06-01

    The sandstones of the Lower Cretaceous succession of the Surat basin are characterized by abundant volcanogenic detritus in the form of rock-fragments and feldspars derived from an andesitic magmatic arc coincident with the present Great Barrier Reef in offshore Queensland. These compositionally immature sandstones are not regarded as favorable exploration targets because of their labile nature, their shallow burial depths, and hence the low thermal maturity of the intercalated mudrocks that might have constituted hydrocarbon source rocks. However, petrographic and petrophysical examinations show that significant primary and early diagenetic secondary dissolution porosity and permeability exist in some of these stratigraphic units that under certain circumstances could be the host for hydrocarbons and may become the future exploration targets. Flushing by CO{sub 2}-charged meteoric water after the inception of the Great Artesian basin (of which the Surat basin is a component) in the Tertiary is likely to have been the principal agent of secondary porosity development in these sandstones. Additionally, products of microbial degradation of organic matter (in the intercalated mudstones) and/or maturation products from the deeply buried part of the basin might have assisted in the dissolution of framework grains and previously deposited cement.

  1. Simulating sediment loading into the major reservoirs in Trinity River Basin

    USDA-ARS?s Scientific Manuscript database

    The Upper Trinity Basin supplies water to about one-fourth of Texas' population. The anticipated rapid growth of North Central Texas will certainly increase regional demands for high quality drinking water. This has increased concerns that sediment and nutrient loads received by drinking water reser...

  2. Study of the relation between soil use, vegetation coverage, and the discharge of sediments from artificial reservoirs using MSS/LANDSAT images. Example: The Tres Marias reservoir and its supply basin

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The land use and types of vegetation in the region of the upper Sao Francisco River, Brazil, are identified. This region comprises the supply basin of the Tres Marias reservoir. Imagery from channels 5 and 7 of the LANDSAT multispectral band scanner during wet and rainy seasons and ground truth data were employed to characterize and map the vegetation, land use, and sedimentary discharges from the reservoir. Agricultural and reforested lands, meadows, and forests are identified. Changes in land use due to human activity are demonstrated.

  3. The western Mediterranean basin as an aged aerosols reservoir. Insights from an old-fashioned but efficient radiotracer

    NASA Astrophysics Data System (ADS)

    Brattich, E.; Hernández-Ceballos, M. A.; Orza, J. A. G.; Bolívar, J. P.; Tositti, L.

    2016-09-01

    The long-term contemporary 210Pb time series acquired during the period 2004-2011 at two distant sites of different altitude in the Mediterranean basin, El Arenosillo (40 m a.s.l. in southwestern Spain) and Mt. Cimone (2165 m a.s.l. in northern Italy), are analyzed and compared. Besides being considered a tracer of continental air masses, 210Pb radionuclide is also a proxy of fine stable aerosol. For this reason, the measurements of PM10 mass concentrations collected at the same time and the corresponding 210Pb/PM10 ratio at the two sites are considered to gain better insights into the origin and size of the particles. Three statistical trajectory methods are applied to identify and characterize the 210Pb source regions at the two sites. The three methods yield similar outcomes in the source identification, which strengthens the robustness of our results. In addition to the importance of the transport from areas of continental Europe, this study highlights the relevant role of the Mediterranean Sea as a major 210Pb reservoir layer associated to the aged air masses that accumulate in the western Mediterranean basin. The analysis of the sources points out the significant influence of northern Africa to 210Pb increases at both sites as well, even though the most intensive episodes are not of Saharan origin.

  4. Predicting the downstream impact of ensembles of small reservoirs with special reference to the Volta Basin, West Africa

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Andreini, M.; Liebe, J.; Steenhuis, T.; Huber-Lee, A.

    2005-12-01

    After a strong reduction in investments in water infrastructure in Sub-Saharan Africa, we now see a revival and increased interest to start water-related projects. The global political willingness to work towards the UN millennium goals are an important driver behind this recent development. Large scale irrigation projects, such as were constructed at tremendous costs in the 1970's and early 1980's, are no longer seen as the way forward. Instead, the construction of a large number of small, village-level irrigation schemes is thought to be a more effective way to improve food production. Such small schemes would fit better in existing and functioning governance structures. An important question now becomes what the cumulative (downstream) impact is of a large number of small irrigation projects, especially when they threaten to deplete transboundary water resources. The Volta Basin in West Africa is a transboundary river catchment, divided over six countries. Of these six countries, upstream Burkina Faso and downstream Ghana are the most important and cover 43% and 42% of the basin, respectively. In Burkina Faso (and also North Ghana), small reservoirs and associated irrigation schemes are already an important means to improve the livelihoods of the rural population. In fact, over two thousand such schemes have already been constructed in Burkina Faso and further construction is to be expected in the light of the UN millennium goals. The cumulative impact of these schemes would affect the Akosombo Reservoir, one of the largest manmade lakes in the world and an important motor behind the economic development in (South) Ghana. This presentation will put forward an analytical framework that allows for the impact assessment of (large) ensembles of small reservoirs. It will be shown that despite their relatively low water use efficiencies, the overall impact remains low compared to the impact of large dams. The tools developed can be used in similar settings elsewhere

  5. Effects of the Paso Robles Geothermal Reservoir on water quality and availability in the Paso Robles Groundwater Basin, California

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Langenheim, V. E.; Goldstein, D.

    2012-12-01

    Geochemical and isotopic data from water wells and hot springs in the Paso Robles Groundwater Basin (PRGB) indicate that two water sources affect water quality and availability: meteoric water stored in Pliocene sediments, and geothermal waters present in deeper Miocene sediments. Understanding mixing of these two water sources is important in managing groundwater in the PRGB. The PRGB is the southernmost of several Salinas Valley groundwater basins. Demands from both population growth and agriculture have made water quality and availability a continuing concern. To address continuing depletion of groundwater, a 25 km pipe was recently constructed to bring water from Lake Nacimiento to supplement municipal water supplies. The PRGB is bounded on the west by the Rinconada Fault, and on the east by the San Juan and Red Hills faults. The main aquifer in the PRGB is in the Pliocene Paso Robles Formation (PRF). Aeromagnetic anomalies delineate the boundaries of the basin and thickness of basin fill. Aeromagnetic highs are coincident with surface and near surface presence of the highly magnetic La Panza granite, while aeromagnetic lows occur where basin fill is deepest and the La Panza granite is at a depth of over 1 km. The low temperature (<40oC) geothermal system in the Paso Robles area is located on the west side of the PRGB. The geothermal reservoir is present in the base of the PRF and the upper part of the Miocene Monterey Formation. The geothermal waters are Ca-Mg-SO4 waters, with gas chemistry dominated by CH4, N2, CO2, and H2S. Sulfur, barite and FeS precipitates occur in hot spring pools. The hot springs and geothermal wells are localized along the Rinconada and subsidiary faults. Several new hot springs developed along the Rinconada fault, including one in the Paso Robles city center after the 2003 M6.5 San Simeon earthquake. The city center hot spring was covered over and hot spring effluent was piped 1 km to a leach field in the Salinas River floodplain

  6. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, Richard M.

    1999-01-01

    Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/?Q??Haushi(!) Total Petroleum System (201401) and Ghaba- Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: (1) the North Oman Huqf?Shu?aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and (2) the middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon-producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply buried source rocks within the Infracambrian Huqf Supergroup. One general ?North Oman Huqf? type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant ?questionable unidentified source? or ?Q?-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout northcentral Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (middle Carboniferous to Lower Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/?Q??Haushi(!) TPS. In contrast, the Lower Cretaceous Shu?aiba and middle Cretaceous

  7. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  8. Unconformities and valley-fill sequences-Key to understanding reservoirs at Lonetree and Poncho Fields, Denver Basin, Colorado

    SciTech Connect

    Ethridge, F.; Dolson, J.C.

    1988-01-01

    Previous interpretations suggested that the Lower Cretaceous ''J'' sandstone in the Denver basin is divisible into three genetic units: a lower delta front (J-3), a middle delta plain (J-2), and an upper destructional marine bar (J-1). The presence of root casts and siderite cement along the upper contact of the J-3 sandstone, however, suggests that J-2 deposits are separated from the J-3 sandstone by a regional unconformity. This contact may mark the same unconformity that separates the Horsetooth and Fort Collins Members in outcrop along the western margin of the basin. J-2 deposits comprise point bar, crevasse splay, and floodplain sequences of a broad alluvial plain. Fluvial deposits at Lonetree and Poncho probably formed in a tributary to a larger order tributary that flowed southwest through the Peoria field area. These tributaries eventually drained into a major trunk stream represented by valley-fill deposits of the Kassler sandstone. Delta-front deposits (J-3) that underlie the unconformity are tightly cemented by siderite and do not produce in either field. J-2 sandstones are productive from north- and west-trending point-bar deposits in both fields and from laterally equivalent crevasse-splay deposits at Lonetree field. Secondary porosity has created a common reservoir in point-bar and crevasse-splay deposits at Lonetree. Laterally equivalent deposits of major trunk streams, such as the Kassler sandstone, generally produce only over structural noses in the southern D-J basin. Overlying J-1 sandstones form northeast-trending marine bars in both field areas. Two echelon bars are present at Poncho but only the western one is productive. The eastern bar at Poncho and the single marine bar at Lonetree are wet.

  9. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA

    USGS Publications Warehouse

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (<70 g/L) of meteoric origin in the middle and upper Permian hydrocarbon reservoirs (1.2–2.5 km depth; Guadalupian and Leonardian age) likely represent meteoric waters that infiltrated through and dissolved halite and anhydrite in the overlying evaporite layer. Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (<100 g/L) in Devonian and deeper reservoirs (>3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System

  10. Zonation of shale reservoir stimulation modes: a conceptual model based on hydraulic fracturing data from the Baltic Basin (Poland).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above

  11. Designing multi-reservoir system designs via efficient water-energy-food nexus trade-offs - Selecting new hydropower dams for the Blue Nile and Nepal's Koshi Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hurford, A.; Geressu, R. T.

    2015-12-01

    Many of the world's multi-reservoir water resource systems are being considered for further development of hydropower and irrigation aiming to meet economic, political and ecological goals. Complex river basins serve many needs so how should the different proposed groupings of reservoirs and their operations be evaluated? How should uncertainty about future supply and demand conditions be factored in? What reservoir designs can meet multiple goals and perform robustly in a context of global change? We propose an optimized multi-criteria screening approach to identify best performing designs, i.e., the selection, size and operating rules of new reservoirs within multi-reservoir systems in a context of deeply uncertain change. Reservoir release operating rules and storage sizes are optimized concurrently for each separate infrastructure design under consideration across many scenarios representing plausible future conditions. Outputs reveal system trade-offs using multi-dimensional scatter plots where each point represents an approximately Pareto-optimal design. The method is applied to proposed Blue Nile River reservoirs in Ethiopia, where trade-offs between capital costs, total and firm energy output, aggregate storage and downstream irrigation and energy provision for the best performing designs are evaluated. The impact of filling period for large reservoirs is considered in a context of hydrological uncertainty. The approach is also applied to the Koshi basin in Nepal where combinations of hydropower storage and run-of-river dams are being considered for investment. We show searching for investment portfolios that meet multiple objectives provides stakeholders with a rich view on the trade-offs inherent in the nexus and how different investment bundles perform differently under plausible futures. Both case-studies show how the proposed approach helps explore and understand the implications of investing in new dams in a global change context.

  12. Mesozoic evolution of the Amu Darya basin

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina

    2014-05-01

    of the basin is occupied by the Pre-Kopet Dagh Cenozoic foreland basin NW oriented, possibly underlain by an earlier extensional trough. The main elements of the sedimentary pile, which can be partly observed in the South-Western Gissar are: Lower to Middle Jurassic continental to paralic clastic rocks; upper Middle to Upper Jurassic marine carbonate then thick Tithonian evaporite rocks, sealing the reservoirs in the Jurassic carbonates; continental Neocomian clastic rocks and red beds, Aptian to Paleogene marine carbonate and clastic rocks. To reconstruct the geodynamic evolution of the Amu Darya Basin, we analysed the subsidence by backstripping of some wells/pseudo-wells and of three cross-sections with some examples of thermal modelling on the periods of maturation of the potential source rocks. The crustal thinning events take place in the Permo-Triassic? (depending on the age of the rifts underlying the basin), in Early-Middle Jurassic and during the Early Cretaceous, resulting in increases of the tectonic subsidence rates.

  13. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2000-04-01

    Progress in year 2 of this project is highlighted by the completing of the writing and testing of the project database, ''Atlas'', and populating it with all the project data gathered to date. This includes digitization of 17,000+ original Scout Tickets for the Michigan Basin. Work continues on the Driller's Reports, where they have scanned about 50,000 pages out of an estimated 300,000 pages. All of the scanned images have been attached to ''Atlas'', the visual database viewer developed for this project. A complete set of the 1/24,000 USGS DEM (Digital Elevation Models) for the State of Michigan has been downloaded from the USGS Web sites, decompressed and converted to ArcView Grid files. A large-scale map (48 inches x 84 inches) has been constructed by mosaicking of the high-resolution files. This map shows excellent ground surface detail and has drawn much comment and requests for copies at the venues where it has been displayed. Although it was generated for mapping of surface lineations the map has other uses, particularly analysis of the glacial drift in Michigan. It presents unusual problems due to its size and they are working with vendors on compression and display algorithms (e.g. MrSID{copyright}) in an attempt to make it available over the Internet, both for viewing and download. A set of aeromagnetic data for the Michigan Basin has been acquired and is being incorporated into the study. As reported previously, the general fracture picture in the Michigan Basin is a dominant NW-SE trend with a conjugate NE-SW trend. Subsurface, DEM and gravity data support the interpretation of a graben-type deep basement structural trend coincident with the Michigan Basin Gravity High. They plan to incorporate the aeromagnetic data into this interpretation as well.

  14. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River basin

    SciTech Connect

    Ahlbrandt, T.S.; Fox, J.E.

    1997-07-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine {open_quotes}Limestone Marker{close_quotes} and estuarine {open_quotes}Brown Shale{close_quotes}. The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming.

  15. Progressive chemical modification of clastic sediments with burial

    NASA Astrophysics Data System (ADS)

    Curtis, C. D.

    1987-03-01

    The porosity of clastic sediments at deposition varies very approximately between about 45% (sands) and 85% (muds). With burial, consolidation takes place as pore water is progressively eliminated. It would be misleading, however, to attribute alterations in sediment bulk properties to physical processes alone. Very significant mineralogical changes occur and these start soon after burial, especially in mudrocks. Striking heterogeneities such as thin, laterally continuous cemented horizons or discrete concretions are commonly introduced. These shallow burial processes are predominently the result of microbial activity. Thermodynamically unstable mixtures of organic matter and various oxidants [dissolved oxygen, sulphate, nitrate, particulate Fe(III) and Mn(IV)] provide both substrate and energy source for a variety of different microbial ecosystems. Mineralogical consequences include both leaching and the precipitation of carbonate, sulphide, phosphate and silica cements. The type and extent of mineral modification depends strongly on depositional environment variables such as rate of sedimentation and water composition. At greater depths, large scale modification of detrital clay minerals (particularly the smectite-I/S-illite transformation) takes place. Recent work of various kinds, however, has demonstrated that these changes may not be solid state transformations: clay mineral dissolution, transport and precipitation occur much more widely than was formerly supposed. In sandstones, authigenic precipitation of clay minerals from pore solution is much more obviouis. Systematic patterns of precipitation, alteration and replacement have been documented in many sedimentary basins. Porosity and permeability are reduced by cementation and, sometimes, enhanced by mineral dissolution. Whereas the general nature of these chemical reactions is fairly well understood, it is not yet possible to predict with certainty the scale or distribution of mineralogical consequences

  16. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River Basin

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Fox, J.E.

    1997-01-01

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine "Limestone Marker" and estuarine "Brown Shale". The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming. At Red Bird field the primary exploration target was the Pennsylvanian "Leo sands" of the Minnelusa Formation, and

  17. Clarence J. Brown Reservoir, Greater Miami River Basin, Ohio, Embankment Criteria and Performance Report.

    DTIC Science & Technology

    1982-09-01

    Box 59 LOUISVILLE, KENTUCKY 40201 ORLED-G 9 December 1982 SUBJECT: Embankment Criteria and Performance Report C. J. Brown Reservoir, Ohio SEE ...at the dam site. ( See Plate 3, for alluvial and glacial deposits of a portion of Clark County.) Topography in the project area varies from hummocky...CHUTECULL U8 S,~ ARMY .. ,op~er ’-ir can’r’rwa.#Cr Ot~t~ - - S ewn ~ O L-a ,d s h e e /3 0 f e b o * co sKll Jil See ~o.15 she 3 4 ~C-thacfion -It

  18. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey.

    PubMed

    Varol, Memet

    2013-10-01

    Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources.

  19. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  20. Water quality of Corydon Reservoir before implementation of agricultural best-management practices in the basin, Wayne County, Iowa, September 1990 to September 1991

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1993-01-01

    A hydrologic investigation to define the water quality of Corydon Reservoir before implementation of agricultural best-management practices in the basin was conducted from September 1990 to September 1991. Runoff from the 1,680-acre basin is the primary source of water to the 58-acre reservoir. Current water quality of the reservoir is affected substantially by runoff from the agricultural basin. Total-solids, total-nitrogen, and total-phosphorus concentrations were largest during April through July 1991, the months of greatest rainfall. Herbicide concentrations increased substantially in June after application. The concentration of the sum of all triazines was greater than 50 micrograms per liter in one sample, with the predominant herbicides being atrazine and cyanazine. Atrazine concentrations, estimated from immunoassay, were greater than 8.0 micrograms per liter from June through September 1991 as a result of reservoir storage. Atrazine concentrations commonly were less at the surface than at depth. Algal populations remained constant even though nutrient concen- trations increased during the summer months. This may be due to the presence of suspended sediment that reduces light penetration and herbicides that inhibit photosynthesis.

  1. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when

  2. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, R.M.

    1999-01-01

    Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/`Q'? Haushi(!) Total Petroleum System (201401) and Ghaba-Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: 1) the North Oman Huqf ? Shu'aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and 2) the Middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply-buried source rocks within the Infracambrian Huqf Supergroup. One general `North Oman Huqf' type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant `questionable unidentified-source' or `Q'-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout north-central Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (M. Carboniferous to L. Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/`Q' ? Haushi(!) TPS. In contrast, the Lower Cretaceous Shu'aiba and Middle Cretaceous

  3. The role of deformation bands controlling reservoir quality in a salt-walled mini-basin, Central North Sea, UK

    NASA Astrophysics Data System (ADS)

    Davies, Philip; Jones, Stuart; Imber, Jonathan

    2017-04-01

    phyllosilicate minerals along the majority of bands. These deformation bands were infilled by contemporaneous Skagerrak Formation Sands sediment from the basin before being buried. Together, these observations suggest that the dominant deformation features can be kinematically classified as either dilation bands, or dilatant shear bands. The greater occurrence of these deformation bands at the mini-basin margin also complicates fluid flow and reservoir quality prediction for the Skagerrak Formation further as fractures, faults and deformation bands create a complex system of permeable fluid pathways and cemented baffles at deeper burial. The results presented highlight the importance of constraining the occurrence of dilation and dilatant shear bands along the margins of salt-walled mini-basins to better understand the kinematics of the salt movement and additional loading on adjacent sediments. Furthermore, this research identifies the importance of early formed deformation bands in controlling meteoric water influx and governing later reservoir quality for spatially and temporally complex sedimentary fills of salt-walled mini-basins.

  4. Appalachian Basin Play Fairway Analysis: Natural Reservoir Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

    DOE Data Explorer

    Teresa E. Jordan

    2015-10-22

    The files included in this submission contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.

  5. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    USGS Publications Warehouse

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  6. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  9. Well-log signatures of alluvial-lacustrine reservoirs and source rocks, Lagoa-Feia Formations, Lower Cretaceous, Campos Basin, offshore Brazil

    SciTech Connect

    Abrahao, D.; Warme, J.E.

    1988-01-01

    The Campos basin is situated in offshore southeastern Brazil. The Lagoa Feia is the basal formation in the stratigraphic sequence of the basin, and was deposited during rifting in an evolving complex of lakes of different sizes and chemical characteristics, overlying and closely associated with rift volcanism. The stratigraphic sequence is dominated by lacustrine limestones and shales (some of them organic-rich), and volcaniclastic conglomerates deposited on alluvial fans. The sequence is capped by marine evaporites. In the Lagoa Feia Formation, complex lithologies make reservoirs and source rocks unsuitable for conventional well-log interpretation. To solve this problem, cores were studied and the observed characteristics related to log responses. The results have been extended through the entire basin for other wells where those facies were not cored. The reservoir facies in the Lagoa Feia Formation are restricted to levels of pure pelecypod shells (''coquinas''). Resistivity, sonic, neutron, density, and gamma-ray logs were used in this work to show how petrophysical properties are derived for the unconventional reservoirs existing in this formation. The same suite of logs was used to develop methods to define geochemical characteristics where source rock data are sparse in the organic-rich lacustrine shales of the Lagoa Feia Formation. These shales are the main source rocks for all the oil discovered to date in the Campos basin.

  10. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  11. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Hara, S.

    1996-12-01

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

  12. Fracture patterns and their origin in the upper Devonian Antrim Shale gas reservoir of the Michigan basin; a review

    USGS Publications Warehouse

    Ryder, Robert T.

    1996-01-01

    INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the

  13. National Program for Inspection of Non-Federal Dams. Woodtick Reservoir Dam (CT 00294), Housatonic River Basin, Wolcott, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1978-12-01

    September, 1958. 7. Instrumentation of Earth and Rockfill Dams ; U.S. Army, Corps of Engineers; EM 1100-2-1908; August, 1971. B- 9 B-i I I C) I A / " ~’ ’I I...AD-A144 195 NATIONAL PROGRAMI FOR INSPECTION OF NON-FEDERAL DAMS I/i kOODTICK RESERVOIR DR..(U) CORPS OF ENGINEERS WALTHAM MA NEW ENGLAND DIV DEC 78...CHART NATIONAL BUREAU OF STANDARDS-1963-A in HOUSATONIC RIVER BASIN WOLCOTT, CONNECTICUT <- WOODTICK RESERVOIR DAM CT. 00294 PHASE I INSPECTION REPORT

  14. Land use/vegetation mapping in reservoir management. Merrimack River basin

    NASA Technical Reports Server (NTRS)

    Mckim, H. L.; Gatto, L. W.; Merry, C. J.; Anderson, D. M.; Marlar, T. L.

    1975-01-01

    This report consists of an analysis of: ERTS-1 Multispectral Scanner imagery obtained 10 August 1973; Skylab 3 S190A and S190B photography, track 29, taken 21 September 1973; and RB-57 high-altitude aircraft photography acquired 26 September 1973. These data products were acquired on three cloud-free days within a 47-day period. The objectives of this study were: (1) to make quantitative comparisons between high-altitude aircraft photography and satellite imagery, and (2) to demonstrate the extent to which high resolution (S190A and B) space-acquired data can be used for land use/vegetation mapping and management of drainage basins.

  15. Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec

  16. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  17. Turbidite fans in Upper Cretaceous Pierre Shale, Eagle Basin, Colorado: a new reservoir facies

    SciTech Connect

    Krystinik, L.F.

    1983-03-01

    Two fans intercalate with the Upper Cretaceous Pierre Shale and form cliffs over more than 10 mi (16 km) of continuous outcrop in the Eagle basin, north of Walcott, Colorado. Both units exhibit progradational sequences typical of turbidite fans. A common vertical succession of sedimentary structures consists of starved ripples, flat-bottomed ripple beds, thin flat beds grading into ripples of climbing ripples, and amalgamated flat beds. Massive to graded beds are rare and occur only in the upper part of each sandstone body. Associated sedimentary features include parting lineation, grooves, prod marks, mud chips, contorted bedding, and flute casts. Broad, low-relief channels occur at the top of the lower, more well-developed sequence. The sedimentary structures described correlate well with accepted models for turbidite-fan sedimentation. Alternative interpretations of these laterally continuous, progradational sandstone bodies might include deposition in a distal shoreface or offshore bar environment. Hummocky cross-stratification and large-scale cross-stratified bed forms are not common in the sequence, as would be expected in a shoreface or marine-bar environment. Turbidite-fan deposits similar to those studied could be economically significant because of their extreme lateral continuity, updip seals, intercalation with hydrocarbon source rock, and possible overpressuring. The presence of submarine fans within the Cretaceous Western Interior seaway may increase significantly the hydrocarbon potential of previously unexplored, shaly portions of the basin.

  18. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    USGS Publications Warehouse

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  19. Unraveling the multiple origins of heterogeneity within Lower Mississippian Madison reservoirs: Bighorn Basin, Wyoming and Montana, USA

    SciTech Connect

    Sonnenfeld, M.D.

    1995-08-01

    {open_quotes}Fracture-controlled{close_quotes} and {open_quotes}karst-controlled{close_quotes} contributions to reservoir heterogeneity tend to be viewed as non-fabric selective in nature. Given such an outlook, predictions of fracture and karst overprints depend on an awareness of extrinsic controls such as past and present stress-fields, structural curvature, fault proximity, and the positions and movements of paleo-water tables. The hierarchical sequence stratigraphy of the 300 m Madison provides the stratigraphic framework necessary to characterize the vertical distribution of early, fabric-selective platformal dolomite; additionally, this framework assists in discriminating between fabric-selective and non-fabric-selective styles of karst and fracturing. In the case of Madison karst, early meteoric lithification and subtle Mississippian tectonics resulted in a vertically oriented fracture-controlled karst on top of the Madison, yet this non fabric-selective system channeled waters into several fabric-selective, regionally widespread solution collapse zones and cave systems. The horizontally oriented regional dissolution was stratigraphically controlled by soluble evaporitic zones and/or argillaceous aquitards overlying intra-Madison sequence boundaries rather than occurring at various unconfined water-table stillstands. Evaporite solution collapse breccias presently form partial to complete barriers to vertical fluid flow depending on thickness and degree of associated argillaceous influx, while cave-roof {open_quotes}fracture breccias{close_quotes} were preferential sites of late dolomitization within the giant Elk Basin Madison reservoir. In the case of Madison fracturing, stratigraphic cycles of several scales provide effective scales of analysis in the quest for true mechanical stratigraphic units defined by common fracture styles.

  20. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal).

    PubMed

    Palma, P; Ledo